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Dynamic cybergenetic control of bacterial
co-culture composition via optogenetic
feedback

Joaquín Gutiérrez Mena 1,2, Sant Kumar 1,2 & Mustafa Khammash 1

Communities of microbes play important roles in natural environments and
hold great potential for deploying division-of-labor strategies in synthetic
biology and bioproduction. However, the difficulty of controlling the com-
position of microbial consortia over time hinders their optimal use in many
applications. Here, we present a fully automated, high-throughput platform
that combines real-time measurements and computer-controlled optogenetic
modulation of bacterial growth to implement precise and robust composi-
tional control of a two-strain E. coli community. In addition, we develop a
general framework for dynamic modeling of synthetic genetic circuits in the
physiological context of E. coli and use a host-aware model to determine the
optimal control parameters of our closed-loop compositional control system.
Our platform succeeds in stabilizing the strain ratio of multiple parallel co-
cultures at arbitrary levels and in changing these targets over time, opening
the door for the implementation of dynamic compositional programs in syn-
thetic bacterial communities.

Despite their microscopic size, bacteria constitute the second largest
segment of the total biomassof our planet1, having a direct impact on a
huge range of processes: frombiogeochemical cycles to humanhealth.
The ability ofmicrobes to perform such vastly diverse tasks stems, to a
large extent, from their existence in complex communities of inter-
acting, specialized individuals2. Bacterial species can behave differ-
ently within such a community than in isolation and there is a growing
interest in probinghow interspecies interactions give rise to theoverall
properties of the community3–5 in terms of its joint metabolism6,7,
spatial arrangement8,9 and dynamic composition10,11. The importance
of these studies will only grow in the future, as researchers try to
disentangle the complex interplay between microbial communities
and their environment.

Engineered microbial communities also offer an enticing prospect
for applications in the field of synthetic biology12, distributed
computing13–16, multicellular control17, and bioproduction18,19. By
exploiting the natural capacities of member species, diverse commu-
nities can carry out tasks that would be out of reach for monoclonal
populations20. In addition, in a division-of-labor approach, large genetic

circuits and pathways can be broken up into subsets that are placed
inside different member species, offering a natural compartmentaliza-
tion that improves modularity and allows for the reuse of parts in dif-
ferent contexts21,22. More importantly, the resulting community can
carry out its target function more efficiently than an isogenic, engi-
neered population, because individual cells bear only a fraction of the
total production burden17,23–25. As applications of synthetic consortia
continue to emerge, it becomes increasingly essential to develop
methods for controlling such communities in time and space26,27.

One of the biggest challenges for the widespread deployment of
applications that rely on microbial consortia stems from the competi-
tive exclusion principle, which states that, in the absence of stabilizing
interactions, a community of species competing over the same eco-
logical niche will be overtaken by its fastest-growing member28. Since
members of synthetic consortia generally compete for space and
shared nutrients, this implies that it is difficult to maintain a stable
community composition over time. Moreover, the problem is exa-
cerbated by differences in growth rate that arise when themembers of
the consortium carry different loads from exogenous genetic
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components. Methods for stabilizing co-existence have largely
focused on self-limiting populations29,30 and on the introduction of
stabilizing interactions between members of the consortium6,21,31–35.
Although these approaches succeed in producing stable community
dynamics, both thedynamicbehavior and the attainable strain ratios at
equilibrium are often hard-wired properties of the system. Moreover,
genetically engineering strains that interact with each other and opti-
mizing the strength of those interactions can be a long and complex
process. Therefore, thesemethods do not offer a general solution that
can be easily adapted to different contexts and applications.

This constitutes a serious bottleneck, because the performance of
microbial co-cultures at biocomputing, biosensing and bioproduction
tasks depends crucially on the maintenance of optimal population
ratios andmore complex applicationsmight even require the ability to
change those ratios over time. Most applications to date rely on stra-
tegies that lack robustness, such asmanual tuning of initial inoculation
ratios22,36,37 or open-loop control38. Thus, achieving precise, robust, and
flexible control over the dynamic composition of a co-culture would
add apowerful tuning knob for the optimizationof future applications.

In silico feedback controllers offer an attractive alternative to
embedded (genetically engineered) controllers39. In this approach, a
biological system is interfaced with a controller algorithm that is
executed externally by a computer40,41, facilitating the implementation
of arbitrary controller architectures andprovidingflexible controlover
the properties of the closed-loop system42. Although engineered cells
still require components that allow them to react to the inputs from

the controller, they are freed from the genetic load of the controller
itself43, releasing cellular resources that can be allotted to the expres-
sion of application-specificproducts or circuits. In spite of some recent
attempts at controlling microbial communities by interfacing them
with a computer44–46, the full potential of in silico feedback for this task
has yet remained untapped.

Here, we present a strategy that integrates optogenetic control of
cellular growth and in silico feedback to maintain arbitrary strain ratios
in an otherwise unstable bacterial co-culture (Fig. 1a). For this, we
combine two engineered E. coli strains: a constitutive strain that grows
at a fixed rate and a photophilic strain, whose growth rate can be
modulated by external light inputs. In this system, we can effectively
steer the composition of the two-strain consortium using light (Fig. 1b).
We further develop a custom-built, generic andmodular framework for
automated sampling, which we integrate with a commercially available
culturing system that we modified for optogenetic applications. The
result is a fully automated platform for high-throughput continuous
culturing, sampling and light stimulation, which allows us to monitor
the composition of multiple co-cultures in parallel with high time
resolution using flow cytometry. By implementing a suitable
proportional-integral-derivative (PID) controller that acts on the strain
ratio, we demonstrate in silico closed-loop control of co-culture com-
position using this automatedplatform (Fig. 1c). In addition,wedevelop
a framework for host-aware mathematical modeling of synthetic
genetic circuits. The framework takes into account the deleterious
effects of gene-expression burden on host growth and the

Fig. 1 | Compositional control of a bacterial co-culture via optogenetic feed-
back. a Because of the competitive exclusion principle, two non-interacting strains
that compete for commonspaceand resources cannot stably coexist in a co-culture
(left). In this study, we show that the precise composition of such a co-culture can
be modulated and stabilized at arbitrary strain ratios using external optogenetic
feedback (right). b Our co-cultures contain a constitutive strain, which grows at a
fixed rate independent of light, and a photophilic strain, whose growth is stimu-
lated by blue-light. The fate of the co-culture can be controlled through the choice

of external light inputs, with the constitutive strain taking over the culture in the
dark and the photophilic strain taking over under strong illumination. c We
implement external optogenetic feedback in a fully automated platform that
includes a continuous culture with an LED for the delivery of light inputs, auto-
mated sampling coupled to a flow cytometer to allow us tomonitor the strain ratio
with high temporal resolution and a controller algorithm, running on a computer,
that updates the intensity of the input light based on the current state of the co-
culture and the control objective.
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consequences of resource limitation for circuit performance, while
reproducing the empirical relations between growth rate and cellular
resource pools known as bacterial growth laws47. Our framework
seamlessly extends existingODEmodels of arbitrary circuits to simulate
the context of an E. coli host, without adding any free parameters to the
original model. We apply the framework to our photophilic strain and
show that it accurately captures the dynamics of the optogenetic
growth-control circuit. This allows us to simulate the behavior of the
closed-loopco-culture systemand todetermine theoptimalparameters
for our PID controller through a computational screening procedure.
Using our automated platform with the optimized PID controller, we
demonstrate that we can force the photophilic-constitutive consortium
tomaintain arbitrary strain ratios for over 80 bacterial generations and
that the strain ratio can track dynamically changing setpoints. The
possibility of implementing arbitrary, dynamic profiles in the compo-
sition of bacterial communities through a strategy that is orthogonal to
intercellular communication channels offers exciting opportunities,
both for studies of microbial ecology and for the optimization of syn-
thetic biology and bioproduction applications.

Results
Optogenetic control of antibiotic resistance enables fast mod-
ulation of bacterial growth
In order to control the relative abundances of strains in a co-culture,
we needed to grow the cells in an environment that allows us to have
precise control over their growth rates. However, we wanted to avoid
growth-control approaches that rely on auxotrophy and targeted
expression of bottleneck metabolic enzymes41 to ensure that our
platform can be used in the broadest possible contexts. Therefore, we
decided to grow our strains in the presence of sub-lethal concentra-
tions of a bacteriostatic antibiotic, which makes their rate of growth
dependent on the expression levels of a resistance-conferring enzyme.

For this purpose, we use chloramphenicol, a bacteriostatic anti-
biotic that inhibits growthbybinding to the ribosomal 50S subunit and
preventing peptidyl transfer48. In the absence of resistance, sub-
saturating concentrations of chloramphenicol lead to a dose-
dependent reduction in growth rate49. The enzyme chloramphenicol
acetyltransferase (CAT) catalyzes the conversion of chloramphenicol
to a non-toxic product and thereby renders CAT-producing cells
resistant to the antibiotic50. We reasoned that, if we exposed the cells
to a fixed external concentration of chloramphenicol, then controlling
the expression of CAT would allow us to modulate the growth rate of
the cell, because low levels of the enzyme would alleviate the effect of
the antibiotic without abolishing it entirely.

We begin by building a strain of E. coli whose growth rate can be
modulated through blue-light illumination. For this, we use an opto-
genetic tool developed in our lab, the opto-T7 polymerase51, to express
CAT in a dose-dependent manner (Fig. 2a). Opto-T7 consists of a
polymerase from T7 bacteriophage which is split into two catalytically
inert parts that are fused to matching light-inducible heterodimeriza-
tion domains51. When exposed to blue light, complementary parts
interact in a dose-dependent manner and reconstitute a functional
polymerase unit, which can then initiate transcription of the CAT gene
from a T7-recognized promoter. In our design, we express the com-
ponents of the opto-T7 from a low-copy plasmid (pSC101) and place
the target gene in a separate plasmid (p15A).We also fused anmCherry
fluorescent protein to the C-terminus of CAT to have a direct readout
of the resistance expression levels. Finally, our light-responsive strain
carries a constitutive mVenus expression cassette in the chromosome
to be able to tell it apart from the other non-fluorescent strain in a co-
culture. Since these cells growmore rapidly in the presenceof light, we
refer to them as the photophilic strain.

We chose to work with an opto-T7 polymerase because it offers
many advantages compared to other available tools52. On the one
hand, it is a one-component system that requires no co-factors,

imposing a lower expression burden on cells. Its orthogonality with
respect to the endogenous transcriptional machinery reduces the
chances of undesired interactions with cellular processes, as well as
with other synthetic circuits that might be placed in the cell alongside
the growth control module in future applications. Most importantly, it
supports a high fold change in expression between dark and illumi-
nated conditions and both its ON-switching and OFF-switching
dynamics are fast.

In agreement with these properties, the growth rate of the pho-
tophilic strain displays a well-tunable, gradual response to blue-light
intensity (Fig. 2b and Supplementary Fig. 1). When grown in the pre-
sence of 10.5 μM chloramphenicol, we can precisely set the growth
rate of the strain in a range between ~1 h−1 and ~1.9h−1 bymodulating the
intensity of input light. Furthermore, we can also vary the external
antibiotic concentration to obtain different fold changes in growth
rate between a dark environment and maximum illumination (Sup-
plementary Fig. 2).

The use of an antibiotic-inactivating enzyme, such as CAT, for
dynamic control of the growth rate, requires that the cells are grown in
a continuous culture. The reason is that, if the antibiotic is not con-
tinuously replenished, the action of the resistance enzyme causes the
external concentration of antibiotic to drop over the course of the
experiment. As a culturing platform, we use eVOLVER, a commercially
available solution for monitoring several turbidostat cultures in
parallel53. Automated, high-frequency measurements of the optical
density allowedus tomonitor the growth rate dynamics of the cultures
with high resolution.

Notably, the dynamics of the photophilic strain are fast (Fig. 2c)
with cells reaching a new steady-state around two hours after an
increase in light intensity (upshift) and four hours after a decrease in
light intensity (downshift). We attribute the asymmetry in the
dynamics to the fact that the resistance enzyme is not tagged for
degradation and so its removal relies solely on dilution through cell
growth, whereas the dynamics of upshifts are dictated by the time-
scales of the gene expression process. In both up- and downshifts, we
measured a delay of around one hour before there was an appreciable
change in growth rate.

Finally, we built a set of constitutive strains in which the expression
levels of CAT are fixed and independent of light (Fig. 2a). For this, we
built several expression cassettes with different promoters and
ribosome-binding sites to achieve different expression levels. In the
presenceofour chosenconcentrationof chloramphenicol, these strains
indeed exhibit different growth rates and are unaffected by light.

The growth rate of four of these strains is plotted in Fig. 2d, along
with the maximal and minimal growth rates of the photophilic strain
for comparison. The growth rate of the constitutive strain should lie
between these extremes, so that an external controller can both
increase and decrease the relative abundance of the photophilic strain
in the co-culture by delivering the appropriate intensity of light. Three
of the constructed strains met this requirement. We selected one of
these, bJAG235, for future co-culture experiments with the photophilic
strain. In the remainder of the paper, we refer to bJAG235 simply as the
constitutive strain.

evotron—an automated high-throughput culture, sampling, and
light-stimulation platform
In this study, we needed a continuous (possibly high-throughput) cell
culture platform integrated with an automated sampling setup for
fetching culture samples periodically to ameasurement device, and an
integrated light-delivery device to implement a fully automated
closed-loop feedback control over the bacterial co-culture composi-
tion. To achieve this objective, we developed a generic and modular
platform –evotron–, as illustrated in Fig. 3.

For continuous cell culture, we considered the eVOLVER
framework53, which provides an integrated setup for high-throughput

Article https://doi.org/10.1038/s41467-022-32392-z

Nature Communications |         (2022) 13:4808 3



(16 in parallel) and automated cell culture for long-duration experi-
ments.We re-designed their smart sleeves (tube-holders) and glass vial
caps to accommodate O-rings so as to prevent wobbling of glass vials
when placed inside the sleeves (Fig. 3a, left). This resulted in con-
siderably stable and consistent OD (optical density) sensor readings
(Supplementary Fig. 3), even at the low cell culture densities typically
maintained during our experiments. We also integrated one blue LED
per sleeve and modified the embedded firmware to allow for con-
trolled, time-varying, and independent light-illumination of parallel
cell cultures during the course of optogenetic experiments. For
maintaining cell culture density within a desired range, we used the
built-in turbidostat functionality (Fig. 3a, center) of the eVOLVER fra-
mework, which performs controlled dilution and culture removal
steps in a feedback-controlled manner. After multiple trials, we tuned
the turbidostat OD-regulation controller parameters providing a bet-
ter OD setpoint trackingwith lessmedia consumption (Supplementary
Fig. 4). OD of parallel cell cultures were independently maintained

between 0.1 and 0.15 in all of our experiments. The eVOLVER frame-
work also provided a built-in function to compute growth rate in near
real-time using the measured OD trajectory data fluctuating between
0.1 and 0.15 (Fig. 3a, right).

To realize closed-loop optogenetic feedback control over bacterial
co-cultures, we integrated a flow-cytometry measurement device with
our cell culture optogenetic platform via a generic automated sampling
framework, as shown in Fig. 3b. We placed our modified eVOLVER
platform on the deck of an Opentrons OT-2 Robot in such a way that all
16 of eVOLVER sleeves were laid within the accessible working region of
theOT-2 pipette head.We also designed an adapter (3D printed) for the
pipette head to hold a sampling needle, which can be lowered through
themodifiedvial cap into the cell culture in individual vials for sampling.
This configuration allowed us to move the sampling needle over any of
the 16 eVOLVER sleeves and lower it down inside the cell culture using a
custom-developed OT-2 protocol code. Bottles with three cleaning
solutions ((1) sterile H2O, (2) 2% bleach solution, (3) sterile H2O) were

Chloramphenicol
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Chromosome

nMag-T7N-Ter pMag-T7C-Ter
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Fig. 2 | Optogenetic control of cellular growth rate. a Schematic of the genetic
circuits used in this study. Control over the growth rate is achieved by growing E.
coli in the presence of a fixed concentration of chloramphenicol and titrating the
expression of chloramphenicol acetyltransferase (CAT), an enzyme that inactivates
the antibiotic. The photophilic strain (top) carries a split T7 polymerase fused to
light-inducible heterodimerization domains and the CAT gene, placed under con-
trol of a T7-promoter. Blue-light illumination leads to reconstitution of active T7-
polymerase units and production of CAT, which in turn results in faster growth. In
the constitutive strain (bottom), the CAT gene is expressed from a constitutive
promoter, so that the growth rate is independent of light. b Dose-response of the
growth rate of the photophilic strain to blue-light intensity in the presence of sub-
lethal concentrations of chloramphenicol (10.5 μM). Data are presented as mean
values +/− SEM, with the median steady-state growth rate of individual biological
replicates shown as data points with different transparency (n = 3 biologically

independent samples). The raw time-course data used to determine the steady-
state growth is presented in Supplementary Fig. 1. c Dynamic response of the
photophilic strain to a step changes in blue-light intensity. The transient phases of
growth downshifts and upshifts have different duration. d Comparison between
the controllable range of growth rates of the photophilic strain (minimum and
maximum) and the growth rates of several constitutive strains. Data are presented
as mean values +/− SEM, with the median steady-state growth rate of individual
biological replicates shown as data points (n = 3 biologically independent samples).
For the composition of a photophilic-constitutive co-culture to be controllable, the
growth rate of the constitutive strain must lie in between the extremes of the
photophilic strain. Therefore, strain bJAG236 cannot be used together with the
photophilic strain and was only measured in duplicates (n = 2 biologically inde-
pendent samples). Source data are provided as a Source Data file.
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also placed on the OT-2 deck for cleaning the sampling needle and the
sampling tubing after every sampling event in order to prevent cross-
contamination between successive samples or different cell cultures
(Supplementary Fig. 5). Furthermore, we connected the sampling nee-
dle to the flow-cytometer sample vial with a flexible silicone tubing
routed via a peristaltic sampling pump for drawing samples from target
cell cultures. A separate tubing connected the flow-cytometer sample
vial to a waste bottle via another peristaltic pump for removing the
residual sample culture from the cytometer. Together with this inte-
grated hardware elements, we programmed the sampling and mea-
surement operation to follow four steps: first, move and lower the

sampling needle into a desired eVOLVER vial with cell culture, and draw
0.5ml sample to the flow-cytometer sample vial using the sampling
pump; second, start cytometry measurement; third, once the mea-
surement is finished, remove the left residual sample from the cyt-
ometer sample vial; fourth, move and lower the sampling-needle to the
three sampling solutions in succession while running the sampling
pump andwaste pump sequentially, thusmoving the cleaning solutions
through the entire sampling path.

We developed a primary routine running on a control computer
and a secondary sub-routine running on an Arduino controller for
sequential execution of the above-mentioned steps. Provisions for
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feedback-controller implementationwere alsoprovided in the primary
routine design allowingone to implementmeasurement-based control
algorithms (e.g., PID controller illustrated in Fig. 6a), computing light
stimulation intensities which are then applied to the respective target
cell cultures accordingly. The control computer and Arduino con-
troller were connected to eVOLVER, OT-2, pumps, and flow-cytometer
via different communication channels as illustrated in Fig. 3b. Using
this automated platform, we were able to observe the dynamic step
response of the photophilic strain (Fig. 2a) both in termsof growth rate
as well as fluorescence (mCherry) intensity changes, as shown in
Fig. 3c. evotron thus enables simultaneous, high-resolutionmonitoring
of fluorescence and growth.

Although we used a modified eVOLVER platform for continuous
cell-culture maintenance in our evotron framework, the generic,
modular, and simple design of our automated sampling setup allows
one to easily integrate any other cell culture platform, which can be
placedon the largedeckof theOT-2 robot. Associated control routines
can be easily modified to incorporate those different platforms and
integrate other measurement devices as desired. While we were
working on the manuscript, a similar approach for automated mea-
surements and reactive control operations was published44. Please
refer to Supplementary Text Section 1 for a brief comparison.

A framework for host-aware modeling of synthetic genetic cir-
cuits in E. coli
Automated sampling allows us to monitor the composition of the co-
culture over time—a prerequisite for any implementation of real-time
optogenetic feedback on the strain ratio. As a next step, we aimed to
develop amathematical model of the co-culture dynamics that we can
use for model-guided design of an optimized control strategy. Since
the dynamics of the co-culture are fully determined by those of the
photophilic strain, we first derived a model that accurately captures
that strain’s response to light.

We reasoned that a conventional model that does not consider the
physiology of the cell would not be able to capture the internal feed-
back interactions between the growth-control circuit and its host. In
fact, the circuit directly affects the growth rate and this, in turn, changes
the dilution rate and the physiological state of the cell which, as a result,
causes a feedback action on the expression of the genes that constitute
the circuit. The coupling between the circuit and the host arises from
three main factors. First, circuit components are diluted at a rate pro-
portional to the cell’s growth rate. Second, translation of the proteins of
the circuit is carried out by the host ribosomes, which are affected by
the intracellular concentration of chloramphenicol. Therefore, the
inactivation of chloramphenicol by the circuit feeds back on the circuits
expression levels. Finally, the host responds to the presence of the
antibiotic by changing its ribosomal content, leading to a broad

reconfiguration of the protein contents of the cell. This dynamic
adaptation impacts the circuit’s expression levels and dynamics.

To take these aspects into account, we developed a modeling
framework that captures all these internal feedbacks between the
growth-control circuit and the physiological state of the cell. We fur-
ther aimed tomake the framework as simple andgeneral as possible, so
that it can be applied to genetic circuits beyond the particular example
of the photophilic strain. For this, we turned to the type of proteome-
partition models that were first put forward as interpretations of so-
called bacterial growth laws—a set of empirical relations describing
how the cell’s ribosomal content scales with its growth rate47.

Figure 4a summarizes these growth laws, as well as the proteome-
partition model proposed by Scott et al.47. When the growth rate of
exponentially dividing E. coli is reduced by diminishing the nutrient
quality, the ribosomal fraction of the proteome, ΦR, shrinks pro-
portionally. In contrast, when the reduction in growth rate is caused by
exposure to translation-inhibiting antibiotics, the ribosomal content
increases (For details, see ref. 47 and Supplementary Text Section 2). In
proteome-partitionmodels, these observations are interpreted as shifts
in the way that the finite-sized proteome is allocated to two broad, co-
regulated categories. In particular, the expansion of the ribosomal
fraction necessarily comes at a cost to the catabolic fraction, ΦP, a
regulatory strategy that is thought to reflect the tight balance between
anabolic and catabolic fluxes in exponential growth47,54. The proteome-
partition model quantitatively relates the relative sizes ofΦR andΦP to
the growth rate, as a function of only two parameters that describe the
nutrient quality and potential effect of translation-inhibiting factors.

Our framework consists of an adaptation of the original
proteome-partitionmodel to incorporate the dynamics of an arbitrary
network of u exogenous genes, x1,⋯ , xu, whose expression both
occupies a fraction of the cell’s limited proteome and relies on the
host’s transcriptional and translationalmachinery (Fig. 4b). For this, we
include a further fraction of the proteome, the synthetic fraction ΦS,
which is composed of the proteins of the circuit, Xi. Wemodel the time
evolution of the concentrations of these proteins through a system of
ordinary differential equations (ODEs) and then use a simple conver-
sion rule to relate the concentration of exogenous proteins to the
synthetic proteome fraction

ΦS =
∑u

i = 1 nXi
X i

ρcell

ð1Þ

where nXi
is the number of amino acids of protein Xi and ρcell is the

protein density in the cell.
Finally, we use the equations derived by Scott et al.47 for their

original proteome-partition model to predict the extent of gene-
expression burden arising from the circuit, i.e. the reduction in growth

Fig. 3 | evotron—automated high-throughput culture, sampling, and light-
stimulation platform. We used a modified eVOLVER platform53 for maintaining
and stimulating our target cell culture, and developed an Opentrons OT-2 Robot-
based generic and modular setup to facilitate automated periodic sampling and
measurement in our experiments. a Left: Modified eVOLVER smart sleeve. We re-
designed the glass vial cap and the tube-holder for stable and consistent OD
(optical density) sensor measurements (Supplementary Fig. 3). We also integrated
one blue LED per sleeve in the framework for dynamic light-stimulation of the
target culture during an optogenetic experiment. Center: Turbidostat-mode
operation. The modified eVOLVER platform was used in turbidostat mode to
maintain cell culture density within a desired range during the course of an
experiment via a controlled dilution and cell-culture removal process. Right: OD
measurements during an experiment. Cell density wasmaintainedwithin a 0.1–0.15
OD range in all of our experiments. b Opentrons OT-2 Robot-based automated
sampling platform. We placed the modified eVOLVER platform on the OT-2 deck,
ensuring that all 16 sleeves stayed within the accessible region of the OT-2 pipette
head. The pipette head was fitted with a custom-designed adapter (3D printed)

holding a sampling-needle that can be lowered into the cell culture in individual
vials for sampling. We also placed cleaning solutions on the OT-2 deck to clean the
sampling-needle and tubing after each sampling in order to avoid cross-
contamination. At every sampling instance, the sampling-needle is moved to the
desired culture vial and lowered into it. A sampling pump then extracts around 0.5
ml of cell culture into a sampling tubing, and draws it through the tubing into a
flow-cytometer sample vial. Once the cytometry measurement is done, a separate
waste-pump removes the left-over sample from the flow-cytometer sample vial.
The sampling-needle is thenmoved and lowered into the cleaning solutionsone-by-
one, with sampling-pump and waste-pump running sequentially to clean the entire
culture sample path. We developed a primary and secondary routines running on a
control computer and an embedded controller respectively to execute sampling
steps, run feedback-control algorithms over the measurement, and set the stimu-
lating LED intensity accordingly. Communication channels between different ele-
ments are shown with dotted green lines in the figure. c Dynamic responses from
Fig. 2c are shown with the automated fluorescence (mCherry) measurements
obtained using evotron platform. Source data are provided as a Source Data file.
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rate that results from the presence of the synthetic fraction of the
proteome

λ ΦS

� �
= Φmax

R �ΦR0
�ΦS

� � γ0ν
γ0 + ν

ð2Þ

whereΦmax
R ,ΦR0

and γ0 are parameters that have been determined by
Scott et al from detailed growth experiments (Fig. 4a) and ν is a
parameter that characterizes nutrient quality and can be easily calcu-
lated fromthegrowth rateof cells in the chosen experimentalmedium.

The final component of our modeling framework is a system of
ODEs describing the circuit dynamics. It differs from a conventional

model of a gene-expression network by explicitly considering the
dependence of gene expression on the cellular machinery. We derive
simple factors that capture how the availability of host transcriptional
and translational resources scales with the growth rate and incorpo-
rate these to the production rates of the circuit components. The
resulting equations for an arbitrary pair mXi

and Xi of mRNA and
protein species of the circuit (i = 1,⋯ , u) take the general form

dmXi
dt = ωi TiðmX,XÞ λν + FiðmX,XÞ � δimXi

dXi
dt = αimXi

λ+GiðmX,XÞ � λXi,
ð3Þ

Fig. 4 | Host-aware modeling framework applied to the photophilic strain. a In
proteome-partition models, empirical correlations between growth rate and ribo-
somal mass fraction arise from a balance between co-regulated sectors of the
proteome: a fixed, house-keeping fraction (ΦQ) and two flexible sectors, the ribo-
somal fraction (ΦR) and the catabolic fraction (ΦP). The give-and-take regulation of
the latter two sectors determines the cellular growth rate, mediating adaptation to
environmental conditions characterized by nutrient quality and translational
capacity. Figure adapted from refs. 47 and 54. b In our approach to host-aware
modeling, the dynamics of arbitrary synthetic genetic circuits, described by a
system of ODEs, are embedded into a proteome-partition framework that captures
the physiological response of the cell. In contrast to a traditional ODEmodel, which
does not consider the physiological adaptation of the host's growth rate, gene-

expressionburdencausedby the circuit or limitations in the host's gene-expression
resources, the host-aware framework seamlessly incorporates all of these host-
circuit interactions without the need for extra free parameters. c Host-aware
modeling framework applied to the photophilic strain. Blue-light intensity enters as
an external parameter and the growth-modulating effect of expressing CAT in the
presence of chloramphenicol introduces a direct interaction between the circuit
and the host's growth rate. d Dynamic upshift and downshift experiments used to
determine the best parameter values for the host-aware model of the photophilic
strain. The parameterized model simultaneously recapitulates the dynamics of
both cellular growth rate and resistance expression. Source data are provided as a
Source Data file.
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where mX and X are u-dimensional vectors containing the mRNA and
protein species of the circuit and T(mX,X), F(mX,X) and G(mX,X) are
functions that describe all possible interactions between these species,
at the transcriptional, post-transcriptional and post-translational
levels. The factors λ

ν
and λ, multiplying the transcription and translation

rates, respectively introduce an explicit dependence on the host’s
transcriptional and translational machinery (See Supplementary Text
Section 2 for a derivation of these terms). The parameters ωi, αi and δi
respectively refer to the transcription, translation, and mRNA-
degradation rates of the ith species of the circuit. Growth-mediated
dilution is absent from the mRNA differential equation because we
assume that its effect is negligible in comparison to that of active
degradation processes.

The collection of Eqs. (1)–(3), comprising our host-aware model-
ing framework, are based on the assumption that the growth rate
equation, derived by Scott et al. for equilibrium conditions, holds in
the—potentially non-equilibrium—context of a dynamic genetic circuit
acting within the cell (see discussion for a comment on the validity of
this assumption). Therefore, themodel cannot be expected to provide
quantitative predictions in all cases or to reflect an accurate mechan-
istic understanding. However, the approach is powerful, because it can
be effortlessly incorporated into any existingODEmodel of a synthetic
circuit to provide intuition on the two-way interference between cir-
cuit and host physiology: The growth rate of the host, as a readout for
physiological state, affects the circuit dynamics, both through dilution
and by setting the availability of the gene-expression machinery, and
the circuit impacts the host’s growth rate through gene-expression
burden (Fig. 4b). Furthermore, equations (1)–(3) contain the same
number of free parameters as their conventional, non-host-aware
counterparts that assume a constant dilution rate λ. This is due to the
fact that the parameters that describe the host (Φmax

R ,ΦR0
and γ0) were

experimentally determined by Scott et al. for a range of common
growth conditions47. As long as similar conditions are under con-
sideration, all host parameters can be fixed and then the host-aware
modeling framework captures interactions between circuit and host
without increasing the risk of over-fitting.

Host-aware modeling of optogenetic growth control recapitu-
lates co-culture dynamics
We applied the host-aware modeling framework to the particular case
of the growth-control circuit of the photophilic strain (Fig. 4c). For
simplicity, wemodeled the split-T7 as homodimers and focused on the
dynamics at the protein level. The resulting system of ODEs, embed-
ded in the context of E. coli through the use of our host-aware fra-
mework, describes how T7-monomers dimerize in a light-dependent
reaction to produce active complexes that catalyze the production of
the resistance. In the presence of a fixed external concentration of
chloramphenicol, expression of CAT has a positive impact on the
growth rate through the inactivation of intracellular antibiotic mole-
cules.Model equations andderivations canbe found in Supplementary
Text Section 2.

To parameterize our model, we performed dynamic character-
ization experiments with the photophilic strain. We pre-incubated the
cells under ambient light conditions before transferring the cultures to
our turbidostat setup, where they were exposed to a precise illumi-
nation program. Our automated culturing and sampling capabilities
allowed us tomonitor both the growth rate and the resistance levels of
the strain over time under both upshift and downshift conditions
(Fig. 4d). We fitted simultaneously the growth rate and gene expres-
sion data with our model to determine the best choice of parameters.
With this set of parameter values, the host-aware model is able to
quantitatively reproduce the strain’s dynamics both at the gene-
expression and growth-rate levels with great accuracy. Thismeans that
we can simulate the dynamic trajectory of growth rate of the photo-
philic strain, λp LðtÞð Þ, in response to an arbitrary light input pattern L(t).

Having developed an accuratemodel of the growth rate dynamics
of the photophilic strain as a function of external illumination, we set
out to model how these dynamics govern the composition of a co-
culture in which both the photophilic and the constitutive strain are
present. For this, we assume that the growth rate of the constitutive
strain, λc, is time-independent and that the growth rate of the photo-
philic strain depends on time only through the applied dynamic light
input. In such a case, the time evolution of the composition of the
photophilic-constitutive co-culture can be characterized with a single
ODE that describes the fraction of the photophilic strain, φp (See
Supplementary Text Section 2),

dφp

dt
= λp LðtÞð Þ � λc
� �

1� φp

� �
φp: ð4Þ

Equation (4) has a simple geometric interpretation, which is
depicted schematically in Fig. 5a. The system has two fixed points that
correspond to dominance of either the photophilic (φp = 1) or the
constitutive (φp = 0) strain. The stability of the fixed points is fully
determined by the growth-rate difference between the strains, i.e. a
winner-takes-all scenario, where the faster-growing strain eventually
comes to dominate the co-culture, driving the other strain to extinc-
tion. The higher the disparity in growth rates, the faster the system
converges to the stable fixed point.

We confirmed this experimentally by running co-culture experi-
ments in open loop, i.e., with a fixed light-intensity input that does not
feed back on the co-culture state (Fig. 5b and Supplementary Fig. 6). As
expected,maximal light intensity lead todominanceof thephotophilic
strain, while the absence of light resulted in the opposite outcome.We
observe faster convergence when the culture is incubated without
light, which agreeswellwith the fact that the growth rates of the strains
are more dissimilar in the dark than under maximal illumination
(Fig. 2d). Finally, we simulated the composition of the co-culture in the
open-loop setting by combining our parameterized model of the
photophilic strain’s growth rate with Eq. (4). The outcome matches
quite closely the observed behavior of the co-culture (dashed lines in
Fig. 5b), suggesting that the host-awaremodel of the photophilic strain
that we developed, would allow us to investigate the behavior of the
co-culture under optogenetic feedback.

In silico optogenetic feedback stabilizes arbitrary strain ratios in
co-culture
Equation (4) also reveals theway in which applying feedback control on
the growth rate of the photophilic strain can stabilize the composition
of the co-culture at arbitrary strain ratios. Co-existence between the
strains is only possible if the growth rates are exactly the same. In that
case, Eq. (4) becomes zero independently of the composition of the co-
culture, meaning that the current ratio of strains becomes locked as a
fixed point. It is worth noting, however, that even the smallest devia-
tions from perfectly matched growth rates would cause the system to
revert back to a winner-takes-all scenario, where the strain ratio slowly
shifts towards the stable fixed point. Therefore, the role of feedback is
twofold: First, the input light levels steer the co-culture composition
towards the desired state by modulating the difference between the
growth rates of the strains. Then, after the desired setpoint has been
reached, the light input must ensure that the growth rates remain
matched, reacting to the unavoidable fluctuations in growth rate that
would cause the strain ratio to move away from its setpoint value.

To achieve these tasks through optogenetic feedback, we decided
to determine the necessary light inputs via a PID controller (Fig. 6a), a
long-standing control strategy that has found many applications in
industry because of its simplicity, performance, and versatility. The
integral component of a PID controller ensures that the closed-loop
system can track constant setpoints, while the proportional and deri-
vative components optimize the transient dynamics55. In order for the
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closed-loop system tobe stable and tohave appropriate dynamics, one
must find a set of gains for the three controller components that result
in optimal controller performance. Using our model of how the co-
culture responds to arbitrary light inputs, we carried out a computa-
tional screen to find the best-possible gains for our controller (Fig. 6b).
We randomly sampled sets of gains and simulated the behavior of the
closed-loop system for a couple of desired setpoints of strain ratios. To
eachsimulation,weassigned a score thatpenalizes deviations fromthe
optimal trajectory. Through this simple procedure, we were able to
find a set of gains that was predicted to result in fast convergence to
the setpoint, no overshoot, and only slight oscillations at equilibrium.
We chose this over alternative sets of optimal gains, such as one which
would produce no oscillations at equilibrium but a higher overshoot
and a longer transient (Supplementary Fig. 7). This highlights the fact
that it is possible to choose different optimization targets depending
on the application. The importance of this computational screening is
illustrated by the fact that randomly chosen controller gains resulted
in prohibitively long transients or widely unstable systems (Supple-
mentary Fig. 8).

We used the optimal set of gains to implement the optogenetic-
feedback loop schematized in Fig. 6a. The two strains are inoculated at
a defined initial ratio and then samples are collected automatically
every thirty minutes and passed through a flow cytometer to monitor
the composition of the co-culture in real time. In each sampling step,
after evaluating the difference between the current strain ratio and the
desired setpoint, the PID controller updates the intensity of the blue-

light LED so as to steer the trajectory of the co-culture composition to
the defined goal. Once initialized, the entire closed-loop experiment
runs autonomously without the need for human intervention. More-
over, the multiplexed capabilities of the evotron framework (Fig. 3)
allowus to control up tofive independent co-culture vials, eachwith its
own behavior objective.

The experimental trajectories of our co-cultures exhibited an
extraordinary resemblance to the simulations, demonstrating again
the quantitative predictive power of our host-aware model. Starting
from an initially balanced composition, we could drive the strain ratio
to arbitrary values, establishing dominanceof either the photophilic or
the constitutive strain (Fig. 6c–d, Supplementary Figs. 9 and 10). Fur-
thermore, the desired ratios were stabilized by the feedback for up to
40h, or the equivalent of around 80 bacterial generations in our cul-
turing conditions. After this, the co-culture composition started to
slowly drift towards a state of dominance of the constitutive strain, in
spite of the counterbalancing efforts of the controller, probably
reflecting the fixation of escape mutations in the population of one or
both co-cultured strains (Supplementary Fig. 11). Nevertheless, before
the onset of this escape phenomenon, the desired composition was
stably maintained with only minor oscillations around the setpoint, a
slight instability that our model suggests could be mitigated by
increasing the sampling frequency (Supplementary Fig. 12).

Finally, we show that we can also successfully steer the co-culture
to track a changing setpoint, such as first converging to a state of
dominance of the constitutive strain, then switching to the opposite

Fig. 5 | Open-loop dynamics of the photophilic-consitutive co-culture. a The
composition of the photophilic-constitutive co-culture can be characterized by the
photophilic strain fraction φp, whose dynamics obey the depicted ODE. Phase
portraits illustrate three qualitatively distinct scenarios. Full and empty circles
denote stable and unstable fixed points, respectively, and trajectories evolve in
time following the flow denoted by the arrows. In all cases, the sign andmagnitude
of the growth rate difference, λp − λc, determine the fate of φp and the speed of
convergence to equilibrium. If λp > λc, the photophilic strain inevitably dominates:
φp = 1 (Left). If λp < λc, the constitutive strain dominates: φp =0 (Center). If the

strains grow at equal pace (Right), any value of φp can be a fixed point of the
dynamics. b (Left) Schematic of open-loop case. A constant light intensity is
delivered throughout the experiment and samples are collected periodically to
monitor the co-culture composition. (Right) Experimental behavior of the co-
culture in an open-loop setting, illustrating the three qualitative cases from (a).
Dotted lines represent computational simulations of the equation in (a), where
λp = λp LðtÞð Þ is determined dynamically from the delivered input profile L(t) with a
host-aware model of the photophilic strain. Source data are provided as a Source
Data file.
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composition and afterwards moving to a balanced ratio of strains
(Fig. 6e and Supplementary Fig. 13). As a whole, these results demon-
strate that the composition of a naturally unstable bacterial co-culture
can be arbitrarily and accurately controlled for a reasonably long time
window using our optogenetic feedback approach. This opens up the
possibility of implementing dynamic programs that could find appli-
cations in both consortium-based bioproduction and the study of
ecological interactions within microbial communities.

Discussion
In this work, wedemonstrate dynamic control over the composition of
a two-strain bacterial co-culture. In a fully automated platform, we

implement feedback control on the growth of a single strain through a
combination of optogenetics and external light inputs. The accuracy
and fast dynamics of our control method showcase the advantages of
optogenetics over conventional, chemical induction, allowing instan-
taneous delivery and removal of inputs andfine control over dosage. In
agreement with a recent study that stabilizes a pair of strains by bal-
ancing amensalism with competitive exclusion35, engineering a single
strain was enough in our case to provide good dynamic control over
the composition of the two-strain community. Here, we chose to work
with the blue-light inducible opto-T7 polymerase, because of its fast
dynamics and its compact design that doesn’t require the expression
of co-factors51. Controlling the composition of more diverse

Fig. 6 | Computational screening for optimal controller parameters and closed-
loop control of co-culture composition. a Schematic of closed-loop control
experiment with a PID controller.bComputational screening for optimal PID gains.
Sets of randomly sampled gains (Kp, Ki, Kd) are used to simulate the expected
trajectory of the co-culture in a closed-loop setting with a defined target setpoint.
Trajectories are scored according to their total deviation from the target strain

ratio in the relevant time window. c–e Closed-loop control of co-cultures with the
same initial strain ratio and different target setpoints. Both model predictions
(Right) and experiments (Left) are shown. c Target photophilic fraction: φset

p =0:7.
d Target photophilic fraction: φset

p =0:3. e The strain ratio is forced to track set-
points that change from a target photophilic fraction of φset

p =0:2 to φset
p =0:8

(t = 10 h) and to φset
p =0:4 (t = 30h). Source data.
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communities, however, would require the use of orthogonal optoge-
netic tools to modulate the growth of more than one strain. Although
orthogonality hasbeendemonstrated for a pair of green-red systems56,
both of these systems absorb in the blue spectrum and are thus
incompatible with blue-light tools. In practice, the availability of reli-
able optogenetic tools that respond to orthogonal wavelengths could
limit the scalability of our approach to more diverse communities.
Nevertheless, introducing multiplexing methods57 and focusing
external control on key driver species within interacting
communities58 could provide a way forward.

Previous attempts to stabilize microbial co-cultures have relied
largely on self-limiting populations29,30, harnessing phenotypic
switches in the co-cultured populations59–61, engineered interactions
between strains and emergent behaviors6,21,31,32,34. Methods for ensur-
ing co-existance in a chemostat through control of the dilution rate
have also been proposed62. Although these approaches can generate a
richness of equilibrium anddynamic behaviors, they often sustain only
a limited set of strain ratios and community dynamics that are pre-
determined by intrinsic properties of the system. Our combination of
external feedback and single-strain control, in contrast, enables us to
stabilize the community at any desired strain ratio and to easily change
the setpoint during an experiment. Furthermore, the fact that the
controller runs on a computer means that we can implement arbitrary
control strategies tailored to the specific dynamical objectives, with-
out the constraints of chemical or interspecies interactions.

Our approach for controlling growth, the optogenetic expression
of an antibiotic-resistance gene via an opto-T7 polymerase51, resulted
in both longer genetic stability41 and faster dynamics38 than previous
implementations of optogenetic growth control. However, our
method still suffered from the eventual fixation of escape mutations
after around 80 generations,which limits the timewindow inwhichwe
can maintain compositional control over the community. Loss-of-
function mutations are inevitable in circuits that reduce the fitness of
the host, although some strategies have been recently proposed for
improving genetic stability and delaying the onset of mutations63,64.
However, it is worth noting that the use of a real-time feedback can, in
principle, prolong the stability of the system by adapting the light-
input profile to counteract the effect of certain mutations, a behavior
we likely observe in our closed-loop experiments after around 35 h
(Fig. 6c–d, Supplementary Figs. 9 and 10). If the effect of mutations is
known, adaptive control strategies such as gain scheduling could be
implemented to counterbalance the altered properties of the com-
munity. Further potential drawbacks of our approach to growth con-
trol are the obligate use of antibiotics and continuous culturing
methods, both of whichmight not be desirable in large-scale industrial
settings. However, we were able to obtain good results with con-
centrations of chloramphenicol ten times lower than those used for
selection. Furthermore, the overall strategy of using in silico feedback
coupled to optogenetic growth control does not depend on the spe-
cific details of how growth is affected by light. Therefore, the same
strategy could be applied to the optogenetic expression of other
growth-modulating factors, such as bottleneck metabolic enzymes41,
RNA-polymerase65 or growth-inhibiting toxins30, should these bemore
favorable to the application at hand.

We also use host-aware modeling to accurately predict the
dynamics of the bacterial community and to properly tune the para-
meters of our controller. A priori computational optimization was
responsible for the excellent performance of our closed-loop control.
Furthermore, it considerably reduced the final experimental effort,
which would have been considerably larger with a trial-and-error
approach. Both the simplicity and success of our procedure suggest
that it could be replicated for arbitrary applications, such as adding
biosynthetic modules on top of the growth control circuits for coop-
erative bioproduction20,24,25,66. Although such modifications would
affect the growth rates of the strains, the same model-guided

optimization procedure could be used to adapt the controller gains to
the altered community dynamics. The use of a host-awaremodel is not
stringently required for a satisfactory performance of the closed-loop
system. For example, simpler, phenomenological models that fit the
open-loop response of the community could also be used for the
computational optimization of PID gains, simplifying the imple-
mentation of our compositional-control platform even further. Given
that model-predictive control schemes can cope with model inac-
curacies to a large extent, both types of models could also be used to
implement such schemes, which would potentially outperform PID
control for time-varying reference signals41. However, we note that
harnessing the controlled co-culture for biotechnological applications
would require the introduction of further genetic loads (e.g., biosyn-
thetic pathways or genetic circuits) that would have a—potentially
convoluted—impact on the growth rates of the strains. Host-aware
models might bemore flexible when it comes to accommodating such
changes. Moreover, the host-aware framework presented here could
be relevant for applications beyond the scope ofmicrobial community
control.

Our host-aware modeling framework consists of minor, phe-
nomenologically motivated modifications to conventional ODE mod-
els of gene expression. Therefore, it can be easily applied to existing
models of arbitrary genetic circuits. One problematic assumption of
our framework is that the laws governing the allocation of the pro-
teome can be extrapolated to non-equilibrium conditions, such as the
transient phase of a circuit's dynamics. However, the lack of any
appreciable delay between the change in resistance levels and its effect
on the growth rate (Fig. 3c) suggests that growth-related adaptation
might indeed be considered to be in quasi-steady state in relation to
the protein dynamics of the circuit, at least in our particular case,
where growth is modulated by varying the levels of CAT in the pre-
sence of chloramphenicol.

Manymodeling strategies have been developed in recent years to
explain unintuitive circuit behaviors that arise from resource-sharing
between exogenous gene networks and host physiology67–71, some of
which are based on the same type of course-grained description of the
bacterial proteome67,70 that we use in our framework. In contrast to
these approaches, we do not base our model on mechanistic repre-
sentations of the processes underlying host-circuit interactions, which
might result in lower quantitative power and limited interpretability.
Nevertheless, we observed good quantitative agreement between our
model predictions and data from dynamic experiments. This is parti-
cularly remarkable given that our circuit explicitly modulates cellular
growth and is, therefore, expected to have a large impact on the
physiology of the host and the abundance of gene-expression
resources. We hope that the simplicity of our modeling approach
and the fact that host-circuit interactions are introduced without the
need for extra parameters, will make our framework appealing to the
community. Even though quantitative predictionsmight not always be
attainable, our framework could provide a quick and easy way of
testing whether the qualitative behavior of a circuit is expected to
change when introduced into the complex context of an E. coli host.

In achieving our aim of dynamic compositional control in bacterial
co-cultures, we also highlight the potential of lab automation efforts by
devising evotron, a generic framework for fully automated, high-
throughput continuous cell culture, sampling, and light stimulation.We
enhanced the scope of the versatile eVOLVER platform53 by introducing
an optogenetic stimulation functionality and by improving the on-
board cell density measurement. At the same time, we also expanded
the adaptable accessories for the widely used Opentrons OT-2 lab
automation robot to facilitate automated high-frequency sampling
from cell culture platforms directly placed on its deck. We believe that
our modular, automated framework can be easily adapted and
employed for other types of studies, reducing the barrier in achieving
lab automation by relying on minimal and readily available resources.
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Recent years have witnessed an ever-increasing interest in
studying the dynamics and interactions within microbial communities
in the natural world, as well as in reaping the advantages of microbial
consortia for industrial purposes. However, many studies and pro-
posed applications are still hindered by the inability to stabilize co-
cultures of microorganisms growing at different rates. Our study
serves as a proof of principle that external feedback strategies can be a
valuable tool in this context, providing accurate control over both the
dynamics and the precise composition of a simple co-culture.We hope
that our approachwill enable applications that unlock the full potential
of synthetic biology for implementing complex programs in hetero-
geneous communities.

Methods
Growth conditions
All experiments were performed in LB supplemented with 0.1% Tween
20. Tween 20was added to experimentmedia to reduce the amount of
biofilm formation on the glass vials of the eVOLVER and also to over-
night and pre-cultures for consistency. Antibiotics (Sigma-Aldrich
Chemie GmbH) were used at the following concentrations: spectino-
mycin, 50μg/mL; ampicillin, 100μg/mL; chloramphenicol, 3.4 μg/mL.
Overnight cultures contained only ampicillin and spectinomycin.
Media used for pre-cultures and evotron experiments also contained
chloramphenicol.

For overnight and experiment pre-cultures, cells were grown in
5ml of media in 14ml transparent polypropylene tubes (Greiner) at
37 °C in an environmental shaker (Excella E24, New Brunswick) set to
230 rpm. In the eVOLVER, cells were grown in 20ml LB with medium
stirring (eVOLVER level 8) and temperature control set to 37 °C. Tur-
bidostat regulation was set to keep the cultures at optical densities
(OD600) between 0.10 and 0.15, regularly switching the OD setpoint
between the upper and lower limits in order to obtain periodic seg-
ments of increasing OD from which to determine the growth rate of
the culture.

After the Opentrons OT-2 robot was set up with eVOLVER repla-
cing its deck, it was covered with black foil and tape to shield the
cultures from ambient light. We observed sudden growth defects after
~10–15 h, which we attribute to a drop in oxygen levels within the
Opentrons chamber in which the turbidostat cultures are located
(Supplementary Fig. 14). This was confirmed by the fact that normal
growth was restored after adding an external supply of pressurized air
to the interior of theOpentrons (Supplementary Fig. 15). The air supply
was kept running at 4bar during turbidostat experiments.

In addition, in spite of the supplemented detergent, we observed
biofilm accumulation on the glass vials of the eVOLVER over time. This
process occurred irrespective of the illumination conditions and after
8–12 h began interfering with the OD sensor readings, leading to a
spurious increase in the estimated growth rate. To prevent this from
happening, we manually transfer cultures to fresh, pre-warmed vials
every 6–7 hours, including clean stir bars. Exchanging vials with this
frequency prevented biofilm accumulation while having no noticeable
effect on cell growth.

Strains and plasmids
We used E. coli strain BW25113 as host for the plasmids of the con-
stitutive strains. For the photophilic strain, a constitutive mVenus
cassette was additionally inserted into the chromosome of BW25113 to
make the strain yellowfluorescent (BW25113 attB::venus). λ-integration
plasmid pSKA637 was constructed via isothermal assembly72 with an
mVenus sequence amplified from pZS2-12373 using oligos oSKA826
(GAGAAATCAAATTAAGGAGGTAAGATAATGAGCAAAGGTGAAGAAC)/
oSKA827 (GTTTTTTGCGCTCTAGTATCATTATTTATACAGTTCGTCCA-
TACCG) and the lambda burden monitor23 backbone amplified using
oligos oSKA822 (CATTATCTTACCTCCTTAATTTGATTTCTC)/oSK
A823 (TAATGATACTAGAGCGCAAAAAAC) and cloned into C

C118(λpir)74. The resulting plasmid pSKA637 is a Venus YFP version of
the original sfGFP lambda burden monitor. pSKA637 was integrated
into the chromosome of BW25113 at the attB site using λ-integrase
plasmid pInt-ts as described in ref. 75. The resulting strain, SKA1515
(BW25113 attB::venus), was sequence-verified and is kanamycin-
resistant.

All plasmids were constructed from a custom-made library of
parts with optimized overhangs76 using standard Golden-Gate assem-
bly methods and modular cloning (MoClo)77 with restriction enzymes
BsaI and BbsI (New England Biolabs). To make the photophilic strain
(bJAG132), plasmids pAB276 (pSC101, AmpR, Opto-T7) and mJAG063
(p15A, SpecR, CAT gene under control of a T7 promoter), were trans-
formed into SKA1515. pAB276 was derived from pAB15051 by exchan-
ging the original chloramphenicol resistancemarker with an ampicillin
resistance marker. To build mJAG063, we modularly combined parts
containing the consensus sequence of the T7 promoter, the original
5’UTR from pAB05051, the CAT coding sequence fused C-terminally
(short linker: GGGSGGGS) to an mCherry sequence truncated at its
N-terminus by 10 amino acids and the strong synthetic terminator
L3S2P2178 to build a transcriptional unit in a p15A backbone with a
spectinomycin resistance marker.

To build the constitutive strains, plasmidmJAG090 (colE1, AmpR,
constitutive mCherry cassette) was transformed into BW25113 to
obtain the ampicilin-resistant strain bJAG234. This strain was the basis
for all constitutive strains. To obtain different levels of constitutive
growth, several plasmids (pSC101) were cloned, which express CAT at
different levels due to different ribosome-binding sequences and the
presence or absence of a degradation tag. These plasmids were
transformed into bJAG234 to obtain the constitutive strains used in
this study. See Supplementary Table 2 for an overview of the strains
and plasmids used in this study.

The sequences for the plasmids used in this study are available in
Supplementary Text Section 3.

Experimental details
Characterization and co-culture experiments were performed in the
following way. Overnight cultures were inoculated from glycerol
freeze stocks in 5ml LB supplemented with ampicillin, spectinomycin,
and 0.1% Tween 20 (without chloramphenicol). The following day, the
cultures were diluted into fresh experiment media (with chlor-
amphenicol) to start a pre-culture at around0.03ODand incubated for
around 2:30 h at 37 °C with shaking in an environmental shaker with
transparent lid, i.e. exposed to ambient light. In the case of co-culture
experiments, the cultures were mixed at this point to obtain the
desired initial strain ratios. After this, the cultureswerediluted in 20ml
of experiment media in the eVOLVER glass vials to a starting OD of
0.075 and transferred to the evotron platform to start the automated
experimental pipelines. The maximal light intensity used in this study
was 800 arb. units, which did not result in any appreciable toxicity on
cell growth (Supplementary Fig. 16). Experiments were carried out in
biological triplicates, either on different days or from separate inde-
pendent cultures on the same day unless explicitly stated. Light levels
throughout this paper are given in arbitrary units of digital intensity
levels (arb. units). For a conversion of these digital-level arbitrary units
to the power of the LED light measured at the center of an eVOLVER
sleeve, see Supplementary Fig. 17.

Flow cytometry
In our experiments, fluorescence measurements were performed on a
Cytoflex S (Beckman Coulter) flow-cytometer running on CytExpert
v2.4 software integrated with our evotron framework. mVenus was
measured with a 488-nm laser and 525/40 bandpass filter, and
mCherry was measured with 561-nm laser and 610/20 bandpass filter.
The gain settingswere as follows: forward scatter 100, side scatter 100,
GFP 500, PE 145, mCherry 500. Gating of flow-cytometry events was
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performed as follows. Both in automated closed-loop experiments and
in the custom python scripts used for analysis of the data from char-
acterization experiments, first a polygon gate was applied on the FCS-
H vs. SSC-H channels to select for living cells (P2). P2 was then further
gated in theSSC-Width vs. FSC-Hchannels to select for single cells (P4).
In co-culture experiments, the P4 population was further separated
into two subpopulations (corresponding to the photophilic and con-
stitutive strains) by applying a fixed threshold gate on the GFP-A
channel (Threshold = 6500) (Supplementary Fig. 18).

evotron platform construction and preparation
Details related to the assembly and construction of the evotron fra-
mework are mentioned in Supplementary Text Section 1. Different
components used in the framework are as follows:
1. eVOLVER platform53 version 2.0 (Fynch Bio) with modified

sleeves (Fig. 3a).
2. OT-2 Robot (Opentrons); Server version: 4.3.1; Firmware Version:

v1.1.0-25e5cea; Protocol API version: 2.0.
3. Arduino Mega 2560 and USB to TTL serial cable (TTL-232R-5V).
4. Peristaltic pump (HyperCyt, Intellicyt Corporation).
5. Standard stainless steel non-coated tip (Ref 30032172, Tecan) as

sampling-needle.
6. Silicone tubing 1.5mm ID× 3.00mm OD.

A custom-developed OT-2 calibration routine was performed
every 3months to determine the location of different eVOLVER sleeves
and cleaning solution bottles on the OT-2 deck. These location data
were then entered into the main protocol code running on the OT-2.

evotron software development
The primary software routine for the control computer was developed
and executed on aMATLABR2021a framework. Cytoflexmeasurement
acquisition code was custom developed in the .NET framework 4.5.2
environment using Microsoft Visual Studio 2017 IDE. The main pro-
tocol code running on the OT-2 was written and executed in Python
v3.7.1. The controller code running on Arduino mega 2560, and LED
stimulation control code running on Arduino SAMD21 (UC2 Arduino:
Supplementary Fig. 19b) were developed, compiled and uploaded
using Arduino IDE v1.8.12. OD regulation, growth rate calculation, and
custom-developed LED stimulation-intensity control code for the
eVOLVER platform were run on Python v3.6.8.

Host-aware modeling, simulations, and optimization of PID
controller gains
Details on our host-aware modeling framework and its application to
model the photophilic strain, as well as the parameter values used for
simulations are provided in Supplementary Text Section 2 and Sup-
plementary Table 1 respectively.

Simulations of the photophilic strain and co-culture dynamics, as
well as the optimization of the PID gains were carried out using custom
MATLAB R2019b (Mathworks) scripts. Our implementation of PID
control includes an anti-windup scheme that relies on the back-
calculationmethod55, which can be tuned via a fourth gain (Kbc) that we
optimized alongside the gains of the proportional, integral, and deri-
vative components. Thefinal gains used in our closed-loop experiments
are: Kp= 5.9055 × 10

3, Ki= 3.0382, Kd = 2.3427 × 10
5, Kbc = 0.01 ×Ki.

ODEs were integrated using MATLAB’s stiff solvers ode15s and
ode23s. The optimal value of the nutritional capacity ν, which
describes the quality of our LB media with supplemented detergent
and antibiotics,was determinedmanually so that the predicted growth
rate of the strain in the absence of chloramphenicol matches experi-
mental observations (Supplementary Fig. 16). The remaining para-
meters for the model of the photophilic strain were either taken from
the literature or determined by fitting the model simultaneously to

dynamic growth and gene expression data from three up- or downshift
experiments using the MATLAB’s non-linear least-squares solver
lsqnonlin. In these experiments, the cultures have been exposed to
ambient light previous to the start of the automated experiment.
Therefore they all start at a similar growth rate, before adapting to the
light condition in the first part of the up- or downshift experiment
(Fig. 4d).Wemodel this by introducing a separate parameter, L0, which
describes the blue-light level that would correspond to ambient light
exposure. We begin by modeling the pre-culture phase of the experi-
ment, i.e. we consider the photophilic strain subject to a constant light
intensity and determine the value of L0 as the light intensity that
recovers the growth rate observed at the start of the evotron experi-
ment. Afterwards, we keep L0 fixed and determine the rest of the
parameters by fitting the up- or downshift experiments through
simulations that contain three phases: a pre-culture phase until equi-
libriumwith a constant light input (L0); a shift to the first light intensity
of the experiment, which lasts six hours; a second shift to the second
light intensity for the remainder of the experiment. Therefore, our up-
and downshift experiments effectively contain two phases of transient
dynamics, the adaptation from ambient light (L0) to the light levels of
the first phase of the experiment (t < 6 h) and the adaptation phase
after the light shift (t > 6 h).

TheMATLAB scripts used to run the simulations presented in this
paper are available in the Supplementary Software file.

Data analysis and visualization
Data obtained from evotron experiments were analyzed and plotted
using custom python orMATLAB (Mathworks) scripts. Plots were then
formatted and brought together to form the paper figures using
Inkscape (v0.92, open source). Cartoons and schematics were also
made using Inkscape.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data needed to evaluate the conclusions in the paper arepresent in the
paper and/or the Supplementary Materials. Source data are provided
with this paper.

Code availability
All evotron related software codes and routines are available in GitHub
repository: https://github.com/santkumar/evotron.git (Zenodo DOI
10.5281/zenodo.6908131). The MATLAB scripts used to run the simu-
lations presented in this paper are available in the Supplementary
Software file.
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