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A non-Hermitian optical atomic mirror

Yi-Cheng Wang 1,2 , Jhih-Shih You 3 & H. H. Jen 2

Explorations of symmetry and topology have led to important breakthroughs
in quantum optics, but much richer behaviors arise from the non-Hermitian
nature of light-matter interactions. A high-reflectivity, non-Hermitian optical
mirror can be realized by a two-dimensional subwavelength array of neutral
atoms near the cooperative resonance associated with the collective dipole
modes. Here we show that exceptional points develop from a nondefective
degeneracy by lowering the crystal symmetry of a square atomic lattice, and
dispersive bulk Fermi arcs that originate fromexceptional points are truncated
by the light cone. From its nontrivial energy spectra topology, we demonstrate
that the geometry-dependent non-Hermitian skin effect emerges in a ribbon
geometry. Furthermore, skin modes localized at a boundary show a scale-free
behavior that stems from the long-range interaction and whose mechanism
goes beyond the framework of non-Bloch band theory. Our work opens the
door to the study of the interplay among non-Hermiticity, topology, and long-
range interaction.

The exquisite control of light-matter interactions is centrally important
to construct newquantumoptical setups and attain new functionalities.
Recent research has shown that under the control of the cooperative
response of dipole modes, an atomic array with subwavelength spa-
cings can be characterized as a high-reflectivity optical atomicmirror1,2.
A number of interesting predictions for this optical mirror include
enhanced photon storage3, topological quantum optics4,5, quantum
information processing6, and coherent perfect absorption7. These
phenomena can be identified from the band structures of collective
atomic excitations, where the quasimomentamodes inside and outside
the light cone exhibit distinct behaviors, respectively1,3. Specifically, the
former delineate non-Hermitian physics. Due to the intrinsically loss
processes associated with free-space emission, the atomic array with
photon-mediated dipole-dipole interactions opens the door to the
observation of a wide range of outstanding non-Hermitian phenomena
that would be challenging in condensed matter.

Recent progress in non-Hermitian physics8,9 reveals two phe-
nomena that have no Hermitian counterparts. One is the exceptional
points (EPs)10, at which both the complex eigenvalues and eigenstates
of a non-Hermitian matrix coalesce. The EPs can emerge from the
implementation of non-Hermiticity in aHermitian systemwithDirac or
Weyl points, which have been demonstrated in diverse physical sys-
tems, including photonic crystals11–13, topolectrical circuits14, and

exciton-polariton systems15,16. The Riemann surface topologies asso-
ciated with these EPs results in the nontrivial winding in the complex
energy plane that induces the other intriguing non-Hermitian phe-
nomenon—non-Hermitian skin effect17–19.

The non-Hermitian skin effect (NHSE)20–22 means that an extensive
number of exponentially localized eigenstates can pile at the bound-
aries under open boundary conditions (OBCs). This indicates the
breakdown of the conventional bulk-boundary correspondence22,
which has triggered an avalanche of research aimed at reestablishing
the correspondence in non-Hermitian systems23. Various com-
plementary approaches have been proposed in this vein, including the
celebrated non-Bloch band theory20,24,25. This band theory successfully
interprets NHSE and the exponential localization of skinmodes in one-
dimensional (1D) systems with finite-range couplings. Yet, little is
known about the interplay between the long-range interaction and
these non-Hermitian phenomena.

In thiswork,we consider two-dimensional (2D) atomic latticeswith
resonant dipole-dipole interactions (RDDIs)26,27, which serve as a high-
reflectivity optical mirror at cooperative resonance1,2. To efficiently
calculate the bulk band structures of infinite 2D atomic lattices, we
develop a model-independent generalization of Euler-Maclaurin
formula28 (see Methods). Our numerical method is applicable to sys-
temswithdifferent typesof long-range interactions. Due to the inherent
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non-Hermiticity of dipole-dipole interaction, there is no Hermitian limit
of our system, such that EPs should emerge from the mechanism dif-
ferent from splitting Hermitian degeneracy points by adding non-
Hermiticity. Here we demonstrate that paired EPs can be split from a
symmetry-protected nondefective degeneracy point (NDP) by a
symmetry-breaking perturbation. With the nontrivial winding in the
complex energy plane arising from EPs, we find that a ribbon geometry
exhibits extensive geometry-dependent skinmodes. In particular, these
modes show a scale-free behavior that stems from the long-range
interaction and the mechanism responsible for this behavior goes
beyond the framework of non-Bloch band theory. Furthermore, we
show that the skin modes can emerge in 2D finite atomic arrays by
manipulating the orientations of open boundaries and the lattice con-
figurations. Possible experimental observations are also discussed.

Results
Non-Hermitian degeneracy points
We consider a 2D rectangular atomic lattice spanned by two direct
lattice vectors a1 = a/ηex and a2 = aey with a lattice constant ratio ∣a2∣/
∣a1∣ = η in free space (Fig. 1a, b). Each atom has a V-type energy level
composed of one ground state ∣gi and two circularly-polarized excited
states ∣± i=∓ð∣xi± i∣yiÞ=

ffiffiffi
2

p
such that the system supports two in-plane

polarizations with an atomic transitionwavelength λ anddecay rate Γ0.
In the circularly-polarized basis, the non-Hermitian dynamics of a
single excitation is described by the following two-band effective
Hamiltonian kernel29,30 (Supplementary Notes 1 and 3)

HeffðkÞ= _ðω0 +ΩkÞ
1 0

0 1

� �
+ _Γ0

0 κ +�ðkÞ
κ� + ðkÞ 0

� �
, ð1Þ

where k is the Bloch momentum in the irreducible Brillouin zone and
ω0 = 2πc/λ is the atomic transition frequency. Here Eq. (1) has the
identicalmomentum-dependent interacting energyℏΩk for ∣± i, and κ+
−(−+)(k) describes the couplings between two circularly-polarized
states. According to the expression of RDDI in the reciprocal space
(Supplementary Note 1), the 2D Brillouin zone exhibits two kinds of
distinct collective excitations separated by the light cone ∣k∣ = 2π/λ1

(Fig. 1a, b), wherein the dissipative modes couple to far-field radiation,
while themodes with ∣k∣ > 2π/λ related to evanescent wave confined to
the atomic lattice plane are dissipationless. Here, we focus on the non-
Hermitian physics within the light cone.

The bulk eigenenergy spectrum can be obtained as
E1,2ðkÞ= _ðω0 +ΩkÞ± _Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ +�ðkÞκ� + ðkÞ

p
, and the existence of degen-

eracy corresponds to κ+−(k)κ−+(k) = 0. If κ+−(k) and κ−+(k) are simulta-
neously zero, the corresponding eigenstates are linearly independent
such that Heff ðkÞ is diagonalizable, and these degeneracies are called
nondefective degeneracy points. If onlyoneof κ+−(−+)(k) is zero,HeffðkÞ
is nondiagonalizable, and the defective degeneracies whose eigen-
states coalesce are known as exceptional points. Therefore, for a
square lattice, κ+−(−+)(k) vanish at high symmetry point Γ (k =0) due to
the C4 rotational symmetry (Supplementary Note 3), which ensures a
symmetry-protected NDP. Accordingly, EPs can emerge by breaking
this symmetry, and we note that ref. 31 has proved that NDP in a two-
band system is unstable, i.e., it can be deformed into EPs by a generic
perturbation.

We perform a 2D generalization of the Euler-Maclaurin formula to
determine the photonic band structures of infinite square (Fig. 1c) and
rectangular (Fig. 1d) lattices with in-plane polarizations in
freespace. Here we diagonalize the effective Hamiltonian as
Heff ðkÞ=V ðkÞEðkÞV�1ðkÞ, where E(k) is the diagonal matrix composed
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Fig. 1 | Paired exceptional points split from a nondefective degeneracy point.
Schematics of square (a) and rectangular (b) atomic lattices and their irreducible
Brillouin zones in the subwavelength regime. The yellow circular region represents
the light cone, wherein the system is non-Hermitian. Collective frequency shift Δk

and overall decay rate Γkof infinite square (c) and rectangular (d) lattices within the
light cone (black dashed circle). Two energy bands E1,2ðkÞ= _ðω0 +ΔkÞ � i

2 _Γk are
colored in red and blue, respectively. e A non-Hermitian degeneracy point can be
identified as NDP or EP by calculating det½V ðkÞ�. The η = 1 case shows that the non-

Hermitian degeneracy point at the high symmetry point Γ in c is an NDP, and the
η = 1.1 case shows that four non-Hermitian degeneracy points in (d) corresponding
to the coalescence of two eigenstates are EPs. These EPs are joined by the degen-
eracy of the real and imaginary parts of E1,2 (k) in (d), known as real (blue) and
imaginary (red) Fermi arcs in the kx-ky plane. f The spectral phase that reflects the
windingofbulk energy bands. The vorticity ofNDPatη = 1 is zero,while that of each
EP at η = 1.1 is a half-integer. The plots are obtained with a subwavelength lattice
constant a =0.2λ and η = 1.1 for rectangular lattice.
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of its eigenvalues E1,2(k) and V(k) is formed by two normalized right
eigenstates. The coalescence of eigenstates happens when det½V ðkÞ�
approaches zero in the vicinity of EPs. The degeneracy point at Γ in
Fig. 1c is identified as a NDP due to the corresponding nonzero
det½V ðkÞ� in Fig. 1e at η = 1. In Fig. 1d, we break the C4 rotational sym-
metry by tuning the lattice constant ratio (η ≠ 1), and we find that four
EPs are split from the NDP. We stress that the mechanism of the EPs
here is essentially different from that in ref. 7 since the EPs here lie in
the 2D Brillouin zone and arise from the lowering of crystalline
symmetry.

In Fig. 1e at η = 1.1, we observe that these four EPs are joined by
dispersive bulk Fermi arcs12, along which the real parts of two eigen-
energies aredegenerate.We note that our bulk Fermi arcs do not lie on
the isofrequency surfacedue to themomentumdependentℏΩk. These
open-end bulk Fermi arcs usually terminate at EPs; however, they are
truncated by the light cone in our case. Importantly, these dispersive
bulk Fermi arcs and EPs are topologically stable and associated with a
non-Hermitian topological invariant called the vorticity32–34

v= �
I

C

dk
2π

� ∇k arg½E1ðkÞ � E2ðkÞ�, ð2Þ

where C is a counterclockwise closed loop that encloses a degeneracy
point. The vorticity can be determined by the spectral phase
arg½E1ðkÞ � E2ðkÞ� that acquires a ±π change around each EP but 0
aroundNDP. InFig. 1f, wefind that the vorticity ofNDP (EPs) in a square

(rectangular) lattice is zero (half-integer). We also check the stabilities
of these non-Hermitian degeneracy points via the Zeeman splitting
arising from amagnetic field. We find that EPs persist, in stark contrast
to the symmetry-protected NDP and Dirac point (Supplemen-
tary Fig. 9).

Non-Hermitian skin effect
Recently, it was revealed that a 1D system under OBC exhibits NHSE as
long as the energy spectrum of the corresponding bulk Hamiltonian
H1DðkÞ encloses a nonzero spectral area in the complex energyplane. If
a system has the reciprocity and mirror symmetry, H1DðkÞ=HT

1Dð�kÞ,
the bulk spectrum forms a doubly degenerate spectral arc. As a result,
there is no NHSE under OBC for a 1D systemwith reciprocal couplings,
but NHSE can emerge by invoking nonreciprocal couplings to break
such a constraint onH1DðkÞ. Since RDDI is reciprocal, a 1D atomic chain
with RDDI does not exhibit NHSE. Therefore we turn to a 2D atomic
lattice with reciprocal and anisotropic RDDIs to investigate NHSE.

NHSE in 1D systemshas a clear picture, while a general description
of NHSE in two and higher-dimensional systems remains unclear. To
study NHSE in 2D atomic lattices, we start by considering a ribbon
geometry, which extends infinitely along the parallel direction (the [11]
direction in Fig. 2a) and has OBC with L unit cells in the perpendicular
direction. Due to the translational symmetry in the parallel direction,
the Bloch momentum k∥ is a good quantum number, such that the
Hamiltonian of the ribbon geometry at a fixed k∥ reduces to the
Hamiltonian kernel HLðkk, r?Þ of an effective 1D finite lattice under
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Fig. 2 | Geometry-dependent non-Hermitian skin effect in a ribbon geometry.
a Illustration of the ribbon geometry for a rectangular atomic lattice. The bound-
aries are open on the ð�11Þ plane (dashed line) and extend infinitely in the [11]
direction (solid line). Open boundary eigenenergy spectra σ½HLðkk, r?Þ� of rectan-
gular (b, η = 1.1) and square (c, η = 1) lattices in ribbongeometries with a width of 80
and 160 unit cells (light yellow dots and purple dots, respectively) and the corre-
sponding bulk spectra σ½Heff ðkk,k?Þ�= fE1,2ðkk,k?Þg (curves in red and blue) at
fixed k∥ =0.1π/a (orange dashed line in a) and k∥ =0 (k⊥ axis in a) and k∥ = −0.1π/a
(cyan dashed line in (a)). The non-Hermitian parts of σ½Heff ðkk,k?Þ� result in the

nontrivial winding (in (b) at finite k∥), and the corresponding spatial distributions
demonstrate that there are extensive skinmodes localized at the edge normal to r⊥
axis in a ribbon geometry. Otherwise, inversion and mirror symmetries lead to
doubly degenerate spectral arcs with zero winding numbers, which suppress the
NHSE. d Illustration of the ribbon geometry for a rectangular atomic lattice with
open boundaries in the y direction. Open boundary eigenenergy spectra
σ½HLðkx , ryÞ� of rectangular (e, η = 1.1) and square (f, η = 1) lattices in ribbon geo-
metries. The mirror symmetries here lead to doubly degenerate spectral arcs and
suppress the NHSE. The plots are obtained with the same parameters in Fig. 1.
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OBC (over the ð�11Þ plane in Fig. 2a). Consequently, the NHSE can be
understood in a simple effective 1D picture.

In Fig. 2b, c, we numerically calculate the respective OBC spectra
σ½HLðkk, r?Þ� of rectangular and square lattices in ribbon geometries
with awidth of Lunit cells atk∥ = ±0.1π/a andk∥ =0. For these givenk∥,
the corresponding bulk spectra σ½Heffðkk,k?Þ�= fE1,2ðkk,k?Þg are
shown for comparison and can be viewed as the spectra of infinite 1D
lattices with the normal momentum k⊥ being a good quantum num-
ber. First we note a deviation between the OBC spectra and the bulk
spectra in the vicinity of the light cone: the bulk spectra show a
divergent behavior, which arises from the RDDI in the infinite system,
while the OBC spectra remain finite.

The emergence of NHSE in ribbon geometries is manifest in the
bulk spectra of infinite 1D lattices. In the square lattice with oblique
open boundaries (Fig. 2c) and both the rectangular and square lattices
with horizontal open boundaries (Fig. 2e, f), the bulk spectra become
doubly degenerate spectral arcs due to the mirror symmetry35, indi-
cating that the OBC eigenstates are delocalized. In the rectangular
lattice with oblique open boundaries, we note that OBC eigenstates
can also be delocalized at k∥ =0. This is due to the inversion symmetry
at this special momentum. In the absence of these lattice symmetries,
the bulk spectra enclose nonzero spectral areas, as shown in Fig. 2b at
finite k∥. This signifies the hallmark of geometry-dependent
skin modes.

To visualize NHSE, we consider the average spatial distribution of
OBC normalized right eigenstates ∣ψR

nðr?Þi

SNHðr?Þ=
1
N0 ∑

N0

n= 1
∑
j = ±

∣ψR
njðr?Þ∣

2
, ð3Þ

where ± represents the in-plane polarization and n is in the ascending
order of the imaginary parts of eigenenergies. Here we only consider
first N0 right eigenstates ∣ψR

nðr?Þi with largest decay rates. In Fig. 2b, c,
N0=2L corresponds to the fraction of bulk eigenmodes within the light
cone at a given k∥ andwe show the average spatial distribution SNH(r⊥)
for both L = 80 and L = 160. It is evident that for a rectangular lattice in
a ribbon geometry with a positive (negative) k∥, SNH(r⊥) shows the
emergence of extensive skin modes localized at the r⊥ = 1 (r⊥ = L)
boundary. For other cases, the OBC eigenstates are delocalized.

As a topological phenomenon, the emergence of extensive skin
modes is predicted by the point-gap topology of the bulk bands18. For a
fixed k∥ and a reference point Er that is not covered by the bulk spectra
(point-gap) in the complex energy plane, the integer-valued spectral
winding number can be defined as18,31

W ðkk, ErÞ=
I

C?

dk?
2πi

� ∇k?
logdet½Heffðkk,k?Þ � ErI�, ð4Þ

whereC⊥ forms a closed loop at a fixedk∥ in the 2DBrillouin zone (e.g.,
three paths in Fig. 2a). When the bulk spectra enclose a nonzero
spectral area in the complex energy plane, W(k∥, Er) for Er within the
spectral area is nonzero, where we denote the corresponding spectral
winding numbers by the shaded regions in Fig. 2b ( + 1 for orange
and − 1 for cyan shaded regions, respectively). Accordingly, the skin
modes that lie within the interiors of bulk spectra localize at the left or
right boundaries when W(k∥, Er) = ± 1, which coincides with other sys-
tems with finite-range couplings18 even if we have long-range
interactions here. In addition, by tuning the lattice constant ratio η
in Fig. 2b, c at a fixed, finite k∥, a point-gap opening in the ribbon
geometry at nonzero k∥ represents a non-Hermitian topological phase
transition34. This is the direct consequence of exceptional points of
bulk Hamiltonian, which results in non-trivial winding in the complex
energy plane and non-Hermitian skin effect in a rectangular-lattice
ribbon geometry.

We note that, although the divergent bulk spectrum shows up
near the light cone in Fig. 2b, c, the corresponding spectral winding
numbers are quantized (Supplementary Note 4) and can be applied to
characterize the point-gap topology. In addition, this NHSE is sensitive
to the orientation of the open boundary. For instance, both the square
and rectangular lattices can support NHSE when the OBC is imposed
on the ð�12Þ plane in a ribbon geometry since there is no mirror sym-
metry along the [21] direction. In general, the effective coupling in a
ribbon geometry at a fixed k∥ is nonreciprocal unless the original
coupling is isotropic or there is a mirror symmetry over the open
boundary36. Therefore, the NHSE in the ribbon geometry depends on
the orientation of the open boundary and the lattice configuration.We
emphasize that non-Hermiticity and anisotropy are the essential
ingredients for such a geometry-dependent nonreciprocal coupling.

Scale-free localization
In addition to the deviation between the OBC and bulk spectra, we
observe the scale-free behavior of spatial distributions
LSNHðr?, LÞ= L0SNHðr?, L0Þ for system size L = 80 and L0 = 160 in Fig. 2b,
c. This implies that the number of skinmodes in a ribbongeometry and
their characteristic length ξof the exponentially decreasingprobability
∣ψR

njðr?Þ∣
2
~ e�∣r? ∣=ξ are proportional to the system size L. We note that

similar scale-free behavior arises in critical NHSE37,38 in the systems
with finite-range couplings. However, the scale-free localization in the
atomic array stems from the long-range interaction and the mechan-
ism underpinning this behavior goes beyond the framework of the
non-Bloch band theory.

Here we briefly introduce the non-Bloch band theory in 1D sys-
tems with finite-range couplings. By considering the analytic con-
tinuation of Bloch momentum k→ k + iκ(k)20,24,39, the OBC energy
spectrum {EOBC} in the thermodynamic limit (L≫ 1) can be obtained
from the non-Bloch Hamiltonian H1Dðk + iκðkÞÞ. In addition, each OBC
eigenstate of a 1D chain with lattice constant a, ψL→∞(ma) at mth site,
can be decomposed into M possible βm

i = eiðki + iκðkiÞÞ�ma and is domi-
nated by two non-Bloch modes βm

r,s with the same modulus ∣β∣ = ∣βr∣ =
∣βs∣ that corresponds to the decay length �a= log ∣β∣. These βi are
solutions to the following characteristic equation (Supplementary
Note 4)

det½H1DðβÞ � EOBCI�=0 ð5Þ

subject to OBCs, and M is determined by the coupling range. These
results are derived from the asymptotic behavior of the OBC eigen-
state ψL(ma) in the finite system for large L. We note that the above
statement is valid when the coupling range is finite. It is because in this
case the finite systems with different sizes are governed by the ‘same’
HamiltonianH1DðβÞ.

In contrast, in the presence of long-range RDDI the finite systems
with different sizes are governed by ‘different’ HLðβÞ, such that the
characteristic equation becomes size-dependent and has M = 4(L − 1)
solutions of β. As a result, both the OBC spectrum (Fig. 3a) and β
depend on L, and each OBC eigenstate in the thermodynamic limit is
dominated by several β with no fixed scale. To show the size depen-
dence of eigenstate, wenumericallyfit the characteristic length ξof the
probability of each OBC eigenstate in Fig. 3c, which presents the
crossover from a constant to scale-free characteristic length.

Non-Hermitian skin effect in 2D finite-size systems
We further exploreNHSE in a 2Dfinite atomicarraywithparallelogram-
shaped boundaries by investigating the spatial distribution of skin
modes (Eq. (3)). In Fig. 4, we choose N0 = ½πða=λÞ2=η�×2LxLy that cor-
responds to the fractionof bulk eigenmodeswithin the light cone in 2D
Brillouin zone. In Fig. 4d, there are extensive skin modes localized at
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the oblique ([11] direction) but not at the horizontal ([10] direction)
boundaries, and there is no skin mode in Fig. 4a–c. We note that the
corner accumulation of SNH(r) in Fig. 4c does not show NHSE; instead,
it arises from the long-range interaction (Supplementary Fig. 6).

To understand the NHSE here, we can extend a finite system
infinitely along one open boundary to reconstruct a ribbon geometry.
This allows us to determine which boundary extensive skin modes are
localized at by identifying its energy spectrum topology. For instance,
there are two possible ribbon geometries for the finite system in
Fig. 4d. One extends infinitely along the oblique direction (Fig. 2a) and
theother extends infinitely along thehorizontaldirection (Fig. 2d). The
skin modes emerge in the former case (Fig. 2b), while the NHSE in the
latter case is suppressed by the mirror symmetry (Fig. 2e). Therefore,
the population distributions of non-Hermitian eigenstates rely on the
orientations of open boundaries and the lattice configurations. The
comparison with the ribbon geometry provides a way to understand a
so-called geometry-dependent NHSE40 in two and higher dimensional
systems. In the same manner, we note that the scale-free localization
found in a ribbon geometry could also be observed in a 2D finite-size
lattice (Supplementary Fig. 7).

In Fig. 4, the OBC spectra with the same lattice configuration
(Fig. 4a, c for square lattice and b, d for rectangular lattice) are
insensitive to the orientations of open boundaries. However, when the
lattice configuration changes from square to rectangular lattice, the
EOBC around NDP in Fig. 4a, c are deformed into EOBC around EP in
Fig. 4b, d. We further explore the relationship between OBC and bulk
spectra by the light scattering from this finite system (Supplementary
Note 6). We only need two detunings to extract the bulk Hamiltonian
from the scattering matrices in the finite system. This allows us to
identify the bulk band structure and its non-Hermitian degeneracy
points from light scattering.

The frequency shift and the linewidth are comparable in Fig. 4,
which smears the optical response from each skin mode and its
anomalous transport behavior41. However, when an incident light
shines on a 2Datomic array that hosts skinmodes atoblique incidence,
the dynamical property of induced dipoles shows the asymmetric
spatial distribution,which reflects thenonreciprocal effective coupling
induced by the nonzero in-planemomentum of the incident light. This

provides an experimental signature of NHSE in 2D finite atomic arrays.
Moreover, we could assemble two atomic lattices with distinct geo-
metries to make skin modes localize at the interface42, which further
affects the dipole distribution.

Discussion
We have shown that a 2D atomic array with the inherent non-
Hermiticity and the anisotropy of RDDI presents nontrivial topologies
that have no Hermitian counterparts. Our results here can be mani-
fested in a general setting of coupled 2D quantum emitters43. Besides
these distinct non-Hermitian degeneracies andNHSEwe uncover here,
the interplay between non-Hermiticity and topology23,44–46 may further
generate topologically protected edge states robust to not only Her-
mitian but also non-Hermitian defects. In addition, one can couple the
atomic arrays with different electromagnetic environments to further
modify the non-Hermiticity of RDDI and to enhance the optical
response of some selective skin modes. Our work paves the way
towards the exploration of exotic many-body states in two and higher-
dimensional systems and opens up new opportunities inmanipulating
topological properties by tailoring long-range interactions in an
atomic array.

Methods
2D generalization of Euler-Maclaurin formula
In the calculation of photonic band structures, we encounter an
infinite summation of RDDI ∑R≠0e−ik⋅RG0(R) excluding the self-
energy G0(0), where G0(R) is the free-space dyadic Green’s func-
tion and the summation runs over all direct lattice vectors except
for R =0. Since the oscillating terms result in the slow convergence,
we can rewrite this infinite summation in the reciprocal space as
ða1 × a2Þ�1∑Gg0ðG+kÞ � G0ð0Þ, where the summation runs over all
reciprocal lattice vectors G and g0(G + k) is Green’s function in
reciprocal space. Here we note that the self interaction G0(0) is just
the integral of g0(G + k), i.e., G0(0) = ∫(2π)−2d2Gg0(G + k). Therefore,
an infinite summation of RDDI becomes the difference between the
summation ∑G and the integration ∫(2π)−2(a1 × a2)d2G of the same
function ða1 × a2Þ�1g0ðG+kÞ. While both the summation and the
integration are divergent due to the self-interaction, their differ-
ence is physically meaningful and convergent. References29,30 per-
form such calculations invoking the ultraviolet frequency cutoff.
However, the infinite summation of RDDI ∑R≠0e−ik⋅RG0(R) is inde-
pendent of the frequency cutoff. By using the generalization of
Euler-Maclaurin formula, we can compute this difference without
requiring a frequency cutoff since it is in the form of the difference
between the summation and the integration of the same function.

The original Euler-Maclaurin formula is for a single summation on
a 1D lattice. Thedifferencebetween the summation and the integration
of the same function over any interval I composed of unit cell sand-
wiched between lattice sites j and j + 1 can be approximated by the
function and its higher-order derivatives on two ends of the interval ∂I.
Here we extend this idea to the double summation on a 2D lattice,
where a 1D interval I with two ends becomes a 2D region R whose
boundary has a variety of shapes, such as a simply-connected region
whose boundary is a closed loop and a hollow region with the inner
and outer boundaries.

By means of Euler-Maclaurin formula, we can estimate this dif-
ference over any region composed of the periodic unit cell in the
reciprocal space by the correction terms consisting of higher-order
derivates of ða1 × a2Þ�1g0ðG+kÞ at the boundaries. In avoid of the sin-
gularity arising from the light cone, theperiodically-tiled hollow region
R we use to perform the Euler-Maclaurin formula should enclose the
light cone in the reciprocal space. When the outer boundary of R
extends infinitely, the correction terms at this boundary become
negligible due to the presence of ultraviolet frequency cutoff. Thus,
the rest correction terms only lie on the inner boundary ∂R of R, and

Spectra
Im

[E
]/

(ħ
Γ 0)

L = 80

Ei
ge

ns
ta

te
 n

um
be

r n

Ei
ge

ns
ta

te
 n

um
be

r n
r
⊥

/L

10 1

100

101

666666606666666666444466666662222444444422222222222226442222

1 0
8

6

4

2

0

0 0.25 0.5 0.75 1

2

16

r
⊥

/L

a b
L|

ψ
n(r ⊥

/L
)|

2

c Pr
ob

ab
ili

ty
   

L|
ψ

n(r ⊥
/L

)|
2L = 160

r
⊥

/L

0 100 200 300
0
5

10
15
20

ξ/
a ⊥

L

Re[E-ħω0]/(ħΓ0)

Fig. 3 | Size dependence of non-Hermitian skin effect in a ribbon geometry.
aTheOBC spectra at L = 40, 80, 160, 240, and 320unit cells (light blue, light yellow,
purple, dark green, and black, respectively) gradually approach bulk spectrum as L
increases.bRescaledprobability distributions of normalized right eigenstates at80
and 160 unit cells in the ascending order of the imaginary part of eigenenergy. N0

represents the number of localized modes in spatial distributions in Fig. 2b, c.
c Rescaled probability distributions of the n =0.2L eigenstates. The inset shows a
crossover from a constant to scale-free characteristic length as system size
increases, and a⊥ is the lattice constant for this ribbon geometry in the r⊥ direction.
The plots are obtained with the same parameters in Fig. 2b at k∥ =0.1π/a.

Article https://doi.org/10.1038/s41467-022-32372-3

Nature Communications |         (2022) 13:4598 5



the infinite summation reduces to the finite summation and integra-
tion of ða1 × a2Þ�1g0ðG +kÞ over the finite region enclosed by ∂R and
several correction terms on ∂R in the reciprocal space. We note that
thismethod is applicable for the infinite summation due to other long-
range interactions. Further details of the explicit formula and appli-
cation are presented in the Supplementary Note 2.

Data availability
The data in this manuscript are available from the authors upon rea-
sonable request.

Code availability
The code used for the analysis are available from the authors upon
reasonable request.
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