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Subcortical-cortical dynamical states of the
human brain and their breakdown in stroke

Chiara Favaretto 1,2 , Michele Allegra1,3,4, Gustavo Deco 5,6,
Nicholas V. Metcalf7, Joseph C. Griffis7, Gordon L. Shulman7,8,
Andrea Brovelli 4 & Maurizio Corbetta 1,2,7,8,9

The mechanisms controlling dynamical patterns in spontaneous brain activity
are poorly understood. Here, we provide evidence that cortical dynamics in
the ultra-slow frequency range (<0.01–0.1 Hz) requires intact cortical-
subcortical communication. Using functional magnetic resonance imaging
(fMRI) at rest, we identify Dynamic Functional States (DFSs), transient but
recurrent clusters of cortical and subcortical regions synchronizing at ultra-
slow frequencies. We observe that shifts in cortical clusters are temporally
coincident with shifts in subcortical clusters, with cortical regions flexibly
synchronizing with either limbic regions (hippocampus/amygdala), or sub-
cortical nuclei (thalamus/basal ganglia). Focal lesions induced by stroke,
especially those damaging white matter connections between basal ganglia/
thalamus and cortex, provoke anomalies in the fraction times, dwell times, and
transitions between DFSs, causing a bias toward abnormal network integra-
tion. Dynamical anomalies observed 2 weeks after stroke recover in time and
contribute to explaining neurological impairment and long-term outcome.

In the healthy brain, neuronal populations interact at multiple tem-
poral scales, fromhundreds ofmilliseconds to tens of seconds through
interlocked rhythms1–4. While neuroscience has traditionally focused
on fast neural spiking activity5,6, more recent theoretical work and
simultaneous recordings from thousands of neurons show that activity
in the infra-slow frequency range (<0.1Hz) recruits the majority of the
brain’s energy budget7–9, and is behaviorally relevant10–13. In the human
brain, infra-slow fluctuations can be easily measured with fMRI blood
oxygenation level-dependent (BOLD) and EEG/MEG signals14. Infra-
slow activity is organized in distinct spatiotemporal patterns known as
resting state networks, formed by groups of regions showing tempo-
rally correlated activity (functional connectivity, FC) and co-activating

during behavioral tasks15,16. More recently, it has been shown that this
network structure reflects the long-time average (‘static FC’) of rapidly
switching connectivity patterns (‘dynamic FC’ or dFC) which can be
consistently observed with different analysis methods17–19 and are sig-
nificantly correlated with global behavioral traits (e.g. processing
speed or fluid intelligence1). The mechanisms controlling the large-
scale temporal coordination of infra-slow activity are unclear, parti-
cularly whether specific regions play a leading role in orchestrating
global changes in connectivity patterns. A leading hypothesis is that
shifts in brain states at rest, or during tasks, depend on highly inter-
connected cortical regions (hubs), e.g., precuneus, posterior cingulate
cortex, and lateral prefrontal cortex, that flexibly interact at different
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points in time with different networks20–22. However, recent studies
have also shown hubs in subcortical regions (basal ganglia23,
thalamus23,24, hippocampus20,25–27). Whether cortical synchronization
also relies on subcortical regions is still poorly known. Clinical work
has shown FC dynamics alterations in a variety of non-focal conditions
(neurodegeneration, consciousness abnormalities, schizophrenia,
autism)17,19,28–31, which suggests that evenmore pronounced alterations
should occur in focal conditions. Focal lesions, such as those induced
by stroke, provide an ideal testbed to study the relations betweenbrain
structure and dynamics, since they considerably amplify the natural
range of inter-subject variability in anatomical as well as functional
connectivity. Subcortical lesions produce widespread functional
alterations of the ‘static’ network structure—an anomalous inter-
hemispheric segregation and intra-hemispheric integration32–34.
Recent studies indicate that lesions induce anomalies also at the dFC
level, altering the dynamic balance between integration and
segregation35–37. However, which structural changes determine these
functional anomalies, and how the interplay between cortex and sub-
cortex contributes to them, has never been thoroughly investigated.

In thiswork, we analyze dFCpatterns (“dynamic functional states”
or DFSs) in a large cohort of first-time stroke patients at different
clinical stages. Our study has three aims. First, we wish to describe
DFSs both at the cortical and subcortical level and determine whether
cortical and subcortical state dynamics are linked. Second, we examine
the relation between structural lesions and alterations of FC dynamics,
in terms of the fraction times and dwell times of DFSs.We usemachine
learning methods to explain abnormalities of dynamic FC with lesion
location and patterns of structural disconnection, either at the cortical
or subcortical level34,38,39 or in cortical-subcortical pathways27,40,41.
Finally, guided by previous results on the behavioral relevance of
lesion location38,42, structural disconnections34,42, and static FC
abnormalities33,43, we test whether information about FC dynamics
enhances explanation of behavioral deficits and acute-to-chronic
explanation of behavioral recovery.

Results
Definition of dynamic functional states
Control and stroke subjects were identified from the Washington
University Stroke cohort (https://cnda.wustl.edu/app/template/
Login). To obtain reliable dFC estimates at the individual level, we
analyzedonly subjectswith at least 300TR (600 s) of valid signals after
pre-processing and censoring. This criterion identified 20 controls
with two scan sessions 3 months apart, and 47 patients with first-time
strokes with scans at three time points (2 weeks, 3months, 12months).
The lesions frequencymapof the stroke group shows thatmost lesions
involve the deep middle cerebral artery distribution with damage of
the basal ganglia and subcortical white matter (SI-Fig. 1). Fewer than
20% were cortical lesions. This distribution matches previous pro-
spective cohorts of stroke lesions38,44,45 (SI-Tables 1–3).

We analyzed dFC through themost straightforward approach: the
sliding-window temporal correlation (window width = 60 s, window
step = 2 s) followed by eigenvector decomposition and clustering (see
“Methods” section and Fig. 1 for flowchart) to define a set of con-
nectivity states that continuously activate and deactivate over time
(DFSs), as in refs. 46–48. All projected data from controls (CTRs) and
patients (PATs) (at all time points) were concatenated and clustered in
time (with K-means algorithm), yielding a limited number of DFSs. We
ran K-means between K = 2 and K = 10. The optimal solution was
K = 5 selected through Silhouette and Davies-Bouldin indexes (SI-
Fig. 2). We performed several control analyses to ensure their
robustness both in terms of the size of the temporal window used for
the calculation, and the number of states (K = 2� 10). We also showed
that the DFSs were representative, in each window, of the dynamic FC
from which they were derived (see SI paragraph S1–S4, S6 and SI-
Figs. 3–7, SI-Fig. 11).

Dynamic functional states (DFSs) capture cortical and sub-
cortical interactions
Five DFSs described the dynamic functional connectivity changes in
healthy controls and stroke patients. We used several representations
to illustrate these functional states in cortical and subcortical regions.

Figure 2 visualizes DFSs in matrix form (Fig. 2a) and through a
circular graph representation (Fig. 2b). Positive weights indicate
positive co-modulation, whereas negative weights indicate negative
co-modulation between brain regions.We characterized DFSs in terms
of the most common static FC biomarkers observed in stroke32,34,43,
namely: (1) the average homotopic inter-hemispheric connectivity (2)
the average intra-hemispheric connectivity between task-positive
(DAN) and task-negative (DMN) regions, as a measure of network
integration (3) the overall Newman’s modularity among cortical net-
works, as a measure of segregation (Fig. 2c).

Figure 3 focuses on cortico-subcortical interactions, which are
illustrated either with subcortical regions vs. cortical networks in
matrix form (Fig. 3a), or as brain surface/volume maps (for cortical/
subcortical regions respectively) plotting the first eigenvector of each
DFS (Fig. 3b). To facilitate analysis of cortico-subcortical interactions,
we performed principal component analysis (PCA) on the leading
eigenvector of subcortical connectivity, identifying two main sub-
cortical components (SCs): SC1 loads on cerebellum and subcortical
nuclei: thalamus, caudate, putamen, nucleus accumbens, and globus
pallidus. SC2 loads on ‘limbic’ regions like amygdala andhippocampus.
By construction, these two components are not correlated. Moreover,
they always correlate in opposite directions with different cortical
networks.

EachDFS is characterizedbyadifferent set of cortical and cortical-
subcortical interactions. Herein, we provide a description of each state
based on these criteria. DFS1 is very similar to the healthy static FC,
with high homotopic connectivity (ρz =0:45±0:0013, where ρz indi-
cates correlation coefficient after z-Fisher transformation), large
negative DAN-DMN connectivity (ρz = � 0:25 ±0:002), and high
modularity (0:22 ±0:0006). Sensory-motor-attention networks
(visual: VIS, sensorimotor: SMN, auditory: AUD; control: CON, dorsal
attention: DAN) are positively correlated, and negatively correlated
with the default mode network (DMN) (Fig. 2a). These patterns cor-
respond to the well-known separation between task-negative and task-
positive networks49. In-between stand high-level cognitive networks,
such as the ventral attention (VAN) and fronto parietal network (FPN)
that are weakly correlated with either task-positive or task-negative
networks, and are expected to exhibit more flexible interactions and
more individual variability50,51. When we consider cortical-subcortical
interactions, DFS1 is characterized by a positive correlation between
DMN and limbic nuclei, SC2 (Fig. 3a, b), which in turn are negatively
correlated with sensory-motor-attention networks.

DFS2 is very similar to the ‘pathological’ static FC observed in
stroke, with low homotopic connectivity (ρz =0:37 ±0:002), nearly
zero DAN-DMN connectivity (ρz = � 0:07±0:002), and low mod-
ularity (0:21 ±0:0007). This state is characterized by a strong inte-
gration of cognitive networks (DAN, VAN, CON, FPN) and a strong
negative coupling of the VIS network with other networks. AUD, SMN,
and DMN maintain strong internal correlation, but remain relatively
independent.

DFS3 is characterized by a high homotopic connectivity
(ρz =0:47±0:0014) and a high modularity (0:24±0:0006), similar to
DFS1. However, it does not show a strong (negative) correlation
between DAN and DMN (ρz = � 0:09±0:002). Instead, it captures a
negative correlation between a sensory-motor cluster (VIS, SMN, AUD)
and a cognitive cluster (FPN, DMN, DAN, VAN). Like DFS1, DFS3 is
characterized cortically by the well-known segregation between
sensory-motor networks (VIS-AUD-SMN) and DMN. However, cortico-
subcortical interactions are very different in the two states: the cou-
pling pattern between SC1–SC2 and sensorimotor/DMN is opposite.
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SC2 (limbic) correlates positively with the DMN in DFS1, but negatively
in DFS3. Correspondingly, SC2 shows no correlation with sensory-
motor networks in DFS1, but a positive correlation in DFS3. In contrast,
SC1 (nuclei) shows no correlation with DMN in DFS1, but a positive
correlation with DMN and a negative correlation with sensory-motor
networks in DFS3 (Fig. 3c, d).

DFS4 shows intermediate values of homotopic connectivity
(ρz =0:42 ±0:0014), DAN-DMN connectivity (ρz = � 0:14 ±0:002),
and modularity (0:22±0:0006). In this state, we observe anti-
correlation between a VIS-DAN-FPN cluster and a SMN-AUD-CON-
VAN-DMN cluster. Interestingly, in DFS4 all subcortical regions

show positive correlation and appear strongly uncorrelated from
cortex.

Finally, DFS5 shows intermediate values of homotopic
(ρz =0:42±0:0015) and DAN-DMN (ρz = � 0:09±0:002) con-
nectivity, and a very low value of modularity (0:20±0:0007). Indeed,
it reflects another state of integration among almost all networks (like
DFS2), except VIS and DMN that remainmore segregated. DFS5 differs
fromDFS2 for the absenceof the negative correlation between VIS and
all other networks.

In summary, we identified a set of spatial maps of inter-regional
correlation alternating over time (DFSs) characterized by different

Fig. 1 | Methods (dynamical functional states). a Definition of the dynamic
functional states (DFSs): (i) at first, the time course of each subject was divided
into 270 time-windows of width = 30 TR (600 s) and step = 1 TR. The z-Fisher
transform of the Pearson’s correlation coefficient among regions was computed
at each sliding window, to estimate theDynamical Functional Connectivity (DFC).
Then, (ii) each DFC matrix was approximated by projecting on the leading
eigenspace definedby the first eigenvector vi. As the eigenvectors are defined less
than the sign, we avoided this issue by reconstructing the square matrix vi × v

T
i .

After that, (iii) the upper triangular part of these rank-one DFC matrices was
vectorized and concatenated across windows and subjects, in order to finally
apply a time-wise K-means clustering algorithm with correlation distance and 20
replicates (iv) to define a set of K spatial DFSs. Silhouette and Davies-Bouldin
algorithms were used to search for the optimal number of DFSs. Several choices

of K (from 2 to 10) were used for supplementary analyses and comparisons. b The
K-means clustering associated each sliding window to a specific DFS, thus for
each subject we obtained a discrete time series x nð Þ, withn = 1,…, 270,where each
discrete value (between 1 andK) indicated the active state at that timepoint. From
these time courses it was possible to evaluate three different dynamicalmeasures
for each state, namely the fraction time, the dwell time, and the transition
probability. To analyze the relationship among dynamical measures in healthy
condition, we performed a Principal Component Analysis (PCA) over all the
dynamical measures. c The projection of the sub-acute patients’ dynamical
measures onto the PCs space, and the anatomical brains lesions were used as
input for a Ridge Regression algorithm, aimed at identifying the lesion’s location
that better characterized specific dynamic impairments. A similar approach has
been used with structural disconnections.
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cortical and subcortical connectivity patterns. An important insight is
that, in each DFS, different cortical clusters connect with a specific set
of subcortical nuclei (Fig. 3a, b). In fact, changes in cortical states were
temporally coincident with shifts in subcortical connectivity. Figure 4a
shows exemplar time courses of the leading eigenvector of cortical
connectivity, projected onto different networks (top), and the two
principal components of the leading eigenvector of subcortical con-
nectivity (bottom), during switch between DFSs. Coincident cortico-
subcortical reorganization is plainly appreciable. Importantly, the
reorganization of subcortical and cortical patterns was generally syn-
chronized irrespective of the definition of a DFS switch. Indeed, we
evaluated connectivity shifts, defined as connectivity differences
between pairs of consecutive sliding windows, separately for cortical
and subcortical regions. We found that subcortical shifts were posi-
tively correlated with network cortical shifts (all correlations >0:5).
Both cortical and subcortical connectivity shifts showed (in absolute
value) a heavy tail distribution, with more frequent low differences
(Fig. 4b left). Thus, we defined a jump when a large connectivity dif-
ference occurred (0:29, corresponding to the top 5% values). Then, we
tested the simultaneity of cortical and subcortical reorganization by
comparing the probability that cortical and subcortical jumps occur
simultaneously (estimated as P subcortical changes∣cortical changesð Þ)
under the null hypothesis of independent processes, and in the
observed data (see “Methods” for details on this analysis). We eval-
uated these measures for each subject, and we compared the two
distributions through the Wilcoxon rank test. For all networks, we
found that the observed conditioned probability was significantly

larger than the probability under the null hypothesis (all p<10�40,
Bonferroni corrected for 9 networks), supporting the idea of syn-
chronous cortical and subcortical shifts (Fig. 4b right). It is important
to highlight that in this analysis we considered all sliding windows, not
just those defining DFS boundaries. Therefore, the time course syn-
chronization analysis was independent of the DFS definition.

Importantly, the observed coordination between cortical and
subcortical dynamics does not depend on the specific subcortical
parcellation used. We replicated our original analyses (based on the
Freesurfer parcellation) with a more recent subcortical parcellation52.
Tian et al.52 developed four subcortical parcellations with increasing
levels of resolution (16, 32, 50, or 54 regions, respectively). We limited
our analysis to the lowest (16 regions) and highest (54 regions) reso-
lution parcellations. Detailed results are presented in the Supple-
mentary Information (SI paragraph S7 and SI-Figs. 12, 13). The choiceof
parcellation did not influence our three main findings: (1) the ‘antag-
onistic’ dynamics of basal ganglia vs limbic regions, represented by
two anticorrelated principal components of subcortical dynamic FC;
(2) the observation that different DFS are associated with different
patterns of cortical/subcortical interactions, as shown by different
patterns of connectivity between the main subcortical clusters and
cortical networks; and (3) the coordination between cortical and
subcortical dynamics, as shown by simultaneous cortical/subcortical
FC shifts. Qualitatively, the main difference between results in the two
parcellations is related to the thalamus. While in the Freesurfer par-
cellation, used in the original analysis, the thalamus essentially
grouped with the basal ganglia, the new parcellation yields a more

Fig. 2 | Dynamic functional states (DFSs). aRepresentation of the 5DFSs inmatrix
form (positive and negative weights are red and blue, respectively). b The same
DFSs are described through a circular graph representation. In each column, the
positive (red) and negative (blue) strongest links for each state are represented.
Network belonging is color-coded. c Average and standard error of (left) the
average homotopic inter-hemispheric connectivity within each network; (center)

the average connectivity between dorsal attention network (DAN) and the default
mode network (DMN) regions, as a measure of task-positive and task-negative
network integration); (right) the overall Newman’s modularity among cortical
networks. Data are reported asmean values +/− SEM. Source data are provided as a
Source data file.
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nuancedpicture, hinting at a functional split betweendifferent parts of
the thalamus: the anterior portion of the thalamus groups with the
basal ganglia, whereas the posterior portion cannot be clearly affiliated
to either of the two clusters (basal ganglia/limbic). A fine-grained
analysis of the relation between thalamic nuclei and DFS is left for
future work.

Sub-acute stroke causes a DFS imbalance with a bias toward
integration that recovers over time
DFSs imbalance in stroke patients. Next, we employed dynamical
measures related to the alternation ofDFSs to study how stroke lesions
affect thesedynamic features (“Methods”, Fig. 1). By construction, only
one DFS can be active in each sliding window. Therefore, the dynamic
of the functional connections can be described in terms of a single
time series of discrete values (from 1 to 5), each associated to a DFS.
Three measures were extracted to characterize the dynamic of DFSs,
namely the fraction time (f ), the dwell time (‘) and the transition

probability (e.g., transition from DFS1 to DFS2: DFS1>2), which
describe the number of times each state is active, the duration of each
state and the probability to switch from one state to another (“Meth-
ods” and Fig. 1 for details), respectively.

The characterization of DFSs in terms of the most common static
FC stroke biomarkers suggest that DFSs alterations may be more sen-
sitively detected in patients with more severe static FC impairment.
Accordingly, we divided stroke patients with severe or mild static
(average) FC impairment at 2weeks andperformedall dynamic analyses
with three groups: healthy controls, stroke patients with severe or mild
FC impairment at 2weeks. To that effect, we performed a spatial PCA to
find a component summarizing the static FC abnormalities explaining
the largest portion of variance over patients. To avoid biases in patient
selection, this PCA was run in an independent sample of 67 sub-acute
patients not suitable for the dynamic analysis. The weights of this
summary component (ST) identified two groups of patients: with more
severe (ST>0) (n = 18) or milder (ST <0) (n = 29)) static FC changes

Fig. 3 | Cortico-subcortical interaction in the dynamic functional states (DFSs).
aMatrix representation of cortico-subcortical interaction. This is a zoom of Fig. 2a.
Positive and negative values are indicatedwith red and blue, respectively.b Surface
and volume projection of the first eigenvector of each DFSs. Cortical regions are
shown in surface (top), while subcortical regions in volume (bottom). c Loading of

each subcortical regions in the two main subcortical components. A threshold of
0.2 has been used. d Average connectivity between each subcortical component
(SC1 and SC2) with each cortical network in the different DFSs. Source data are
provided as a Source data file.
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(for details SI paragraph S8 and SI-Fig. 15). In what follows, we will refer
to these two groups as ‘severe’ and ‘mild’ patients, as patients with
ST >0 were overall more severe in their neurological impairment than
patients with ST<0 (mean NIHSS score: 7.23 (ST >0) vs 2.37 (ST <0); t
test: T =4.02, p = 2.6 × 10−4) as shown in SI paragraph S8. The main
dynamical difference between control subjects and sub-acute patients
was the fraction time (f ) of the different DFSs (Fig. 5a top graphs). The
control population showed a uniform distribution of DFSs’ fraction
time, with the exception of DFS5, which was significantly less frequent
than all the other states except DFS4, as assessed through a non-
parametric permutation test (mean ± standard error: f 1 = 0:25 ±0:03;
f 2 = 0:22 ±0:03; f 3 =0:23±0:02; f 4 =0:18 ±0:02; f 5 = 0:11 ± 0:01;
f 5 < f 1 (t = � 4:25), f 5 < f 2 (t = � 3:50), f 5 < f 3 (t = � 4:50): all
p= 10�3, Bonferroni corrected). Similarly, the dwell time (‘) was similar
across all DFS except for a significantly longer duration of DFS1 as
compared to DFS5 (‘1>‘5, t =3:23,p=0:02, Bonferroni corrected)
(mean ± standard error: ‘1 = 13:97 ± 1:44TR; ‘2 = 12:16 ± 1:46TR;
‘3 = 12:59± 1:13TR; ‘4 = 12:47± 1:24TR; ‘5 = 8:40±0:89TR).

We tested the effect of DFSs and groups (controls, sub-acute
severe patients, and sub-acute mild patients) in the fraction times
through a generalized linear mixed effect model (GLME) with Poisson
distribution, with DFS and group as factors. We found a significant
interactioneffect (F = 211:13,p=0) andboth singlemain effects ofDFSs
(F = 151:95,p=0) and groups (F = 168:29,p=0). Note that this result
may be affected by collinearity, as fraction times for different DFS are
not independent. However, we conducted post hoc analyses for each
DFS separately (with non-parametric permutation tests), finding two
different patterns of abnormalities for severe andmild patients. Severe

patients manifested an abnormal increase of DFS2 (f 2 =0:36±0:06;
t =2:30,p=0:02, FDR corrected for 15 comparisons) and marginally
DFS4 (f 4 =0:28±0:05; t = 1:84,p=0:051, FDR corrected), at the
expense of DFS1 (f 1 = 0:13 ±0:02) and DFS3 (f 3 =0:11 ±0:02) that were
significantly less frequent than in CTRs (DFS1: t = � 3:50,p=0:003
FDR corrected; DFS3: t = � 4:53,p=0:0003, FDR corrected). There-
fore, severe patients had an anomalous under-expression of segre-
gated states 1 and 3 and overexpression of integrated state 2. In
contrast, mild patients showed an imbalance between the two inte-
grated states, with an abnormal increase of DFS5 (f 5 =0:20±0:04;
t =2:20,p=0:024, FDR corrected for 15 comparisons) occurrences,
and an anomalous decrease in DFS2 (f 2 =0:15 ±0:02;
t = 1:98,p=0:046, FDR corrected). In general, measures of dwell time
(Fig. 5a bottom graphs) replicated the patterns observed with fraction
time but were less sensitive.

Fraction time and dwell time measures do not consider dynamical
switches among DFSs that are defined by the transition probability
(Fig. 5b). We found a significant interaction (F =2:99,p<10�8) and a
main effect of transitions (F = 1:83,p=0:015) through a GLME with
Normal distribution. As compared to controls, more severe sub-acute
patients were characterized by more frequent bidirectional transitions
between DFS4 and DFS2 (DFS2>4: t =3:16,p=0:004; DFS4>2:
t =3:20,p=0:004, FDR corrected for 20 comparisons), and fewer
transitions from DFS4 to DFS3 (DFS4>3: t = � 3:27,p=0:004, FDR
corrected).Moreover, bidirectional anomalies in transitionswere found
between DFS1 and DFS5 for mild patients (increased DFS1>5:
t =2:25,p=0:05 and DFS5>1: t = 2:50,p=0:03, FDR corrected). In
summary, the transition analysis showed that more/less frequent states

Fig. 4 | Cortical and subcortical dynamics. a Two examples of average con-
nectivity during time for cortical networks (top) and subcortical clusters (bottom).
The vertical dashed lines indicate the switching between dynamic functional states
(DFSs). b (Left) Probability distribution of the absolute values of connectivity dif-
ferences between consecutive sliding windows. Each line represents a different

network. Right) Cumulative density function of the conditioned probability of sub-
cortical connectivity reorganization, given a cortical connectivity reorganization.
Each colored line relates to a different cortical network. The black line shows the
cumulative density function under the null hypothesis of independence between
cortical and subcortical changes. Source data are provided as a Source data file.
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in stroke are also visited more/less frequently, e.g., DFS2 for severe
patients and DFS5 for mild patients. Notably, all dynamic abnormalities
in fraction time, dwell time, and transition probability observed at the
sub-acute stage recovered over time at 3 and 12 months (Fig. 5). In
summary, more severe stroke patients are characterized by more fre-
quent network integration states (DFS2,4), and more transitions
towards them, with a corresponding decrease of network segregation
states (DFS1,3). In addition, there is a clear difference between stroke
patients with severe or mild FC anomalies, with the latter group pre-
ferring to spend more time in DFS5 than DFS2. Importantly, sub-acute
alterations in state dynamics recovered at 3- and 12-months post-stroke.

In a control analysis (SI paragraph S5, SI-Fig. 8), we verified that
these results are not a consequence of motion scrubbing. We con-
sidered both a more stringent and a more liberal scrubbing threshold
(corresponding respectively to a higher and a lower number of cen-
sored frames) and we observed no qualitative impact on the results.

Subcortical lesions and cortico-subcortical disconnection
explain abnormal FC connectivity dynamics
Having established that dynamic connectivity abnormalities occur in
stroke patients acutely and recover over time, we were interested in

establishing the anatomical basis of these alterations both in terms of
lesion location and structural disconnection. We employed a machine
learning strategy (ridge regression) to explain the degree of dynamic
FC impairment from lesion location and the related structural dis-
connection of white matter pathways (“Methods”, Fig. 1).

Given that individual dynamic measures are correlated, we used
PCA to summarize the main dynamical feature abnormalities. We
performed a PCA on fraction times, dwell times, and transition prob-
abilities (30 dynamical features per subject). Three dynamic PCs (Dyn-
PC) explain about 43% of the variability across subjects. We focus on
these components since each of the subsequent principal components
(from the fourth onwards) explains only a small fraction (<5%) of the
total variance. Specifically, Dyn-PC1 loads positively on the dynamic
measures related to DFS1, and negatively on those related to DFS2 and
DFS5. Dyn-PC2 loads positively on DFS3, and negatively on transitions
related to DFS2 and DFS4. Finally, Dyn-PC3 loads mostly on DFS4 and
transitions between DFS4 and DFS5 (see SI paragraph S9 and
SI-Fig. 16).

The ridge regression models the individual contribution of lesion
location/volumeor structural disconnection to the pattern of dynamic
impairment captured by the Dyn-PC scores (“Methods”, Figs. 1 and 6).

Fig. 5 | Results. a Fraction time and lifespan. This figure represents two dynamical
measures related to the dynamic functional states (DFSs), namely the fraction time
(top) and the average dwell time (bottom). Comparisons between healthy controls
(CTRs) and stroke patients (PATs) at different conditions are represented. To be
noticed: (i) fraction times and dwell times show similar patterns, but fraction times
are more sensitive to identify group differences, and (ii) all dynamic impairments
identified at the sub-acute stage, recovered in the chronic stage. The significance
between each pair of groups has been tested independently for each of the 5 DFSs
through one-sided non-parametric permutation tests, and false discovery rate (FDR)

correction for 15 comparisons. The symbol * indicates p-value < 0.05 after FDR
correction. For each panel: n= 40 (CTRs), 18 (PATs severe), 29 (PATs mild). On each
box: the central green line indicates the median, the red cross indicates the mean,
and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points, not considered
outliers (plotted individually using a dot). b Graphical representation of the sig-
nificant differences in transition probabilities between CTRs and patients at the sub-
acute stage: red arrows represent increase in probability, while blue arrows stand for
decreased transition probabilities. Source data are provided as a Source data file.
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Specifically, we used (i) the lesionmap or (ii) the disconnectionmatrix
of each subject as a regressor to estimate each dynamical PC sepa-
rately. Like a common regression model, the ridge regression aims to
assign a weight to each voxel (or link), indicating its contribution in
explaining a specific Dyn-PC value. For instance, a positive weight
indicates that a lesion in that voxel (or a disconnection of that struc-
tural link) is statistically associated with a positive value in that dyna-
mical PC, and vice versa (see “Methods” for implementation and
details).

The topography of lesions is significantly related to the variability
of dynamic FC features (Fig. 6a).

Dyn-PC1 scores are high (positive, more segregation) in patients
with cortical lesions but low (negative, less segregation) in patients
with white matter lesions—typically severe patients, who tended to
have subcortical lesions. Voxels associated with large values of Dyn-
PC1 are hence grouped in several separated clusters, mirroring the
heterogeneity of cortical lesions (R2 =0:51,p=0:02 for Dyn-PC1). Dyn-
PC2 scores are low (negative, less segregation) for lesions in the sub-
cortical white matter and basal ganglia (R2 =0:36,p=0:03 for Dyn-
PC2). No significant models explain Dyn-PC3 scores.

The analysis of structural disconnection shows a significant
relationship with Dyn-PC2 (R2 = 0:13,p=0:049) (Fig. 6b). The

Fig. 6 | Relationship between dynamic principal components (Dyn-PCs) and
lesions or disconnections. aResults of theRidge Regression (RR) algorithmaimed
at identifying possible existing relationships between the scores of the dynamical
PCs and the anatomical lesions. On the left, the scatter plots between real and
estimated values are shown, for the 3 Dyn-PCs. Each dot is a patient, whose stroke
severity (severe or mild) is color-coded and whose lesion size is described by the
dot dimension. R2 is the amount of variance explained by each model, and p the
model significance. Only Dyn-PC1 and Dyn-PC2 are significantly described by RR

models. On the right, the estimated optimal weights are represented, after nor-
malizing w.r.t. their maximum absolute value. b Results of the Ridge Regression
(RR) algorithm aimed at identifying possible existing relationships between Dyn-
PC2and the structural disconnections. On the left, the scatter plot between real and
estimated values is shown. On the right, the significant disconnection weights are
represented both in matrix form (right) and projected into the brain (left). Source
data are provided as a Source data file.
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corresponding scatter plots, maps, and disconnectionmatrix show that
structural disconnection between brainstem/pallidum/putamen/thala-
mus and multiple cortical regions (DMN, DAN, CON, SMN) are asso-
ciated with low Dyn-PC2 values, hence stronger network integration.

Notably, neither damage of the polymodal association cortex nor
long-range association cortico-cortical pathways are significantly
related to abnormalities in cortical dynamics or transitions among
cortical states. While this negative result is preliminary given the low
number of lesions at each cortical location, our findings support the
importance of subcortical activity and basal ganglia/thalamo-cortical
communication in controlling cortical dynamics in the 0.1 Hz temporal
scale. This is also consistent with the temporal synchronization of
cortical-subcortical states described above.

Abnormal network dynamics at 2-weeks correlate with beha-
vioral deficits and recovery in multiple cognitive domains
Finally, we wished to establish whether dynamic FCmeasures relate to
behavioral deficits, and whether, from a clinical standpoint, sub-acute
dynamic statemeasures can improve clinical outcome explanation vis-
à-vis static FC.

As expected from previous works33,43, static FC impairments
explainpart of the inter-subject behavioral deficits’ variance at the sub-
acute stage (2 weeks). We verified whether the addition of dynamical
functional information to the static FC significantly increases the
ability to explain behavioral deficits in terms of generalized linear
models (GLM) through a likelihood ratio test, which takes into account
the number of regressors. Then, in case of a significant increase, we
applied the same test to examine whether the combination of static
and dynamic regressors also improves over the model with only
dynamical regressors. This second step was aimed at testing whether
both the static and the dynamic contributions are jointly needed to
explain behavior.

The first analysis uses static and dynamic PC scores to explain
overall stroke impairment as measured with the NIH Stroke Scale
(NIHSS). The addition of the dynamic PCs significantly increased the
explanation of behavioral variability (R2 from 0:38 to 0:52,
χ2 = 10:09,df =3,p=0:018) (Fig. 7 left). At the same time, the com-
bined model also outperformed the model with only dynamical
regressors (R2 = 0:39, χ2 = 9:31,df = 1,p=0:002), indicating that both
contributions were significantly important, with a similar R2. The
scatter plot shows the relationship for the combined model (Fig. 7a).

The second analysis examined whether sub-acute static or dyna-
mical FC explains behavioral recovery, measured as the ratio between
the difference of behavioral scores at 1 year versus 2 weeks and the
absolute value of the behavioral score at 2 weeks. The dynamic FC
contribution is relevant in several domains. Specifically, 2-week
Dyn-PCs improve model performance for Language recovery (R2

from 0:004 to 0:23, χ2 = 10:71,df =3,p=0:013; b1 = 0:91,p=n:s:;
b2 =0:78,p=n:s:; b3 = � 1:13,p=0:018) and Verbal Memory recovery
(R2 from 0:001 to 0:31, χ2 = 12:81,df =3,p=0:005; b1 = 0:74, p=n:s:;
b2 =0:29,p=n:s:; b3 = � 0:71,p=0:012), whereas the 2-week static PC
factor is almost irrelevant (Fig. 7b).

In summary, the dynamic measures improve the sub-acute
explanation of overall impairment (NIHSS) above static FC. More-
over, dynamic functional measures are suitable to explain future
recovery of function of some individual domains. In contrast, static
measures were less powerful to explain recovery.

Discussion
FC inhealthy subjects is the result of a sequence of transitions between
a set of dynamic functional states (DFSs) alternating in time. These
configurations are characterized by specific correlation/anti-correla-
tion patterns of correlation between cortical networks and cortical-
subcortical interactions. At the cortical level, the different DFSs reflect

Fig. 7 | Relationship between Dynamic measures and behavior. The ratio like-
lihood test was used to test whether the addition of dynamic information to the
staticmeasureswould significantly increase the ability of a generalized linearmodel
to describe behavioral deficits (in terms of explained variance). Static measures
were represented by static principal component (ST) values, while dynamic infor-
mation was represented by dynamic principal components. a At first behavioral
scores of sub-acute patients were considered. When dynamical PCs were used as
dynamic regressors, only the global measure of behavioral impairment (NIHSS-

total) resulted to be better estimated by the combination of static and dynamic
regressors, than only static ones. The bar plot shows the R2 for the reduced (only
static, ST) model, for the unreduced (static and dynamic, ST+DYN) model, and for
the reduced model (only dynamic, DYN). b As a second step, we used static and
dynamicmeasures at sub-acute stage, to explain the difference in behavioral scores
from 2 weeks to 1 year. When dynamical PCs were used as dynamic regressors, the
explanation of score changes in Language and VisualMemory task was significantly
better. Source data are provided as a Source data file.
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the flexible arrangement of different networks along a single principal
gradient of functional organization53,54, at whose extremes we find,
respectively, the visual network and the DMN (SI-Fig. 14). DFS1, the
most frequent state in healthy subjects, captures the standard ‘static’
(time-averaged) task-positive/task-negative pattern separating
sensory-motor-attention networks from default/limbic networks.
DFS2-5 represent variations of this main pattern, with shifts of some
networks along the principal gradient. For instance, DFS2 shows a
positive correlation of sensorimotor with cognitive networks (DAN,
VAN, CON, FPN), but a relative segregationof the two extremes (visual,
DMN). DFS3 shows a positive correlation of visual, sensory-motor, and
auditory networks, separate from the correlation of FPN and DMN,
with a relative independence of networks laying in-between in corre-
lation space (DAN, VAN, CON) (Figs. 2 and 3). Thisflexible arrangement
determines a changing balance between segregation and integration.
Time-resolved FC patterns alternate between states of stronger inte-
gration (DFS2 and DFS5) and states of stronger segregation (DFS1 and
DFS3). The integration/segregation balance is well captured by static
FC metrics affected in stroke: the mean inter-hemispheric FC and
whole-brain modularity reflect higher network segregation, whereas
abnormally strong DAN-DMN FC reflects higher network integration.

Importantly, we show that cortical networks are flexibly syn-
chronized with two groups of subcortical regions (Fig. 3). One group
includes the striatum (caudate, putamen, nucleus accumbens) and
anatomically connected globus pallidus and thalamus. The other
group includes the hippocampus and amygdala that are part of the
limbic system. Cortico-subcortical coordination is not limited to
moments of switching between different DFSs, but it is continuously at
play, since cortical and subcortical regions showageneral simultaneity
of dynamical changes (Fig. 4). Most interestingly, the relationship
between basal ganglia/thalamus and limbic nuclei seems to be com-
petitive: cortical networks synchronize with either group, but not both
at the same time. For instance, in DFS1 DMN shows a positive corre-
lation with limbic regions, and a negative correlation with basal
ganglia/thalamus, while the reverse is true in DFS3 (Fig. 3). The stria-
tum/hippocampus competition is also consistent with the emerging
role of these regions as waypoints of functional integration or segre-
gation at the whole-brain level39. Indeed, striatum, hippocampus and
thalamus are part of the topological rich-club21,55,56, which acts to link
specialized large-scale functional systems to ensure high efficiency for
information transmission22,57,58. In line with previous work that identi-
fied the hippocampus as a main region of coordination of cortical
networks at rest20,25–27, we speculate that the hippocampus may play a
functional role in facilitating switches between different patterns of
cortical activation.

Overall, these findings emphasize the importance of subcortical
states in the coordination of cortical dynamics, and in the large-scale
network communication and organization27,40,41. Hence we suggest
that mathematical models aimed at understanding the large-scale
functional organization of the brain should include subcortical regions
and subcortical-cortical interactions.

A few recent studies investigated dynamic FC changes in stroke.
Focusing on the standard deviation of FC links over time, Chen et al.37

showed that link variability within the motor network is reduced in
stroke, while Hu et al.59 showed link variability in several networks is
reduced during the acute stroke stage, and recovers at the chronic
stage. Other studies looked at dynamic FC patterns with a DFS
approach similar to the one adopted in this work. Bonkhoff et al.35

characterized DFSs within the motor network, showing that DFS frac-
tion times are different in severe patients/mild patients/controls.
Duncan and Small60 identified a characteristic DFS correlated with
post-stroke aphasia severity. Wang et al.61 compared healthy subjects
and stroke patientswithmidbrain lesions,finding alteredDFSs fraction
times in patients. Finally, Bonkhoff et al.36 studied DFSs longitudinally
after stroke: they found different DFS fraction times for severe and

mild patients, and they showed that the change in symptom severity in
the first 3 months post-stroke (NIHSS change), was linked to dynamic
connectivity involving DMN components.

Altogether, previous work indicates that (i) stroke patients can
exhibit an anomalous preference towards specific DFSs and (ii)
dynamic FC anomalies tend to disappear with recovery. Our work
confirms and generalizes these findings, by systematically analyzing
longitudinal changes of dynamic FC in a relatively large stroke patient
cohort including variable lesion sites and deficits in multiple beha-
vioral domains. In addition, by thoroughly analyzing cortical-
subcortical interactions and relating dynamic FC changes with lesion
topography, our work suggests that subcortical regions play a key role
in the altered dynamical balance of the brain after stroke.

Importantly, our analysis highlights the relations between static
and dynamic FC changes. Static FC analysis identified well-established
stroke anomalies in homotopic connectivity, network modularity, and
relative coupling of DAN-DMN intra-hemispheric connectivity. The
dynamicFC analysis shows that this static description is the result of an
abnormal imbalance among dynamical states in patients, with longer
periods and more shifts toward states of integration across cortical
networks (DFS2,4), and less frequent states of segregation and strong
homotopic connectivity (DFS1 and DFS3) (Fig. 5). These results are
generally in agreement with previous findings. Wang et al.61 identified
four DFSs, and showed that patients overexpress (high fraction time) a
state with high integration but weak correlations (akin to DFS4 in our
study) and underexpress a segregated state with negative correlations
between DMN and visual-sensorimotor-attention (akin to DFS1 in our
study). Bonkhoff et al.36 identified three DFSs, one with strong segre-
gationof VIS and SMN fromother networks (akin toDFS2 in this work),
one with weak correlations (akin to DFS4), and one with antic-
orrelations between visual-sensorimotor networks and DMN (akin to
DFS1). Stroke patients overexpressed thefirst state: althoughBonkhoff
et al. characterized this state as a state of anomalous segregation,
segregationmostly occurs for the visual/SMNnetwork, while cognitive
networks are quite integrated (as in our DFS2).

Static and dynamic FC represent descriptions of the same phe-
nomenon at different time scales as evident in three main results. First,
dynamic FC changes were more evident in the subgroup of stroke
patients with stronger static impairment. This result is not biased by
sampling the same group of subjects as the cut-off for stronger/weaker
impairment is determined in a separate sample. Second, both static and
dynamicFCdeficits aremoreevident inpatientswith subcortical lesions
disconnecting the basal ganglia and thalamus fromcortex (Fig. 6), while
patients with milder dynamic FC deficits have more cortical lesions
(Fig. 6a). Third, the precise distribution and topography of DFSs is
modulated by static FC abnormalities (and vice versa). Indeed, even
though our description has emphasized quantitative changes in DFS
dynamic properties between healthy control and patients, it is apparent
that when we run the analysis separately for the two groups some
qualitative differences emerge (SI-Fig. 17). Specifically, the more inte-
grated state DFS2, which is abnormally more frequent in highly
impaired patients, looks different in controls and in sub-acute patients.
The main difference is a loss of inter-hemispheric connectivity which is
the most common abnormality of static FC at the sub-acute stage.

Dynamic FC changes were clearly behaviorally relevant as they
improved the explanation of sub-acute impairment measured by the
NIHSS, above that provided by static FC. More interestingly, dynamic
FC allows acute-to-chronic explanation of the recovery of language
and memory scores in contrast to static FC (Fig. 7). These findings
unambiguously indicate the potential of dynamic FC to explain defi-
cits, especially for cognitive functions. This is consistent with the
notion that functional alterations of brain networks are important for
cognitive functions that rely on distributed networks (e.g., memory,
attention, language), as compared to visual and motor functions for
which structural damage is more sensitive32.
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Dynamic FC recovers over time in parallel to behavior62, as pre-
viously reported for static FC33. Behavioral recovery is related to the
normalization of the dynamicalmeasures that become similar to those
of control subjects, even though stroke patients with different degrees
of stroke severity showed different sub-acute dynamic impairments.
Our results support the hypothesis that the functional reorganization
of brain connectivity after stroke tends to the common goal of
regaining a healthy profile, rather than building on compensatory
mechanisms.

There are potential limitations to our work. First, severalmethods
exist for the study of FC dynamics17,19,28, including the variability of
temporal correlation patterns18,63–66, instantaneous phase coherence
among brain regions46,67,68, temporal independent components or
modes (TFM)69, spatial patterns of instantaneous BOLD activity peaks
or “co-activation patterns” (CAPs)70–72, Hidden Markov model-based
definition of brain states over time73–76, and the most recent edge-
centric approach to functional connectivity based on edge time series
and network bipartitions77,78. We opted for the most straightforward
approach of a sliding-window temporal correlation followed by
eigenvector decomposition and clustering to define a set of spatial
connectivity states that continuously activate and deactivate over
time. More complex methods to define the connectivity may allow
observing a richer variety of dynamical states. However, the sliding-
window approach is quite standard and can be easily implemented by
different groups of researchers, thus promoting replicability and
comparisons across studies. Second, we do not observe a specific
“stroke state” activating only in patients. However, this may be due to
our methodological choice: concatenating all subjects and conditions
before applying the clustering algorithm may decrease the specificity
of the sub-acutepatients’ contribution.Weused a single concatenation
because having a different clustering for each different condition
would have made control/patient comparisons quite difficult. In fact,
when we defined DFSs separately in different groups (controls, sub-
acute, chronic, mild vs severe patients) (SI-Fig. 17), despite an overall
similarity, we did note some differences between controls and sub-
acute patients in DFS2 as discussed above. Another possible reason for
the absence of a “stroke state” could be the high heterogeneity of
patients in terms of lesions and behavioral deficits, as enhanced by the
significant dynamical differences betweenmore and less severe stroke
patients. Third, to study the relation between FC/dFC and lesions/
behavior we made a radical dimensionality reduction step: multi-
variate information about FC/dFCwas effectively condensed in a short
array of scalar quantities: three dynamical principal components,
summarizing the fraction times, dwell times and transition prob-
abilities of different DFSs; and one static principal component, sum-
marizing the most common pattern of anomalous FC in stroke
patients. These scalar quantities cannot be assumed to faithfully
represent all possibly relevant aspects of FC and dFC. In principle, a
possible alternative to this large dimensionality reduction would have
been to use double-multivariate methods such as partial least squares
or canonical correlation analysis, butweareunsurewhether thiswould
have led to easily interpretable results. Moreover, we did not test for
generalization of ridge regression findings to new samples, therefore
current findings of ridge regression analyses may be specific to the
used subjects’ sample. While performing nested cross-validation may
enhance robustness of these findings, we believe that conclusive evi-
dence may be obtained only by replicating these findings in an inde-
pendent subject cohort. Finally, due to the long TR and the large
impact of motion scrubbing (on average, 25% of data points are dis-
carded), the amount of data available per subject is limited, which
limits the reliability of individual estimates of dynamic FC metrics.
Therefore, while our group results indicate that dynamic FC metrics
are correlatedwith stroke severity, their use as individual biomarkers is
currently limited.

A key goal of stroke research is to devise novel treatment strate-
gies based on drug therapies79,80, rehabilitation81,82, or non-invasive
brain stimulation83,84. To this aim, the identification of a suitable
mathematicalmodel of brain dynamicswould be very helpful, not only
to explain and explore the patients’ empirical data, but also to predict
and apply optimal strategies to improve the recovery of behavioral
performance, which usually comes in parallel with normalization of
FC85–88. Our work provides a step toward this direction by discovering
the fundamental role of subcortical regions in cortical state dynamics,
and by proposing a definition of brain states and a set of measures
useful to identify functional abnormalities.

Methods
This research complies with all relevant ethical regulations. Written
informed consent was obtained from all participants in accordance
with the Declaration of Helsinki and procedures established by the
Washington University in Saint Louis Institutional Review Board. All
participants were compensated for their time. All aspects of this study
were approved by the Washington University School of Medicine
(WUSM) Internal Review Board.

Imaging
The data used in these analyses are part of the Washington Stroke
Cohort33,38,89. The database contains patients with first-time stroke,
studied 1–2 weeks (mean= 13.4 days, SD = 4.8 days), 3 months, and
12 months after stroke onset. A group of 30 age-matched control
subjects was studied twice at an interval of 3 months. All imaging was
performed using a Siemens 3T Tim-Trio scanner at the Washington
University School ofMedicine (WUSM) and a standard 12-channel head
coil. The imaging protocol included structuralMRI, resting-state blood
oxygen dependent level (BOLD) MRI, diffusion MRI, and arterial spin
labeling. Structural scans included: (1) a sagittal T1-weightedMP-RAGE
(TR= 1950ms, TE = 2.26ms, flip angle = 90°, voxel size = 1.0 × 1.0 × 1.0
mm); (2) a transverse T2-weighted turbo spin-echo (TR= 2500ms,
TE = 435ms, voxel-size = 1.0 × 1.0 × 1.0mm); and (3) sagittal FLAIR
(fluid-attenuated inversion recovery) (TR = 7500ms, TE = 326ms,
voxel-size = 1.5 × 1.5 × 1.5mm). Resting-state functional scans were
acquiredwith a gradient echo EPI sequence (TR = 2000ms, TE = 27ms,
32 contiguous 4mm slices, 4 × 4mm in-plane resolution) during which
participants were instructed to fixate on a small white cross centered
on a screen with a black background in a low luminance environment.
Six to eight resting state (RS) fMRI runs, each including 128 volumes
(30min total), were acquired. Resting-state fMRI pre-processing
included (i) regression of head motion, signal from ventricles and
CSF, signal from white matter, global signal (ii) temporal filtering
retaining frequencies in 0.009–0.08Hz band; and (iii) frame censor-
ing, FD =0.5mm. Finally, the resulting residual time series were pro-
jected on the cortical surface of each subject divided into the 324 ROIs
developedbyGordon et al.90, plus 19 subcortical ROIsderived from the
FreeSurfer subcortical atlas91,92. The original parcellation includes 333
regions, but all regions with <20 vertices (~50mm2) were excluded, as
in previous works33,43. We used this parcellation to relate our results
with previous works analyzing the same dataset33,34,38,39,43,88. Only sub-
jectswith at least 180good frameswere considered for the analyses. As
a result of the pre-processing, 114 subjects were available at 2 weeks
(sub-acute), 80 at 3months, and 65 at 12months, 24 and 20 controls at
the first and second acquisition, respectively.

Dynamical functional states (DFSs)
DFSs definition. The definition of dynamical functional states (DFSs)
required several adjacent frames, thus only recordings with at least
300 TR (600 s) of valid signals (after pre-processing and censoring)
were considered valid recordings. Only patients who underwent valid
recordings in all three time points (2weeks, 3months, 12months) were
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considered in the analysis. We thus considered 20 controls at the first
run, 20 controls at the second run, and 47 patients at three timepoints
—in total, 20 + 20+ 47 × 3 = 181 sessions. To avoid biases, each session
was shortened to 300 TR by excluding high-motion frames and
keeping the first 300 good frames. For the clustering step, we con-
catenated all 181 sessions. The MATLAB-based pipeline for the DFSs’
definition consists of 4 steps (Fig. 2): (i) the time course of BOLD
response for each subject was divided into 270 overlapping time-
windows 30 TR (60 s) long, stepped every 1 TR (2 s). As the optimal
choice of the sliding window width is still under debate, in the Sup-
plementary Information (SI-Paragraph 4 and SI-Figs. 6, 7), we compare
results obtainedwith different widths (20, 40, and 50TR). The z-Fisher
transform of Pearson’s correlation coefficient among all pairs of
regions was computed in each sliding window to estimate the Dyna-
mical Functional Connectivity (DFC); (ii) each DFC matrix was
approximated by projecting it on the leading eigenspace defined by
the first eigenvector vi, i.e., by approximating the original DFC matrix
with the matrix vi ×v

T
i ; (iii) the upper triangular part of these rank-one

DFC matrices was vectorized and concatenated across windows, sub-
jects, and time points (obtaining a matrix of dimension
48,870 × 4005, 48,870, and 4005 being the number of total sliding
windows the number of connectivity pairs, respectively), to finally
apply a time-wise K-means clustering algorithm93 with correlation
distance and 20 replicates; (iv) Silhouette and Davies-Bouldin algo-
rithms were used to search for the optimal number of DFSs, K. Several
choices of K (from 2 to 10) were used for supplementary analyses and
comparisons (SI-Fig. 2).

For each DFS, we evaluated three indexes that represent themost
common static FC biomarkers observed in stroke, namely: (1) the
average homotopic inter-hemispheric connectivity within each net-
work; (2) the average intra-hemispheric connectivity betweenDANand
DMN regions, as a measure of network integration; (3) the overall
Newman’s modularity among cortical networks. Similar to ref. 33, we
used the code from the Brain Connectivity Toolbox94, publicly avail-
able at sites https://sites.google.com/site/bctnet/, with modules’
assignments chosen a priori based on Info-Map community detection
in ref. 90. Modularity was calculated at edge densities ranging from 4
to 20%, as suggested in ref. 95, without binarizing and with the sym-
metric treatment of negative weights. The average modularity across
densities was used as the final measure.

All the three metrics were computed in each sliding window, and
then sorted across DFSs.

Dynamic functional states dynamics. The K-means clustering asso-
ciated each sliding window to a specific DFS, thus for each subject we
obtained a discrete-time series x nð Þ, with n= 1, . . . ,270, where each
discrete value (between 1 and K) indicated the active state at that time
window. From these time courses, it was possible to evaluate three
different dynamical measures for each state, namely the fraction time,
the dwell time, and the transition probability (Fig. 1). The fraction time
f k of each DFS is given by the percentage of times during which the
state is active:

f k : =
# x nð Þ= kð Þ

270
, k = 1, . . . ,K ð1Þ

where # að Þ indicates the number of times in which condition a is
verified.

The dwell time ‘k of each DFS measures the average length of
periods in which each state remains continuously active. Formally, it is
defined as

‘k : =
1

∣Lk ∣
∑∣Lk ∣

i = 1Lk i½ � ð2Þ

where Lk is the set with cardinality ∣Lk ∣, and whose elements Lk i½ �
represent the duration of each period of continuous activity of state k:

Lk ½i�:=Ti such that xðnÞ, . . . , x n+Ti � 1
� �

= k, x n� 1ð Þ ≠ k, xðn+TiÞ ≠ k ð3Þ

Finally, the transition probability from DFS i to DFS j, DFSi > j is
given by the following equation:

DFSi > j:=
# x nð Þ= iV x n+ 1ð Þ= j� �

# x nð Þ ≠ x n + 1ð Þð Þ ð4Þ

which reflects the ratio between the number of jumps from DFS i to
DFS j over the total number of jumps.

Significant differences in terms of dynamical measures were tes-
ted across populations (controls, 2-week sub-acute patients, chronic
patients at 3 or 12 months) through generalized linear mixed-effects
models (GLME), non-parametric permutation tests (when pairs of
groups were tested), and one-way Kruskal–Wallis test (for compar-
isons betweenmore than twogroups), to identify abnormalpatterns of
states dynamics in sub-acute stroke, which might recover after 3 or
12 months.

Cortical vs subcortical pattern reorganization
We used the leading eigenvectors of the DFC matrices in each sliding
window to define to quantify pattern reorganization in subcortical
nuclei and cortical networks during time. Specifically, we considered
the (19 × 1) subvector vsub of the principal vector vi, obtained from the
19 entries corresponding to subcortical regions.

The vectors vsub obtained in different sliding windows were
entered as input of a spatial PCA aimed at identifying clusters of sub-
cortical regions that evolve coherently. We thus have vsubðtÞ=PwsubðtÞ
where P is the (19 × 2) matrix of principal component loadings.

As ameasure of overall connectivity for each cortical network, we
considered the average of the subvector vnet obtained from the entries
of vi related to the network regions, in each sliding window.

For each DFS, we computed a measure of connectivity between
subcortical and cortical networks (see Fig. 3d). To this aim, we con-
sidered the sub-matrix vnet ×v

T
sub of vi ×v

T
i, and we projected it onto

the principal component space taking vnet ×v
T
subP

T .
In addition, we defined network-wise shifts in connectivity by

computing the absolute value of the difference of vnet (for cortical
networks) or Pvsub (for subcortical principal components) between
two consecutive sliding windows. These shifts followed a heavy tail
distribution, with frequent small values and infrequent large shifts.
Thus, we binarized the variability time courses (using a threshold of
0.29, corresponding to the 95th percentile) of the subcortical com-
ponents and of each network.

To test whether subcortical and cortical shifts occurred simulta-
neously, for each subject separately, we evaluated the observed
probability that given a cortical shift in a specific sliding window, a
subcortical shift happened in the same sliding window, as follows:

Pðsubcortical shift∣network i shiftÞ= #ðsubcortical shift \ network i shiftÞ
#ðnetwork i shiftÞ

ð5:1Þ

We then compared this observed probability with the conditional
probability obtained under the null hypothesis of independent pro-
cesses. Specifically, for each subject, we estimated the probability of a
shift as the percentage of ones in the binarized time courses, both for
subcortical components (psub) and all cortical networks (pnet). Under
the assumption of independent processes, we evaluated the
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conditional probability as follows:

PH0
ðsubcortical shift∣network i shiftÞ=PH0

ðsubcortical shiftÞ=psub

ð5:2Þ

Finally, the presence of significant differences in these probability
distributions over subjects was assessed by means of non-parametric
Wilcoxon rank test.

Relationship with anatomical lesions and structural
disconnections
Structural MRI data acquired from 47 sub-acute stroke patients used
for the DFSs analyses were used to measure each lesion’s anatomical
impact at the voxel level. Lesions were manually segmented on each
patient’s structural MRI scans using the Analyze software package96.
The T1-weighted, T2-weighted, and T2-FLAIR scans were used in con-
junction to ensure complete lesiondelineation. If present, surrounding
vasogenic edema was included in the lesion definition for all patients.
All segmentations were reviewed by two board-certified neurologists
(Maurizio Corbetta-MC- and Alexandre Carter) and were reviewed a
second timebyMC. Thefinal segmentationswere used as binary lesion
masks for subsequent processing and analysis steps. Lesion masks
were transformed into MNI atlas space using a combination of linear
transformations and non-linear warps and were resampled to have
isotropic voxel resolution.

The structural disconnectome matrices used in this work were
derived in ref. 34 for the same patients’ dataset, using the same 324
cortical parcels used in this work and 35 subcortical and cerebellar
regions (34 parcels from the automatic anatomical labeling (AAL)
atlas97 that corresponded to different portions of the thalamus, basal
ganglia, and cerebellum, and also included 1 region from the Harvard-
Oxford Subcortical Atlas that corresponded to the brainstem). Speci-
fically, for each patient, the disconnectome matrix was defined as a
square matrix of dimensions 359 × 359, where each entry in position ij
represented the percentage of streamlines connected regions i and j
that were disconnected by the lesion. As described in ref. 34, the
template structural connectome was derived from a publicly available
diffusion MRI streamline tractography atlas, constructed using data
from 842 Human Connectome Project participants98. The atlas data
were accessed under the WU-Minn HCP open access data use term.

For the computation of structural disconnection matrices, the
following software was used: DSI studio 2019 (http://dsi-studio.
labsolver.org), FreeSurfer V6 (https://surfer.nmr.mgh.harvard.edu),
Connectome workbench v1.5.0 (https://www.humanconnectome.org/
software/get-connectome-workbench), GRETNA 22.0 (https://www.
nitrc.org/projects/gretna/), Analyze v.12 (https://analyzedirect.com/),
Surf Ice v2 (https://www.nitrc.org/projects/surfice), MRIcroGL
v1.2.2021 (https://www.nitrc.org/projects/mricrogl).

Lesion to dynamical patterns regression. At this point, we wanted to
test the relationship of (i) anatomical lesion location and (ii) structural
disconnections with the dynamical measures (described by dynamical
PCs). Thus, we implemented twice a ridge regression algorithm (RR)99:
first (i) to link the voxel-wise lesionmaps (regressors) to the dynamical
PCs scores (dependent variables), once at a time, and second (ii) to link
the parcel-wise disconnections matrices (regressors) to the dynamical
PCs scores (dependent variables), once at a time.

Specifically, in the lesions-based analysis (i), the regressionmatrix
is a binarymatrixX 2 RNs ×Np (Ns is thenumberof subjects andNp is the
number of regressors or parameters), whose entry i–j is equal to 1 if
voxel j is lesioned in subject i, and it is equal to 0 otherwise. This
analysis aimed to assign a weight βj to each voxel, indicating its con-
tribution to the considered dynamical PC values. For instance, a
positive (negative) βj indicate that a lesion in that voxel would be

probably linked to a positive (negative) value in the considered
dynamical PC.

RR adds an L2-normalization term to the ordinary linear regres-
sion, to assign small coefficients to unimportant regressors, thus pre-
venting data overfitting, and improving generalization for new data.
Specifically, the model weights vector β is estimated as:

β= XTX + λI
� ��1

XTy ð6Þ

where X 2 RNs ×Np is the regressors’matrix described above, y 2 RNs is
the vector containing the (z-scored) scores of the considered dyna-
mical PC, I 2 RNp ×Np is the identitymatrix of dimensionNp, and λ 2 R is
the regularization parameter.

Due to computational issues, a dimensionality reduction ofmatrix
X was required before applying the RR. Thus, we applied a PCA on the
147,465 3-mm3 brain voxels, and we considered the first PCs which
explained at least 97% of the original variance as regressors X for our
RR models. Besides resolving the dimensionality problem, the PCA
step alsohad the purpose to transform the original binarymatrix into a
set of continuous regressors. X was then z-scored with respect to the
whole matrix.

For each of the three RR models (one model for each dynamical
PC), the regularization parameter λ was optimized by identifying a
value within 10�5, 105

h i
, with 200 logarithmic steps. Specifically, for

each value of λ, each RR model was trained and tested using a leave-
one-out cross-validation loop (LOOCV), which used 47� 1 = 46 train-
ingdata to estimate themodelweights and applied themto the left-out
patient to explain his behavioral score. The optimal λ (λopt) value was
the one that minimized the prediction error over the training set, and
the predictions obtained with λopt were considered as the model
regressors.

Model accuracy was assessed through the coefficient of deter-
mination R2:

R2 = 1�∑Ns
i = 1 yi � ŷi

� �2

∑Ns
i = 1 yi � y0

� �2 , where y0 =
1
Ns

∑Ns
i= 1yi ð7Þ

and ŷi is the estimated value of yi. The statistical significance of each
model was estimated through a permutation test, with N = 10,000
iterations. For each iteration, the behavioral scores were randomly
permuted across subjects, and the LOOCV with λ optimization was
used to fit the RR model to the randomized scores. The p-value for
the observed R2 was defined as the probability of the R2 of the ran-
domized dataset to be larger than the observed R2. Only models with
p-values < 0.05 were considered statistically able to explain the
dynamical scores.

To obtain the optimal set of RR model weights β, the weights
derived from each LOOCV loop at λopt were averaged across the Ns

loops. The distribution of weights obtained with the permutation test
was used as a null distribution to select the statistically significant
weights. Only the βi0s that fall at the left or right ends (2.5%) of the tails
of the null distribution were considered significant. These selected
weights were back-projected to the brain to display a map of the most
predictive lesioned voxels. Finally, Gaussian smoothing (variance = 1)
and scaling within ½�1, + 1� was applied to the maps. Only weights
higher than 0.05 in absolute values were plotted. To visualize the
maps, we used FSLeyes 0.34.2 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLeyes). The same algorithm and procedure were used for the dis-
connections matrices (ii), after that the upper-triangular part of the
matrix of each patient was vectorized, obtaining a regressor matrix X ,
whose entry i–j represents the percentage ofdisconnected streamlines
of a specific pair of regions in subject i. The significant weights
obtained with RR were back-projected to the parcel-wise matrix,
indicating the most predictive pairwise disconnected link.
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Relationship with behavior
Neuropsychological evaluation. The same subjects (controls and
patients) were also examined at each time point with a battery of
neuropsychological tests covering different cognitive domains, such
as motor, attention, language, visual, and memory functions as
described in refs. 38,43. Briefly, they included the following tests.
Language: Boston Diagnostic Aphasia Examination, nonword reading,
stem completion, and animal naming. Motor: Active Range Of Motion,
Jamar Dynamometer, nine-hole peg test, Action Research Arm Test,
motricity index, and Functional Independence Measures walk test.
Attention: Posner visual orienting task, Mesulam symbol cancellation
test, and Behavioral Inattention Test Star Cancellation. Memory: Brief
Visuospatial Memory Test, Hopkin’s Verbal Learning Test, and spatial
span. Visual: computerized perimetry. Imaging and behavioral testing
sessions were usually performed on the same day. Scores were only
recorded for tasks that subjects were able to complete. Dimensionality
reduction was performed on the performance data using principal
component analysis as described in detail in ref. 38. Briefly, tasks were
first categorized as language, motor, attention, memory, and visual.
Next, a PCA was run on each category and the first component was
used as a domain score. Finally, patients’ behavioral scores were
z-scored w.r.t. controls’ scores, to highlights behavioral impairments.
Of the 47 patients analyzed, the behavioral scores were available for 45
patients (language), 43 patients (motor left and right), 40 patients
(attention), 38 patients (memory), and 24 patients (visual) at the sub-
acute stage. Similarly, at three months (one year) the following data
were available: 45 (41) patients (language), 46 (42) patients (motor), 42
(40) patients (attention), 41 (42) patients (memory), and 28 (28)
patients (visual).

In addition to these domain-specific scores, the patients’ clinical
severity was assessed through the National Institutes of Health Stroke
Scale (NIHSS)100, which includes 15 subtests addressing: level of con-
sciousness (LOC), gaze and visual field deficits, facial palsy, upper and
lower motor deficits, limb ataxia, sensory impairment, inattention,
dysarthria and language deficits. The total NIHSS was used as an
averaged measure of the clinical severity for each patient. This score
was available for 40 patients at the sub-acute stage, and for 42 and 47
at three and twelve months, respectively.

To test whether the dynamical measures added some significant
information to the static FC in describing the behavioral outcome, for
each domain score, and the total NIHSS score, we applied a nested
models’ comparison test. Specifically, we first estimated the para-
meters of a Generalized Linear Model (GLM)101 with the ST as the
regressor and each behavioral score as output. Then, we estimated
another GLM for the same output, with both ST and the three dyna-
mical PCs scores as regressors. Finally, the Likelihood Ratio Test102 was
used to test if the addition of the dynamical measures were sig-
nificantly useful to describe the behavioral scores.

In case of a significant increase in performance, we also tested
whether the complete (static + dynamic) model outperformed the
model with dynamical regressors only, to verify if all the contribu-
tions were relevant or not. We used the regressors (static and
dynamic) at the sub-acute stage to estimate both the behavioral
scores at the sub-acute stage and the behavioral recovery. The
recovery was evaluated as the ratio between the difference of
behavioral scores at 1 year and 2weeks, and the absolute value of the
score obtained at 2 weeks.

Statistics and reproducibility
The sample size was determined based on previous works relating to
the same dataset34,38,43. After pre-processing, 114 subjects were avail-
able at 2 weeks (sub-acute), 80 at 3 months, and 65 at 12 months, 24
and 20 controls at the first and second acquisition, respectively. For
the implementation of the dynamical functional analysis, only subjects
with a sufficient number of good frames (300) after motion scrubbing

were considered. Furthermore, we selected only patients who parti-
cipated to all the three recordings (2 weeks, 3 months, 12months after
stroke). Therefore, 47 patients were considered. The number of con-
trol subjects with sufficient frames were 20 during the first visit and 20
during the second visit.

Our statistical analyses are based on common parametric tests
(Wilcoxon rank, T-test, F-test for Generalized Linear Mixed Effect
Model, likelihood ratio test) or simple non-parametric permutation-
based tests which we implemented with customized code. Our code,
based on MATLAB 2021a, is available online, as detailed in the “Code
availability” section. Statistical tests are described in detail in previous
subsections. We always applied correction for multiple comparison
whenever testing more than one hypothesis simultaneously.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw neuroimaging and neuropsychological data are publicly available
at https://cnda.wustl.edu/data/projects/CCIR_00299 and require con-
trolled access as they contain sensitive patients’ data. The person
requesting the datamust sign a confidentiality agreement provided by
Washington University stipulating that they will make no attempt at
identifying the patients and that they will use data for research pur-
poses only. Correspondence and requests should be addressed toM.C.
(maurizio.corbetta@unipd.it). Source data to reproduce the main
figures are provided with this paper.

Code availability
All custom algorithms used in this work are available at https://github.
com/CorbettaLab/Favaretto2022NatComm. Correspondence related
to the code should be addressed to C.F. (chiara.favar-
etto1990@gmail.com) or M.A. (michele.allegra@unipd.it).
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