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A new gene set identifies senescent cells and
predicts senescence-associated pathways
across tissues
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Diana Jurk 2,6, João F. Passos 2,6, LaTonya J. Hickson9, Ailing Xue2,
David G. Monroe 1,2, Tamara Tchkonia 2,6, James L. Kirkland 2,6,
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Although cellular senescence drives multiple age-related co-morbidities
through the senescence-associated secretoryphenotype, in vivo senescent cell
identification remains challenging. Here, we generate a gene set (SenMayo)
and validate its enrichment in bone biopsies from two aged human cohorts.
We further demonstrate reductions in SenMayo in bone following genetic
clearance of senescent cells in mice and in adipose tissue from humans fol-
lowing pharmacological senescent cell clearance. We next use SenMayo to
identify senescent hematopoietic or mesenchymal cells at the single cell level
from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo
identifies senescent cells across tissues and species with high fidelity. Using
this senescence panel, we are able to characterize senescent cells at the single
cell level and identify key intercellular signaling pathways. SenMayo also
represents a potentially clinically applicable panel for monitoring senescent
cell burden with aging and other conditions as well as in studies of
senolytic drugs.

Cellular senescence is now recognized as a fundamentalmechanismof
aging in animals and humans. Accumulation of DNA damage and/or
other cellular stressors1–4 causes proliferating5,6 as well as terminally
differentiated, non-dividing cells7–10 to undergo senescence. Char-
acteristics of senescent cells include profound chromatin and secre-
tome changes, along with increased expression of a number of
senescence markers, including Cdkn2a/p16Ink4a and Cdkn1a/p21Cip1,
immune evasion, and resistance to apoptosis1,11. Senescent cells can

develop a senescence-associated secretory phenotype (SASP), con-
sisting of pro-inflammatory cytokines, chemokines, extracellular
matrix-degrading proteins, and other factors that have deleterious
paracrine and systemic effects12–15. Further, because senescent cells
accumulate in multiple tissues in temporal and spatial synchrony with
age-associated functional decline in both animals andhumans5,6,16, they
have been hypothesized to drive the deterioration linked to numerous
chronic diseases1.
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Importantly, the SASP as a feature of cellular senescence repre-
sents not just a locally or systemically detrimental set of factors that, in
the aging organism, cause physical, metabolic, and cognitive
decline17–21, but is also a therapeutic target of interest22–24. Thus, given
the broad availability of next-generation sequencing, there is con-
siderable interest in monitoring responses to senolytic treatments.
However, this has been challenging, especially at the single cell level25.
In part, this is due to an imprecise definition of the heterogeneous
population of senescent cells and their associated SASP which com-
plicates appropriate monitoring of senescent cell clearance.

Due to variations in the composition of a “senescence gene set” in
the current literature, in the present study we sought to identify
commonly regulated genes in various age-related datasets in a
transcriptome-wide approach that included whole-transcriptome as
well as single cell RNA-sequencing (scRNA-seq)26. Based on an exten-
sive review of the literature, we defined a panel of 125 genes as our
senescence gene set (“SenMayo”), which we then validated in our own
as well as publicly available datasets of tissues from aged humans and
mice, including changes in this gene set following the clearance of
senescent cells. Recognizing the difficulty of identifying senescent
cells within scRNA-seq analyses, we next applied SenMayo to available
scRNA-seq data from human and murine bone marrow/bone hema-
topoietic and mesenchymal cells, ascertained the identity of the
senescent cells in these analyses, and characterized the communica-
tion patterns of senescent hematopoietic or mesenchymal cells with
other cells in their microenvironment. Finally, we experimentally
validated key predictions from our in silico analyses in a mousemodel
of aging and following genetic clearance of senescent cells.

Results
Development and validation of SenMayo in human datasets
We first analyzed previously published27,28 as well as unpublished
(see Methods) transcriptome-wide mRNA-seq analyses of human
whole bone biopsies. These included bone and bone marrow
(Cohort A)27 as well as bone biopsies that were processed to
remove bone marrow and bone surface cells and were thus highly
enriched for osteocytes (Cohort B)28 from young vs. elderly
women (Fig. 1a). We used transcriptional regulatory
relationships29 to evaluate whether senescence- and SASP-
associated pathways were enriched with aging in humans and
noted enrichment of genes regulating inflammatory mediators,
including NFKB1, RELA, and STAT3 (Fig. 1b). As expected, both
aged cohorts displayed an upregulation of senescence- and SASP
markers such as CDKN1A/p21Cip1, CCL2, and IL6 (Fig. 1c). It should
be noted that some canonical markers of senescence, including
CDKN2A/p16Ink4a, did not show the predicted increase with aging
due to comparatively low expression levels. Given the limitations
of single gene analyses to predict the complex mechanisms of
cellular aging, we next tested whether a previously published
combination of senescence/SASP genes (R-HSA-2559582) is enri-
ched in our aging cohorts. However, this Gene Set Enrichment
(GSEA)-based approach failed to predict an age-related senes-
cence/SASP increase in either cohort (Fig. 1d).

In order to develop a more robust gene panel associated with
cellular senescence, we next generated a novel gene set to predict the
expression of senescence-related genes by performing an in-depth,
rigorous literature search (see Methods for details of how these genes
were selected). The result was a novel senescence gene set of 125 genes
(SenMayo) that consisted predominantly of SASP factors (n = 83) but
also included transmembrane (n = 20) and intracellular (n = 22) pro-
teins (see Supplementary Data 1 for the complete SenMayo gene
list [human and mouse]). Within this SenMayo gene set, which com-
prised 9 distinct clusters, cytokines/chemokines were the most den-
sely connected regulators according to the number of descendent
proteins in STRING analysis (Fig. 1e, f; network characteristics can be

found in Supplementary Data 2). Predominant connectivity (whole
network density: 0.277, PPI <0.0001) was shown by IL1A, CXCL8, CCL2
(cytokines/chemokines, blue), IGF1 (growth factor, green), C3 and
IGFBP4 (protease inhibitor, turquoise), TNFRSF1A, EGF and EGFR
(transmembrane signal receptors, red), and MMP2, PLAT, and HGF
([metallo-]proteases, grey) (Fig. 1f). The key regulatory elements of the
SenMayo genes, according to iRegulon30, featured the Factorbook-
NFKB1 motif (Supplementary Fig. 1a), and BCL3, a key transcriptional
coactivator for NFKB31 (Supplementary Fig. 1b–c), represented the
leading transcription factor for a majority of SASP genes (Supple-
mentary Fig. 1d).

Notably, when testing the enrichment of SenMayo within our two
human mRNA-seq cohorts, senescence/SASP genes were significantly
enriched in the bone samples obtained from elderly women (p =0.002
[Cohort A] and p =0.003 [Cohort B]; Fig. 1g). Using Cohort A as an
example, within the R-HSA-2559582 gene set, 2 out of 50 available
genes were significantly enriched in the biopsies from elderly women
(Supplementary Fig. 2a), while 13 out of 120 available genes of the
SenMayo gene set were significantly enriched in the elderly women
(Supplementary Fig. 2b). Note that the GSEA analysis includes not only
genes that differ significantly between groups, but also evaluates
overall trends for differences in gene expression between groups and
hence provides considerably greater power than examining individual
genes32. The canonical SASPmarkers CCL24, SEMA3F, FGF2, and IGFBP7
were consistently enriched in Cohort A (Supplementary Fig. 2c) and
Cohort B (Supplementary Fig. 2d). In addition, SEMA3F was sig-
nificantly correlated with the senescence marker, CDKN1A/p21Cip1, in
both cohorts (Supplementary Fig. 2e, f).

SenMayo is applicable across tissues and species
To evaluate the applicability of SenMayo across tissues and species,we
next analyzed publicly available mRNA-seq data from brain tissue
isolated from young vs. aged mice (GSE14526533, GSE12877034,
GSE9483235, Fig. 2a–c). As is evident, aged mouse brain cells (micro-
glia) and regions (prefrontal cortex, dorsal hippocampus) displayed a
highly significant enrichment of senescence/SASP genes using the
SenMayo gene list (p = 0.005, p = 0.001, p˂0.001, respectively), while
the previously published gene set (R-HSA-2559582) did not reach sta-
tistical significance (p = 0.157, p = 0.117, p =0.192, respectively). In
addition, using murine bone marrow from the tabula muris senis (a
murine single cell transcriptome atlas of young vs. aged tissues36), the
applicability of SenMayo in identifying senescent cells associated with
aging was confirmed by GSEA (Fig. 2d). Thus, SenMayo identifies
senescent cells associated with aging across tissues (bone/bone mar-
row and brain) and species (humans and mice).

SenMayo demonstrates clearance of senescent cells
In order to independently validate our in silico analyses, we next made
use of our previously described p16-INK-ATTAC mouse model that
allows for inducible clearance of p16Ink4a-expressing senescent cells
after administration of the drugAP20187 (AP)37. In previous studies, we
have demonstrated increases in Cdkn2a/p16Ink4a and Cdkn1a/p21Cip1

mRNA levelswith aging inbones from thesemice7 aswell as reductions
in these mRNAs following clearance of senescent cells in p16-INK-
ATTACmice treated with AP and concordant changes in othermarkers
of cellular senescence (e.g., telomeric DNA damage markers in
osteocytes)37. Importantly, in young vs. old mice, SenMayo was
expressed at a significantly higher level in bones from the old mice
(Fig. 3a) and was significantly reduced following AP treatment of old
p16-INK-ATTACmice (Fig. 3b). Moreover, by using the SenMayo genes,
a higher overlap of young vs. old + AP-treated mice as compared to
young vs. old + vehicle-treated mice was observed through principal
component analysis (PCA) (Fig. 3c).

We further validated the ability of SenMayo to predict senescent
cell clearance by examining a human cohort. In a phase I pilot study,
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the senolytic combination of Dasatinib plus Quercetin (D+Q)38 was
administered to subjects with diabetic kidney disease for three con-
secutive days24,39. Diabetic kidney disease was chosen as amodel in the
original trial because both obesity (associated with type 2 diabetes
mellitus) and chronic kidney disease are linked to an increase in

senescent cell burden40,41. We performed RNA-seq from adipose tissue
samples obtained from these subjects before and 11 days after D +Q
treatment (male: female = 7:2, age: 68.7 [±3.1] years, Fig. 3d)24,39. As
shown in Fig. 3e, there was a significant reduction in SenMayo
(p = 0.002) in the subcutaneous adipose tissue samples in the subjects
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Fig. 1 | Development and validation of the SenMayo gene set. aHuman samples
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osteocyte fractions) were used for transcriptome-wide RNA-seq analyses; bMaking
use of TRRUST analyses30, we found several inflammation- and stress-associated
genes, including SIRT1 andNFKB1, to be upregulated in the elderly women; p values
were adjusted according to Benjamini–Hochberg. c In both gene sets, CDKN1A/
P21Cip1 and several SASP markers such as CCL2 and IL6 showed consistent upregu-
lation with aging, while CDKN2A/p16Ink4a (due to comparatively low expression) did
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in either human cohort. Nominal p value, calculated as two-sided t-test, no
adjustment since only one gene set was tested; e The SenMayo gene set includes
growth factors, transmembrane receptors, and cytokines/chemokines that are
highly influenced by other members of the gene set. The circle size depicts
groupwise interactions, arrows point the direction of these interactions. f SenMayo
encodes a dense network of nine different protein classes within a strong interac-
tion network. The size of each circle represents the connectivity with other mem-
bers of the gene set, grey lines represent interactions92; g Genes included in the
SenMayo gene set were significantly enriched with aging in both human cohorts.
Nominal p value, calculated as two-sided t-test, no adjustment since only one gene
set was tested Cohort A: n = 38 (19 young, 19 old, all ♀), Cohort B: n = 30 (15 young,
15 old, all ♀). **p <0.01, ****p <0.0001. Fig. 1a was designed using Biorender.com.
Depicted are mean ± SEM. Source data are provided as a Source Data file.
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following D +Q treatment, consistent with a reduction in senescent
cell burden, which was independently validated by demonstrating
reductions in p16Ink4+, p21Cip+, and SA-βgal+ cells in the adipose tissue
biopsy samples following D +Q treatment24,39. Thus, these direct
interventional studies in mice and humans demonstrate that not only
is SenMayo associated with aging, but it is also reduced following
clearance of senescent cells.

SenMayo outperforms existing senescence/SASP gene sets
In addition to directly comparing SenMayo to the R-HSA-2559582
senescence/SASP gene set, we also compared it to five additional
senescence/SASP gene sets42–46 in all of the mouse and humanmodels
described above. As shown in Table 1, SenMayo consistently out-
performed these gene sets (based on normalized enrichment scores
[NES] and p values) both in the ability to identify senescent cells with
aging across tissues and species and in demonstrating responses to
senescent cell clearance.

SenMayo identifies senescent cells in scRNA-seq datasets
Although scRNA-Seq provides important information regarding
changes in gene expression at the individual cell level, it has been
problematic for evaluating cellular senescence in a given cell. In part,
this is because the Cdkn2a/p16Ink4a mRNA is expressed at relatively low
levels, even in senescent cells47, and may not be reliably detected in
scRNA-seq data. Although Cdkn1a/p21Cip1 is generally expressed at
higher levels in RNA-seq data, presence or absence of Cdkn1a/p21Cip1

also may not consistently identify a senescent cell44. As such, having
validated SenMayo as being associated with cellular senescence in the
context of aging, we next tested whether it could identify senescent

cells at the single cell level. To evaluate this first for hematopoietic
cells, we analyzed publicly available single cell bone marrow datasets
from 20 healthy donors across a broad age range (24–84 years)48 and
evaluated 68,478 hematopoietic cells for expression of the SenMayo
gene set (GSE120446)48, Fig. 4a (the key genes for clustering are
demonstrated in Supplementary Fig. 3a).

This analysis detected multiple cellular clusters that were more
highly enriched thanothers for senescence/SASPgenes, i.e., hadhigher
enrichment scores (ES). These high ES clusters included CD14+ and
CD16+ monocytes as well as macrophages (Fig. 4a, Supplementary
Fig. 3b). By selecting the top 10% of cells with the highest expression of
senescence/SASP-associated genes, we generated a cluster of cells,
consisting of 6,850 cells, predominantly of monocytic origin (referred
to as “SASP cells” in Fig. 4b). These SASP cells showed an increase in
canonical markers of senescence such as CDKN1A/p21Cip1 and TGFB1,
which are independent and not included in the SenMayo gene set, as
well as enrichment of previously published gene sets indicative of
human49 and cellular aging50 (Table 2). Visually, the SASP cells had a
high correlationwith genes in twoestablished aging gene sets (GenAge
and positively regulated in CellAge, Fig. 4b; the geneset-to-geneset
comparison is shown in Supplementary Fig. 3c, d). To further elucidate
the replicative state of these cells, we compared their cell cycle state
with the other clusters. A shift towards the G1 phase occurred within
the SASP cells (Supplementary Fig. 3e), consistent with replicative
arrest. This findingwas supported by cell cycle arrest gene enrichment
within the SASP cells (Supplementary Fig. 3f). In addition, pseudotime
analysis (Supplementary Fig. 3g, left panel), which permits elucidation
of the temporal gene expression pattern of a specific cell type,
revealed an increase in SASP cells over time (representing
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differentiation), particularly in CD14+ monocytes, CD16+ monocytes,
and macrophages (Supplementary Fig. 3g, middle panel).

In addition to intracellular signaling pathways differentially
regulated in SASP-secreting cells, these cells have been demonstrated
to affect surrounding cells13,51. To explore these intercellular interac-
tions, we evaluated potential ligand-receptor interactions and secre-
tion patterns based on underlying gene expression levels in different
hematopoietic cell types in human bone marrow52. The strongest
interaction of SASP cells was foundwith T cells, followedbymonocytic
cells and B cells (Fig. 4c). Among the affected pathways, the major
histocompatibility complex class I (MHC-I), Macrophage Migration
Inhibitory Factor (MIF), and Platelet And Endothelial Cell Adhesion
Molecule 1 (PECAM1, CD31) pathways were most highly enriched
(Fig. 4d, e, Supplementary Fig. 4a, b). Of note, in the pseudotime

analysis described above, MIF expression also increased markedly in
terminally differentiated CD14+ and CD16+ monocytes and macro-
phages and SASP cells (Supplementary Fig. 3g, right panel). Moreover,
MIF pathway members including CD74, CXCR4, and CD44 had overall
high expression in SASP cells (Fig. 4e). Compared to other cell types,
the overall outgoing interaction strength of SASP cells was remarkably
high (Supplementary Fig. 5a). Besides their importance as senders,
mediators, and influencers (defined by signalling network analysis
using centralitymeasures; for details see52,53, Supplementary Fig. 5b, c),
SASP cells displayed a substantial incoming signaling pattern domi-
nated by theMIF, ANNEXIN, CD45, IGGB2,MHC-I,MHC-II, and PECAM1
pathways (Supplementary Fig. 5d). Within these SASP cells, the
strongest direct receptor-ligand MIF interaction between the ligand
CD74 and the receptor CD44 was mainly detected in other monocytic
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Adipose Tissue - SenMayo

Fig. 3 | The SenMayo gene set tracks genetic and pharmacologic clearance of
senescent cells. a The SenMayo panel successfully indicated aging in bone inmice
(p value = 0.0023), n = 25 (12 young, 13 old (all ♀). Nominal p value, calculated as
two-sided t-test, no adjustment since only one gene set was tested; b The elim-
ination of p16Ink4a-expressing senescent cells by AP20187 administration was shown
previously to reverse the aging bone phenotype37. The SenMayo gene set suc-
cessfully demonstrated the significant reversal of the aging phenotype at the gene
expression level upon the elimination of p16Ink4a-expressing senescent cells
(p =0.0054), n = 29 (13 Veh, 16 AP (all ♀). Nominal p value, calculated as two-sided t-
test, no adjustment since only one gene set was tested; c By specifically using the
expression patterns of the SenMayo gene set, our bone RNA-seq revealed no
similarities in gene expression patterns between young (blue) and old + veh (red)

treated mice, and a substantial overlap of expression profiles of old + AP (green)
mice with young mice. The highlighted genes represent variables, and the arrows
drawn from the origin indicate their “weight” in different directions, according
to the theories of Gabriel103; d We used a previously published mRNA-seq dataset
from human adipose tissue of our group24, 39, to evaluate changes in SenMayo
following D +Q treatment. Adipose tissue was collected before and 11 days after
three days of oral D +Q treatment. Figure was designed using Biorender.com;
e Using SenMayo, there was a reduction of SenMayo (p =0.002) in the sub-
cutaneous fat samples in the subjects treated with D +Q, consistent with a reduc-
tion in senescent cell burden following D +Q treatment (n = 9 (7♂, 2 ♀)). Nominal p
value, calculated as two-sided t-test, no adjustment since only one gene set was
tested. Source data are provided as a Source Data file.
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cells, while the MIF interaction via the ligand CD74 and receptor
CXCR4 pair was significant for SASP to CD10+ B and CD20+ B cells as
well as plasmacytoid dendric cells. The PECAM1 pathway targeted
plasma cells and CD16+ monocytes (Supplementary Fig. 5e).

Further analysis revealed that the SASP cells were characterized
by distinct patterns of co-expression out of which several markers
were found to be strongly associated with each other (Fig. 4f–g)––e.g.,
EREG/IL1B, ICAM1/CDKN1A, and JUN/CDKN2A. Out of the 125 genes
within the SenMayo panel, somewere consistently upregulated (red in
Fig. 4f), while others were simultaneously downregulated (blue in
Fig. 4f). Afterwe found that someof the “canonical” SASPmarkers such
as EREG/IL1B and SASP/senescence markers such as ICAM1/CDKN1A
showed high concordance in their cell-wise expression patterns, we
aimed to find surrogate genes for certain low-expressed genes––e.g.
CDKN2A/p16Ink4a. Within the SASP cluster, we found a strong correla-
tion between JUN and CDKN2A/p16Ink4a expression, which represents a
potential approach to overcome the challenge of low CDKN2A/p16Ink4a

expression in sequencing datasets. To independently confirm these
correlations, we depicted these genes in a pairwise fashion with kernel
density estimation within the SASP cell clusters (Fig. 4h), where the
overall SASP cells are in blue and the red/yellow colors indicate higher
levels of expression within the SASP cells of each gene47. These ana-
lyses thus demonstrate the validity of the SenMayogene set in a human
bone marrow scRNA-seq dataset and identify monocytic cells as the
hematopoietic cell population with the highest proportion of SASP-
associated cells.

To further test SenMayo in single cell datasets and potentially
contrast bone marrow hematopoietic cells to bone/bone marrow
mesenchymal cells, we next evaluated a publishedmurine dataset that
contained scRNA-seq data from bone and bone marrowmesenchymal
cells (GSE12842354, Fig. 5a, n = 35,368 cells; the key genes for clustering
are demonstrated in Supplementary Fig. 6a). We detected a hetero-
genous distribution of highly enriched cells for SenMayo (“SASP cells”,
n = 3537), which likewise were enriched in both GenAge and CellAge
(Fig. 5b, Supplementary Fig. 6b, c), canonical markers of senescence
(Cdkn1a/p21Cip1 and Tgfb1, Fig. 5b) and was primarily comprised of cells
from the osteolineage (OLC1 and 2) as well as leptin receptor-positive
(Lepr+) MSC cluster (Supplementary Fig. 7a shows the fraction of the
original clusters that were subsequently assigned to the newly created
SASP cluster and Supplementary Fig. 4b indicates the percentage of
cells within each cluster that were in the top 10% of cells enriched for
SenMayo genes). Interestingly, 21% of osteolineage cells (24% in OLC 1
and 18% in OLC2) had the highest enrichment for SASP factors (Sup-
plementary Fig. 7b). Similar to the humanhematopoietic bonemarrow
dataset,murine bone/bonemarrowmesenchymal SASP cells displayed
a shift in cell cycle phase to the G1 phase (Supplementary Fig. 7c). This
was confirmed by gene ontology analysis revealing enrichment of
senescence- and cell cycle arrest-associated genes in these cell clusters
(Supplementary Fig. 7d). The murine mesenchymal SASP cells were
characterized by a high interaction with osteolineage and chon-
drocytic cells (Fig. 5c), with the MIF and PECAM1 pathways again
among those significantly enriched, where these cells mostly acted as
senders and influencers (Fig. 5d, Supplementary Fig. 7e).Notably, SASP
cells had one of the highest outgoing interaction strengths (Supple-
mentary Fig. 7f). A direct communication of these mesenchymal SASP
cells mostly appeared in the MIF pathway (via L/R Mif/Ackr3) with
chondrocytic cells and mineralizing osteocytes (Supplementary
Fig. 7g). Interestingly, and as predicted from the human RNA-seq data
(Fig. 1b, Supplementary Fig. 1), a major regulator of the SASP cells was
the transcription factor BCL3, a key transcriptional coactivator for
NFkB31 (Supplementary Fig. 8a, b).

The three main origins for the SASP cluster (namely Lepr+

MSCs, OLC 1, and OLC 2), as depicted in pseudotime, demonstrated
that the SASP cells accumulated in a terminal developmental
branch, coinciding with increased Cdkn1a/p21Cip1 and Trp53Ta
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expression (Fig. 5e, Supplementary Fig. 9a, b). Further analysis of
these pseudotime expression patterns showed that certain genes
followed defined modules (green, blue, and red in Fig. 5f), which
then formed co-expressional patterns (Supplementary Fig. 10a).
Within the SASP cluster, these co-expressional patterns could be
imaged at an individual cell level, predicting genes of similar
abundance within some cells (Fig. 5g). For example, while Pappa
and Fgf7 were simultaneously downregulated in terminally differ-
entiated stages (Fig. 5f, blue color in the green cluster, Fig. 5g top),
they were part of a modular cluster (Supplementary Fig. 10a, black
boxes on the left, fifth square from above). We also performed
kernel-weighed density estimation (Supplementary Fig. 10b), con-
firming our results that Fgf7 and Pappa were co-expressed in the

SASP cells. Likewise, Dkk1 and Cdkn2a/p16Ink4a displayed the math-
ematically predicted comparable expression patterns in kernel-
weighed density, displayed in tSNE, as did Bmp2 and Cdkn1a/p21Cip1

(Fig. 5g, Supplementary Fig. 10b).

Further experimental validation of in silico analyses
The above analyses of both hematopoietic and mesenchymal scRNA-
seq data pointed to Mif as a key SASP gene that should increase with
senescent cell burden andbe reduced following clearanceof senescent
cells. Thus, as a final validation of our in silico analyses, we examined
Mif mRNA levels by RT-qPCR in our mouse models and found that as
predicted, Mif mRNA levels were increased in the bones from old
compared to young mice (Fig. 6a) and were significantly reduced
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following the genetic clearance of senescent cells with AP in old INK-
ATTACmice (Fig. 6b).

Discussion
The identification and characterization of senescent cells, particularly
in bulk or scRNA-seq data, has been problematic for a number of rea-
sons, including variable detection of low levels of the Cdkn2a/p16Ink4a

transcript even in senescent cells47 and the lack of a consistent gene
panel that can reliably identify these cells. Thus, we generated a gene
set (SenMayo) consisting of 125 previously identified senescence/SASP-
associated factors and first validated it in bone biopsy samples from
two human cohorts consisting of young vs elderly women27,28. Impor-
tantly, to establish this as a senescence, rather than just “aging” gene
set, we demonstrated that clearance of senescent cells in mice and in
humans resulted in significant reductions of SenMayo. Using publicly
available RNA-seq data, we demonstrated applicability across tissues
and species and also found that SenMayo performed better than six
existing senescence/SASP gene panels14,42–46. We next applied SenMayo
to publicly available bone marrow/bone scRNA-seq data and success-
fully characterized hematopoietic and mesenchymal cells expressing
high levels of senescence/SASP markers at the single cell level,
demonstrated co-expression (where feasible) with the key senescence
genes, Cdkn2a/p16Ink4a and Cdkn1a/p21Cip1, and analyzed intercellular
communication patterns of senescent cells with other cells in their
microenvironment. Based on these analyses, we found that senescent
hematopoietic and mesenchymal cells communicated with other cells
through common pathways, including the Macrophage Migration
Inhibitory Factor (MIF) pathway, which has been implicated not only in
inflammation but also in immune evasion, an important property of
senescent cells55. Finally, as a key validation of our in silico analyses, we
then examinedMifmRNA levels by RT-qPCR in our mouse models and
found that as predicted,MifmRNA levels were increased in bones from
old compared to young mice and were significantly reduced following
the genetic clearance of senescent cells in the old mice.

The heterogeneous composition of the SASP, which consists of a
multitude of growth factors, chemokines, cytokines, and matrix-
degrading proteins, has been experimentally verified using various
in vitro systems to induce cell stress, in vivo using multiple pre-clinical
animal models of aging and disease, and has been linked to several
pathophysiological conditions in humans as well as clinical
outcomes56,57. In the current study, wewere able to group these factors
into 9 distinct clusters to form tightly connected networks with dis-
tinct key molecules. The importance of these and other SASP factors
has been verified in multiple biological contexts58–65. Interestingly, the
control of the SASP itself by RELA/p65, which we detected in two
sequencing datasets of aging women, has recently been experimen-
tally verified in U2OS osteosarcoma cells66.

Transcriptome-wide state-of-the-art technologies such as scRNA-
seq will help shape our understanding of not just aging, but also
therapeutics that potentially target fundamentalmechanisms of aging,
such as senolytics. As noted earlier, a confounder in these analyses is
the generally low expression of the canonical marker of senescence,
Cdkn2a/p16Ink4a, which is clearly detectable byRT-qPCR in the settingof
aging, but poses challenges when using transcriptome-wide
approaches47. Hence, we propose a species-specific co-expression
analysis with JUN (Homo sapiens) or Dkk1 (Mus musculus), based on
modules of comparable expression to address this challenge. To our
knowledge, we for the first time leveraged publicly available single cell
datasets to enrich for a senescence/SASP gene set. Since we did not
include commonly used senescence-markers (Cdkn2a/p16Ink4a, Cdkn1a/
p21Cip1) in the SenMayo panel, we were still able to rely on them to
confirma senescent cell state. Additional verification included a shift in
the cell cycle phase to G1, as senescence prevents cells from pro-
ceeding to the S orMphases41,61,67. WithCdkn1a/p21Cip1 being expressed
at relatively higher levels, we were able to verify a senescent status of
SASP cells, confirming our approach to identify single cells expressing
high levels of SenMayo genes as being senescent.

The use of pseudotime in scRNA-seq datasets to predict age-
associated changes and fate commitment has been demonstrated
previously inmuscle stem cells (MuSCs) and fibro-adipose progenitors
(FAPs)68. These analyses pointed to the importance of TGF-β signaling,
but without specifically focusing on age-related expression changes.
By contrast, we used pseudotime analyses to establish an innovative
approach to identify age-dependent transcriptional changes in senes-
cence/SASP genes distinct from Cdkn2a/p16Ink4a and Cdkn1a/p21Cip1.

Using a z-score based probabilistic model with pairwise correla-
tions (bigSCale69) to construct transcriptional networks, several
groups have successfully established the use of within-cell networks in
single cell datasets25,70 and we made use of this approach to define
senescence modules of similar expression. With overall agreement
between pseudotime, network analyses, and direct pairwise z-score
prediction, we overcame the downside of normalized expression, and
a z-score predicted space allowed us to assign clusters and spatially
depict them within cellular aggregates. These modules may serve as
sources for senescent markers and pathways71.

As noted earlier, the MIF pathway emerged as a key intercellular
communication pathway used by both hematopoietic and mesenchy-
mal cells in bone marrow expressing high levels of senescence/SASP
genes. This is perhaps not surprising given the importance of MIF as a
pro-inflammatory cytokine, inhibitor of p53, and positive regulator of
NF-κB72. MIF appears to be pivotal for cellular senescence, aging, and
joint inflammation; however, its presence has been associated with a
beneficial effect on the healthy lung and in MSCs73–78. Of note, recent
evidence indicates an important role for MIF signaling in immune

Fig. 4 | SASP-associated hematopoietic cells in humanbonemarrowaremainly
ofmonocytic origin and communicate via theMIFpathway. aUsing apreviously
published scRNA-seq dataset from human bone marrow (GSE12044648, n = 68,478
cells), we performed GSEA at the single cell level to uncover cells responsible for
senescence/SASP-associated gene expression. The highest enrichment score (ES)
for the SenMayo gene set (purple) occurred within the CD14+ and CD16+ monocytic
cell cluster, represented in a Uniform Manifold Approximation and Projection
(UMAP). We selected the top 10% of senescence/SASP-expressing cells to form the
“SASP cells” (n = 6850 cells) cluster displaying an (b) independent enrichment of
canonical senescence genes including CDKN1A/p21CIP1 and TGFB1 and which was
likewise enriched for two aging signatures (GenAge: genes associated with aging in
model organisms;49 and CellAge: positively regulated genes associated with aging
in human cells (SASP cells are marked purple). T-test with adjustment for multiple
testing according to the hurdle model from MAST package (CDKN1A: p <0.0001;
TGFB1: p <0.0001). c The SASP cells showed the highest interaction strength with
T cells in the bonemarrow, the numbers represent the relative interaction strength
as sum of interaction weights. Edge weights are proportional to interaction

strength, and a thicker line refers to a stronger signal 52; d Among the interaction
targets of SASP cells, T cells were predominantly targeted via the MHC-I, MIF, and
PECAM1 pathways; eMembers of the MIF and PECAM1 signaling pathways showed
high expression patterns within the SASP population; f SASP cells were character-
ized by distinct co-expression patterns predicting functional clusters (e.g., JUN and
CDKN2A), potentially overcoming difficulties of low expression of specific
senescence-associated genes such as CDKN2A/P16ink4A. These strong indicators of
co-expression weremathematically isolated by z-scores (Spearman correlation) (g)
and spatially summarized (h) in sub-cell populations within the SASP cluster, as
indicated by kernel gene-weighted density estimation in a t-distributed Stochastic
Neighbor Embedding (tSNE) representation (EREG–IL1B: p <0.0001, ICAM1–CD-
KN1A: p <0.0001, JUN–CDKN2A: p <0.0001). ****p <0.0001, n = 22 (10 ♂, 12 ♀). The
error bands show a confidence interval level of 0.95. Boxplot minimum is the
smallest value within 1.5 times interquartile range below 25th percentile, maximum
is the largest valuewithin 1.5 times interquartile range above75thpercentile. Centre
is the 50th percentile (median), box bounds 25th and 75th percentile. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 8



evasion by tumors79 and parasites80, raising the possibility that
increased MIF expression by multiple senescent cell types may play a
role in the ability of senescent cells to resist immune clearance, par-
ticularly with aging55, and this possibility warrants further study.
Importantly, we also used Mif expression to validate our in silico pre-
dictions based on the scRNA-seq analyses, and confirmed both an
increase in Mif expression with aging in murine bone as well as a
reduction in Mif mRNA levels following genetic clearance of
senescent cells.

The development and validation of SenMayo, as demonstrated
here, may be particularly timely in the context of the recent estab-
lishment of a major NIH Common Fund consortium to map senescent

cells (SenNET, https://sennetconsortium.org/). The goal of this pro-
gram is to “comprehensively identify and characterize the differences
in senescent cells across the body, across various states of human
health, and across the lifespan.” The application of SenMayo to bulk or
scRNA-seq data from SenNET should greatly facilitate this goal and
could provide a standardized gene set that is used across the multiple
sites involved in this consortium.

In summary, our studies contribute a novel gene set (SenMayo)
that increases with aging across tissues and species, is responsive to
senescent cell clearance, and can be used both in bulk and scRNA-seq
analyses to identify cells expressing high levels of senescence/SASP
genes. This gene set also has potential utility in the clinical evaluation of
senescent cell burden and for studies of senolytic therapies. In addition,
SenMayo circumvents current limitations in the transcriptional identi-
fication of senescent cells at the single cell level, thereby allowing for
detailed analyses (e.g. pseudotime, intercellular signaling) that will
facilitate better characterization of these cells in future studies.

Methods
All research complies with the Declaration of Helsinki, and the study
protocols were approved by the the Mayo Clinic Institutional Review
Board. All subjects provided written, informed consent prior to
enrolling in the studies. In order to protect participant privacy,we only
provide composite data (e.g., mean± SD for age) and individual data is
entirely anonymized (i.e., does not include the sex or age of the indi-
vidual participant).

Generation of SenMayo
Our own GSEA gene set for senescence-associated genes was gener-
ated by combining genes that hadbeen reported inprevious studies to
be enriched in senescent and/or SASP-secreting cells and experimen-
tally verified in at least human or mouse cells. We screened 1,656 stu-
dies, but following removal of studies reporting duplicates, case
reports, and non-human or non-murine genes, formulated a list of
15 studies from which we identified 125 genes that constituted Sen-
Mayo (Supplementary Data 118,26,50,57,63,81–90). Note that we intentionally
did not include CDKN2A/p16Ink or CDKN1A/p21Cip1 in SenMayo as we
used these genes, in part, to validate our senescence/SASP gene set.
Likewise, and to not bias the subsequent analyses towards NF-κB-
dependent SASP members, we excluded key regulatory factors like
RELA and NF-κB1.

RNA-seq. Transcriptome-wide gene expression data from two
independent cohorts of young and older postmenopausal women
previously studied by our group (Cohort A, young [n = 19, 30.3 ± 5.4
years] and postmenopausal [n = 19, 73.1 ± 6.6 years]; and cohort B,
young [n = 15, 30.9 ± 4.0 years] and postmenopausal [n = 15, 68.7 ± 4.8
years]) as well as 9 diabetic kidney disease patients (7 male, 2 female,
68.7 ± 3.1 years) were analyzed from three previous studies performed
by our group (GSE141595: NCT02554695, GSE72815: NCT02349113:24,39,
NCT02848131)27,28. This was an open label Phase 1 pilot study24, in
which three days of oral dasatinib (100mg/day) and quercetin
(1000mg/day) were administered to patients with diabetic kidney
disease (ClinicalTrials.gov NCT02848131). Written, informed consent
was obtained from all study participants. The primary outcome was a
change in proportion of senescent cells present, and SenMayo is part
of anexploratory analysis.Note thatbecause thiswas a pilot, “proof-of-
concept” study that was the first of its kind to use dasatinib+quercetin
in humans, the investigators believed that an interim analysis to define
potential efficacy of dasatinib+quercetin in humans was justified;
indeed, plans for an interim analysis were included in the original
protocol. From these subjects, we analyzed adipose tissue biopsies
taken before and 11 days after completing the senolytic treatment. All
human studies were approved by the Mayo Clinic Institutional Review
Board and written informed consent was obtained from all partici-
pants. RNA was isolated from whole bone biopsies (which included

Table 2 | Top 20 significantly upregulated genes in the human
and murine SASP clusters. Multiple t-test with
Benjamini–Hochberg adjustment

Gene avg_log2FC Adj. p value

Human

S100A9 1.974317678 0

CXCL8 1.817775253 0

CST3 1.813835295 0

TYROBP 1.742773952 0

LST1 1.704456515 0

FCN1 1.704148119 0

FCER1G 1.698071186 0

LYZ 1.695879021 0

CCL3 1.68109761 0

S100A8 1.639167524 0

CTSS 1.605107533 0

AIF1 1.537560282 0

S100A12 1.501013381 0

SAT1 1.475740324 0

G0S2 1.471768259 0

S100A11 1.426583167 0

PSAP 1.412156019 0

NEAT1 1.402008889 0

CSTA 1.346171061 0

SERPINA1 1.343012763 0

Murine

Ccl2 1.385385456 4.4042E-274

Cxcl14 1.348765531 0

Cxcl12 1.348099221 0

Hp 1.32967138 2.6772E-298

Trf 1.32483506 6.8972E-280

Serping1 1.304871038 0

Mt1 1.294617837 0

Tmem176b 1.238330075 0

Mt2 1.224158694 0

Igfbp4 1.210905773 0

Grem1 1.207056724 0

Cd302 1.195220747 0

Apoe 1.163062993 0

Msmp 1.16240244 3.2104E-194

Adipoq 1.140888365 7.4114E-283

Cyr61 1.136426625 0

Gas6 1.110474329 0

Mmp13 1.095488296 0

Tmem176a 1.087765581 0

sCol3a1 1.082720154 1.1707E-254
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bone and bone marrow cells, Cohort A)27 as well as bone biopsies that
were processed to remove bone marrow and bone surface cells and
were thus highly enriched for osteocytes (Cohort B)28, and adipose
tissue, 2–5 cm inferior to the navel (for details, see39). Subcutaneous
adipose tissue was obtained by an elliptical incisional biopsy at a point
to the right or left, and 2–5 cm inferior to the navel24,39. Sequencingwas
performed on a HiSeq2000 (Illumina®), fastq files were mapped to the
human reference genome hg19, and analysis was performed as pre-
viously described27,28. Significantly differentially regulated genes were

selected by a Benjamini–Hochberg adjusted p value <0.05 and log2-
fold changes above 0.5 or below −0.5. Gene Set Enrichment Analysis
(GSEA32,91) wasperformedwith default settings (1000permutations for
gene sets, Signal2Noise metric for ranking genes). The network ana-
lysis was conducted with Cytoscape 3.8.2 and the plugin iRegulon30,92.
For mRNA-seq of murine material, tibiae were centrifuged as noted
above to remove bone marrow elements and then were immediately
homogenized in QIAzol Lysis Reagent (QIAGEN, Valencia, CA) and
stored at −80 °C, until the time of RNA extraction. RNA-sequencing

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 10



was performed on a HiSeq2000 (Illumina®), fastq files weremapped to
the murine reference genome mm10, and analysis was performed as
previously described27,28. An example of the code used for RNA-seq can
be found in the provided R notebook (Methods: GSE72815_
YOE_Notebook.txt).

Mouse strains and drug treatments
All animal protocols were approved by the Institutional Animal Care
and Use Committee (IACUC), and all experiments were performed in
accordance with IACUC guidelines. Mice were housed in ventilated
cages in a pathogen-free facility (12-hour light/dark cycle, 23 °C) and
had access to food (standardmouse diet, LabDiet 5053, St. Louis,MO)
and water ad libitum. Mouse experiments for a genetic targeting
approach of senescent cells have been described by our group
earlier37. Briefly, old (20 months) female mice were injected intraper-
itoneallywith vehicle (4% of 100% EtOH, 10%PEG400, 86% of 2%Tween
20 in deionized Water) or AP20187 (B/B homodimerizer, Clontech;
10mg of AP20187 per kg body mass) twice weekly at the age of
20 months for a total of 4 months (old mice were sacrificed at
24months of age). In addition, young (6-month) INK-ATTACmicewere
used as a control comparison cohort.

Quantitative real-time polymerase chain reaction (RT-qPCR)
analysis
For bone analyses, tibiae were centrifuged to remove marrow ele-
ments and then immediately homogenized in QIAzol Lysis Reagent

(QIAGEN, Valencia, CA) and stored at −80 °C. Subsequent RNA
extraction, cDNA synthesis, and targeted gene expression measure-
ments of mRNA levels by RT-qPCR were performed93 Total RNA was
extracted according to the manufacturer’s instructions using QIAzol
Lysis Reagent. Purification with RNeasy Mini Columns (QIAGEN,
Valencia, CA) was subsequently performed. On-column RNase-free
DNase solution (QIAGEN, Valencia, CA) was applied to degrade con-
taminating genomic DNA. RNA quantity was assessed with Nanodrop
spectrophotometry (Thermo Fisher Scientific, Wilmington, DE). Stan-
dard reverse transcriptase was performed using High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems by Life Technologies,
Foster City, CA). TranscriptmRNA levels were determined by RT-qPCR
on the ABI Prism 7900HT Real Time System (Applied Biosystems,
Carlsbad, CA) using SYBR green (Qiagen, Valencia, CA). The mouse
forward primer sequence (5ʹ−3ʹ) for Mif was: 5ʹ-GCCACCATGCCT
ATGTTCATC-3ʹ and Reverse Primer Sequence 5ʹ-GGGTGAGCTC
CGACAGAAAC-3ʹ. RNA was normalized using two reference genes
(Actb [forward: 5ʹ-AATCGTGCGTGACATCAAAGAG-3ʹ, reverse: 5ʹ-
GCCATCTCCTGCTCGAAGTC-3ʹ],Gapdh [forward: 5ʹ-GACCTGACCTGC
CGTCTAGAAA-3ʹ, reverse: 5ʹ-CCTGCTTCACCACCTTCTTGA-3ʹ]) from
which the most stable housekeeping gene was determined by the
geNorm algorithm. For each sample, the median cycle threshold (Ct)
of each gene (run in triplicate) was normalized to the geometric mean
of the median Ct of the most stable reference gene. The delta Ct for
each genewas used to calculate the relativemRNA expression changes
for each sample. Genes with Ct values >35 were considered not
expressed (NE), as done previously94.

Single-cell RNA-seq (scRNA-seq) analysis
Transcriptome-wide analysis of human bone marrow mononuclear
cells at a single cell level was based on apreviously published dataset48.
Here, bonemarrowwas isolated from healthy female (n = 10) andmale
(n = 10) donors (50.6 ± 14.9 years) and droplet-based scRNA-seq was
performed. A minimum sequencing depth of 50,000 reads/cell with a
meanof 880genes/cell was reported. In addition, we analyzeddroplet-
based scRNA-seq data from bone marrow cells isolated from C57BL/6
mice (n = 14)54 and fromC57BL/6JNmice (n = 30)36 and from the tabula
muris senis36. Sequencing data were aligned to the human reference
genomeGrch38 and themouse genomemm10, respectively. Datawith
at least 500 unique molecular identifiers (UMIs), log10 genes per UMI
>0.8, >250 genes per cell and a mitochondrial ratio of less than 20%
were extracted, normalized, and integrated using the Seurat package
v3.0 in R4.0.2. After quality control and integration, we performed a
modularity optimized Louvain clustering with the resolution “1.4”,
leading to 40 distinct clusters in the human dataset. Subsequently, we
performed the labelling for these 40 clusters manually with estab-
lished key marker genes (Supplementary Fig. 3a). In the murine

Fig. 5 | Inmurine bone and bonemarrowmesenchymal cells, osteolineage cells
constitute the largest proportion of SASP cells and communicate with osteo-
lineage and chondrocytic cells via the MIF and PECAM1 pathways and show
characteristics of terminal differentiation. a We analyzed a publicly available
murine bone and bone marrow gene set (GSE12842354), and enriched 35,368 cells
for the SenMayo gene set; b The top 10% senescence/SASP gene-expressing cells
(n = 3537) were assigned to the “SASP cells” cluster. They displayed an increase in
canonical markers of senescence including Cdkn1a/p21Cip1 and Tgfb1, and were
enriched in the GenAge and CellAge gene sets (GenAge, CellAge49); T-test with
adjustment formultiple testing according to the hurdlemodel fromMASTpackage
(Cdkn1a: p <0.0001, Tgfb1: p <0.0001). c The strongest interaction of the SASP
cells was narrowed down to chondrocytic cells, while the osteolineage cells were
another important crosstalk neighbor, the numbers represent the relative inter-
action strength as sum of interaction weights. Edge weights are proportional to
interaction strength, and a thicker line refers to a stronger signal52. Two-sided
unpaired t-test except for CCL2 inCohortA:Kolmogorov–Smirnov test.dOutgoing
interaction patterns of SASP cells (pink, left bottom quarter) indicated the

importance of several signaling pathways that resulted in a significant enrichment
of Mk, Angptl, Mif and Pecam1; (e) In pseudotime, the SASP cluster was most
abundant in the terminal branches, and overexpressed Cdkn1a/p21Cip1 in terminal
states (top-left inlay: the solid line represents the expression values as a function of
pseudotime-progress, bottom red color on the left, terminal branch); f In their
terminal differentiation, the SASP cluster was enriched in several factors, out of
which distinct co-expressional patterns were extracted (Spearman correlation);
g While the terminal differentiation was marked by a simultaneous loss of Pappa
and Fgf7 (cluster 1, green in f), a significant correlationof Dkk1with Cdkn2a/p16Ink41,
likewise Bmp2 and Cdkn1a/p21Cip1, was mathematically predicted (cluster 2, pink in
f). Fgf7–Pappa: p <0.0001, Dkk1–Cdkn2a: p <0.0001, Bmp2–Cdkn1a: p <0.0001.
****p <0.0001, n = 8 (4 bone, 4 bone marrow, all male). Depicted are mean± SEM.
The error bands show a confidence interval level of 0.95. Boxplot minimum is the
smallest value within 1.5 times interquartile range below 25th percentile, maximum
is the largest valuewithin 1.5 times interquartile range above75thpercentile. Centre
is the 50th percentile (median), box bounds 25th and 75th percentile. Source data
are provided as a Source Data file.
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Fig. 6 | The in silico predicted importance of theMif pathway is reflected in the
aged INK-ATTAC mouse model. a We compared young (n = 12) and old vehicle-
treated mice (n = 13), and old mice treated with AP (n = 16). a Upregulation of Mif
was confirmed by RT-qPCR (n = 24 young (12 Veh, 12 old (all female), p =0.0102));
b The clearance of senescent cells in the aged cohort by AP treatment reduced this
Mif expression (n = 26 old [12 Veh, 14 AP, all female], p =0.0459). *p <0.05. Two-
sided unpaired t-tests. Source data are provided as a Source Data file.
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dataset, we chose the sameorder of analysis, and picked the resolution
“1.4”, leading to 40 distinct clusters, which were manually assigned
according to established marker genes (Supplementary Fig. 6a).

Subsequent R-packages were Nebulosa (3.1395), Monocle
(2.18.096), dittoSeq (1.2.697), Escape (1.0.1, “Borcherding N, Andrews J
(2021). escape: Easy single cell analysis platform for enrichment. R
package version 1.2.0.”), Cellchat52 (within the Cellchat package, and
for Fig. 4c we aimed to summarize functional cell types in order to
highlight the functional importance of SASP cells and their commu-
nicational patterns. Subsequently, we combined “CD10+ B cells”,
“CD20+ B cells”, “Plasma cells”, “Plasmacytoid dendric cells”, “Con-
ventional dendric cells” as “B cells”, “CD4+ naïve T cells”, “CD4+ mem-
ory T cells”, “CD8+ naïve T cells”, “CD8+ effector T cells” were
summarized as “T cells”, “Early erythroid progenitors”, “Early ery-
throcytes”, “Late erythrocytes” as “Ery”, “HSPCs” as “HSPCs”, “Mono-
cyte progenitors”, “CD14+ monocytes”, “CD16+ monocytes”,
“Macrophages”, “Natural killer cells” as “Mono” and “SASP cells” as
“SASP”. For Fig. 5c, “Chondro-hyper”, “Chondro-prehyper”, “Chondro-
progen”, “Chondro-prol/rest”, “Chondrocyte” were summarized as
“Chondro”, “EC”, “Pericytes” as “Endo”, “Fibroblast” as “Fibro”, “Lym-
phocyte”, “Mast cell” as “Immune”, “Lepr MSC”, “MSC” as “MSC”,
“Mineralizing Osteocyte”, “OLC 1”, “OLC 2”, “Osteoblast”, “Osteocyte”
as “Osteo” and “SASP cells” as “SASP”), bigSCale (2.171), gprofiler2
(0.2.098), igraph (1.2.6, Csardi G, Nepusz T (2006). “The igraph soft-
ware package for complex network research.” InterJournal, Complex
Systems, 1695), PCAtools (2.4.0, Blighe K, Lun A (2021). PCAtools:
PCAtools: Everything Principal Components Analysis. R package ver-
sion 2.4.0), and corrplot (0.89) and SCENIC (1.2.499).

The gene ontology and KEGG analyses (Supplementary Figs. 3f,
S7d) with gprofiler2 were done for homo sapiens (hsapiens) and mus
musculus (mmusculus) after the positively regulated genes were
selected with the “FindMarkers” function (used test = ”MAST”, logfc.-
threshold =0.25). For the gost function, we used an user threshold of
0.05 and fdr correction method.

Pseudotime is a progression of cells along a virtually estimated
path, mimicking temporal development. By using Monocle, an inde-
pendent component analysis (ICA) dimensional reduction is per-
formed, followed by a projection of a minimal spanning tree (MST) of
the cell’s location in this reduced space. Each cell is assigned a pseu-
dotemporal space100,101. Monocle 2 was used to preprocess, perform
UMAP reduction, and reduce the dimensionality using the DDRTree
algorithmwith amaximumof four dimensions. Subsequently, the cells
were ordered and genes plotted along the reduced dimension. Dif-
ferential gene testing has been performed with the formula
“~sm.ns(Pseudotime)”, and the results were restricted by a q
value <0.1100.

An example of the code used for scRNA-seq can be found in the
provided R notebook (Methods: R_notebook_Fig4_5_sup2to5.Rmd).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings from this study are available within
the manuscript and its supplementary information. The RNA-seq data
from Fig. 1 have been deposited in the National Center for Bio-
technology Information’s Gene Expression Omnibus under GSE72815)
and GSE141595. The RNA-sequencing data from Mus musculus brain
microglia (Fig. 2a) is deposited under (GSE145265), prefrontal cortex
(Fig. 2b) under GSE128770, dorsal hippocampus (Fig. 2c) under
GSE94832 and the tabula muris senis (Fig. 2d) under GSE149590). The
human single cell sequencing data (Fig. 4) is stored at GSE120221,
while the murine single cell sequencing data (Fig. 5) is stored at
GSE128423. The murine INK-ATTAC tibia diaphysis bulk RNA-

sequencing data (Fig. 3a and b) is available from dryad (https://
datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJM-
GRlrPuij9WU) or GSE199493. The human subcutaneous fat bulk RNA-
sequencing data from trial no. NCT02848131 (Fig. 3d and e) is available
from dryad (https://datadryad.org/stash/share/YdD6C2ZFDgSizX-
ehPR0qqPy4io7oRQJMGRlrPuij9WU) and PRJNA826433. Source data
are provided with this paper.

Code availability
To reproduce the analyses, several notebooks are included. For the
RNA-sequencing datasets, an RNA-seq R notebook leads the reader
through the RNA-seq analyses: “Supplementary Code 1” (https://
datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMG
RlrPuij9WU). In order to acquire the single cell datasets, the notebook
“Supplementary Code 2” has been designed (https://datadryad.org/
stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU).
For the single cell analyses (Figs. 4 and 5, supplementary Figs. 2–10),
the notebook “Supplementary Code 3” provides the figures’ under-
lying code (https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR
0qqPy4io7oRQJMGRlrPuij9WU). All of these notebooks can be down-
loaded from dryad (https://datadryad.org/stash/share/YdD6C2ZFDg
SizXehPR0qqPy4io7oRQJMGRlrPuij9WU).

References
1. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L.

Cellular senescence and the senescent secretory phenotype:
therapeutic opportunities. J. Clin. Investig. 123, 966–972 (2013).

2. LeBrasseur, N. K., Tchkonia, T. & Kirkland, J. L. Cellular senescence
and the biology of aging, disease, and frailty. Nestle Nutr. Inst.
workshop Ser. 83, 11–18 (2015).

3. Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-
order unfolding of satellite heterochromatin is a consistent and
early event in cell senescence. J. cell Biol. 203, 929–942 (2013).

4. Zhu, Y., Armstrong, J. L., Tchkonia, T. & Kirkland, J. L. Cellular
senescence and the senescent secretory phenotype in age-
related chronic diseases. Curr. Opin. Clin. Nutr. Metab. care 17,
324–328 (2014).

5. Campisi, J. Senescent cells, tumor suppression, and organismal
aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

6. Campisi, J. & Di d’Adda Fagagna, F. Cellular senescence: when
bad things happen to good cells. Nat. Rev. Mol. cell Biol. 8,
729–740 (2007).

7. Farr, J. N. et al. Identification of senescent cells in the bone
microenvironment. J. Bone Miner. Res.: Off. J. Am. Soc. Bone
Miner. Res. 31, 1920–1929 (2016).

8. Jurk, D. et al. Postmitotic neurons develop a p21-dependent
senescence-like phenotype driven by a DNA damage response.
Aging cell 11, 996–1004 (2012).

9. Jurk, D. et al. Chronic inflammation induces telomere dysfunction
and accelerates ageing in mice. Nat. Commun. 2, 4172 (2014).

10. Minamino, T. et al. A crucial role for adipose tissue p53 in the
regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009).

11. Wang, E. Senescent human fibroblasts resist programmed cell
death, and failure to suppress bcl2 is involved. Cancer Res. 55,
2284–2292 (1995).

12. Xu,M. et al. Targeting senescent cells enhances adipogenesis and
metabolic function in old age. eLife 4, e12997 (2015).

13. Nelson, G. et al. A senescent cell bystander effect: senescence-
induced senescence. Aging cell 11, 345–349 (2012).

14. Acosta, J. C. et al. A complex secretory program orchestrated by
the inflammasome controls paracrine senescence. Nat. cell Biol.
15, 978–990 (2013).

15. Coppé, J.-P. et al. Senescence-associated secretory phenotypes
reveal cell-nonautonomous functions of oncogenic RAS and the
p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 12

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72815
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141595
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145265
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128770
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94832
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149590
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128423
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199493
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://dataview.ncbi.nlm.nih.gov/object/PRJNA826433
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU
https://datadryad.org/stash/share/YdD6C2ZFDgSizXehPR0qqPy4io7oRQJMGRlrPuij9WU


16. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev.
Physiol. 75, 685–705 (2013).

17. Diniz, B. S. et al. Mild cognitive impairment and major depressive
disorder are associated with molecular senescence abnormalities
in older adults. Alzheimer’s Dement. (N. Y., N. Y.) 7, e12129 (2021).

18. Ogrodnik, M. et al. Whole-body senescent cell clearance alle-
viates age-related brain inflammation and cognitive impairment in
mice. Aging cell 20, e13296 (2021).

19. Stout, M. B., Justice, J. N., Nicklas, B. J. & Kirkland, J. L. Physiolo-
gical aging: links amongadipose tissue dysfunction, diabetes, and
frailty. Physiol. (Bethesda, Md.) 32, 9–19 (2017).

20. Sławińska, N. & Krupa, R. Molecular aspects of senescence and
organismal ageing-DNA damage response, telomeres, inflamma-
tion and chromatin. Int. J of mol. sci. 22; https://doi.org/10.3390/
ijms22020590 (2021).

21. Boniewska-Bernacka, E., Pańczyszyn, A. & Klinger, M. Telomeres
and telomerase in risk assessment of cardiovascular diseases.Exp.
cell Res. 397, 112361 (2020).

22. Tchkonia, T., Palmer, A. K. & Kirkland, J. L. New horizons: novel
approaches to enhance healthspan through targeting cellular
senescence and related aging mechanisms. J. Clin. Endocrinol.
Metab. 106, e1481–e1487 (2021).

23. Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to
translation. J. Intern. Med. 288, 518–536 (2020).

24. Hickson, L. J. et al. Senolytics decrease senescent cells in humans:
preliminary report from a clinical trial of Dasatinib plus Quercetin
in individuals with diabetic kidney disease. EBioMedicine 47,
446–456 (2019).

25. Lähnemann, D. et al. Eleven grand challenges in single-cell data
science. Genome Biol. 21, 31 (2020).

26. Borodkina, A. V., Deryabin, P. I., Giukova, A. A. & Nikolsky, N. N.
“Social Life” of senescent cells: what Is SASP and why study it?
Acta Nat. 10, 4–14 (2018).

27. Farr, J. N. et al. Effects of age and estrogen on skeletal gene
expression in humans as assessedby rna sequencing.PloSone 10,
e0138347 (2015).

28. Weivoda, M. M. et al. Identification of osteoclast-osteoblast cou-
pling factors in humans reveals links between bone and energy
metabolism. Nat. Commun. 11, 87 (2020).

29. Han, H. et al. TRRUST: a reference database of human transcrip-
tional regulatory interactions. Sci. Rep. 5, 11432 (2015).

30. Janky, R. et al. iRegulon: from a gene list to a gene regulatory
network using large motif and track collections. PLoS computa-
tional Biol. 10, e1003731 (2014).

31. Fujita, T., Nolan, G. P., Liou, H. C., Scott, M. L. & Baltimore, D. The
candidate proto-oncogene bcl-3 encodes a transcriptional coac-
tivator that activates throughNF-kappaBp50homodimers.Genes
Dev. 7, 1354–1363 (1993).

32. Subramanian, A. et al. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide
expression profiles. Proc. Natl. Acad. Sci. USA 102,
15545–15550 (2005).

33. Shi, L. et al. Genome-wide transcriptomic analysis of microglia
reveals impaired responses in aged mice after cerebral ischemia.
J. Cereb. Blood Flow. Metab.: Off. J. Int. Soc. Cereb. Blood Flow.
Metab. 40, S49–S66 (2020).

34. Guo, X. et al. Age attenuates the transcriptional changes that
occur with sleep in the medial prefrontal cortex. Aging cell 18,
e13021 (2019).

35. Kwapis, J. L. et al. Epigenetic regulation of the circadian gene Per1
contributes to age-related changes in hippocampal memory. Nat.
Commun. 9, 3323 (2018).

36. Tabula Muris Consortium. A single-cell transcriptomic atlas char-
acterizes ageing tissues in the mouse. Nature 583,
590–595 (2020).

37. Farr, J. N. et al. Targeting cellular senescence prevents age-
related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

38. Zhu, Y. et al. The Achilles’ heel of senescent cells: from tran-
scriptome to senolytic drugs. Aging cell 14, 644–658 (2015).

39. Hickson, L. J. et al. Corrigendum to ‘Senolytics decrease senes-
cent cells in humans: Preliminary report from a clinical trial of
Dasatinib plus Quercetin in individuals with diabetic kidney dis-
ease’ EBioMedicine 47 (2019) 446–456. EBioMedicine 52,
102595 (2020).

40. Tchkonia, T. et al.Cellular senescence and inflammation in obesity.
Obesity (2009).

41. Docherty, M.-H., O’Sullivan, E. D., Bonventre, J. V. & Ferenbach, D.
A. Cellular senescence in the kidney. J. Am. Soc. Nephrology:
JASN 30, 726–736 (2019).

42. Casella, G. et al. Transcriptome signature of cellular senescence.
Nucleic acids Res. 47, 11476 (2019).

43. Purcell,M., Kruger, A.& Tainsky,M. A.Gene expressionprofiling of
replicative and induced senescence.Cell cycle (Georget., Tex.) 13,
3927–3937 (2014).

44. Hernandez-Segura, A. et al. Unmasking transcriptional hetero-
geneity in senescent cells.Curr. Biol.: CB27, 2652–2660.e4 (2017).

45. Fridman, A. L. & Tainsky, M. A. Critical pathways in cellular
senescence and immortalization revealed by gene expression
profiling. Oncogene 27, 5975–5987 (2008).

46. Jochems, F. et al. The Cancer SENESCopedia: a delineation of
cancer cell senescence. Cell Rep. 36, 109441 (2021).

47. Johmura, Y. et al. Senolysis by glutaminolysis inhibition amelio-
rates various age-associated disorders. Sci. (N. Y.) 371,
265–270 (2021).

48. Oetjen, K. A. et al. Human bonemarrow assessment by single-cell
RNA sequencing, mass cytometry, and flow cytometry. JCI insight
3; https://doi.org/10.1172/jci.insight.124928 (2018).

49. de Magalhães, J. P., Curado, J. & Church, G. M. Meta-analysis of
age-related gene expression profiles identifies common sig-
natures of aging. Bioinforma. (Oxf., Engl.) 25, 875–881 (2009).

50. Avelar, R. A. et al. A multidimensional systems biology analysis of
cellular senescence in aging and disease. Genome Biol. 21,
91 (2020).

51. Razdan, N., Vasilopoulos, T. & Herbig, U. Telomere dysfunction
promotes transdifferentiation of human fibroblasts into myofi-
broblasts. Aging cell 17, e12838 (2018).

52. Jin, S. et al. Inference and analysis of cell-cell communication
using CellChat. Nat. Commun. 12, 1088 (2021).

53. Landherr, A., Friedl, B. & Heidemann, J. A critical review of cen-
trality measures in social networks. Bus. Inf. Syst. Eng. 2,
371–385 (2010).

54. Baryawno, N. et al. A cellular taxonomy of the bone marrow
stroma in homeostasis and leukemia. Cell 177,
1915–1932.e16 (2019).

55. Kale, A., Sharma, A., Stolzing, A., Desprez, P.-Y. & Campisi, J. Role
of immune cells in the removal of deleterious senescent cells.
Immunity & Ageing: I & A 17; https://doi.org/10.1186/s12979-020-
00187-9 (2020).

56. Schafer, M. J. et al. The senescence-associated secretome as an
indicator of age andmedical risk. JCI insight 5; https://doi.org/10.
1172/jci.insight.133668 (2020).

57. Lopes-Paciencia, S. et al. The senescence-associated secretory
phenotype and its regulation. Cytokine 117, 15–22 (2019).

58. Leon, K. E. et al. DOT1L modulates the senescence-associated
secretory phenotype through epigenetic regulation of IL1A. The
Journal of cell biology 220; https://doi.org/10.1083/jcb.
202008101 (2021).

59. Buj, R., Leon, K. E., Anguelov,M. A. &Aird, K.M. Suppressionof p16
alleviates the senescence-associated secretory phenotype. Aging
13, 3290–3312 (2021).

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 13

https://doi.org/10.3390/ijms22020590
https://doi.org/10.3390/ijms22020590
https://doi.org/10.1172/jci.insight.124928
https://doi.org/10.1186/s12979-020-00187-9
https://doi.org/10.1186/s12979-020-00187-9
https://doi.org/10.1172/jci.insight.133668
https://doi.org/10.1172/jci.insight.133668
https://doi.org/10.1083/jcb.202008101
https://doi.org/10.1083/jcb.202008101


60. Andriani, G. A. et al. Whole Chromosome Instability induces
senescence and promotes SASP. Sci. Rep. 6, 35218 (2016).

61. Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle
arrest and senescence associated secretory phenotype. Front. cell
developmental Biol. 9, 645593 (2021).

62. Ma, S. et al. Single-cell transcriptomic atlas of primate cardio-
pulmonary aging. Cell Res. 31, 415–432 (2021).

63. Cuollo, L., Antonangeli, F., Santoni, A. & Soriani, A. The
senescence-associated secretory phenotype (SASP) in the chal-
lenging future of cancer therapyandage-relateddiseases.Biology
9; https://doi.org/10.3390/biology9120485 (2020).

64. Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of
cellular senescence in ageing and endocrine disease. Nat. Rev.
Endocrinol. 16, 263–275 (2020).

65. Leon, K. E., Tangudu, N. K., Aird, K. M. & Buj, R. Loss of p16: A
Bouncer of the Immunological Surveillance? Life (Basel, Switzer-
land) 11; https://doi.org/10.3390/life11040309 (2021).

66. Kolesnichenko, M. et al. Transcriptional repression of NFKBIA
triggers constitutive IKK- and proteasome-independent p65/RelA
activation in senescence. EMBO J. 40, e104296 (2021).

67. Amaya-Montoya, M., Pérez-Londoño, A., Guatibonza-García, V.,
Vargas-Villanueva, A. & Mendivil, C. O. Cellular senescence as a
therapeutic target for age-related diseases: a review. Adv. Ther.
37, 1407–1424 (2020).

68. Kimmel, J. C., Yi, N., Roy, M., Hendrickson, D. G. & Kelley, D. R.
Differentiation reveals latent features of aging and an energy
barrier in murine myogenesis. Cell Rep. 35, 109046 (2021).

69. Iacono, G. et al. bigSCale: an analytical framework for big-scale
single-cell data. Genome Res. 28, 878–890 (2018).

70. Blencowe, M. et al. Network modeling of single-cell omics data:
challenges, opportunities, and progresses. Emerg. Top. life Sci. 3,
379–398 (2019).

71. Iacono, G., Massoni-Badosa, R. & Heyn, H. Single-cell tran-
scriptomics unveils gene regulatory network plasticity. Genome
Biol. 20, 110 (2019).

72. Salminen, A. & Kaarniranta, K. Control of p53 and NF-κB signaling
by WIP1 and MIF: role in cellular senescence and organismal
aging. Cell. Signal. 23, 747–752 (2011).

73. Schmid, N. et al. Insights into replicative senescence of human
testicular peritubular cells. Sci. Rep. 9, 15052 (2019).

74. Zhang, Y. et al. Macrophage migration inhibitory factor activates
the inflammatory response in joint capsule fibroblasts following
post-traumatic joint contracture. Aging 13, 5804–5823 (2021).

75. Yamada, C. et al. Glycyrrhizin mitigates inflammatory bone loss
and promotes expression of senescence-protective sirtuins in an
aging mouse model of periprosthetic osteolysis. Biomedicine
Pharmacother. = Biomedecine pharmacotherapie 138,
111503 (2021).

76. Florez-Sampedro, L., Soto-Gamez, A., Poelarends, G. J. & Melgert,
B. N. The role of MIF in chronic lung diseases: looking beyond
inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 318,
L1183–L1197 (2020).

77. Zhang, Y. et al. Macrophage migration inhibitory factor rejuve-
nates aged human mesenchymal stem cells and improves myo-
cardial repair. Aging 11, 12641–12660 (2019).

78. Hu, Y., Xia, W. & Hou, M. Macrophage migration inhibitory factor
serves a pivotal role in the regulation of radiation-induced cardiac
senescencethrough rebalancing the microRNA-34a/sirtuin 1 sig-
naling pathway. Int. J. Mol. Med. 42, 2849–2858 (2018).

79. Noe, J. T. & Mitchell, R. A. MIF-dependent control of tumor
immunity. Front. Immunol. 11, 609948 (2020).

80. Ghosh, S., Jiang, N., Farr, L., Ngobeni, R. & Moonah, S. Parasite-
produced MIF cytokine: role in immune evasion, invasion, and
pathogenesis. Front. Immunol. 10, 1995 (2019).

81. Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The
senescence-associated secretory phenotype: the dark side of
tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

82. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational
perspective. EBioMedicine 21, 21–28 (2017).

83. Birch, J. & Gil, J. Senescence and the SASP: many therapeutic
avenues. Genes Dev. 34, 1565–1576 (2020).

84. Salotti, J. & Johnson, P. F. Regulation of senescence and the SASP
by the transcription factor C/EBPβ. Exp. Gerontol. 128,
110752 (2019).

85. Basisty, N. et al. A proteomic atlas of senescence-associated
secretomes for aging biomarker development. PLoS Biol. 18,
e3000599 (2020).

86. Yousefzadeh, M. J. et al. Mouse models of accelerated cellular
senescence. Methods Mol. Biol. (Clifton, N. J.) 1896,
203–230 (2019).

87. Dodig, S., Čepelak, I. & Pavić, I. Hallmarks of senescence and
aging. Biochemia Med. 29, 30501 (2019).

88. Kiss, T. et al. Single-cell RNA sequencing identifies senescent
cerebromicrovascular endothelial cells in the aged mouse brain.
GeroScience 42, 429–444 (2020).

89. Lasry, A. & Ben-Neriah, Y. Senescence-associated inflammatory
responses: aging and cancer perspectives. Trends Immunol. 36,
217–228 (2015).

90. Zhang, W. et al. Lycorine hydrochloride suppresses stress-
inducedpremature cellular senescenceby stabilizing thegenome
of human cells. Aging cell 20, e13307 (2021).

91. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxi-
dative phosphorylation are coordinately downregulated in human
diabetes. Nat. Genet. 34, 267–273 (2003).

92. Shannon, P. et al. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome
Res. 13, 2498–2504 (2003).

93. Eckhardt, B. A. et al. Accelerated osteocyte senescence and ske-
letal fragility inmicewith type 2 diabetes. JCI insight5; https://doi.
org/10.1172/jci.insight.135236 (2020).

94. Kosinsky, R. L. et al. RNF20 and RNF40 regulate vitamin D
receptor-dependent signaling in inflammatorybowel disease.Cell
death and differentiation; https://doi.org/10.1038/s41418-021-
00808-w (2021).

95. Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single
cell gene expression signals by kernel density estimation. Bioin-
formatics (Oxford, England); https://doi.org/10.1093/
bioinformatics/btab003 (2021).

96. Qiu, X. et al. Reversed graph embedding resolves complex single-
cell trajectories. Nat. methods 14, 979–982 (2017).

97. Bunis, D. G., Andrews, J., Fragiadakis, G. K., Burt, T. D. & Sirota, M.
dittoSeq: Universal User-Friendly Single-Cell and Bulk RNA
Sequencing Visualization Toolkit. Bioinformatics (Oxford, Eng-
land); https://doi.org/10.1093/bioinformatics/btaa1011 (2020).

98. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gpro-
filer2 - an R package for gene list functional enrichment analysis
and namespace conversion toolset g:Profiler. F1000Research 9;
https://doi.org/10.12688/f1000research.24956.2 (2020).

99. Aibar, S. et al. SCENIC: single-cell regulatory network inference
and clustering. Nat. methods 14, 1083–1086 (2017).

100. Trapnell, C. et al. The dynamics and regulators of cell fate deci-
sions are revealed by pseudotemporal ordering of single cells.
Nat. Biotechnol. 32, 381–386 (2014).

101. Reid, J. E. & Wernisch, L. Pseudotime estimation: deconfounding
single cell time series. Bioinforma. (Oxf., Engl.) 32,
2973–2980 (2016).

102. Schaum, N. et al. Ageing hallmarks exhibit organ-specific tem-
poral signatures. Nature 583, 596–602 (2020).

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 14

https://doi.org/10.3390/biology9120485
https://doi.org/10.3390/life11040309
https://doi.org/10.1172/jci.insight.135236
https://doi.org/10.1172/jci.insight.135236
https://doi.org/10.1038/s41418-021-00808-w
https://doi.org/10.1038/s41418-021-00808-w
https://doi.org/10.1093/bioinformatics/btab003
https://doi.org/10.1093/bioinformatics/btab003
https://doi.org/10.1093/bioinformatics/btaa1011
https://doi.org/10.12688/f1000research.24956.2


103. Gabriel, K. R. The biplot graphic display of matrices with appli-
cation to principal component analysis. Biometrika 58, 453 (1971).

Acknowledgements
This work was supported by the German Research Foundation (D.F.G.,
413501650) (D.S.), National Institutes of Health (NIH) grants P01
AG062413 (S.K., J.N.F., N.K.L., R.P., P.D.R., L.J.N., Y.I., J.P., D.G.M., T.T.,
J.L.K.), R01 AG076515 (S.K., D.G.M.), R21 AG065868 (S.K., J.N.F), K01
AR070241 (J.N.F.), R01 AG063707 (D.G.M.), R37 AG 013925 (J.L.K., T.T.),
R33AG 61456 (J.L.K., T.T., R.P., P.D.R., L.J.N., S.K.), 1R01AG068048-01
(JFP), R56 AG60907 and R01 AG55529 (N.K.L.)., the Connor Fund (J.L.K.,
T.T.), Robert P. and Arlene R. Kogod (J.L.K.), Robert J. and Theresa W.
Ryan (J.L.K., T.T.), the Noaber Foundation (J.L.K., T.T.), and Mildred
Scheel postdoc fellowship by the German Cancer Aid (R.L.K.). X.Z. is
supported by the Robert and Arlene Kogod Center on Aging Career
Development Award. The authors thank SA Johnsen and FH Hamdan for
inspiring discussions.

Author contributions
D.S., J.N.F., and S.K. conceived and directed the project. D.S. and J.N.F.
designed the experiments and interpreted the data with input from S.K.
Experiments were performed by D.S., R.L.K., and M.L.D. D.S. and S.K.
wrote the manuscript. E.J.A. and X.Z. contributed to the statistical/
bioinformatic analyses and reviewed the manuscript. L.J.H., T.T., and
J.L.K. oversaw the clinical trial involving D +Q and contributed data from
the trial. A.X. was responsible for collecting and processing the samples
from the clinical trial. N.K.L., R.J.P., P.D.R., L.J.N., Y,I., D.J., J.F.P., and
D.G.M. contributed to the conceptual development of the project and
input into the SenMayo geneset. All authors reviewed the manuscript.
J.N.F. and S.K. oversaw all experimental design, data analyses, and
manuscript preparation. J.N.F., S.K., and D.S. accept responsibility for
the integrity of the data analysis.

Competing interests
J.L.K., T.T., and N.K.L. have a financial interest related to this research.
Patents on senolytic drugs and their uses and SASP biomarkers are held
by Mayo Clinic and the University of Minnesota. This research has been

reviewed by the Mayo Clinic Conflict of Interest Review Board and was
conducted in compliance with Mayo Clinic Conflict of Interest policies.
The remaining authors declare no competing interests

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-32552-1.

Correspondence and requests for materials should be addressed to
Dominik Saul, Joshua N. Farr or Sundeep Khosla.

Peer review information Nature Communications thanks Graham
Pawelec and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32552-1

Nature Communications |         (2022) 13:4827 15

https://doi.org/10.1038/s41467-022-32552-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues
	Results
	Development and validation of SenMayo in human datasets
	SenMayo is applicable across tissues and species
	SenMayo demonstrates clearance of senescent cells
	SenMayo outperforms existing senescence/SASP gene sets
	SenMayo identifies senescent cells in scRNA-seq datasets
	Further experimental validation of in silico analyses

	Discussion
	Methods
	Generation of SenMayo
	Mouse strains and drug treatments
	Quantitative real-time polymerase chain reaction (RT-qPCR) analysis
	Single-cell RNA-seq (scRNA-seq) analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




