
nature communications

Article https://doi.org/10.1038/s41467-022-32280-6

Everlasting impact of initial perturbations
on first-passage times of non-Markovian
random walks

N. Levernier1, T. V. Mendes 2, O. Bénichou 3 , R. Voituriez3,4 & T. Guérin2

Persistence, defined as the probability that a signal has not reached a threshold
up to a given observation time, plays a crucial role in the theory of random
processes. Often, persistence decays algebraically with time with non trivial
exponents. However, general analytical methods to calculate persistence
exponents cannot be applied to the ubiquitous case of non-Markovian systems
relaxing transiently after an imposed initial perturbation. Here, we introduce a
theoretical framework that enables the non-perturbative determination of
persistence exponents of Gaussian non-Markovian processes with non sta-
tionary dynamics relaxing to a steady state after an initial perturbation. Two
situations are analyzed: either the system is subjected to a temperature
quench at initial time, or its past trajectory is assumed to have been observed
and thus known. Our theory covers the case of spatial dimension higher than
one, opening the way to characterize non-trivial reaction kinetics for complex
systems with non-equilibrium initial conditions.

The persistence S(t) is the probability that a random process x(t) has
not reached a threshold up to time t1,2. This quantity is a natural tool in
non equilibrium statistical physics to probe the history of various
systems undergoing phase ordering3–5 or reaction diffusion dynamics2,
or to quantify the efficiency of target search problems6–15. It has been
recognized that the long time decay of persistence is often algebraic,
S(t) ~ t−θ, where the persistence exponent θ is non trivial as soon as the
process is non-Markovian (i.e., displays memory effects). This has
triggered a number of experimental16–20 and theoretical4,5,21–29 studies.
A striking example is given by the case of a spatially extended field that
obeys a simple diffusion equation, which represents for example the
height of a fluctuating interface or the local concentration of diffusive
particles. The persistence exponents quantify in these examples the
probability that the field at a given point has not reached a given
threshold value at time t, starting from a random initial configuration.
Despite the simplicity of the diffusion equation, it turns out that the
determination of θ for this class of problems is a tour de force21,22,28,30,31.

More generally, even for seemingly simple Gaussian dynamics
where all correlation functions are known, θ is generally non-trivial
and not known in closed form. In fact, the exponent θ depends on the
full history of the process, and it is in general difficult to extract it
from the correlation function2. This has triggered an intense theo-
retical activity for its determination. Existing approaches to quantify
persistence exponents of Gaussian processes can be classified
according to the nature, stationary or not, of the increments
x(t + τ) − x(t). If these increments are stationary at all times, meaning
that their statistics do not depend on the observation time t (such as
in the case of the fractional Brownian motion), θ is exactly
known28,29,32 (in d dimensions, for scale-invariant processes with sta-
tionary increments32, θ = 1 −Hd). In the opposite case where the
increments always depend on the observation time t and thus never
reach a stationary dynamics (i.e., are stationary at no times), persis-
tence exponents have been calculated for the specific cases of the
random acceleration process33,34 or systems in which the dynamics
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occurs at zero temperature3–5,21,22,30,31,35,36, and is thus deterministic
with random initial conditions. In the latter case, exact results for the
persistence exponent are scarce4,30,31, and the theoretical determi-
nation of θ generally relies on approximate methods.

However, numerous physical situations display a relaxation
dynamics – typically after an initial perturbation – that becomes sta-
tionary only after a transient regime. This is the rule for processes
interacting with many degrees of freedom, subjected to thermal fluc-
tuations during the dynamics, but prepared in a non-equilibrium or
perturbed state. As a prototypical example, consider a tagged mono-
mer of a flexible polymer initially equilibrated at a temperature T ≠ 1,
and quenched to a different temperature T0 = 1 at time t ≥0. The
dynamics of the taggedmonomer keeps transiently track of this initial
perturbation, and relaxes to the equilibrium state at T0 with stationary
increments. Persistence properties for such process with non sta-
tionary increments (ie displaying aging), which in this example are
instrumental to quantify the reaction kinetics of the polymer with a
given reactive site, remain largely unknown. In fact, there is a funda-
mental reason why standard methods to calculate persistence expo-
nents cannot be applied for transiently aging processes (see SI,
Sections A and B where we show that for transiently aging processes,
the independent interval approximation, which is usually applied to
calculate the statistics of zero crossing of the Gaussian process
obtained after Lamperti transform, cannot be applied since intervals
between zero crossing become ill-defined). The only available results
for similar problems are limited to one-dimensional processes and
provide bounds for the persistence exponents as well as perturbative
expansions for weakly non-Markovian processes28.

Here, wedevelop ageneral theoretical framework that enables the
determination of the persistence exponents of general Gaussian pro-
cesses displaying such transient aging dynamics. We stress that these
Gaussian processes are non-Markovian (display memory effects), and
appear in a wide range of contexts37–46. Our method enables us to
reveal and quantify the impact of initial conditions, such as a tem-
perature quench, on the persistence exponent. We also consider the
case where the past trajectory of the stochastic process is known, e.g.
because it has been observed. We show that the very observation of
this past trajectory modifies the persistence exponent which is quan-
tified by our approach. Importantly, our theory covers the physically
relevant and widely unexplored case of persistence for non-Markovian
random walkers living in a space of dimension higher than one.

Results
We first consider a one-dimensional isotropic non-MarkovianGaussian
stochastic process x(t), which represents the position of a random
walker at time t. It is entirely defined by its mean value, assumed for
simplicity to be constant with time (unbiased process), and its covar-
iance CovðxðtÞ,xðt0ÞÞ= σ0ðt,t0Þ. This covariance is assumed to be given
and to take the standard self-similar scaling2 form at long times t,t0≫1,
σ0ðt,t0Þ ~ t2HGðt=t0Þ � σðt,t0Þ, where H is the usual Hurst exponent. We
chose our units of time so thatG(1) = 1. At long times, themean square
displacement σ(t, t) = t2H is assumed to diverge so that the particle does
not remain close to its initial position, which leads to H >0. Further-
more, we assume that the statistics of the increments x(t + τ) − x(t)
become stationary at long times, i.e. become independent of the
observation time twhen t→∞. This implies the existence of a transient
regime associated to the progressive decay of thememoryof the initial
state, and defines a stationary covariance σs given by

σsðτ,τ0Þ= lim
t!1

h½xðt + τÞ � xðtÞ�½xðt + τ0Þ � xðtÞ�i: ð1Þ

Of note, the persistence exponent θ is known to be given by
θ = 1 −H under the stronger hypothesis that the statistics of the
increments is stationary at any time (i.e., when σs = σ0)

28,29. The class of
random walks that we consider here covers a broad spectrum of non-

Markovian processes used in physics, and in particular both
subdiffusive (H < 1/2) and superdiffusive (H > 1/2) walks.

Theoretical method to determine θ
Our starting point to calculate the statistics of the first passage time
(FPT) to the origin x =0 is the following generalization of the renewal
equation6

pð0,tÞ=
Z t

0
dτf ðτÞpð0,t∣FPT= τÞ, ð2Þ

which results from a partition over the first-passage event. In this
equation, p(0, t) stands for the probability density that the random
walker is at position x = 0 at time t, f is the first-passage time density
and p(0, t∣FPT = τ) is the probability density that x =0 at time t given
that the first-passage event occurred at time τ.

To proceed further, we assume that the stochastic process in the
future of the FPT, defined by y(t) ≡ x(t + FPT), is Gaussian with so far
undetermined mean μ(t) and covariance σπðt,t0Þ. Such Gaussian
approximation has proved successful to seize memory effects to pre-
dict mean first-passage times of Gaussian random walkers in confine-
ment with stationary increments12,13,47; in the present context
simulations show thebroad validity of this hypothesis (see SI, Fig. S1). A
first result of our approach is that the exponent θ is linked to the large
time behavior of σπ(t, t), which is found from Eq. (2) to behave like (see
SI, Section D)

σπðt,tÞ � σ0ðt,tÞ /
t!1

t2H�θ: ð3Þ

Thismeans that the calculation of the exponent θ amounts to that
of the covariance σπðt,t0Þ of the trajectories in the late future of the
first-passage.

Relying on a generalization of Eq. (2) to link the two-time joint
probability distribution functions of x(t1), x(t2) and the FPT density, we
obtain a self-consistent equation for the distribution of trajectories in
the futureof the FPT, leading in the large time limit to (see SI, SectionD
for details):

R1
0

dt
tH

ρðt + τ,t + τ0Þ � ρðt + τ,tÞ σðt + τ0,tÞσðt,tÞ � ρðt + τ 0,tÞ σðt + τ,tÞσðt,tÞ

n

+ 3ρðt,tÞ σðt + τ,tÞσðt + τ0 ,tÞ
2σðt,tÞ2 � ρðt,tÞ

2σðt,tÞ σðt + τ,t + τ0Þ � σK ðτ,τ 0Þ
� �o

=0,
ð4Þ

where ρ ≡ σπ − σ0 (for large times). Here,

σK ðt,t0Þ=
σðt,t0Þ if θ> 1� H

σsðt,t0Þ if θ< 1� H

�
ð5Þ

Next,wefind that the linearequation (4) admits solutionsof the scaling
form ρðt,t0Þ= t2H�θzθðt=t0Þ, where zθ(u) satisfies a linear integral equa-
tion of the form

Z 1

0
Kθðu,vÞ zθðuÞ � zθð1Þ 1� ð2H � θÞð1� uÞ

2

� �� �
du= f θðvÞ, ð6Þ

where Kθ and fθ are given in SI (Section D) in terms of σ. It is found that
generic solutions zθ(u) display divergences for small u, and we argue
that θ is obtained by imposing that zθ(u) is regular. We expect that this
selection criterium is valid at least for 2H − θ >0 since it amounts in this
case to impose that ρ(t, 0) = 0. Self-consistency reasons also lead us to
restrict the analysis to H > 1/3 (see SI, Section E). In practice, the linear
integral equation Eq. (6) is solved numerically for a test value θtest and
yields a diverging solution zθtest ðuÞ ~AðθtestÞu�αðθtestÞ; the persistence
exponent θ is then obtained iteratively by enforcing that the prefactor
vanishes, A = 0 (see SI, Section D). This finally provides a constructive,
non perturbative determination of the persistence exponent θ for

Article https://doi.org/10.1038/s41467-022-32280-6

Nature Communications |         (2022) 13:5319 2



Gaussian process with general non stationary dynamics, which is the
central result of this paper.

Applications
We now show how these results enable us to determine the impact of
initial conditions in two physically relevant cases. The first type of
problems (called type I here) is thedeterminationofθ in systemswhich
relax after a sharp temperature quench that occurs at initial time,
which is a very generic situation that is in particular often realized to
probe the aging dynamics of glassy systems48. Typically, physical rea-
lizations of the random process x(t) can be the position of a monomer
in various models of macromolecules or the local height of an inter-
face, which span a number of values ofH. In all thesemodels, assuming
that the initial state for t≤0 is an equilibriumstate at temperatureT ≠ 1,
while thedynamics at t >0occurs at temperatureT0 = 1, the covariance
function for t,t0 >0 takes the form (see ref. 28 and SI, Section C)

σðt,t0Þ / Tðt2H + t02HÞ+ ð1� TÞðt + t0Þ2H � ∣t � t0∣2H : ð7Þ

Of note, the temperature T before the quench can be lower or larger
than the temperature T0 = 1 of the dynamics for t > 0. Examples of
survival probabilities obtained from simulations are displayed in
Fig. 1a, which clearly shows that the persistence exponent depends on
the choice of initial conditions, and that the dependence of the per-
sistence exponent on temperature is correctly predicted by our
approach [Fig. 1b]. Remarkably, the values of θ for different tempera-
tures span a large set of values and are markedly different from their
value θ = 1 −H in the stationary state. In one example of simulations, we
also recorded the trajectories in the future of the first-passage and
measured numerically the function zθ(x), which shows good agree-
ment with the theoretical prediction [see Fig. 1c]. This figure also
illustrates our procedure to determine θ as defined above: the
calculated zθ(u) show divergence for small u whenever θ is above or
below its exact value. In Fig. 1d, we check that our theory is also correct

for different H (focusing on T =0), for both superdiffusive and
subdiffusive processes, and even far from the Markovian regime
H = 1/2. In addition, explicit results can be obtained by analyzing our
formalism [Eq. (4)] perturbatively in the limit ε =H − 1/2→0. An
expansion up to second order leads for any temperature T before
the quench to

θI = 1� H � 2ð
ffiffiffi
2

p
� 1Þð1� TÞðH � 1=2Þ

+ fa1 ð1� TÞ½a2 + ð1� TÞ�gðH � 1=2Þ2 +O ðH � 1=2Þ3

 �

,
ð8Þ

where analytical expressions of a1 and a2 are given in SI (Section F),
with numerical estimates a1≃ 1.77, a2≃ 1.28. Interestingly, in the par-
ticular cases T = 0 and T = 1, the first order terms coincide with the
exactfirst order solution of ref. 28, which points towards the exactness
of our approach at this order. These perturbative results are in good
agreement with simulation results [Fig. 1b, d]. Finally, these results
show that an imposed initial perturbation – here a temperature
quench, deeply impacts the first-passage statistics of the system. In the
case of subdiffusive (or antipersistent) dynamics (H < 1/2, realized
typically in polymer models), it is found that, because of long range
memory effects, an initial quench from a high (T > 1) to a low (T0 = 1)
temperature can strongly slow down the first-passage kinetics
(θ < 1 −H), while a quench from low to high temperatures accelerates
the kinetics (θ > 1 −H); opposite conclusions are reached for super-
diffusive (or persistent) dynamics (H > 1/2).

The second class of problems (type II) corresponds to the deter-
mination of θ in an idealized situation where a given trajectory for
x(t <0) is assumed to be accessible and observed at all times t <0; this
can be realized in various settings, ranging from single particle track-
ing techniques in the context of transport in complex systems, to the
monitoring of the value of an asset in the context of financial markets.
Here we aim at quantifying the impact of such observation of the
system in the past (t <0) on its future dynamics (t >0). It is known49–52
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Fig. 1 | Persistence for quenched fBM (type I problem) in d = 1. a Example of
survival probabilities for interface dynamics withH = 3/8 at different temperatures.
The slopes of the continuous lines is the value of θ predicted in our approach.
b Systematic comparison of θ as measured in simulations versus theoretical values
for different T andH = 3/8. c Value of zθ(u) as measured in simulations (squares) by

analyzing the statistics of trajectories after the FPT, compared with theoretical
values for different θ. Notice the divergences for small u towards ±∞, which enable
us to select the value of θ to minimize these divergences. d Same as b for different
H, withT =0fixed. "Star'' symbols are the simulation results of ref. 28 (the error bars
indicate the confidence intervals given in table 1 of this reference).
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that the mean future trajectory (for t >0), conditional to a given
observation in the past x(t <0), can be expressed as a linear combi-
nation of all positions in the past. Our approach makes it possible to
determine quantitatively the exponent θ characterizing the probability
S(t) of not crossing this average conditional trajectory, or of not
reaching afixed threshold above (or below) it, see Fig. 2a. Strikingly, we
find that the value of θ can be significantly larger than the value
θ = 1 −H obtained in absence of any prior observation of the system. It
does not depend on the particular realization of the observed past
trajectory, but only on the fact that this observation is available. This
thus shows that the very observation of the system can drastically
impact the future first-passage statistics, and in fact effectively accel-
erate the dynamics at large times because θ ≥ 1 −H for all values of H,
irrespective of the persistent or antipersistent nature of the process.
The results in Fig. 2b show again a good agreement between the pre-
dicted values of θ and simulations. As above a perturbation expansion
of our formalism can be performed for weakly non-Markovian pro-
cesses, leading to the explicit result

θII = 1� H +4 ln 2ðH � 1=2Þ2 +OððH � 1=2Þ3Þ, ð9Þ

which is supported by our simulations (Fig. 2b).

Persistence in higher dimensions
Our theory can be generalized to the case of an isotropic Gaussian
randomprocess x(t) evolving in a space of dimensiond > 1. In this case,
to define the survival probability we replace the condition of reaching

a threshold by the condition of reaching a target. To the best of our
knowledge, in this case the persistence exponent has not been inves-
tigated in the literature for non-Markovian walks with non-stationary
initial conditions, despite its obvious relevance to reactivity problems
in complex systems. Here we restrict ourselves to the case where a
target, even point-like, is found with probability one (compact case,
when dH < 1). It turns out that very few changes are needed to gen-
eralize the theory in d dimensions, generalized versions of the equa-
tions are presented in SI (Section C), and we restrict ourselves toH > 1/
(2 + d). Figure 3 shows simulation results when x(t) is the position of a
monomer in various polymer models: semi-flexible or flexible chains,
or fractal hyperbranched flexible macromolecules. It is found that our
theory captures quantitatively the dependence of the persistence
exponents on the temperature quench for all these models. This
dependence on the temperature quench shows that the exponents
describing the kinetics of absorption to a target are significantly
modified by preparing the system with non-stationary initial condi-
tions. The modification of persistence exponents with initial condi-
tions could be relevant for the reactivity of complex macromolecules
displaying widely distributed relaxation times such as proteins53–55, in
this context, non-equilibrium conditions could be obtained by a tem-
perature quench, or by imposing a constraint, such as a geometric
confinement or an external field, that is relaxed at t =0. Our determi-
nation of the persistence exponent then allows to quantify the kinetics
of reactions involving such molecules in such non-equilibrium condi-
tions. Alternatively, ifmemory effects of the randomwalker come from
its interactions with a surrounding viscoelastic medium, a non-
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fractal, H≃0.203).
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equilibrium initial state could be obtained by imposing a sharp change
of the parameters characterizing this medium. In these cases, we
predict that the reaction kinetics to a target can be deeply impacted,
and display non-trivial exponents quantified by our approach (as soon
as the covariance σ can be calculated).

Discussion
In Fig. 4, simulation data for θ for all themodels considered in thiswork
are recapitulated and compared with the values predicted by our
approach. The data collapse shows an excellent agreement and vali-
dates our method. The slight departures of simulations from theory
occur only when 2H − θ >0 (see Fig. 4), in agreement with our previous
remark that our selection criterium may not be valid anymore in this
regime. Similarly, the curves which are the least precise on Fig. 3 are
those for which H is very close to 1/(2 + d), where the theory is not
expected to give accurate results anymore. Altogether, this shows that
our theory provides a non perturbative, constructive, quantitative
determination of the persistence exponents for general Gaussian sto-
chastic processeswith non-stationary initial conditions, which typically
model the relaxation after an initial perturbation of systems with non
Makovian dynamics, such as tracer particles in complex environments
with many interacting degrees of freedom. It would be interesting to
determine if our approach could be applied to other processes dis-
playing transient, long-lived aging properties suchas those observed in
glasses after quenching protocols48. Our results demonstrate that
initial perturbations can have a deep, long lived impact on the first-
passage statistics of non-Markovian processes. Importantly, our theory
also predicts non-trivial exponents in dimension higher than one, and
thus opens the way to the quantification and control of reaction
kinetics for complex systems with non-equilibrium initial conditions.

Methods
Numerical measurement of persistence exponents
In order to measure the persistent exponent for type I processes, we
have performed stochastic simulations of (i) the Edwards-Wilkinson
interface, or equivalently a flexible polymer chain of beads and springs
without hydrodynamic interactions (H = 1/2), (ii) the Mullins-Herring
dynamics (H = 3/8), (iii) a macromolecule represented as a bead spring
network whose connectivity is the same as that of a Vicsek fractal of
functionality f = 4 for whichwe used themethod described in ref. 14 to
generate the stochastic trajectories. These stochastic processes, as
well as the simulation algorithms are described in SI, Section C.

Theoretical estimate of θ andperturbative analysis of the theory
To evaluate numerically the persistence exponent θ from Eq. (6), we
have proceeded as follows: for a given test value θtest we solve the

integral equation numerically, this generally yields a solution that
diverges for small u: zθtest ðuÞ ~AðθtestÞu�αðθtestÞ. Then the persistence
exponent is selected iteratively by choosing the value of θ so that A = 0
(see SI for details, Section D).

Perturbative analysis of the formalism
Explicit analytical results were obtained in the limit ε =H − 1/2→0 by
inserting into Eq. (4) the ansatzs σsðt,t0Þ ’ min ðt,t0Þ+∑n≥ 1ε

nσs,nðt,t0Þ,
σðt,t0Þ= σsðt,t0Þ+∑n ≥ 1ε

nωnðt,t0Þ, θ = 1 −H +∑n≥1ε
nδn and ρ(u, v) =

∑n≥0ε
nρn(u, v). The resulting equations for ρ0 and ρ1 can be solved

analytically and, as in the non-perturbative approach, the value of the
persistence exponent is chosen to ensure that ρ(u, v) does not diverge
in the limit u→0, leading to Eqs. (8) and (9). The calculation details are
provided in SI, Section F.

Data availability
The data used to measure numerically the values of the persistence
exponents shown in Figs. 1–4 [https://doi.org/10.5281/zenodo.
6761006, link: https://zenodo.org/record/6761006] have been
deposited in the zenodo database [https://doi.org/10.5281/zenodo.
6761006, link: https://zenodo.org/record/6761006].

Code availability
The codes used to measure numerically the values of the persistence
exponents shown in Figs. 1–4, and a program that solves numerically
Eq. (6) have been deposited in the zenodo database [https://doi.org/
10.5281/zenodo.6761006, link: https://zenodo.org/record/6761006].
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