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Splicing QTL analysis focusing on coding
sequences reveals mechanisms for disease
susceptibility loci

Kensuke Yamaguchi 1,2,3,4, Kazuyoshi Ishigaki 5, Akari Suzuki4,
Yumi Tsuchida 3, Haruka Tsuchiya3, Shuji Sumitomo3, Yasuo Nagafuchi 3,6,
Fuyuki Miya7, Tatsuhiko Tsunoda 8,9,10, Hirofumi Shoda3, Keishi Fujio3,
Kazuhiko Yamamoto4 & Yuta Kochi 2,4

Splicing quantitative trait loci (sQTLs) are one of themajor causalmechanisms
in genome-wide association study (GWAS) loci, but their role in disease
pathogenesis is poorly understood.One reason is the complexity of alternative
splicing events producing many unknown isoforms. Here, we propose two
approaches, namely integration and selection, for this complexity by focusing
on protein-structure of isoforms. First, we integrate isoforms with the same
coding sequence (CDS) and identify 369-601 integrated-isoform ratio QTLs
(i2-rQTLs), which altered protein-structure, in six immune subsets. Second, we
select CDS incomplete isoforms annotated in GENCODE and identify 175-337
isoform-ratio QTL (i-rQTL). By comprehensive long-read capture RNA-
sequencing among these incomplete isoforms, we reveal 29 full-length iso-
forms with unannotated CDSs associated with GWAS traits. Furthermore, we
show that disease-causal sQTL genes can be identified by evaluating their
trans-eQTL effects. Our approaches highlight the understudied role of protein-
altering sQTLs and are broadly applicable to other tissues and diseases.

Genome-wide association studies (GWAS) have identified thousands of
susceptibility loci for complex traits such as autoimmune diseases,
metabolic diseases, and cancers; however, the causal mechanisms are
not yet fully understood. Although expression quantitative trait loci
(eQTL) have been found to be enriched among GWAS loci in disease-
relevant cells and tissues1–3, recent studies suggest that mechanisms
other than eQTL explain a substantial proportion of disease
heritability4. Splicing quantitative trait loci (sQTL) where genetic

variants affect alternative splicing5–11 are a strong candidate mechan-
ism. In the GTEx project, 23% of GWAS loci co-localized with sQTL,
while 43% co-localized with eQTL11. In addition, genomic loci pre-
viously defined as eQTL may share sQTL signals because alternative
splicing also affects the gene expression levels. Indeed, intense eva-
luation of GWAS loci, where eQTL signal coexisted, demonstrated that
alternative splicing causes disease is the responsible mechanisms for
diseases12–16.
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Themethodological approaches to identify sQTL can be classified
into two types: those based on isoform expression levels5–7,17,18 and
those based on junction read counts19,20. A typical example of the
former is isoform ratio QTL (i-rQTL) analysis, or transcript ratio QTL
analysis, which focuses on the ratio of isoform expression in the gene
quantified by the transcriptome assembler. i-rQTL analysis enables a
direct understanding of which isoform expression is altered, that is,
what kind of protein-structure change occurs. Its disadvantage is that
the quantification of isoform expression may be inaccurate, particu-
larly when the isoform annotation is incomplete. This flaw can be
overcome by subsequent methods based on raw junction reads with-
out estimating isoform expression. However, when the same junction
is shared bymultiple isoforms (53.0% of junctions in GENCODE v35), it
is difficult to know which isoform expression is altered.

Although previous sQTL analyses revealed that the largest pro-
portion of sQTL changed the untranslated regions (UTR) of
isoforms7,11, which might affect the stability of RNA or translational
efficacy, some sQTL changed coding sequences (CDS) by skipping or
introducing coding exons. This may substantially impact protein-
structure and its function by excluding or including functional
domains. In this study, we propose two i-rQTL analyses focusing on
CDS. The first is integrated-isoform ratio QTL analysis (i2-rQTL ana-
lysis), which integrates isoforms with the same CDS for detecting
protein-structure change. The second approach examined sQTL
effects on CDS incomplete isoforms, namely GENCODE isoform
annotations that contain incomplete but unique CDS fragments. As
the latter approach would lead to identification of unknown coding

isoforms, we further validated the full-length sequences of disease
relevant isoforms by long-read capture RNA-seq. Alternative splicing
is a complex event that produces a number of unknown isoforms,
and to our knowledge, no sQTL analysis focusing on changes in CDS
and confirming the full-length isoforms by utilizing long-read cap-
ture RNA-seq has been previously reported. Our approaches show
the potential for elucidating the role of protein-altering sQTL in
complex traits.

Results
Definition of eQTL and sQTL
We previously reported eQTL analysis of six immune subsets (B-cells,
CD4+ T-cells, CD8+ T-cells, monocytes, NK cells, and peripheral blood
leukocytes (PBL)) from 105 healthy Japanese volunteers21. In the pre-
sent study, we re-analyzed the dataset to further understand the
properties of eQTL and sQTL. The term sQTL, in a broad sense,
encompasses both QTL for isoform ratios and QTL for ratios of junc-
tion read counts. Moreover, the eQTL effect for a specific isoform
would influence both the isoform ratio and gene expression level (the
sum of isoform expression levels). For the sake of simplicity, we
hereafter use the terms gene eQTL, isoform eQTL, and i-rQTL
according to the following definitions: 1) genomic loci altering the
gene expression level were defined as “gene eQTL”, 2) those altering
the isoform expression level were defined as “isoform eQTL (i-eQTL)”,
and 3) those altering the ratio of the isoform expression level were
defined as “isoform ratio QTL (i-rQTL)” (Fig. 1a, b). Note that the con-
cept of i-rQTL focuses only on the ratio of the isoform expression
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Fig. 1 | Three types of quantitative trait loci (QTLs); gene eQTL, isoform eQTL
and i-rQTL. aGene A has 2 isoforms, isoform 1 and isoform 2. A locus affecting the
expression level of geneA is defined as gene eQTL. A locus affecting the expression
level of isoform 1 and/or 2 is defined as i-eQTL (isoformeQTL). A locus affecting the
isoform ratio of isoform 1 and/or 2 is defined as i-rQTL (isoform ratio QTL). b An
example of gene having both gene-eQTL and i-eQTL effects but not i-rQTL effect
(the upper panel) and thathavingboth i-eQTL and i-rQTLeffects but not gene-eQTL

effect (the lower panel). c The three types of QTLs are not independent but over-
lapping concepts. † and ‡ indicate the genes in the upper and lower panels of
b, respectively.dData preparation andprocessing from6peripheral blood cells for
the QTL analyses. e Distributions of top QTL variants relative to the gene body. In
the figure, the length of the gene body is 30,000bp, which is the average length of
all isoforms.
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levels, and some i-rQTLdonot change splicing (e.g., thoseonly altering
the transcription start site (TSS)) but consequently change the CDS
(e.g., those altering the ATG usage). As previously mentioned, these
three types of QTL are not mutually exclusive, but overlapping con-
cepts (Fig. 1b, c).

Difference in distribution between eQTL and sQTL
We identified 2476–3889 gene eQTL in each subset, which is equiva-
lent to the findings of our prior study21. In addition, we identified
3707–6131 i-eQTL as well as 1512–2537 i-rQTL in each cell type (FDR ≤
0.05, Supplementary Table 1). Next, we evaluated the distribution of
the lead variants in each analysis relative to the gene body, which is
defined as the region from the TSS to the transcription end site (TES).
These three types of QTL were differentially distributed; gene eQTL
had a large peak near the TSS. Contrarily, i-rQTL had a larger peak near
the TES (A trimodal distribution with two additional peaks in the gene
body and TES was detected by Silverman test. p =0.039). i-eQTL

showed an intermediate distribution between the other two
QTL (Fig. 1e).

Next, we examined cell-type specificity of i-rQTL effects in com-
monly expressed genes in five subsets excluding PBL, which contains
various cell types. Among a total of 1,703 i-rQTL, 360 i-rQTL showed
low cell-type specificity (significant i-rQTL effect observed in four or
five subsets) and had a large peak near the TES. In contrast, i-rQTLwith
high cell-type specificity (significant i-rQTL effect observed in one
subset) had a large peak near the TSS (Fig. 2a). As an example of cell-
type specific i-rQTL, we showed a monocyte-specific i-rQTL effect on
DNTTIP1-202 and a B-cell- and monocyte-specific i-rQTL effect on
SIDT2-212 (Fig. 2b). These i-rQTL might depend on cell-type specific
alternative promoters because DNase hypersensitive sites (DHSs) and
CAGE peaks were observed near the TSS in the corresponding subsets.
While the lead i-rQTL variant of DNTTIP1-202 (rs1711194) was located
downstream of the gene, several variants in strong linkage dis-
equilibrium (LD, r2 ≥0.8) were located in the gene body, including near

Fig. 2 | Cell-type specific i-rQTL. a For each cell-type specificity, distributions of
lead i-rQTL variants to the gene body are shown. The shade shows 95% confidence
intervals for the mean of the distribution of 1 cell-type specific i-rQTLs. b The
DNTTIP1-202 isoform had amonocyte-specific i-rQTL effect. The SIDT2-212 isoform
had B-cell- andmonocyte-specific i-rQTL effects. These genes were expressed in all
five cell types. On the boxplots the horizontal line indicates the median, the box
indicates the first to third quartile of expression and whiskers indicate 1.5 × the
interquartile range. Nominal p-values obtained by two-tailed tests are shown for

QTL effects which are identified as significant (FDR ≤0.05). B; B cells (n = 104),
CD4+; CD4+ T-cells (n = 103), CD8+; CD8+ T-cells (n = 103), Mono; monocytes
(n = 105), NK; NK cells (n = 104). c DHS peaks and FANTOM CAGE peaks of the
DNTTIP1 gene are shown. Inmonocytes only, therewereDHSs andCAGEpeaks near
the TSS region of theDNTTIP1-202 isoform. dDHS peaks and FANTOMCAGE peaks
of the SIDT2 are shown. In B-cells and monocytes only, there were DHSs and CAGE
peaks near the TSS region of the SIDT2-212 isoform.
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the CAGE peaks (Fig. 2c). Similarly, because an INDEL variant
(rs35248926) in strong LD (r2 = 0.91) with the lead i-rQTL variant of
SIDT2-212 (rs11449159) has eQTL effects on surrounding genes (TAGLN,
PCSK7, PAFAH1B2 and SIK3) in the GTEx dataset11, this variantmay have
broad regulatory effects onmultiplegenes inmultiple subsets andmay
cause the i-rQTL effect. Indeed, B-cell- and monocyte-specific tran-
scription factors such as EBF1 and POU2F2 bind to this
region22,23 (Fig. 2d).

Integration of shared coding sequence isoforms
To focus on changes in protein sequences caused by sQTL effects, we
integrated isoforms with the same CDS by adding their expression
levels (FPKM) and then re-analyzed i-eQTL/i-rQTL using these
integrated-isoforms (i2-eQTL analysis, integrated-isoform eQTL analy-
sis; i2-rQTL analysis, integrated-isoform ratio QTL analysis). We used
the “translation sequences” of the GENCODE v35 basic annotation for
isoform integration. A total of 17,050 coding isoforms that share the
same CDS with at least one other isoform were integrated into 6724
integrated-isoforms (Fig. 3a). Among them, we identified 2855–4722 i2-
eQTL isoforms and 694–1052 i2-rQTL isoforms in each subset (FDR ≤
0.05, Supplementary Table 2).

To address the methodological advantage of i2-rQTL analysis, we
compared the p-value of i2-rQTLwith the least p-value of i-rQTL among
the isoforms comprising the corresponding integrated-isoform
(Fig. 3b). We identified distinct QTL signals between these two ana-
lyses in some genes; in monocytes, while both significant i2-rQTL and
i-rQTL effects were observed for 999 genes, only either i2-rQTL or
i-rQTL effects (in at least one isoform) were observed for 53 and 302
genes respectively (FDR ≤0.05). One of the advantages of i2-rQTL
might be its power to detect QTL effects, because integration of iso-
forms results in a reduction in isoform numbers and an increase in the
accuracy of isoform quantification. A typical example was seen in
PARP9 gene; while neither PARP9-204 or PARP9-205with the sameCDS
had a significant i-rQTL effect, the integrated PARP9-204 + 205 had a
significant i2-rQTL effect (Fig. 3c, d). In contrast, the integrated ITGB7-
201 + 202didnot have a significant i2-rQTL effect,while both ITGB7-201
and ITGB7-202 had significant i-rQTL effects (Fig. 3c, d). The splicing
events observed in these isoforms altered only the 3′-UTR, and their
directions were opposing and mutually exclusive.

Next, we examined the roles of these i2-eQTL and i2-rQTL by
evaluating their co-localization with GWAS loci in the GWAS catalog24

using the RTC Score25. In each subset, 674–1197 i2-eQTL and 185-307 i2-
rQTL were co-localized with GWAS traits (RTC ≥0.8, r2 ≥0.8, Supple-
mentary Table 3). For example, i2-rQTL of PARP9-204 + 205, as descri-
bed above, was co-localized with the GWAS of LDL cholesterol levels
(rs3762637, RTC=0.98, r2 = 1.00).

sQTL analysis for CDS incomplete isoforms with long-read cap-
ture RNA-sequencing
To further examine the role of sQTL altering the protein sequences, we
focused on CDS incomplete (CDSI) isoforms, which are fragments of
CDS registered in the GENCODE comprehensive annotations. These
CDSI isoforms were independently defined because they were pre-
dicted to have a different CDS compared to the CDS complete isoform
(Fig. 4a). Of the 28,075 CDSI isoforms evaluated by our i-rQTL analysis,
175–337 isoforms had i-rQTL effects in each subset (FDR ≤0.05).
Among them, 59–129CDSI i-rQTLwere co-localizedwithGWAS in each
subset (RTC ≥0.8, r2 ≥0.8, Supplementary Table 4), suggesting that
these CDSI would have biological functions and be involved in disease
pathogenesis.

Next, we determined the sequences of the full-length isoforms
using long-read capture RNA-seq. Asmentioned above, i-rQTL analysis
can detect differences in TSS compared to junction-based sQTL ana-
lysis but may produce false positives due to inaccuracies in isoform
quantification. However, 43–46% of i-rQTL signals were overlapped

with thoseof LeafCutter analysis9,20 (FDR ≤0.05, Supplementary Fig. 1).
We selected 37 CDSI isoforms of which i-rQTL signals were confirmed
by LeafCutter analysis on the junctions specific to CDSI isoforms. We
used xGen custom probes to capture these isoforms. We identified a
candidate list of full-length isoforms using the FLAIR pipeline26. From
this list, we extracted isoforms whose 5′- and 3′-end were within 50 bp
of known TSSs and TESs27,28 and whose high coding probability was
confirmed by CPAT29 (Fig. 5a). In a comparison between long-read
capture RNA-seq and conventional long-read RNA-seq using LCL (B-
cells) or THP-1 (monocytes), the former detected 1.8-fold more full-
length of “CDS complete” isoforms on average, even though the total
number of reads was less than one-tenth (Fig. 5b). As a result of ana-
lyses using six cell lines of LCL, THP-1, Jurkat (T-cells), HEK293
(embryonic kidney cells), HepG2 (liver cells), and K562 (leukaemic
cells), we identified full-length of CDSI isoforms in 78.4% of targeted
genes (29 out of 37 genes). Of note, we identified multiple full-length
isoforms for corresponding CDSI isoforms in most genes (90.0%, 26/
29). The variation of completed CDSI isoforms were different among
these genes: the number of isoforms accounting for over half of all
completed CDSI isoforms was one for 22 genes, two for three genes,
three for one gene, and six for twogenes. The remaining gene,ATXN2L,
which had many known splicing isoforms, required 26 isoforms
(Supplementary Fig. 2).

Since we confirmed the presence of completed CDSI isoforms at
the transcriptional level but not at the protein level, we evaluated the
translation of these isoforms using PeptideAtlas30, a mass
spectrometry-based peptide database. Of the 37 CDSI isoforms, we
identified 4 isoforms having peptides unique to the isoforms, indi-
cating they were indeed translated (Supplementary Table 5). Although
peptides translated by CDSI isoforms would be difficult to detect by
mass spectrometry due to their relatively low expression levels, we
confirmed the translation of 1461 isoformsout of 26,457CDSI isoforms
registered in GENCODE v35.

Among the 29 genes confirmed for their full-length isoforms, the
BST1 gene is a GWAS candidate gene for Parkinson’s disease (PD). The
i-rQTL effect on BST1-205 results in an alternative final coding exon
relative to the main isoform, BST1-201. The lead i-rQTL variant
(rs4263397) was located only 18 bp from this alternative splice
acceptor site (SAS) (Fig. 4c). TheGWAS risk allele increased the ratio of
this isoform, while decreasing the overall expression of BST1 gene
(Fig. 4d). BST1 is a glycosyl-phosphatidylinositol (GPI)-anchored
membrane protein with a short hydrophobic region at the C-terminus,
which forms a dimer31,32. According to the predicted protein structure
by AlphaFold233,34, the homodimer of BST1-201 and the heterodimer
(BST1-201 and BST1-205) had the same structure except for the
C-terminus (Fig. 5e, RMSD=0.067).

The CARD9 gene is a GWAS candidate gene for ankylosing spon-
dylitis (AS) and inflammatory bowel disease (IBD). The i-rQTL effect on
CARD9-208 shortened the 5′-side of exon 2 by 124 bp. The lead i-rQTL
variant (rs4498662) was located downstream of the gene, but the
variant in strong LD (rs10781499, r2 = 0.90) was located only 19 bp
from this alternative SAS. This isoform had a downstream alternative
first ATG, or translation start site, and consequently lacked the CARD
domain (Fig. 4c). The risk allele of ASdecreased the ratio ofCARD9-208
and increased that of CARD9-201 (Fig. 4d). CARD9 has a CARD domain
at its N-terminus thatmediates interactions between CARD-containing
molecules, and a coiled-coil at its C-terminus that functions as an oli-
gomerization domain35. According to the predicted structures, both
CARD9-201 and CARD9-208 had a coiled-coil domain and their struc-
tureswere similar (RMSD= 4.7 Å), and they could oligomerize similarly
through this domain (RMSD= 7.1 Å, Fig. 5d, f).

The ATXN2L gene is a GWAS candidate gene for intelligence.
Ataxin type 2 associated protein encoded by the ATXN2L gene is a
member of the spinocerebellar ataxia (SCA) family associated with
neurodegenerative diseases. The i-rQTL effect was observed on the
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rQTL analysis, integrated-isoform ratioQTL analysis). bComparison of the p-values
of the correlation analysis before and after the integration of isoforms. The p-values
of isoforms before integration were the minimum of the i-rQTL p-values of each
integrated isoform. c,d PARP9-204 and PARP9-205have the sameCDSandwerenot

identified as significant i-rQTL in monocytes (n = 105). The integrated isoform
(PARP9-204 + 205) was identified as a significant i2-rQTL. In contrast, ITGB7-201 and
ITGB7-202 had the same CDS and were identified as significant i-rQTLs in NK cells
(n = 104). The integrated isoform (ITGB7-201+ 202) was not identified as a sig-
nificant i2-rQTL. On the boxplots the horizontal line indicates the median, the box
indicates the first to third quartile of expression and whiskers indicate 1.5 × the
interquartile range. Nominal p-values obtained by two-tailed tests are shown for
QTL effects which are identified as significant (FDR ≤0.05).
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ATXN2L-221 isoform, of which the second exon from the 3′-end was
extended by 3 bases. The lead i-rQTL variant (rs2008514) was located
downstream of the gene, but the variant in strong LD (rs55719896,
r2 = 0.96) was located on the alternative SAS (Fig. 4c). Long-read cap-
ture RNA-seq identified over 60 isoforms with this splice junction.
Notably, the majority of mRNAs with this ATXN2L-221-specific SAS
adopted an alternative TSS (Fig. 5g, p = 1.91 × 10−39, chi-squared test)
and contained another splice junction within the final exon (> 90%,
p = 6.00 × 10−50, chi-squared test). This may reflect the thermodynamic
stability of the secondary structure predicted by the RNAfold of the
four isoforms from two different TSSs with two different SASs. (Sup-
plementary Figure 3). According to the predicted protein structures,
ATXN2L-221 and ATXN2L-203 had dissimilar structures (RMSD= 27.0
Å, Fig. 5h).

Evaluation of trans-eQTL effects via sQTL effects with protein
structural changes
Finally, we assessed the biological importance of CDS changes intro-
duced by sQTL, utilizing trans-eQTL effects (Fig. 6a). While i2-rQTL by
definition cause changes in CDS, some i-rQTL cause changes in CDS
and somedo not. Therefore, we compared the trans-eQTL effects of i2-
rQTL and i-rQTL that do not change CDS. We here defined that the
trans-eQTL effect was the effect of a sQTL variant on the expression
levels of distal genes. For instance, if a sQTL variant affected the ratio
of two isoforms that were translated into two protein isoforms of a
transcription factor, then the sQTL variant would affect the expression
of distal genes that would be differentially regulated by these two
transcription factor isoforms. Comparing 5 million randomly selected
variant-gene pairs, the QQ-plot analysis indicated enrichment of the

b

|

CARD9-201

CARD9-202

CARD9-208 unknown

Alternative first Methionine

c

CARD domain

ATXN2L-202

ATXN2L-225

ATXN2L-221 unknown

Alternative splice acceptor

BST1-201

BST1-202

BST1-205 unknown

Alternative splice acceptor

i-rQTL variant

rs4263397

| | | ||
r2

1.0
0.9
0.8

Lead i-rQTL variant

|||| |

rs4698412
GWAS variant

| 1.0
0.9
0.8

r2

Lead i-rQTL variantGWAS variant

i-rQTL variant |||| | | ||

| 1.0
0.9
0.8

r2

Lead i-rQTL variantGWAS variant

i-rQTL variant | | | | || | || | || || | | |

Splice site variant

CARD9-208

GWAS risk allele count

Is
of

or
m

 r
at

io

d

Is
of

or
m

 r
at

io

CARD9-201 CARD9-202

0 1 2 0 1 2 0 1 2

0.00

0.25

0.50

0.75

0.0

0.1

0.2

0.3

0.4
ATXN2L-202 ATXN2L-225 ATXN2L-221

0 1 2 0 1 2 0 1 2

Is
of

or
m

 r
at

io

ATXN2L

0 1 2
10

20

30

40

50

G
en

e 
ex

pr
es

si
on

CARD9

0 1 2
5

10

15

20

25

30

G
en

e 
ex

pr
es

si
on

G
en

e 
ex

pr
es

si
on

BST1-201 BST1-202 BST1-205

0 1 2 0 1 2 0 1 2

0.0

0.2

0.4

0.6

BST1

0 1 2

80

100

120

140

CDS complete

a
Unique CDS

unknown
Exon skipping/inclusion

Alternative TSS

Alternative first Methionine
unknown

unknown

CDS complete

CDS incomplete

CDS incomplete

CDS complete

CDS incomplete

Transcript based analysis

unknown

CDSI unique junction

Junction based analysis

i-rQTL (FDR<0.05)
LeafCutter (FDR<0.05)

sQTL analysis 
for CDS incomplete isoforms

rs10781499

rs8062405 rs55719896

Fig. 4 | sQTL analysis for CDS incomplete isoforms. a Examples of CDS incom-
plete isoforms with and without unique CDS. b sQTL analysis for CDS incomplete
isoforms. c Gene models of the major isoforms of BST1, CARD9 and ATXN2L. BST1-
205, CARD9-208 and ATXN-221 have incomplete CDS. d Boxplots of i-rQTL effects

on CDS incomplete isoforms of three genes and eQTL effects on those genes. On
the boxplots the horizontal line indicates the median, the box indicates the first to
third quartile of expression and whiskers indicate 1.5 × the interquartile range.

Article https://doi.org/10.1038/s41467-022-32358-1

Nature Communications |         (2022) 13:4659 6



significant trans-eQTL effect in i2-rQTL variants (Fig. 6b), which war-
ranted the following analysis.

The trans-eQTL effects of sQTL variants may give clues to the
mechanisms of disease, andwe here took an example of the GWAS loci
for systemic lupus erythematosus (SLE) at 6p21.31. This locus had a
large LD block36 including multiple eQTL and i2-rQTL genes (Fig. 6c).
Previous studies37,38 had considered the UHRF1BP1 gene as candidate

causal gene because of its strong eQTL effect. The present analysis
indicated the SNRPC gene as another candidate gene, because it had a
strong i2-rQTL effect with protein structural changes. While the main
isoform (SNRPC-201) of the SNRPC gene has a zinc-finger domain, the
minor isoform (SNRPC-203) does not (Fig. 6d). These SNRPC isoforms
had an i2-rQTL effect in all subsets (Fig. 6e). The GWAS risk allele
increased the isoformratio of SNRPC-201 anddecreased thatof SNRPC-
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203. We evaluated the co-localization of GWAS and these QTL signals,
and theRTC scoreof i2-rQTL variant (rs1180775074)on the SNRPCgene
was 0.90–0.98 in each subset, while that of eQTL variant (rs2764197)
on the UHRF1BP1 gene was 0.7–0.75 (Fig. 6f). Because the trans-eQTL
effect of this i2-rQTL variant on each distal gene was modest, we
evaluated the effects collectively by using Gene Set Enrichment Ana-
lysis (GSEA)39,40. An increase in the isoform ratio of SNRPC-201 and a
decrease in that of SNRPC-203 enhanced the expression of interferon
signature genes (ISGs), which are hallmarks of SLE patients41. Inter-
estingly, this tendency was remarkable inmen in the stratified analysis
by gender of the samples (Fig. 6g).

Discussion
The landscape of mRNA isoforms is much more complex than expec-
ted. Indeed, an analysis of 9795 RNA-seq samples from the GTEx col-
lection identified 266,331 transcripts in protein-coding genes, which
doubled the number of transcripts registered in the RefSeq database42.
Therefore, we needed to establish an efficient method to find disease-
causing isoforms among the myriad of isoforms with or without phy-
siological functions. In the present study, we proposed two strategies,
integration and selection, for this purpose. For the former, we per-
formed i2-rQTL analysis to integrate isoforms with the same CDS, and
for the latter, we selected CDS incomplete isoforms and confirmed
them by long-read capture RNA-seq.

We adopted i-rQTL analysis as the main approach to identify
sQTL, instead of junction-based sQTL analysis. This analysis can iden-
tify the full-length of sQTL isoforms, which is important for assessing
functional changes inproteins. In addition, this analysis can also detect
sQTL effects in a broadsense including those causedby alternativeTSS
or alternative TES (alternative PAS usage) without changes in junc-
tions. Although the previous studies showed less cell-specific effects of
sQTL compared to eQTL2, our observation that sQTL effects caused by
alternative TSS tended to have cell-type specificity (Fig. 2) suggested
that previous junction-based sQTL studiesmight have underestimated
the cell-type specific sQTLs and their roles in diseases. However, it is
true that the junction-based sQTL analysis has improved the robust-
ness of sQTL analysis20, because it not only skips the process of
transcript-assembly but also integrates isoforms with the same junc-
tion. We apply the latter advantage to i-rQTL analysis by integrating
isoforms with the same CDS (i2-rQTL analysis) to identify biologically
important sQTL, which was supported by our finding that i2-rQTL
affected the expression of more genes than i-rQTL without i2-rQTL
effects (Fig. 6b).

For the second strategy,weperformed i-rQTL analysis focusingon
CDSI isoforms. We further confirmed the full-length sequences of
these incomplete isoforms by long-read capture RNA-seq, which
appeared to be more efficient compared to conventional long-read
RNA-seq (Fig. 5b). Through this analysis, we demonstrated that low
expression isoforms like CDSI isoforms might indeed be associated
with diseases. For the first example, the PD risk allele rs4698412-A
increased BST1-205, which has an alternative coding exon 9 corre-
sponding the GPI-anchor domain, compared to BST1-201 (Fig. 5d). The
selective vulnerability of dopaminergic neurons in PD is caused by a
Ca2+ imbalance43. BST1 exists as a dimer protein and releases Ca2+ from
intracellular Ca2+ stores via the production of cyclic ADP-ribose32. The
altered GPI-anchor domain of BST1-205 may influence the protein

function, possibly with an inhibitory or dominant-inhibitory effect on
BST1-201 (Fig. 5e). For the second example, the AS risk allele
rs10781499-A decreased CARD9-208 lacking the CARD domain, which
mediates interactions between CARD-containing molecules. As
CARD9-208 retains an oligomerization domain, it may have an inhi-
bitory (or dominant inhibitory) effect on its main isoform as observed
with BST1-205. Because opposing QTL effects were observed with the
main isoforms (BST1-201 and CARD9-201), the total increase (BST1) or
decrease (CARD9) in gene function in the risk allele could be syner-
gistic if the spliced isoforms have dominant inhibitory effects. For the
third example, the effective allele of IBD, BMI, asthma, and type 2
diabetes and intelligence, rs8062405-G decreased the expression of
ATXN2L-211. Though this locus showed multiple eQTL/i-rQTL effects
for multiple genes, the co-localization of the i-rQTL effect on ATXN2L-
221with the GWAS signal is more robust in all subsets, suggesting that
ATXN2L-221 is responsible in this locus. The stronger sQTL effect on
alternative SASmay be the primary event at this locus, but how it alters
the TSS usage remains unclear. However, the amount of isoforms with
alternative TSS and alternative SAS may reflect differences in mRNA
stability. Therefore, not only the amino-acid change in the junction but
also the secondary change in the N-terminal domain of ATXN2L-221
may be responsible for the disease.

While most GWAS loci have a single functional variant such as a
cis-eQTL variant, some GWAS loci have multiple functional variants
(missense, eQTL/sQTL variants) and multiple candidate genes, which
make it difficult to determine the disease-causing gene. Similar to the
roles of driver and passenger mutations in cancer cells, some of the
variant effects are true disease-causing, while others are not disease-
related; however, distinguishing between them is difficult. We esti-
mated the candidate causalQTL effect by examining trans-eQTL effect,
based on the assumption that i2-rQTL effects on CDS would sub-
stantially influence gene function. This approach successfully identi-
fied a candidate causal gene in the SLE risk loci, in which the disease
risk allele (rs2764208-G) had an i2-rQTL effect on SNRPC isoforms.
SNRPC encodes the U1-C protein, which is one of the components of
U1-snRNP (small nuclear ribonucleoprotein) and is known to be an SLE
specific autoantigen. The U1-snRNP immune complex induces inter-
feron signaling via TLR7 in plasmacytoid dendritic cells, whose sig-
naling is different in the presence and absence of estrogen44.
Considering the correlation between the isoform ratio and the
induction of ISGs expression, SNRPC is a strong candidate for the
causal genes in this locus. In addition, the sex-biased results observed
in GSEA may lead to the elucidation of gender differences in the
pathophysiology of SLE.

Our analyses have several limitations. Firstly, we might have
underestimated the effects of alternative UTR usages as a result of our
focus on the CDSs. Accumulating evidence has shown that both 5′- and
3′-UTRs have effects on the stability of mRNA or its translational effi-
cacy, through the binding of miRNA or RNA-binding proteins45,46.
Indeed, with regards to disease genetics, a recent report has shown
that genetic variants affecting alternative polyadenylation signals
(PASs) explained a substantial proportion of heritability for complex
diseases, emphasizing the importance of 3′-UTR47. Secondly, we used
sQTL data obtained from a Japanese population in the co-localization
analysis of GWAS loci, which were mostly derived from a European
population. These population differences could bias our findings,

Fig. 5 | Long-read capture RNA-sequencing for CDS incomplete isoforms.
a Overview of long-read capture RNA-sequencing analysis for CDS incomplete
isoforms. b Comparison of long-read capture RNA-sequencing and conventional
long-read RNA-sequence. c Results of long-read capture RNA-sequencing for three
genes. A compressed light blue horizontal line in the alignment track corresponds
to a single read. Gene models are shown for the reference isoform and major
unannotated isoform(s) with CDS incomplete isoform specific junction.
d Comparison of reference isoforms and completed CDS incomplete isoforms.

e Predicted protein structures using ColabFold; BST1-201 and BST1-205, BST1
homodimer (BST1-201) and heterodimer (BST1-201 and BST1-205). f Predicted
protein structures using ColabFold; CARD9-201 and CARD9-208, CARD9 homo-
dimer (CARD9-201) and heterodimer (CARD9-201 and CARD9-208). g The ratio of
ATXN2L isoforms with alternative TSS to those with reference TSS for each isoform
with reference or alternative splice acceptor. h Predicted protein structures using
ColabFold; ATXN2L-225 and ATXN2L-221. CDSI CDS incomplete, TSS Transcription
start site, SA Splice acceptor.
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especially in the direction of false-negative co-localization. However,
more than 80% of i2-rQTL effects in B-cells from the Japanese popula-
tion in our analysis were validated in LCLs (n = 373) from the European
population7 (FDR ≤0.05), and 96.4%of these effects were consistent in
their direction (Supplementary Fig. 5). This indicated that most sQTL
were shared between these populations. Thirdly, our analysis could
not deny the possibility of disease-causing effects of other functional
variants, such as missense variants or eQTL variants, existed on the
same haplotype of i-rQTL/i2-rQTL. For example, in the ATXN2L locus

having multiple eQTL/i-rQTL effects for multiple genes, the eQTL
effect on IL27 could be responsible for IBD, because the anti-
inflammatory roles of IL-27 have been established in a murine colitis
model48. Furthermore, because multiple functional variants having
effects on the same gene may simultaneously cause the same disease,
which occasionally occurs in complex traits49, it may be difficult to
exclusively evaluate the roles of sQTL variants in diseases.

With the advent of long-read sequencing technologies, alternative
splicing in disease etiology has gained more attention in recent years.
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Fig. 6 | Identification of causal genes using trans-eQTL analysis at genomic loci
with multiple eQTL and i2-rQTL effects. a Schematic diagram of how an i2-rQTL
effect leads to a trans-eQTL effect. b Comparison of trans-eQTL p-values of i-rQTL
variants and those of i2-rQTL variants. c The SNRPC-UHRF1BP1 locus forms a large
linkage disequilibrium block and contains multiple eQTL or i2-rQTL genes. d Gene
models of major protein coding isoforms of the SNRPC gene. e i2-rQTL effects on

SNRPC and eQTL effect on UHRF1BP1 of the SLE GWAS lead variant (rs2764208) in
monocytes (n = 105). On the boxplots the horizontal line indicates the median, the
box indicates the first to third quartile of expression andwhiskers indicate 1.5 × the
interquartile range. fRTCscores for SLEGWASof i2-rQTL effect on SNRPC and eQTL
effect on UHRF1BP1. g Gene Set Enrichment Analysis (GSEA) using Interferon Sig-
nature Genes (ISGs) for SNRPC isoform ratios in monocytes in both sexes.
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Although several studies have established isoform catalogues in var-
ious tissues and cells using long-read RNA-seq50, there remains many
isoformsunidentified due to lack of read depths. Instead, we proposed
long-read capture RNA-seq for these low-expressed and poorly-
annotated isoforms, combined with sQTL analysis focusing on CDS.
This approach would be powerful for identifying true causal effects in
the GWAS loci, and functional dissection of identified isoforms in
animal models should elucidate unknown mechanisms of disease
pathogenesis.

Methods
eQTL dataset
We reanalyzed short-read RNA-seq data of five immune subsets and
peripheral blood leukocytes (PBL) from 110 Japanese healthy
volunteers21. Of the volunteers, 88 (80%)were females and the average
age was 39.0 ± 10.6 years. TruSeq Stranded mRNA Library Prep Kits
(Illumina) were used for the RNA-Seq library preparation, and a HiSeq
2500 was used for sequencing (paired-end 125 bp reads).

Infinium OmniExpressExome BeadChip (Illumina) was used for
genotyping. Genotype imputation was done using Minimac351 and
1000 Genomes Project Phase 3 (release 3) as a reference panel. We
used 5,415,012 SNPs and 718,459 InDels on autosomes withMAF ≥0.05
for analyses. Detailed methods of the eQTL dataset preparation are
available in our previous paper21.

Read mapping and transcriptome assembling
We re-conducted the read mapping and transcriptome assembling
from our previous study21 using different tools and updated refer-
ences. The mapping tool was changed from TopHat2 to STAR v2.7.5a.
We also used the updated reference genome (GRCh38) and transcript
annotation (GENCODE v35 comprehensive and basic annotation).
Transcriptome assembling and quantification of expression levels
were performed by Cufflinks v2.2.1, using reads of uniquely mapped
and concordant alignment.

eQTL analysis
We performed independent eQTL analysis for each cell type using
QTLtools v1.3.152. We defined the analysis using the expression level of
genes as “gene eQTL analysis”, and the analysis using the expression
level of each isoform as “isoform eQTL analysis”. We performed the
following two types of isoform eQTL analysis: 1. analysis using GEN-
CODE v35 comprehensive annotation (i-eQTL; isoform eQTL analysis),
and 2. analysis focusing on changes in protein structure using GEN-
CODE v35 basic annotation as below. In the second analysis, we
grouped isoforms with the same CDS and summed the expression
levels of these isoforms. We used the grouped isoform as a single
isoform for the following analysis (i2-eQTL; integrated-isoform eQTL
analysis). In gene eQTL analysis, genes with gene FPKM>0.1 in all
samples of each cell type were analyzed. In i-eQTL/i2-eQTL analysis,
isoforms of these gene with isoform FPKM> 1 in 5% samples were
analyzed. We performed quantile normalization, then rank-
transformed normalization, and finally PEER normalization53 using 15
hidden factors to eliminate the batch effect between experiments.
Correlation analysis with the genotypewas performed on the SNPwith
MAF ≥0.05 existing within the gene-SNP distance ≤ 1MB using per-
mutation pass of QTLtools. In order to correct multiple hypothesis
testing, we used the Storey & Tibshirani False Discovery Rate proce-
dure implemented in the R/qvalue package.

sQTL analysis
We identified sQTLs by i-rQTL (isoform ratio QTL, trQTL) analysis54.
i-rQTL analysis is an isoform based sQTL analysis. We performed the
following two types of analysis similar to i-eQTL/i2-eQTL analysis: 1.
analysis using GENCODE v35 comprehensive annotation (i-rQTL ana-
lysis), and 2. analysis focusing on changes in protein structure using

GENCODE v35 basic annotation (i2-rQTL; integrated-isoform ratio QTL
analysis). We calculated the expression ratio of the isoform over all
isoforms and normalized in the sameway as for eQTL analysis. We also
conducted junction-based sQTL analysis using LeafCutter20. LeafCut-
ter has high sensitivity for detecting sQTL junctions. We used a series
of scripts available at the LeafCutter website. We counted the uniquely
mapped junction reads using bam2junc.sh. We then clustered the
junction read counts using leafcutter_cluster.py. The maximum intron
length was set to 500,000 bp, and the minimum number of reads of
the cluster was set to 50 reads. We normalized the junction read ratio
in the same cluster in the same way as for eQTL analysis.

Co-localization analysis of GWAS and QTL signals
We evaluated the co-localization of GWAS and QTL effects using RTC
(regulatory trait concordance) score25. Calculation of RTC score was
performed using QTLtools RTC mode. For GWAS data, we used the
EMBL-EBI GWAS catalog24 as of August 26, 2020. In integrating srQTL
analysis and GWAS, we used LeafCutter20 for curation of i-rQTL/i2-
rQTL analysis results by the following criteria: 1. FDR; false discovery
rate ≤0.05 in the i-rQTL/i2-rQTL analysis, 2. FDR ≤0.05 in the Leaf-
Cutter analysis, and 3. the direction of sQTL effects (calculated as beta)
were consistent in both analyses.

Long-read capture RNA-seq for CDSI isoforms
We conducted long-read RNA-sequencing for the CDSI isoforms (37
isoforms in total), whose i-rQTL signals were co-localized with disease
GWAS signals and whose unique splice junctions showed significant
sQTL signals in LeafCutter analysis (FDR ≤0.05). We prepared xGen
Custom Target Capture Probes (biotinylated 120bp-ssDNAs generated
by IDT) that covered the entire main-isoform sequences of corre-
sponding genes as well as the unique junction sequences for the CDSI
isoforms. All 1,411 sequences of custom target probes are available in
the Supplementary Data 7. We isolated total RNA from six cell lines,
LCL, THP-1, Jurkat, HEK293, HepG2, and K562 (ATCC; American Type
Culture Collection) using TRIZOL Reagent (ThermoFisher), RNeasy
Mini Kit (QIAGEN) and RNase-Free DNase Set (QIAGEN). We reverse
transcribed 100ng of total RNA by smartseq v2 protocols55 with oligo-
dT primers and then amplified them by 22 cycles of PCR using KAPA
HiFi Hot Start Ready Mix (Kapa Biosystems) with 5Me-isodC-TSO and
ISPCR primers. We hybridized and captured the cDNA with xGen
probes using an xGEN Hybridization and Wash Kit (IDT) according to
the manufacturer’s protocol. We then amplified the captured cDNA
with additional 10 cycles of PCR as described above. For library pre-
paration for sequencing, we used a Nanopore Ligation Sequencing Kit
(SQK-LSK109; Oxford Nanopore Technologies) and NEBNext Quick
Ligation Module/NEBNext Ultra II End-Repair/dA-Tailing Module (New
England Biolabs). Then cDNAs were sequenced by MinION (Oxford
Nanopore Technologies) with a Flongle Flow Cell (FLO-FLG001).
Basecalling was done using Guppy (v4.4.1). The obtained fastq files
were aligned to the GRCh38 primary assembly using minimap2 with
reference to the splice junctions in theGENCODE v35 annotation. After
flair-correct and flair-collapse, we extracted isoformswhose 5′-endwas
located within 50 bp from the FANTOMCAGE peaks (relaxed TSS) and
whose 3′-end was located within 50bp from the TES of PolyASite2.0.
The ORFs of isoforms were identified using CPAT (coding
probability ≥0.364).

We performed conventional long-read RNA-seq using 300ng of
total RNA from LCL and THP-1. We used the Magnosphere UltraPure
mRNA Purification Kit (TAKARA BIO) to isolate mRNA. After reverse
transcription and switching reactions using a cDNA-PCR sequencing
kit (SQK-PCS109; Oxford Nanopore Technologies), we amplified the
cDNA by 10 cycles of PCR with LongAmp Taq (New England Biolabs).
We then sequenced them using GridION X5 (Oxford Nanopore Tech-
nologies) with a MinION Flow Cell (R9.4.1/FLO-MIN106D). Data pro-
cessing was done as for the capture RNA-seq.
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Protein structure prediction
We extracted the longest ORF sequence from the full-length mRNA
sequence identified by long-read capture RNA-seq using ORFfinder
(NCBI). After converting the nucleotide sequence to amino acid
sequence according to the codon table, we confirmed that the reading
frame matched the corresponding isoform translation sequence in
gencode v35 comprehensive annotation.We used ColabFold234, which
is based on AlphaFold233, a tool for predicting higher-order structures
of proteins using deep learning, to predict the structure of the protein
or complex with the amino acid sequence. All options were used as
default (use_amber = False, use_templates = False, msa_mode =
MMseqs2 (UniRef+Environmental), model_type = auto (AlphaFold2-
ptm and AlphaFold2-multimer), pair_mode = unpaired + paired,
num_recycles = 3).

Trans-eQTL analysis
To compare the strength of the effect of i-rQTL and i2-rQTL to alter the
expression of other genes (trans-eQTL effect), we performed correla-
tion analysis between lead i-rQTL and i2-rQTL variants and expression
levels of other genes (excluding the genes having cis-eQTL effects,
FDR ≤0.05). In addition, we applied Gene Set Enrichment Analysis
(GSEA39,40) to evaluate the effect of i2-rQTL variants on the expression
of specific gene sets. The normalized isoform ratio of the i2-rQTL gene,
which is a continuous variable, was used as the phenotype label, and
the normalized FPKM of the gene was used as the expression data.
Pearson’s correlation coefficient was used for weighted metrics.

URLs
Minimac3 (https://genome.sph.umich.edu/wiki/Minimac3)
PEER (http://www.sanger.ac.uk/science/tools/peer/)
STAR (https://github.com/alexdobin/STAR/)
Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/)
QTLtools (https://qtltools.github.io/qtltools/)
LeafCutter (https://github.com/davidaknowles/leafcutter)
1000 Genomes Project (http://www.1000genomes.org/)
GENCODE Project (http://www.gencodegenes.org/)
GWAS catalog (https://www.ebi.ac.uk/gwas/home/)
FLAIR (https://github.com/BrooksLabUCSC/flair/)
CPAT (https://cpat.readthedocs.io/en/latest/)
ColabFold (https://github.com/sokrypton/ColabFold)
ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/)
RNAFold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi)
GSEA (https://www.gsea-msigdb.org/gsea/)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The main results of i2-rQTL analysis are available in Supplementary
Data 1, 2. Summary statistics are available at Synapse (Accession no.
syn33245388; https://doi.org/10.7303/syn33245388). The main results
of i-rQTL analysis for CDS incomplete isoforms are available in Sup-
plementary Data 3, 4. The completed genemodels for CDS incomplete
isoforms are available as a GTF file in Supplementary Data 6.

Code availability
The code for this study is available on request from the corresponding
author.
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