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Visual evoked feedforward–feedback
traveling waves organize neural activity
across the cortical hierarchy in mice

Adeeti Aggarwal1,2, Connor Brennan1,2, Jennifer Luo3, Helen Chung4,
Diego Contreras1, Max B. Kelz2 & Alex Proekt 2

Sensory processing is distributed among many brain regions that interact via
feedforward and feedback signaling. Neuronal oscillations have been shown to
mediate intercortical feedforward and feedback interactions. Yet, the macro-
scopic structure of the multitude of such oscillations remains unclear. Here,
we show that simple visual stimuli reliably evoke two traveling waves with
spatial wavelengths that cover much of the cerebral hemisphere in awake
mice. 30-50Hz feedforward waves arise in primary visual cortex (V1) and
propagate rostrally, while 3-6 Hz feedback waves originate in the association
cortex and flow caudally. The phase of the feedback wave modulates the
amplitude of the feedforward wave and synchronizes firing between V1 and
parietal cortex. Altogether, these results provide direct experimental evidence
that visual evoked traveling waves percolate through the cerebral cortex and
coordinate neuronal activity across broadly distributed networks mediating
visual processing.

Feedforward and feedback signaling contribute to the hierarchical
processing of sensory stimuli, creating predictions and attaching
behavioral context to the sensory world1–7. Feedforward processing
involves bottom-up assembly of abstract stimulus representations in
higher-order areas from simple receptive fields in the primary
cortex7,8. Feedback processing, in contrast, involves top-down influ-
ences such as attention, prediction, and context7,8. Formulating
predictions about the next sensory stimulus or deciding which sti-
mulus to pay attention to requires temporal integration1,9–11. Thus, it
is thought that feedback modulation evolves on a slower time scale
relative to feedforward processing1,2,12.

Feedforward–feedback interactions between the different cor-
tical regions involved in sensory processing must be coordinated to
give rise to integrated percepts situated in the behavioral context. The
role of neuronal oscillations in coordinating neuronal activity has been
a subject of intense investigation, especially in primate vision. By
analyzing individual pairwise interactions between neural oscillations
present at different areas of the primate cortex, many prominent

studies have shown that feedforward processing involves gamma
oscillations, whereas feedback signaling uses alpha (8–12 Hz)
oscillations1,2,4,13,14. Thus, consistent with their presumed behavioral
roles, feedback signaling utilizes slower temporal oscillations com-
pared to feedforward channels.

Pairwise interactions between oscillations in different cortical
sites during processing of sensory stimuli raise several fundamental
questions. Do pairwise feedforward and feedback interactions give rise
to a single coherent assembly that coordinates activity among the
different cortical regions involved in processing sensory stimuli? How
does the brain coordinate the feedforward and feedback processing
given the significant differences in timescales? One possibility for a
neurophysiological process that could coordinate activity amongst
multiple regions in the processing hierarchy is a spatiotemporal tra-
veling wave. Early EEG work identified traveling waves in the feedfor-
ward and feedback directions15–19. However, due to the low spatial
resolution of the EEG, the interpretation of these findings is unclear.
Indeed, traveling waves recorded directly from the cortical surface
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have different speeds and propagation patterns compared to their EEG
counterparts20–23. Both spontaneous and stimulus-evoked traveling
wave-like phenomena have been identified using voltage sensitive dyes
and neurophysiological recordings from brain parenchyma in the
primary and higher-order visual areas24–34. Most studies in this line of
work, however, focused on a single cortical area rather than inter-area
communication. Some studies attempted to identify spatiotemporal
waves that span multiple cortical sites and concluded that sensory
stimuli trigger two independent cortical waves, which travel along the
horizontal fiber network in each site25,27. Other studies identified a
reflective boundary between the primary and the secondary visual
cortex24. Thus, while a single spatiotemporal wave of activity offers an
attractive possibility for coordinating cortical activity, the existence of
stimulus-evoked traveling waves with sufficient spatial scale to span
the cortical hierarchy has never been directly demonstrated. Further-
more, the relationship between feedforward–feedback processing of
sensory stimuli and the traveling waves evoked by them in the cortex
has not been clarified.

We deploy a combination of high-density neurophysiological
recordings and analytic techniques to identify large-scale spatio-
temporal patterns of neuronal activity evoked by a single presenta-
tion of a simple, supra-threshold visual stimulus. By focusing our
analyses on global activity patterns, rather than pairwise interac-
tions, we show that both the feedforward and feedback aspects of
visual-evoked activity form traveling waves that percolate through
much of the cortex in awake mice. Feedforward waves have a fast
(30–50Hz) temporal frequency and propagate from V1 rostrally.
Feedback waves are characterized by a slow (3–6Hz) oscillation,
thought to be a rodent analog of the primate alpha oscillation. These
feedback waves propagate caudally from association cortices
towards V1. The phase of the feedback wave modulates the ampli-
tude of the feedforward wave, thereby forming a single multiplexed
visual-evoked spatiotemporal response. Finally, we demonstrate that
the feedback wave entrains firing of individual neurons in both V1
and in parietal association cortex. As a consequence, following sti-
mulus presentation, previously uncorrelated firing in V1 and parietal
cortex phase lock their firing in relation to the stimulus to form a
transient neuronal assembly. Thus, we provide direct evidence that
feedforward–feedback interactions organize into large-scale travel-
ing waves evoked by simple visual stimuli. These waves serve as a
scaffold that coordinates neural firing across distant cortical areas.

Results
Our primary goal is to experimentally define salient spatiotemporal
signatures of responses to simple visual stimuli. To accomplish this, we
performed high-density in vivo electrophysiological recordings in
awake head fixed mice (n = 13) (Methods for verification of wakeful
states, Supplementary Fig. 1, Supplementary Movie 1). Local field
potentials (LFPs) were recorded from the dural surface using a 64
channel electrocorticography (ECoG) grid placed over the left hemi-
sphere (Fig. 1a). Two 32 channel laminar probes were also inserted
perpendicular to the cortical surface targeting the primary visual
cortex (V1) and the posterior parietal area (PPA). Histological and
neurophysiological (Methods) localizations of the laminarprobeswere
used to triangulate the stereotaxic locations of the individual ECoG
electrodes. The ECoGgrid covered a significant fraction of the cerebral
hemisphere including visual, association, retrosplenial, somatosen-
sory, and motor/frontal areas (Fig. 1b).

Simple, brief visual stimuli evoke widespread time-locked
coherent oscillations at both high (30–50Hz) and low (3–6Hz)
frequencies
As in previous work35–38, the visual-evoked potential (VEP) in V1
(Methods) varies from trial-to-trial. Nevertheless, early fast oscillations
(30–50Hz) followed by longer lasting slow oscillations (3–6Hz) are

reliably identified (Fig. 1c, e, Supplementary Fig. 2). To make sure
that our specific choice of filtering approach (wavelets) does not
distort the data, we compared the results obtained with the wavelet-
based filtering to those obtained with the conventional Butterworth
filter (Supplementary Fig. 3). Analysis of the intertrial phase coher-
ence (ITPC) confirms that these two oscillations are consistently
phase locked to the stimulus (Stouffer’s p values < 0.00001 com-
pared to time shuffled data) (Fig. 1d, f). ITPC computed over the first
100ms after the stimulus reveals two peaks centered at 3–6Hz and
30–50Hz. The 3–6Hz oscillation remains coherent for 500ms after
the stimulus. Because of time-frequency uncertainty, wavelet-
derived ITPC (Fig. 1d, f) exhibits an artifactual increase in coher-
ence prior to the stimulus. This artifact is eliminated when ITPC is
estimated in non-overlapping temporal windows (Supplementary
Fig. 4). Because these two oscillations (fast, 30–50Hz and slow,
3–6Hz) are reliably phase locked to the stimulus in all mice, we focus
our subsequent analyses on these oscillations.

Phase locking of fast and slow oscillations to the stimulus is not
limited to V1. Both fast and slow oscillations are phase locked to the
stimulus across much of the cortical surface (Fig. 1g, h, respectively).
Phase locking to the stimulus over large areas of the cortical surface
strongly suggests that oscillations recorded at different sites are
interdependent. Consistent with this suggestion, LFPs filtered at fast
and slow frequencies in V1 and PPA exhibit phase coupling (Fig. 1i, j).
Interestingly, oscillations at both temporal frequencies have a non-
zero phase lag between V1 and PPA, as shown in Fig. 1k–l. This raises
the possibility that the stimulus evokes spatiotemporal waves that
percolate across the cortex. The spatial characteristics of this wave,
however, are not readily apparent from just observing pairwise phase
relationships. Thus, we examined the spatial characteristics of the
visual-evoked oscillations that are simultaneously recorded across
multiple locations on the cortical surface. Trial average LFP filtered at
fast and slow frequencies along the anterior-posterior (AP) axis
recorded in a single representative mouse are shown in Fig. 2a Sup-
plementary Movies 3, 2b respectively, (see Supplementary Movies 2,
3 for propagation of visual-evoked fast and slow waves, respectively,
over the cortical surface). Oscillations observed at each electrode are
consistently phase shifted in relation to oscillations at neighboring
electrodes. Thus, the overall ensemble activity profile resembles
traveling waves at both frequency bands. Remarkably, the fast wave
is initiated in the visual cortex and propagates anteriorly, while the
slow oscillation initiates rostral to V1 and spreads in the opposite
direction (Fig. 2c, SupplementaryMovie 4). Note that traveling waves
that propagate through uniform media have a uniform spatial phase
gradient at all locations. Consequently, the phase offset ought to
grow linearly with distance. This is approximately true of signals over
short distances in Fig. 2. In contrast, over long distances a clear
nonlinear relationship between phase offset and distance is seen.
This nonlinear relationship implies that the propagation of these
wave-like patterns is likely to depend on the specifics of network
architecture.

Coherent spatiotemporal waves are detected using com-
plex SVD
While data in Fig. 2 strongly suggest a propagating wave-like phe-
nomenon, the interpretation of these data is somewhat limited.
First, the LFP is a complex mixture of spontaneous and evoked
activity39,40. Second, trial averaging may obscure single trial beha-
vior. Thus, to provide additional evidence that simple visual stimuli
elicit traveling wave-like phenomena, we applied a methodology to
separate spontaneous from evoked activity and to characterize
spatiotemporal features of evoked activity on a single trial level. For
this purpose, we utilized singular value decomposition (SVD) of the
complex-valued analytical signals derived from bandpass
filtered LFPs.
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Singular value decomposition (SVD) factorizes a spatiotemporal
matrix into mutually orthogonal spatiotemporal modes:

A = USVT,

whereA is an nby tmatrix that containsn channels of analytical signals
sampled at t timepoints,U is annbyn complex-valued spatialmatrix in
which each column encodes the phase and amplitude of a singlemode
at each channel, V is a t by t complex-valued temporal matrix in which
each row encodes the instantaneous phase and amplitude of each
mode at each timepoint, and T represents transposition. Finally, S is an
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n by t diagonal real-valued matrix which encodes the fraction of the
total signal contained in each mode.

The advantage of performing SVD on the complex-valued analy-
tical signal is that projecting the data onto the complexplane linearizes
phase relationships between channels. In contrast, phase-shifted real-
valued oscillations across channels would exhibit correlations at dif-
ferent time lags and are therefore not easily factorizable using SVD or
similar dimensionality reduction techniques.We highlight the utility of
complex SVD with synthetic data in Supplementary Fig. 5.

Here, we performed SVD on the analytical signal of single trials
filtered at fast and slow frequencies. 72% of variance of single trial VEPs
was captured by the first ten singular modes (95% Confidence
Interval= 62–81%).We then defined themost visually responsivemode
for each trial as the mode in which the post-stimulus temporal
amplitude increases the most compared to pre-stimulus amplitude
(Supplementary Fig. 6). The most visually responsive mode was most
often associated with the largest singular value and thus contained the
highest amount of signal variance. The results of the analysis are

Fig. 1 | Visual stimuli elicit strong intertrial phase coherence over large cortical
areas. a Schematic showing the 64 channel electrocorticography (ECoG) grid used
to record local field potentials (LFPs) from the cortical surface of the left hemi-
sphere of 13 awakemice. Stimuli consisted of 10ms flashes of a green LED placed in
front of the R eye (100 trials, intertrial interval 3–4 s). Created with Biorender.com.
b Stereotaxic coordinates of ECoG electrodes from 13 animals (color coded by
animal). V1 and PPA targets for laminar probes are shown by red and blue diamond
respectively. The white circle marks bregma. The cortical surface is shaded by area
according to the brain regions represented in the 3D Brain Explorer of the Allen
Brain Atlas88,90,91: visual (orange), association (red), retrosplenial (yellow), somato-
sensory (green), motor/frontal (blue), and cerebellum (gray). c Single trials, aver-
age, and standarddeviation of visual-evokedpotentials (VEPs) over V1 are indicated
by gray, solid red, and dashed red lines respectively. Stimulus onset is denoted by
the green line. d Intertrial phase coherence (ITPC) computed at V1 and averaged
over single trials and animals (0ms marks stimulus onset). e Single trials, average,
and standarddeviation of visual-evokedpotentials (VEPs) over PPA are indicated by

gray, solid blue, and dashed blue lines respectively. Stimulus onset is denoted by
the green line. f Intertrial phase coherence (ITPC) computed at PPA and averaged
over single trials and animals (0ms marks stimulus onset). g Average ITPC of
30–50Hz oscillations within the first 100ms of the VEP averaged over animals at
each stereotaxic location. Locations in which ITPC does not meet Bonferroni cor-
rected statistical significance compared to time shuffled surrogate data are shaded
in gray.h Similar to E for average ITPCof 3–6Hzactivitywithin thefirst over800ms
of the VEP. i Top: VEPs recorded over V1 and filtered at fast (30–50Hz) oscillations
(gray and red show single trials and trial average respectively). Bottom: Same data
recorded from over PPA (gray and blue show single trials and trial average). Green
line shows stimulus onset. Dashed lines highlight the phase offset between V1 and
PPA. j Similar to G except the signals are filtered at 3–6Hz. Slower (3–6Hz) oscil-
lations also show a phase shift between V1 and the PPA. k Histogram of phase
differences between V1 and PPA computed for 30–50Hz oscillations. l Same as in
k but computed for 3–6Hz oscillations. *Data in c, e, i, j, k, l are from a single
representative mouse.
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Fig. 2 | Average filtered LFP illustrate travelingwave-like behavior. aAverage of
the VEP filtered at 30–50Hz from 10 electrodes along the anterior to posterior axis
(−2.25mmML) in a representative mouse. The x axis denotes time relative to sti-
mulus onset, the y axis indicates AP position of an electrode relative to bregma.
Note evoked high frequency waves starting at −4.05mm from bregma (V1) and
traveling anteriorly over ~100ms. b Average of the VEP filtered at 3–6Hz from the

samemouse arranged in the same format atb. Note the low frequencywaves begin
more anteriorly (~2mm from bregma) relative to the fast oscillations and travel in
the posterior direction. c Superimposition of the data in a, b (amplitude of the
signals is normalized to highlight phase relationships between oscillations at dif-
ferent temporal frequencies). The fast wave begins posterior to the slow wave and
travels rostrally towards the slow wave initiation zone.
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robust to the changes in the total number ofmodes considered for the
analysis.

Visual-evoked waves have a consistent phase relationship from
trial to trial and across animals
The spatial phases of the most visually responsive mode from each
single trial were aggregated across trials andmice (Methods). The phase
difference between visual-evoked fast waves in two locations in V1
(black and red diamonds in Fig. 3c, d) reveals a consistent phase offset
across trials and mice (Fig. 3a). As the distance from the V1 electrode is
increased, the phase difference between the oscillations grows con-
comitantly (Fig. 3b). Consistent with the average LFP data (Fig. 2), a
progressive increase in phase offset with distance suggests that the
activity evoked by the visual stimulus on a single trial level has char-
acteristics resembling a traveling wave. Furthermore, the tight phase
offset distribution implies that the spatial properties of these evoked
waves are highly consistent from trial to trial and between animals.

The spatial phase of the most visually responsive mode averaged
across trials and animals is shown in Fig. 3c, d for the fast and slow
oscillations, respectively. This confirmed that throughout most of the
cortical surface, the phase relationship between evoked fast and slow
oscillations is consistently observed from trial to trial and among
animals. Consistent with the example observed in the average filtered
signal (Fig. 2), the phase gradient for fast and slow oscillations evolves
in approximately opposite directions. Thus, a brief visual stimulus
elicits both fast and slow spatiotemporal activity patterns that
resemble traveling waves and percolate over the cortical surface for

hundreds ofmilliseconds. The fastwavepropagates in the feedforward
direction from the visual cortex towards higher-order cortical areas.
The slow wave propagates in the feedback direction from the higher-
order cortices back towards the primary visual cortex. Given the
initiation zones and directions of propagation, we will refer to the fast
visual-evoked wave as “feedforward” and the slow visual-evoked wave
as “feedback.” These results are robust to changes in filtering strategy
(Supplementary Fig. 7).

Similar feedforward and feedback propagating waves were
observed for weaker visual stimuli (Methods). For weaker stimuli, the
propagation of the fast visual-evoked waves was predominantly limited
to V1 and was not affected by the stimulus intensity. In contrast, the
spatial extent of the feedback slow visual-evoked wave strongly depen-
ded on stimulus intensity. For lowest luminance stimulus, the feedback
slowwavewas principally observed in V1. However, for higher luminance
stimuli, the feedback traveling slow wave involved much of the cortex
(Supplementary Fig. 8). Thus, the spatial extent of the feedback wave
tracks stimulus intensity, in a manner that mirrors psychophysics41,42. A
qualitatively similar pattern for the feedforward and the feedback wave
was observed after presenting static full contrast spatial gratings at two
different orientations (Supplementary Fig. 9).

High and low frequency waves are present throughout the cor-
tical layers in V1 but are constrained to the superficial layers of
the posterior parietal cortex
To identify the circuits mediating the visual-evoked waves, we com-
puted current source density (CSD) from the two laminar probes
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location depicted as in d.
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targeting V1 and PPA (Fig. 4a, b, f). In V1, we identified a canonical CSD
pattern. The first sink occurs in the granular layer. Subsequently,
alternating sink and source patterns occur throughout the cortical
column, revealing communication among the cortical layers (Fig. 4c).
Less is known about the neurophysiological responses of the PPA to
visual stimuli. We find the first sink at 0.15mm below the cortical
surface, which appears at a longer latency than in V1. Moreover, the
majority of the CSD signal in the PPA is confined to the superficial
layers (Fig. 4g).

Frequency domain analysis reveals strong ITPC for the fast fre-
quency at all cortical layers in the first 100ms following the stimulus in
V1. A similar pattern is observed for the slow oscillation for ~500ms
after the stimulus (Supplementary Fig. 10a, c). Within the PPA, in
contrast, most of the ITPC at both high and low frequencies is con-
centrated in the superficial cortical layers (Supplementary Fig. 10b, d).
Qualitatively similar laminar profiles of ITPC at both fast and slow
frequencies in V1 and PPA were observed after weaker stimuli (Sup-
plementary Figs. 11, 12). The ITPC in both frequency bands increases
with stimulus intensity.

To determine the laminar organization of fast and slow waves, we
averaged the filtered CSD data at each depth within each mouse.
Consistent with other work on visual-evoked gamma oscillations in V1,
the fast waves originate in layer 4 in V1 and propagate to supra- and
infragranular layers (Fig. 4d), indicating a critical role of thalamocor-
tical circuitry in the initiation of the visual-evoked gamma
oscillations43,44. In contrast, in the PPA, visual-evoked fast oscillations
are predominantly seen in the superficial layers (Fig. 4h). The visual-
evoked slow oscillations originate in the superficial layers in both V1
and PPA (Fig. 4e, i). These observations imply that the fast visual-
evoked waves are initiated through the interactions between the tha-
lamus and the input layer 4 of V1 and subsequently propagate through
the cortico-cortical circuitry involving supra- and infra- granular layers
in the feedforward direction toward higher-order cortices45–50. In
contrast, the slow visual-evoked wave predominantly propagates in
the ventral direction through the cortical column, supporting the
conclusion that it is primarily mediated by the feedback cortico-
cortical interactions.

Both fast and slow visual-evoked waves have large spatial
wavelengths
It is commonly thought that waves with higher frequency tend to be
localized in space, whereas slow temporal frequency waves involve
large areas of the cortex51. In contrast to these observations, we show
that both the fast and the slow oscillations involve much of the cere-
bral hemisphere for supra-threshold stimuli. Further, examination of
the recordings in Fig. 2a, b suggests that despite their difference in
temporal frequency, the spatial wavelengths of both waves are similar.
We confirm this observation and estimate the most common spatial
wavelengths of the fast and slow waves to be 12.7mm/cycle and
12.5mm/cycle, respectively (Fig. 5a). These spatial wavelengths are on
or above the scale of a mouse cerebral hemisphere52. Because of the
nonlinear dependence of phase offset on distance (Fig. 2) each tra-
veling wave does not have a well-defined single spatial wavelength.
Nevertheless, local estimates of spatial wavelengths can be obtained
from the spatial phase gradient (Fig. 3c, d) at each cortical site (Sup-
plementary Fig. 13a, b). Thus, while visual-evoked fast and slow waves
are distinct from canonical traveling waves in uniformmedium and do
not have a single spatial wavelength, the spectra of spatial wavelengths
for the fast and slow oscillations are comparable. The propagation
velocity of the fast oscillations, consequently, is approximately
an order of magnitude faster than the slow oscillation (medianfast =
0.8m/s, IQRfast = 0.5–1.58m/s, and medianslow = 0.11m/s, IQRslow =
0.07–0.20m/s, for the slowand the fastwaves respectively). This again
is consistent with data in Fig. 2. The differences in the propagation
velocities suggest that the fast and slow visual-evoked waves are
mediated by different circuit mechanisms.

Fast and slow oscillations comprise a single multiplexed visual-
evoked spatiotemporal response
Until this point, we have treated the high and low frequency visual-
evoked waves as independent entities. Furthermore, we only con-
sidered the waves observed in the immediate aftermath of the stimu-
lus. However, analysis of single trials in V1 reveals rhythmicwaxing and
waning of the amplitude of fast oscillations aligned to the phase of the
slow oscillation (Fig. 6a). Similar phase-amplitude coupling is also
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observed in the PPA (Fig. 6b); although the amplitude of fast oscilla-
tions peaks at different phases of the slow oscillation. Indeed, sig-
nificant phase-amplitude modulation is present throughout the
cortical surface (Fig. 6c) and peaks ~500ms after the stimulus (Sup-
plementary Fig. 14). Moreover, the phase relationship varies system-
atically with cortical location (Fig. 6d). Thus, the fast and slow waves
are not independent phenomena, but instead are different aspects of
the same integrated spatiotemporal activity pattern, which is reliably
evoked by the visual stimulus.

The phase of slow visual-evoked waves modulates the firing
rates of neurons both in V1 and PPA
Fast oscillations in the gamma range are thought to coincide with
neuronal firing. In contrast slower oscillations are dominated by

synaptic potentials53. The phase-amplitude coupling between the fast
and slow visual-evoked oscillations may therefore suggest that the
slow feedback oscillation modulates neuronal firing. To determine
whether this is indeed the case, we tested whether the slow visual-
evoked waves entrain firing of single units in V1 and PPA. We first
isolated single units throughout the cortical lamina in V1 and PPA (155
in PPA and 186 in V1, Fig. 7a, b for representative neurons in each area,
respectively). Raster plots of these neurons (Fig. 7c, d) show that after
the stimulus the firing of the neurons in both areas is entrained by the
slow visual-evoked oscillation. To quantify this observation, we com-
puted spike-field coherence for each single unit and the CSD filtered at
the slow frequency band from the same lamina. 32 out of 155 units in
PPA and 98 out of 186 units in V1 exhibited significant spike-field
coherence after the stimulus (Fig. 7e, f). Spike-field coherence for the
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same units was significantly smaller before the stimulus (p < 10−5

Mann–Whitney U test). Similar results were obtained for screen flashes
(Supplementary Fig. 15). The fraction of entrained neurons increased
when stimulus intensity crossed psychophysical threshold and
remained approximately constant for all supra-threshold stimuli.
Intersite spike-field coherence betweenV1 andPPA revealed significant
feedforward V1field→PPAspike as well as feedback interactions PPA-

field→V1spike (Supplementary Fig. 16). Thus, visual-evoked slow

oscillations entrain a significant fraction of neurons both in the pri-
mary visual cortex and the association cortex that involve both feed-
forward and feedback interactions. While many single units were
entrained in both cortical areas, the phase of maximum firing was not
the same across different units (Fig. 7e, f). Indeed, the phase of max-
imum firing in each area swept through an entire cycle of the slow
wave. Thus, each visual stimulus evokes a sequence of neuronal acti-
vation in both areas that is orchestrated by the slow oscillation.
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If the visual-evoked waves were responsible for coordinating
neuronal activity across disparate regions in the cortical hierarchy, one
would expect thatneuronalfiringwouldbecome transiently correlated
after stimulus presentation. Consequently, we hypothesized that V1
and PPA neurons that are entrained by the slow wave would become
transiently correlated after the stimulus. As expected, prior to the
stimulus, firing in V1 and PPA was largely uncorrelated (Fig. 7g).
However, after the stimulus, many of these previously independent
neurons became correlated over half of the wave cycle length of the
slowwave (~100ms) (Fig. 7h). Thus, as the feedback slow visual-evoked
wave propagates from the higher-order cortical areas towards the
primary sensory cortex, it entrains a sequenceof neuronal activation in
the PPA and V1. This provides a neurophysiological insight into how
simple sensory stimuli produce coordinated patterns of neuronal
activity that span multiple cortical areas.

Discussion
Here, we show that in awake mice, a brief presentation of a simple
visual stimulus reliably evokes a set of two interacting traveling waves:
a fast feedforward wave, and a slow feedback wave. The spatio-
temporal characteristics of these waves are highly stereotyped across
individual trials and across animals. Fast (30–50Hz) waves begin in
layer 4 of V1 and travel anteriorly in a feedforward manner. Slow
(3–6Hz) waves are initiated in the superficial layers of the higher-order
areas and travel posteriorly in a feedback fashion. These waves
are tightly coupled forming a singlemultiplexed spatiotemporal wave-
like activity pattern observed throughout the cortex. The phase of
the feedback wave modulates the firing of individual neurons both in
the association cortex and in V1. A consequence of this entrainment is
that following stimulus presentation, previously independent neurons
in V1 and PPA form a transient coordinated assembly. In this way, the
feedback and the feedforward aspects of the multiplexed visual-
evoked waves coordinate neuronal activity across distant cortical
regions involved in the processing of visual stimuli.

The role of neuronal oscillations in mediating feedforward and
feedback sensory processing has been predominantly studied by
analyzing pairwise signal covariation. Our chief contribution is that a
set of such pairwise coupled neuronal oscillations together form a
single coherent spatiotemporal pattern that consists of two interacting
waves. Spontaneous and stimulus-evoked traveling waves have been
observed in the EEG15–19. However, the interpretation of the EEG is
hindered by low spatial resolution and volume conduction. Further,
intracranial recordings (ECoG) that suffer from fewer signal distortions
than the EEG, exhibiteddifferent spatiotemporal patterns compared to
those discovered in EEG recordings20–23. Novel experimental imaging
techniques using voltage sensitive dyes (VSDs) reveal mesoscopic
traveling waves that are confined by anatomical boundaries between
cortical regions25,27 or produce complex interference patterns at the
inter-region boundaries24. However,most mesoscopic waves recorded
with VSDs do not take into consideration the temporal frequency of
traveling waves and focus primarily on their spatial propagation
properties20,24–27,31,32,34. Neither VSDs nor ECoG signals faithfully reflect
the full richness of cortical activity. These signals are dominated by the
activity in the superficial cortical layers, conflate synaptic inputs into

the surficial dendrites with their intrinsic biophysical properties, and
reflect activity averaged across distinct neuronal subtypes54. Lastly,
because the spectra of most brain signals are approximately 1/f noise,
the amplitude of high frequency oscillations is orders of magnitude
smaller than that of slower oscillations. Altogether these technical
limitations could have contributed to a comparatively smaller extent
of the fast feedforward wave detected in ECoG with weaker stimuli
(Supplementary Figs. 8, 9). In contrast to the ECoG recordings, direct
laminar recordings in the PPA reveal clear gamma ITPC below the
cortical surface suggesting that feedforward gamma oscillations reach
the PPA. Future work aimed at more complete characterization of
these visual-evoked waves may need to employ a high-density 3D
recording configuration.

By identifying two temporal frequencies that are reliably phase
locked to the stimulus, we deconstruct the overall spatiotemporal
response pattern into two distinct traveling waves that percolate
through the brain in opposite directions. This, in turn, allows us to
experimentally marry pairwise feedforward–feedback interactions
involving different temporal frequencies and traveling cortical waves
into a single, unified framework. Feedforward and feedback aspects of
sensory processing serve fundamentally different roles. Feedforward
processing assembles increasingly abstract representations of sensory
stimuli. Feedback processing, in contrast, situates sensory stimuli
within a behavioral context. Based on these functional differences, one
expects that the neurophysiological processes that mediate feedback
signaling must occur on a slower time scale than those involved in
feedforward interactions. This assertion is consistent with experi-
mental work in primates1,2,4,13,14,55. Many studies demonstrate that the
faster gamma oscillations underlie feedforward processing while the
slower, alpha oscillations, relay feedback processing. This difference in
timescales is confirmed by our experimental observations—the tem-
poral frequency of the feedback wave is approximately ten times
slower than the feedforward wave. While there is a quantitative dif-
ference between the temporal frequency of alpha oscillations in pri-
mates and the 3–6Hz feedback wave in our work, multiple lines of
evidence strongly suggest that the 3–6Hzwave inmice is analogous to
the primate alpha oscillations56–62. Our identification of feedforward
and feedback processes as interacting traveling waves permits an
extension of this postulate. We find that the propagation velocity of
the feedforwardwave is also roughly anorder ofmagnitude faster than
that of the feedback wave. This slower propagation velocity of the
feedback wave may contribute to the integration across multiple
recent sensory stimuli.

Previous work specifically related feedback processing to per-
ceptual modulation by attention and related phenomena. In our work,
in contrast, there was no behavioral task that required or involved
attention. This begs the question: What is the functional role of feed-
back processing in such a simple experimental paradigm?We observe
that the extent of the feedback wave exhibited steplike increase for
supra-threshold stimuli. The fraction of neurons entrained by the
feedback wave was also increased with stimulus intensity in a similar
fashion. Thus, it is tempting to hypothesize that the emergence of the
large feedback wave is a neurophysiological phenomenon related to
perception of the stimulus. Indeed, classic work by Verela et al.

Fig. 7 | Probability of neural spiking in both V1 andPPAdepend on the phase of
the slowwave. a Individual action potential waveforms of a representative PPA unit
located in layer V (gray traces), with the average waveform superimposed in blue.
b Same as a, but for a representative V1 neuron located in infragranular layers (gray
traces), with the average waveform superimposed in red. c Raster plot (top) of 100
trials of PPA unit (green dashed linemarks stimulus onset). The average CSD, filtered
at 3–6Hz, of the LFP at the same depth as the unit in a (middle). The peristimulus
histogram of the same unit (bottom). d Same as c, but for the representative V1 unit
in b. e Probability of firing as a function of phase of the slow oscillation for each unit
in the PPA. Each row is an individual unit in the PPA that has statistically significant

spike-field coherence (SFC) with the slow oscillation. Units above the black hor-
izontal line are in the superficial layers of the PPA. Units below the black horizontal
line are within the deep layers. f Same as e for V1 units with statistically significant
spike-field coherence. The horizontal back lines highlight four sections in which
V1 cells reside, in top-down order: layer II/II, layer IV, layer V, and layer VI. g Cross-
correlograms between PPA and V1 neurons entrained by the slow wave during the
500ms before visual stimulation. Each row is an individual PPA V1 pair, organized by
laminar location of V1 cell and the depth of the PPA neuron from the surface (purple
denotes most superficial to gray denotes deepest layers). Probability of firing is
shown by color. h Same as in g but for 500ms after the stimulus.
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demonstrated that long range synchronization of neuronal oscillations
accompanies sensory perception63. These results are consistent with
the “global workspace” hypothesis which proposes that consciously
perceived stimuli elicit ignition-like nonlinear events that cause infor-
mation about a brief stimulus to become sustained and broadcasted
back through recurrent interactions between many brain areas64,65.
Recent findings from non-human primates identified some neuro-
physiological counterparts of this “ignition” like event as sustained
activity in the prefrontal cortex66. It is possible that the feedback wave
identified in this study provides the scaffold that coordinates the
widely distributed activity patterns that accompany sensory percep-
tion. This exciting conjecture can be tested in the future work by
combining the neurophysiological techniques deployed herein with
behavioral paradigms that probe sensory perception directly.

We refer to the activity patterns evoked by visual stimuli as “tra-
veling waves”. However, it is important to note that these large-scale
spatiotemporal responses differ from simple waves in a uniform
medium. Imagine that a response to a visual stimulus is akin to a
raindrop falling into a still pond. In this highly idealized case, the
raindrop would create a wave radiating outward at uniform speed and
spatial wavelength. This simple scenario is indeed similar to traveling
waves within a single cortical area. Much like waves on the pond, tra-
veling cortical waves typically have tight distributions of propagation
speeds and spatial wavelength24,25,29. Our results are in agreement with
these findings over relatively short spatial scales (Supplementary
Fig. 13). However, over larger scales, the apparent “viscosity” of the
medium changes. There is a clear departure from the linear depen-
dence of the spatial phase gradient on distance. This gives rise to a
broad spectrumof spatialwavelengths andpropagation velocities. The
“viscosity” of the brain is thought to arise from conduction delays
between different neuronal oscillators52. The observation that speed of
wave propagation deviates from a pure traveling wave on large spatial
scales in a systematic fashion suggests therefore that different con-
duction delays are involved on small and large scales. Similar phe-
nomena have been observed in primate prefrontal cortex during
working memory tasks67

It has been hypothesized that the interactions between distinct
neuronal oscillators are mediated by horizontal fibers in superficial
cortical layers. The spatial properties of traveling waves within a single
cortical region are consistent with this hypothesis25,33,68. The propa-
gation speeds of the visual-evoked travelingwaves observedherein are
also in the range of conduction delays of cortico-cortical fibers. Direct
laminar recordings showing preferential involvement of superficial
cortical layers provide additional evidence for this hypothesis. While
on the scale of a single cortical region, wave propagation is likely
predominantly mediated by horizontal cortico-cortical fibers, addi-
tional mechanisms likely contribute to propagation over large spatial
scales. For instance cortico-thalamic and corticobulbar loops con-
tribute significantly to processing of visual stimuli and involve super-
ficial cortical layers45–47,49,50,69–72. We focused specifically on the
interactions between V1 and PPA—an association area thought to par-
ticipate in complex vision guided behaviors73–76 and multisensory
integration77,78. The network that includes V1 and PPA is complex and
incompletely understood. In addition to the direct, spatially hetero-
geneous feedforward projections from V1 to PPA79–81 and feedback
projections from PPA to V1, different components of the PPA are
synaptically connected to each other80,82 and to extrastriate visual
areas69,81. Feedforward projections from V1 to PPA commonly target
layers 2–4, while feedback projections from PPA to V1 preferentially
target L1 and L583. Consistent with this laminar projection pattern, our
intersite spike-field coherence results show that L5 V1 neurons were
more likely to be entrained by the slow oscillation in PPA, while PPA
neurons entrained by slow oscillation in V1 were found in layers 2, 5, 6.
The relatively higher fraction of V1 neurons entrained by the PPA may
indicate that the direct and indirect feedbackprojections from the PPA

to V1 play a dominant role in shaping neuronal firing. The interactions
between V1 and PPA, however, are likely coordinated along multiple
anatomic pathways.

The contribution of multiple anatomical pathways with distinct
conduction velocities together with anisotropic connectivity likely
distort the speed and direction of propagation of traveling waves on
large spatial scales. This conjecture is supported bymodels of coupled
oscillators which suggest that specific patterns of conduction delays
strongly influence the spatial features of the wave-like phenomena84.
These results suggest a refinement to the current mechanistic models
of traveling wave phenomena. Investigation of the relationship
between the underlying anatomyandpropagationproperties of visual-
evoked waves on macroscopic scale may enrich our understanding of
the relationship between neural architecture and the coordination of
neuronal activity across the hierarchy of the visual system.

Our results demonstrate that the visual-evoked waves are attrac-
tive candidates for organizing the feedforward–feedback computa-
tions necessary for sensory processing. Nevertheless, the full
contribution of evoked waves to the processing of visual stimuli is
unclear for several reasons. First, while we note the relationship
between stimulus intensity and extent of the feedbackwave, wedo not
directly address the behavioral significance of visual-evoked traveling
waves. It seems unlikely that the specific features of the waves encode
sensory stimuli in a detailed way as the phase profile of the waves
remained similar for spatial gratings of different orientation (Supple-
mentary Fig. 9) and for full screen flashes (Supplementary Fig. 8). Our
study specifically focused on simple unstructured stimuli to identify
the dominant spatiotemporal patterns of inter-region communication
evoked by them. The waves that we have identified are likely mediated
by volleys of synaptic potentials33, which modulate excitability of
individual neurons. It is likely that the specific features of the stimulus
are encoded by specific subpopulation of neurons that are phase
locked to these waves. Processing of visual stimuli is known to involve
activity of neurons broadly distributed across the visual system. Thus,
while future work should address the relationship between stimulus
features and the specific neuronal populations modulated by the tra-
veling wave, our results show how such distributed neuronal assem-
blies can be coordinated by a wave that percolates across the visual
system.

Traditional theories of sensory processing treat cortical neurons
as independent feature detectors. This theoretical frameworkhasbeen
tremendously successful in predicting responses of individual neurons
to stereotypical visual stimuli presented in isolation. However, models
that treat neurons as independent feature detectors account for just a
small fraction of activity in naturalistic settings85, indicating that spa-
tiotemporal interactions between neurons are critical for effective
visual processing. For instance, laminar recordings inmacaques reveal
that fast feedforward and slow feedback suppressive signaling are
critical for understanding the laminar dynamics of orientation
tuning86. Recently, features of traveling waves have been associated
with prioritization of neuronal responses in the new eye position after
a saccade87, detectingweak sensory stimuli26, and cue detectionduring
working memory tasks67. Our results add to this burgeoning evidence
by showing that simple unstructured stimuli elicit waves of activity
that percolate across space and time in a highly stereotyped fashion
and entrain firing of neurons in distant cortical regions. Thus, instead
of treating individual neurons as quasi–independent feature detectors,
new theories of sensory processing should consider patterns of neu-
ronal activity arising during interactions with a natural world as a
superposition of waves.

Methods
Animals
All experiments in this study were approved by Institutional Animal
Care and Use Committee at the University of Pennsylvania and were
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conducted in accordance with the National Institutes of Health
guidelines. All experiments were performed using 8male and 6 female
adult (12–32weeks old, 20–30 g) C57BL/6mice (Jackson Laboratories).
Mice were housed under a reverse 12:12 h, light: dark cycle, and were
provided with food and water ad libitum. A total of 20 mice were used
in this study. Inclusion criteria for mice included the following: (1)
presence of visual-evoked potentials (as defined by the absolute value
of the average LFP response exceeding 5 standard deviations of pre-
stimulus data within 100ms after stimulus presentation), (2) histolo-
gical verification of depth recording sites. With this inclusion criteria,
we present data from 13 mice.

Headplate implantation and habituation
At least 2 weeks before recording, mice were chronically implanted
with custom designed headpieces for head fixation during awake
recordings using standard methodology. Briefly, mice were anes-
thetized with 2.5% and maintained at 1.5% isoflurane in oxygen, and
secured a stereotaxic frame (Narishige). Local anesthesia (0.25ml
of 0.625mg bupivacaine) and antiseptic (Betadine) were applied.
Periosteumwas exposed and additional local anesthetic (0.25ml of
2% Lidocaine gel) was applied. Bregma and lambda aswell as the site
of the future craniotomy (+1 mm to −5mm AP, +0.25mm to
+6mmML left of bregma) were marked. The exposed skull was
scored and the headpiece was attached using dental cement
(Metabond) and 3 skull screws. Cyanoacrylate adhesive (Loctite
495)was appliedover any remaining exposed skull.Micewere given
0.5 mg cefazolin and0.125 mgmeloxicam, and 7ml of normal saline
SQ after surgery. Animals were left to recover for a week before
starting the habituation protocol. Mice were habituated to head
fixation with body restraint with visual stimuli gradually over the
course of 4 days. By the end of day 4, mice tolerated awake head
fixation and visual stimuli for 45min uninterrupted without any
apparent distress.

Craniotomy
On the day of the experiment, animals were anesthetized with 2.5%
isoflurane in oxygen, and maintained at 1.5% isoflurane with closed
loop temperature control (37 ± 0.5 degrees C) for the remainder of
the surgery. 0.625 mg bupivacaine was injected in the surrounding
face and neck muscles in order to provide scalp anesthesia. Mice
werealsogiven0.5 mgcefazolinand0.125 mgmeloxicam,0.006mg
dexamethasone and 7ml of normal saline SQ, before surgery. Cra-
niotomywasdrilled throughthedentalcementover themarkingson
the left hemisphere (+1 mm to −5 mmAP, +0.25mm to +6mmML of
bregma). One of the securing screws on the right skull bone was
chosen as the reference. A 64-electrode surface grid (E64-500-20-
60, Neuronexus) was positioned over the dura (most medial and
anterior electrode was positioned ~1 mm lateral and 1 mmposterior
to bregma). Two laminar 32 channel probes (H4, Cambridge Neu-
rotech) were coated with DiI (Sigma-Aldrich) for postmortem his-
tological localization. The probes were inserted through the hole in
the ECoG grid closest to V1 (−3.25 AP, −2.25ML) and PPA (−1.5 AP,
−1.5 ML) using a motorized micromanipulator (NewScale Technol-
ogies). Electrodes were inserted 800 µm into the brain at a rate of
25 µm/min. V1 electrode position was verified with current source
density analysis. The grid and exposed dura was then covered with
gel foam soaked in mineral oil. Isoflurane was then turned off for at
least 20min. At the end of this period and prior to recordings, ani-
malswerewhisking,movinglimbsandblinking inamannersimilar to
habituationbeforerecordingsbegan,thussuggestingthattheywere
awake. This was corroborated by online analysis of the ECoG. After
visual stimulation and recording, animals were deeply anesthetized
(5% isoflurane) and sacrificed. Brains were extracted and fixed in 4%
paraformaldehyde (PFA) overnight prior to sectioning and
histology.

Histology
Brains was sectioned at 80 µm on a vibratome (Leica Microsystems).
Sections were mounted with medium containing a DAPI counterstain
(Vector Laboratories). Electrodes were localized using epifluorescence
microscopy (Olympus BX41) at ×4 magnification.

Visual stimulation
Visual stimuli consisted of a 10ms flash of a green LED (650 cd/m2)
separated by random intertrial intervals sampled from a uniform dis-
tribution between 3 and 4 s. The flash covered 100% of the mouse’s
visualfield. Visual stimulationwas also performedusing aCRTmonitor
(Dell M770, refresh rate 60Hz, maximum luminance 75 cd/m2, posi-
tioned 23 cm away from themouse’s right eye, at an angle of 60% from
the mouse’s nose, thereby covering 70% of the mouse’s right field of
view) at varying luminance (2%, 11% 44%, 75%, 100% of maximum
screen luminance). Flashes were 100ms long and presented in a ran-
domorder at a random time interval between 3 and 5 s. In a subset of 8
animals, 280 trials of 500ms full screen static gratings (0.4 cycles per
degree, 100% contrast) oriented at either 45° or 135° from horizontal
were shown on the same CRT monitor at a random intertrial interval
uniformly distributed between 2 and 3 s.

Electrode registration
After identifying the histological location of the two depth probes in
each mouse, and with prior knowledge of the ECoG grid dimensions
(i.e., 6 columns, 11 electrode rows, electrode spacing of 500 µm, elec-
trode diameter of 60 µm, hole diameter of 200 µm,), the position of
each ECoG electrode was triangulated in the following fashion. The
ECoG grid is a semiflexible plane. The location of the cortical probes in
the electrode coordinate system was given by the through holes used
for electrode insertion. The stereotaxic coordinates of the electrodes
were established using postmortem histology by comparison to the
brain atlas88. The cosine of the angle, θ, between the laminar probe
positions in the electrode and stereotaxic coordinates was computed.
Each electrode on the ECoG grid was assigned a location based on the
Euclideandistance from the two laminar probe sites. The resultant grid
location matrix was then multiplied to a rotation matrix (R) to obtain
the final electrode positions in stereotaxic coordinates.

R =
cosθ �sinθ

sinθ cosθ

� �

These coordinates were then verified by comparison to photo-
graphs of grid positions taken during experimental session.

Electrophysiology and preprocessing
Signals were amplified and digitized on an Intan headstage (Intan,
RHD2132) connected to an Omniplex acquisition system (Plexon,
Omniplex), and streamed to disk at 40KHz/channel. Impedances for
the electrodes on the surface probe ranged between0.18 and0.35MΩ.
Impedances of the channels on the laminar probes ranged from 0.05
to 0.06MΩ.

To extract the LFP, data were downsampled to 1KHz and filtered
offline using a custom-built FIR filter between 0.1 and 325Hz, with the
MATLAB functions, firls.m and filtfilt.m to minimize phase distortion.
Noise channels were manually removed and trials with excess motion
artifact were rejected. Subsequently, the ECoG signals were mean re-
referenced to minimize the effect of volume conduction. All further
analysis was performed using custom-built Matlab (Mathworks) code
unless otherwise stated.

Selection of electrode over primary visual cortex (V1)
To average over animals, a single stereotaxic V1 location was selected
as the electrode closest to (−3.25 AP, −2.25ML), and in each animal. To
confirm that the chosen electrode neurophysiologically corresponded
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to V1, the latency of onset of the VEP at each grid electrode was
computed. The latency of onset of the visual-evoked potential was
calculated as the time point at which their post-stimulus average
exceeds 3 standard deviations above the pre-stimulus baseline for 3
consecutive time points. The stereotaxically labeled V1 electrodes
were 1–2 electrodes away from the electrodes with the earliest latency
of onset in all mice and had latencies of onset within 2ms of the
electrodes with the earliest latency of onset.

Current source density analysis (CSD)
The one-dimensional CSD was computed as the second spatial deri-
vative of the LFP recorded from the linear probes (Freeman and
Nicholson, 1975):

d2φ

dz2
=

�½φ z + 24zð Þ � 2φ zð Þ + φ z � 24zð Þ�
ð24zÞ2

whereφ is the LFP, z is the vertical coordinate depth of the probe, and
Δz is the interelectrode distance (25 µm). CSD at the electrode
boundaries were obtained using estimation procedure in ref. 89.
Cortical layers in the V1 probe were identified by the pattern of visual-
evoked current sinks and sources (colored as blue and red,
respectively). Channels with the earliest current sink were assigned
as layer 4 (granular layer). Subsequent sinks were found above and
below layer 4 in layers 2/3 and layer 5. Laminar assignment of the
channels in the PPA probe were based on distance from the cortical
surface, where the CSD converged to zero. Channels within the first
350 µm were defined as superficial layers based on the thickness of
layers 1–4 of the PPA88,90,91. The next 400 µm were defined as deep
layers. All further analysis of laminar LFP data was performed on the
CSDs. V1 probe data was included only if there was a clear layer 4 sink
and subsequent layer 2/3 and layer 5 sinks. Similarly, PPA probe data
was included in analysis only if the superficial loss of CSD was seen,
indicating that the most superficial electrode was positioned at the
cortical surface. 11mice fulfilled these criteria andwere included in the
analysis of laminar recordings.

Spike sorting. Single unit identification was performed on probe data
from the same 11 mice that fulfilled criteria for laminar analysis. Spike
sorting was performed using Kilosort92. The resulting spikes were then
manually inspected for correct waveform clustering using Phy. All
units with a firing rate lower than 0.5 spikes/s were excluded from
further analysis.

Wavelet analysis
Power, phase, and frequency information was extracted using a con-
tinuous wavelet transform using Morlet wavelets (0.1 to 150Hz, with a
step-width 0.25Hz and normalized amplitude) (available at: http://
paos.colorado.edu/research/wavelets/)93.

Multitaper spectral analysis
The power spectra in Supplementary Fig. 2 were generated using
Thomson multitaper method (5 tapers) implemented in Chronux
function mtspectrumc.m (found at http://chronux.org/)94. 150 and
1000ms windows immediately before and after the stimulus were
used to estimate the power of 30–50 and 3–6Hz oscillations,
respectively.

Intertrial phase coherence (ITPC) analysis
Intertrial phase coherence (ITPC) was used to quantify the phase
synchrony between trials at each point in the time- frequency plot.
ITPC was calculated for each electrode in each mouse. Briefly,
complex-valued wavelet coefficients were projected onto a unit circle
by taking thewavelet phase at each time point and each frequency and
setting the length of the vector to one. ITPC was then calculated as the

circular average of such vectors across trials at each point in the time-
frequency plane95.

Because of time-frequency uncertainty, the wavelet-based ITPC
estimation for lower frequencies produces an artifactual increase in
coherence prior to the stimulus. To better define the time course of
ITPC, we additionally estimated this quantity using multitaper meth-
ods. ITPC was computed in non-overlapping 100ms or 450ms win-
dows for 30–50Hz and 3–6Hz ITPC respectively and averaged across
all surface electrodes for all animals.

Filtering data with wavelet coefficients
LFP or CSD data was filtered into high (30–50Hz) or low (3–6Hz)
frequency bands in order to perform phase based analysis. Data was
filtered using the inverse wavelet transform, invcwt.m, (available at:
http://paos.colorado.edu/research/wavelets/)93, by setting all wavelet
coefficients outside the desired frequency range to zero.

Filtering data with Butterworth filter
To assure that the results are not affected by choice of filter strategy
LFP was also filtered into high (30–50Hz) or low (3–6Hz) frequency
bands using a 6th or 3th order Butterworth filter, respectively. To
avoid phase distortions, the Butterworth filter was passed forward and
backward across the data (implemented as filtfilt.m in Matlab). The
comparison of wavelet filtered vs. Butterworth filtered data is shown in
Supplementary Figs. 3, 7.

Analytical signal extraction
Hilbert transform was used to derive the analytical signal of LFPs or
CSDs filtered in the gamma (30–50Hz) and low frequency (3–6Hz)
data. Thisproduced a timeseries of complex numbers. Themodulus of
the analytical signal is the instantaneous amplitude while the instan-
taneous phase is given by its arctan.

Complex singular value decomposition (SVD)
LFP recorded during a single trial and filtered at the appropriate fre-
quency range (see above) were Hilbert transformed to derive an n × t
analytical signal matrix A, where n is the number of electrodes and t is
the number of time points. Spatiotemporal modes were extracted
fromA by performing singular value decompositionwhich factorizesA
into mutually orthogonal modes:

A = USVT ,

where T denotes transpose. The columns of complex-valued U and V
are the left and right singular vectors, which encode the spatial and
temporal components of each mode, respectively. The diagonal real-
valued S contains singular values (λ0s). The fraction of the total signal
explained by i � th mode is given by

λi=∑
n
1 λð Þ,

The spatial amplitude of each mode is computed as
ws = ∣Uð*,iÞ∣ * λi. Each of the n components of ws reflects the contribu-
tion of each electrode to the mode. The spatial phase is defined by
θs = arctanUð*,iÞ. Each component of θs reflects the spatial phase of
each electrode. Temporal phase θt and amplitude wt are defined in a
similar fashion from V, θt = arctanV i,*ð Þ andwt = ∣V i,*ð Þ∣ * λi. The spatial
phase gradient of eachmode dθs

ds can then be computed locally at each
electrode as in ref. 25 (see below). The temporal frequency is given by
the time derivative of the unwrapped temporal phase dθt

dt normalized
by 2π. The analytical signal corresponding to mode i can be recon-
structed as Ai = Uð*,iÞ * λi *V

T
ði,*Þ. Finally, the LFP signals corresponding

to each mode can be reconstructed as Pi = ∣Ai∣ * cosðarctanðAiÞÞ.
Illustration of this procedure is shown in Supplementary Fig. 4.
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Defining the most visually responsive mode
The first ten singular modes (accounting for 62.34–81.18% variance,
95% confidence interval) computed for each single trial, as above.wt is
defined as the temporal amplitude for the first ten modes. wt during
the pre-stimulus period (400ms) and was then used to compute the
mean, wt

� �
and the standard deviation, σwt

. wt for the entire trial
period (pre- and post-stimulus) was expressed as a z-score
wz = wt � wt

� �� �
=σwt

. The most visually responsive mode was
defined as the mode that exhibited the greatest increase in amplitude
during the post-stimulus period (defined as 350ms post-stimulus for
fast oscillations and 1000ms post-stimulus for slow oscillations) for
the LED and full screen flash. For spatial gratings, the window was
350ms for fast and 1500ms for slow oscillations.

Spatial phase offset from V1
To determine the consistency in the phase relationship between spa-
tial modes identified in different trials and across animals, the average
difference in phase fromeach channel to the V1 channelwas computed
for the most visually responsive spatial mode. The V1 channel in each
animal is defined as the channel closest to (−3.25 AP, −2.25ML). The
phase offset from V1 is calculated at each electrode by extracting the
spatial phase of the most visually responsive mode θs and setting the
V1 phase to zero. Circularmean and varianceof θs referenced to V1was
then computed across trials and across animals96. The direction of the
resultant vector corresponded to the average phase, whereas the
magnitude of the vector is 1-circular variance.

Spatial phase gradient
The spatial phase gradient for the visually evokedmodewasquantified
as follows. For each trial at each electrode the complex-valued
spatial loading was multiplied by the complex conjugate of the spa-
tial loading of its adjacent electrode implemented in phase_-
gradient_complex_multiplication.m, (available at: https://github.com/
mullerlab/wave-matlab)25. This operation was performed iteratively
along the AP and ML direction of the grid. The resulting vectors were
then converted into polar coordinates. To quantify the average gra-
dient over trials, each trial’s gradient vector at each location was pro-
jected onto a unit circle and circular average was computed. The angle
of the resultant average vector is the direction of the average phase
gradient,whereas itsmagnitude is 1-varianceof the gradient over trials.

Spatial wavelength
The spatial frequency was computed by multiplying the magnitude of
the single trial spatial gradient vectors and dividing the result by 2π to
convert the units into cycles/mm. Spatial wavelength was calculated as
the reciprocal of spatial frequency.

Velocity of visual-evoked waves
The instantaneous temporal frequency was computed by measuring
the slope of the unwrapped temporal phase of the most visually

responsive mode. This yields the temporal frequency f t =
dθt
dt . The

spatial gradient at each location (x,y) is a two component vector

hdθsdx ,
dθs
dy iðx,yÞ, where dx and dy are unit vectors in the mediolateral and

the anterior-posterior directions respectively. The Euclidian norm of

this vector is ∇s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdθsdx Þ

2
+ ðdθs

dy Þ
2

r
. Wave velocity at each location is

then defined as v = f t
∇s
.

Phase-amplitude coupling
Phase-amplitude coupling between oscillations was assessed using the
modulation index (MI) of single trial filtered LFP data at every grid
electrode97. Phase of the 3–6Hz filtered data and the amplitude of the
30–50Hz filtered data were extracted from the analytical signal A as

described above. Phase was binned into 20 phase intervals. The mean
30–50Hz amplitude was calculated for each bin for the first 900ms of
post-stimulus activity per trial in Fig. 6. In Supplementary Fig. 14, this
calculation was broken into the first 0–450ms interval and the second
450–900ms interval immediately after the stimulus. The mean
amplitude per binwas then averaged over trials. TheMIwas calculated
by measuring the divergence of the resulting amplitude distribution
from the uniform distribution using a modified Kullback–Leibler (KL)
distancemetric,with the function,ModIndex_v2.m, (available at https://
github.com/tortlab/phase-amplitude-coupling)97.

Spike-field coherence (SFC). The phase of 3–6Hz filtered CSD was
extracted from the analytical signal and segmented into 20 phase bins.
The mean spike count was calculated for each phase bin for the first
900ms of post-stimulus activity per trial, and then averaged over
trials. The SFC was quantified as described above for MI.

Intersite spike-field coherence (SFC). Todetermine how the phase of
the 3–6Hz oscillation in one region affected spiking probability within
a different brain area, spike-field coherence was calculated as above
using the spike data from each entrained neuron in V1 and PPA and
correlating the firing pattern to the phase of the 3–6Hz oscillation at
each location in PPA and V1, respectively.

Averaging signals over stereotaxic coordinates
A query grid of stereotaxic locations was defined spanning −3.5 to
0mmML and −5 to 0mm AP with 0.5mm spacing. For each query
location, the weight of each electrode was assumed to depend on the
distance between the electrode and the query location. The weights
were defined to be a Gaussian function of Euclidian distance from the
query location as follows:

W =
1

σ
ffiffiffiffiffiffi
2π

p e
∣∣pq ∣∣
σ ,

where ∣∣pq∣∣ is the Euclidean distance between the electrode p and
query location q, σ = 0:15 is the standard deviation. The weight was
computed as in the above equation for all electrodes within 0.3mmof
the query location and was set to zero otherwise. This weighting was
used when computing averages and variances across mice as a func-
tion of stereotaxic coordinates.

Spike correlations
For each entrained V1 and PPA neuron in each animal, the delay of the
spike times of the V1 cells relative to the spike times of PPA cells was
computed during the pre-stimulus timeframe (500ms before the sti-
mulus onset), and post-stimulus timeframe (0–500ms after stimulus
onset). The distribution of spike time delays is displayed in Fig. 7.

Statistical analysis
Statistical significance threshold for all measures was set to p =0.05.
To compute p values for ITPC, SFC, and MI method of shuffled sur-
rogates was used. For ITPC, shuffled surrogates consisted of trials
where the stimulus time was assigned randomly. For MI, shuffled
surrogates consisted of shifting the phase time series by a random
amount relative to the amplitude time series. For SFC, shuffled sur-
rogates were given by a Poison model constructed for each neuron.
The spike rate for each neuron was computed in 200ms time bins
shifted by 1ms. Spike times for the shuffled surrogates were then
produced by simulating the Poisson process given by this spike rate.
For all p value calculations, 100 shuffled datasets constrained to have
the same number of trials as experimental data were produced. The
mean and the standarddeviation of the quantity of interest (ITPC, SFC,
or MI) was then computed for the shuffled surrogates. Finally, the
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experimentallyobservedquantity of interestwasexpressed as a z-score
relative to the shuffled surrogates.

For establishing statistical significance for ITPC, z-score (as
described above) was computed for each experiment at each stereo-
taxic location. To determine the aggregate p value over mice at each
stereotaxic location, a Stouffer’s Z-score was calculated across
experiments. To establish statistical significance of spatial phases (see
above), a Rayleigh test was performed using circ_rtest.m (available at
http://www.jstatsoft.org/v31/i10)98. In all cases the threshold p value
for statistical significance was adjusted for multiple comparisons
(multiple spatial locations) using a Bonferroni correction.

To establish the statistical significance of the effect of stimulus
intensity on the proportion of cells with significant SPC (defined
above), Tukey’s HSD multiple comparisons test was performed using
the function tmcomptest.m99.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We added our data and code to the following repository: https://doi.
org/10.5281/zenodo.6578571 Source data are providedwith this paper.
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