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Genome-wide associations of aortic
distensibility suggest causality for aortic
aneurysms and brain white matter
hyperintensities

Catherine M. Francis 1,2,33, Matthias E. Futschik3,4,33, Jian Huang3,33,
Wenjia Bai 5,6, Muralidharan Sargurupremraj7,8, Alexander Teumer 9,10,11,
Monique M. B. Breteler 12,13, Enrico Petretto 14,15,16, Amanda S. R. Ho 16,
Philippe Amouyel 17,18,19,20, Stefan T. Engelter21,22, Robin Bülow23,
Uwe Völker 10,24, Henry Völzke9,10, Marcus Dörr 10,25,
Mohammed-Aslam Imtiaz12, N. Ahmad Aziz 12,26, Valerie Lohner 12,
James S. Ware 1,2,4, Stephanie Debette 8,27, Paul Elliott 3,28,29,30,31,32,
Abbas Dehghan 3,28,34 & Paul M. Matthews 5,28,31,34

Aortic dimensions and distensibility are key risk factors for aortic aneurysms
and dissections, as well as for other cardiovascular and cerebrovascular dis-
eases. We present genome-wide associations of ascending and descending
aortic distensibility and area derived from cardiac magnetic resonance ima-
ging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We
identify 102 loci (including 27 novel associations) tagging genes related to
cardiovascular development, extracellular matrix production, smooth muscle
cell contraction and heritable aortic diseases. Functional analyses highlight
four signalling pathways associatedwith aortic distensibility (TGF-β, IGF, VEGF
and PDGF). We identify distinct sex-specific associations with aortic traits. We
develop co-expression networks associated with aortic traits and apply
phenome-wide Mendelian randomization (MR-PheWAS), generating evidence
for a causal role for aortic distensibility in development of aortic aneurysms.
Multivariable MR suggests a causal relationship between aortic distensibility
and cerebral whitematter hyperintensities,mechanistically linking aortic traits
and brain small vessel disease.

The aorta acts as both conduit and buffer1, conveying oxygenated
blood from the heart to the systemic circulation, and dampening the
pulse pressure towhich peripheral circulations are subjected. Diseases
affecting the aorta are commonand their complications are associated
with high mortality even in young people. Quantitative aortic traits
(aortic dimensions and functional measures) can predict progression
of these aortopathies. For example, the elastic function of the thoracic

aorta and aortic dimensions are key determinants of rates of growth of
thoracic aortic aneurysms2–4. At a population level, aortic traits are also
clinically important predictors of risks of cardiovascular and cere-
brovascular diseases5–10.

The distensibility of the proximal thoracic aorta allows it to buffer
pressure changes associated with cardiac ejection, acting to protect
the cerebral vasculature from high pulse pressures. However, as the
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aorta remodels and stiffens with age, the cerebral circulation is
exposed to higher pulse pressures. This decline in elastic function
may be measured as a decrease in distensibility, a factor indepen-
dently predictive of cerebralmicrovascular disease, the development
of age-related dementia and neurodegenerative changes of Alzhei-
mer’s Disease (AD)11–13. Recent data also have provided evidence for
an association of aortic distensibility with cognitive performance in
the general population14. White matter hyperintensities (WMH)
represent the most common brain imaging feature of small vessel
disease and predict mortality and morbidity with aging (including
risks of stroke (ischaemic and haemorrhagic), dementia, and func-
tional impairment15–18). Aortic stiffness is a stronger predictor of
WMH volume than blood pressure or hypertension alone19,20 and has
effects additive to those of hypertension in predicting WMH19–21. The
genomic bases of these relationships have not been well explored
to date.

With age, aortic stiffening arises from changes in composition of
the aortic wall, including degradation of the elastic fibres and
decreased cellularity, along with a relative increase in the collagen
content of the aorta (although the absolute amount decreases)22,23. In
addition, extracellular matrix proteins themselves undergo con-
formational and biochemical changes which alter their passive
mechanical properties. These remodelling processes are driven by
TGF-β signalling pathways and accelerated by oxidative stress and
inflammation24 acting on the cells in the aortic wall. These cellular and
molecular drivers of worsening aortic elastic function are reflected in
macroscopic changes with age.

Here, we used convolutional neural networks for automated
aortic segmentation25 to measure ascending and descending aortic
areas and distensibilities on cardiac magnetic resonance (MRI)
images from UK Biobank, which is currently the largest cardiac
imaging epidemiological study26. We have described our approach
to derivation of imaging-derived quantitative aortic traits and the
distribution of these traits in a smaller group from the same
population in an earlier report25,27. We derived six aortic traits
(ascending aortic distensibility (AAdis), descending aortic dis-
tensibility (DAdis), maximum ascending aortic area (AAmax),
minimum ascending aortic area (AAmin), maximum descending
aortic area (DAmax) and minimum descending aortic area (DAmin))
in up to 32,590 (depending on the specific trait) UK Biobank parti-
cipants, who were free from known aortic disease We then per-
formed a genome-wide association study (GWAS) of the six cardiac
magnetic resonance (CMR)-derived aortic traits and carried out
functional analyses and a series of Mendelian randomisation (MR)
studies to investigate possible causal associations of the aortic
measures with aortic aneurysms and brain small vessel disease. We
also explored the bidirectional relationship of aortic traits with
indices of blood pressure.

Results
Cohort demographics are presented in Supplementary Data 1a and
exclusions presented in Supplementary Fig. 1. The distributions of the
aortic traits for the study cohort are shown in Supplementary Fig. 2a, b,
and for excluded non-Caucasian participants in Supplementary Fig. 2c
and Supplementary Data 1b.

Correlations with biometric variables
Aortic traits correlated as expected with biometric variables (see
Supplementary Data 1b for details). The strongest correlations with
distensibilities were with age (AAdis r = −0.552, p <0.001; DAdis
r = −0.539, p <0.001). Aortic diameters correlated most strongly with
body size variables. Interestingly, the correlations with height and
weight were much stronger than with BMI, e.g., for AAmax~height
r =0.383, AAmax~weight r = 0.391 and AAmax~BMI r =0.210 (p <0.001
for all).

SNP-based heritability
Weestimated theproportionof the variability in aortic traits that could
be attributed to common genetic variation from an analysis of SNP-
based heritability (h2

SNP) using linkage disequilibrium score regression
(LDSC) (Supplementary Data 2). h2

SNP estimates ranged from 0.10 (for
DAdis single trait) to 0.41 (forAAmax).We also tested for heritability of
distensibility traits using multi-trait analysis (MTAG, h2

SNP = 0.21 for
DAdis and h2

SNP = 0.24 for AAdis).

Phenotypic and genotypic correlations between traits
We found strong phenotypic and genotypic correlations between
maximum and minimum aortic areas (phenotypic r =0.99,
p < 2.2 × 10−16; genotypic rg = 0.99, p < 1 × 10−50 for the ascending aorta;
phenotypic r =0.98, p < 2.2 × 10−16; genotypic rg = 0.99, p < 1 × 10−50 for
the descending aorta).There were lower correlations between
ascending and descending aortic traits (phenotypic r =0.60,
p < 2.2 × 10−16 and genotypic rg = 0.45, p < 1.7 × 10−25 for the minimum
aortic areas and phenotypic r =0.74, p < 2.2 × 10−16 and genotypic
rg = 0.45, p < 9.25 × 10−7 for distensibilities) consistent with known
biological and functional differences along the course of the aorta1.
Correlations are presented in full in Supplementary Figs. 3 and 4 and
Supplementary Data 3 and 4.

Single and multi-trait aortic GWAS
Our stage 1 GWAS (N = 32,590 for areas and N = 29,895 for dis-
tensibility) identified a total of 95 significant loci (using a genome-wide
significance threshold of p < 5 × 10−8) across the six traits, 94 of which
are autosomal with one localised to the X chromosome. Genomic
inflation waswithin acceptable limits for all traits (λ = 1.147 for the area
traits; λ = 1.047 for the distensibility traits). We took advantage of the
correlation between the aortic traits to enhance the power for the
discovery of loci by performing themulti-trait analysis (MTAG)28 as the
second stage of our GWAS. Use ofMTAG combining all six phenotypes
increased the number of significant loci for the distensibility traits
from 10 to 26 for the ascending aorta and from 7 to 13 for the des-
cending aorta (Table 1), and the total number of significant loci across
all aortic traits to 102. Figure 1a, b shows the Manhattan and QQ plots
fromGWASof ascending anddescending aorticminimumareas,which
overlap almost completely with the findings for the corresponding
maximum areas. Figure 1c, d shows the results of theMTAG analysis of
ascending and descending aortic distensibilities. GWAS summary sta-
tistics from 9,753,033 variants with a minor allele frequency (MAF) ≥
0.01 for the stage 1 and stage 2 (MTAG) analyses are shown in Sup-
plementary Figs. 5–8. Significant associations for a single trait and
stage 2 MTAG analyses are shown in Supplementary Data 5a–f, 6a–f, 7
and 8.

Individual loci were annotated with cis-expression quantitative
trait loci (eQTL) and splice quantitative trait loci (sQTL) data from
GTEx v829. Twenty-four of the 38 loci associated with distensibilities
had lead SNPs whichwere significant eQTLs or sQTLs for nearby genes
in arterial tissue (see Supplementary Data 9 and 10 for details of eQTL,
sQTL and further annotations).

The most significant associations with ascending aortic dis-
tensibility were: rs7795735, 12.6 kilobases upstream of ELN, a gene
encoding elastin; rs201281936, which is in a lncRNA (CTD-2337A12.1)
119 kilobases 3’ of PCSK1 (Proprotein Convertase Subtilisin/Kexin Type
1); rs57130712, which is in a locus spanning SMG6 (SMG6 Nonsense
Mediated MRNA Decay Factor) and SRR (Serine Racemase), and which
is the most significant eQTL for SRR in arterial tissue (p = 2 × 10−20,
normalised effect size (NES) = −0.39)29; and rs34557926, an intronic
variant in HAS2 (Hyaluronan Synthase 2).

The strongest associations with descending aortic distensibility
were different. The most significant association was with rs61886305,
an intronic variant in PLCE1 (Phospholipase C Epsilon 1). This lead SNP
is a strong eQTL for PLCE1 in arterial tissue (p = 1.1 × 10−8,
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NES = −0.20)29. The next strongest association was with rs9306895, an
intronic variant in GDF7 (Growth Differentiation Factor 7), which is a
strong eQTL for both GDF7 and LDAH (Lipid Droplet Associated
Hydrolase) in aorta29 (GDF7: p = 3.6 × 10−9, NES =0.20; LDAH:
p = 7.1 × 10−28, NES =0.53). A locus spanning ELN was associated with
DAdis, with the lead SNP <1.8 kb away from the lead SNP for AAdis at
this locus, and in strong LD with it (R2 = 0.96; D’ = 1). A locus in FBLN5
(lead SNP rs8014161) was associated with descending, but not
ascending distensibility.

There were four loci associated with genome-wide significance
with aortic distensibilities which lost genome-wide significance in the
MTAG analysis (three associated with AAdis and one with DAdis; see
Table 1 for details). Two of these were not significantly associated with
any other aortic traits: rs6724315 in PRKCE and rs10857614 in ARH-
GAP22. The latter is a strong eQTL for ARHGAP22 in aorta
(p = 2.6 × 10−46, NES =0.58), providing additional evidence for its bio-
logical relevance.

We compared our association results for aortic areas with those
reported for aortic diameters in recent papers and preprints30–32 based
on the sameUKBiobank imaging data set, but using differentmethods
and metrics for aortic dimensions (see Supplementary Data 11). We
replicated 75 of the previously reported genome-wide significant
association loci and added associations for clinically relevant pheno-
types (ascending and descending aortic distensibility) to identify a
further 27 novel associations. Inspection of the loci for SNPs that were
significant in the analysis by Pirruccello et al30 andBenjamins et al.32 but
not in our own, generally showed SNP p value signals near the genome-
wide significance threshold (p < 5 × 10−8) in our analysis. The small
differences between associations in the studies could arise from dif-
ferences in the methods used to generate quantitative phenotypes or
from the differences in participant exclusions between the two studies
(for example, we excluded data from participants with known diag-
noses of aortic disease and or those who were extreme phenotypic
outliers).

Novel aortic loci associated with AAdis included lead SNPs
rs7638565 near ADAMTS9, which is a significant eQTL for this gene in
aorta (p = 5.7 × 10−7, NES = −0.22) and rs835341, intronic in GPX7 and a
strong eQTL in the aorta (p = 3 × 10−95, NES = −0.92). A novel locus
associated with descending aortic distensibility included lead SNP
rs112009052, an sQTL for LTBP4 in fibroblasts (p = 9.6 × 10−67,
NES = 2.9) but not in aortic tissues that has relevance here due to this
gene’s role in the TGF-β pathway.

We identified 21 novel associations with aortic areas including
lead SNPs in KALRN and COL21A1 associated with ascending aortic
areas and SNPs at loci tagging AFAP1, FGF5/BMP3, NOX4, FES and
GATA5/LAMA5 associated with descending aortic areas (see Supple-
mentary Fig. 5 and Supplementary Data 5(a–f)).

Replication
We looked up our lead SNPs for associations with aortic areas in an
independent replication data set from the Study of Health in Pomer-
ania (SHIP; N = 2787)33. More than 89% of the lead SNPs available for
lookups in the replication data showed directionally consistent asso-
ciations with aortic areas. More than 23% of these lead SNPs reached at
least nominal significance (seeMethods and Supplementary Data 7a–d
for full replication results).

Sex-specific aortic trait GWAS analyses
We undertook sex-specific GWAS analysis of the area phenotypes
(see Supplementary Data 12). We did not perform these analyses for
distensibility phenotypes due to a lack of power with the smaller
cohort sizes. We contrasted associations discovered for the men and
women (numbers of whom were well-balanced in the cohort) using a
z test. There were 18 loci (ten for AAmin and eight for DAmin) at
which the differences between sexes were significant (adjustedTa
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p < 0.05; see Supplementary Data 12). Seven of these associated loci
were not significant even at p < 0.05 for one sex, despite reaching
genome-wide significance (p < 5 × 10−8) for the other (see Table 2).
Amongst these sex-specific loci were rs28699256, a missense variant
in ADAMTS7 associated with ascending aortic area in females, but not
males (see Table 2; z test for sex difference, p = 7.6 × 10−4). This

variant in ADAMTS7 is in strong LD with the lead SNP associated with
AAmin in the full cohort at genome-wide significance (rs7182642;
R2 = 0.76, D’ = 0.94). Amongst the other sex-specific signals were four
others with functional data supporting potential biological roles in
the aorta, all of which were significant only in males: rs72765298 in
SCAI, a strong eQTL in aorta (see Table 2; p value for eQTL in

Fig. 1 | Manhattan plots of summary statistics from GWAS of aortic traits.
a Single-trait analysis of ascending aortic minimum area (AAmin) and b single-trait
analysis of descending aortic minimum area (DAmin). Genomic inflation (λ) = 1.147
(Aamin and Damin). The y axis shows the negative log of the unadjusted p value of
association (mixed model association implemented in BOLT-LMM89). c Multi-trait
analysis (MTAG) of ascending aortic distensibility (AAdis) and dMulti-trait analysis
of descending aortic distensibility (DAdis). The y axis shows the unadjusted p value
of association (using MTAG28 as discussed inMethods); negative log scale. Twenty-
six association signals were identified in multi-trait analysis of ascending aortic
distensibility (AAdis) and thirteen in multi-trait analysis of descending aortic

distensibility (DAdis). All six traits (maximum andminimum areas and distensibility
in ascending and descending aorta) were used for the MTAG analysis. Genomic
inflation (λ) = 1.021 (AAdis) and 1.031 (DAdis). All panels: Red dashed lines show the
genome-wide significance threshold of P = 5 × 10−8. Annotations of selected loci
show thenearest gene and additionalmanual annotation of likely candidate gene(s)
at the locus where appropriate. Blue: locus is genome-wide significant in multiple
aortic traits, green: locus is genome-wide significant only in the corresponding trait
and with nominal significance (p <0.01) in other traits, red: genome-wide sig-
nificant only in the corresponding trait without even nominal significance in other
traits. QQ plots are shown as inserts in corresponding panels.
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aorta = 8.9 × 10−18, NES = −0.48); rs632650, a significant eQTL for
ALDH2 in aorta (see Table 2; p value for eQTL in aorta = 3.3 × 10−12,
NES = 0.26); rs6573268, associated with DAdis, in CCDC175 which is a
significant eQTL for this gene and others in the aorta (see Table 2; p
value for eQTLs in aorta: for CCDC175 p = 1.2 × 10−6, NES = 0.35; for
RTN1 p = 2.4 × 10−7, NES = 0.33 and for L3HYPDH, p = 1.1 × 10−4,
NES = 0.25); and rs35346340 in FES, a strong eQTL for this gene in
aorta (see Table 2; p value for eQTL in aorta 2.4 × 10−15, NES = 0.3).

An association with rs12663193 (intronic in ESR1) reached
genome-wide significance only in females. However, the sex difference
was not significant (z test p value = 0.06).

Gene-based analysis and tissue specificity
We prioritised potentially causal genes at significant loci using two
complementary strategies: FUMA34, which integrates positional map-
ping, eQTL associations and HiC-derived 3D chromatin interactions
(see Methods) and MAGMA35, which aggregates SNP associations
within genes. In total, FUMA identified 973 candidate genes across the
six phenotypes, including 390 protein-coding genes, 164 pseudo-
genes, 129 lincRNAs, 115 antisense RNAs and 46 miRNAs (Supplemen-
tary Data 13, Supplementary Fig. 9). MAGMA identified 391 candidate
genes with an FDR <0.01 (Supplementary Data 14, Supplementary
Fig. 10). The most significant gene associations (MAGMA) for ascend-
ing and descending aortic distensibilities are shown in Table 3.

Four genes (MASP1, PI15, PLCE, TBC1D12 [the last likely tagging the
PLCE1 locus]) reached significance for all six aortic traits, with ELN at
genome-wide significance in all traits except for DAmax, where it was
just below the genome-wide significance threshold.

Tissue specificity analysis in MAGMA for genes associated with
each phenotype demonstrated that these were significantly enriched
for expression in the aorta and in the coronary artery (p value for
enrichment <1 × 10−3 in all traits), supporting the validity of our results.
See Supplementary Fig. 11 for further details.

Gene set enrichment and pathways analyses
The GO terms identified by MAGMA (Supplementary Fig. 12, Supple-
mentary Data 15a) that were most significantly associated with our
aortic phenotypes highlighted processes important for the develop-
ment of aortic aneurysms and dissection, such as “extracellular matrix
structural constituent” and “smoothmuscle contraction”, aswell as GO
terms related to cardiovascular development.

DEPICT implicated similar ontologies and identified three mole-
cular pathways significantly enriched in our data (FDR <0.01) for at
least one aortic trait (see Fig. 2; Supplementary Data 15b) and of
nominal significance in all other traits: regulation of TGF-β signalling
(AAdis nominal p value = 2.76 × 10−5; FDR < 0.01), IGF binding (AAdis
nominal p value 1.47 × 10−4; FDR<0.01) and PDGF binding (AAdis
nominal p value 7.19 × 10−5; FDR <0.01). VEGF signalling was

significantly associated with ascending aortic distensibility (AAdis
nominal p value 5.15 × 10−5; FDR <0.01).

By averaging eQTL effect directions in aortic tissues, we can
identify some trends in the directionality of these pathway associa-
tions. For example, we identify a number of eQTLs which suggest that
increased expression of genes which enhance TGF-β signalling path-
way (e.g., WWP236, LRP137), or reduced expression of genes which
inhibit TGF-β signalling (e.g., THSD438, FGF939), may be associated with
decreased distensibility and increased aortic areas (WWP2 averageNES
−0.54 for AAdis, NES 0.33 for AAmin; LRP1 NES 0.18 for DAmin; THSD4
average NES 0.21 for AAdis, NES −0.22 for AAmin; FGF9 NES 0.28 for
AAdis, NES 0.28 for AAmin).

The gene with the greatest averaged NES for variants associated
with AAdis is GPX7 (average NES for AAdis 0.83), a gene encoding
glutathione peroxidase 7, which is protective against oxidative
stress40 and has previously been associated with both ischaemic
stroke and Parkinson’s disease41. Notably, SVIL, a gene previously
associated with ascending and descending aortic diameter30, has a
negative NES for AAdis, but a positive NES for DAmin, implying that
increased expression of SVIL is associated with reduced distensibility
and increased aortic dimensions. Also notably, eQTLs for ESR1,which
are associated with aortic areas have a negative averaged NES—
implying that increased ESR1 expression is associated with smaller
aortic areas.

For a full analysis of averaged NES, see Supplementary Fig. 13 and
Supplementary Data 15c.

Co-expression network analyses
Using expression data from single cell transcriptomics of the primate
aorta42, we generated co-expression modules for aortic endothelial
and aortic smoothmuscle cells. Using ourMAGMA (adj. p value < 0.01)
and FUMA gene-based associations (see Methods), we generated
functional sub-networks for each aortic trait, highly enriched for our
significant genes and identified hub genes for modules expressed in
aortic endothelial cells and aortic smooth muscle (see Fig. 3 and
Supplementary Figs. 14–17). Thesehubgenes includegenes involved in
smoothmuscle cell contraction anddifferentiation (e.g.,ACTB,MYH10,
MYL9, NEXN, ARID5B and SVIL), as well as others associated with TGF-β
signalling. In endothelial cells, hub genes identified included EDN1
and GATA2.

We used these co-expression modules for pathway analyses as
described inMethods. The importance of extracellularmatrix, vascular
smooth muscle cell contraction and developmental pathways were
highlighted by enrichment of GO biological pathway and molecular
function terms (e.g. extracellular matrix organisation, collagen-
containing extracellular matrix, contractile fibre, muscle contraction,
actin binding, myosin binding, cardiovascular system development).
GO terms related to theTGF-βpathwaywere also significantly enriched

Table 2 | Lead SNPs at sex-specific loci

SNP Gene Trait Effect allele Males Females Comparison

pval beta SE pval beta SE sig z stat z.pval

rs72765298 SCAI AAmin T 7.10E-09 15.54 2.68 0.43 1.77 2.25 M 5.58 2.43E-08

rs28699256 ADAMTS7 AAmin T 0.066 −3.32 1.81 4.10E-09 −8.92 1.52 F 3.37 7.63E-04

rs632650 ACAD10 DAmin G 1.30E-09 −6.76 1.11 0.54 −0.52 0.85 M −6.33 2.39E-10

rs6573268 CCDC175 DAmin G 1.10E-08 5.15 0.90 0.29 0.72 0.69 M 5.53 3.22E-08

rs35346340 FES DAmin G 8.10E-09 4.93 0.86 0.081 1.14 0.65 M 5.00 5.62E-07

rs9449999 TBX18 DAmin A 2.70E-08 −4.52 0.81 0.12 −0.96 0.62 M −4.94 7.64E-07

rs577351796 TBC1D12 DAmin C 0.11 −6.50 4.08 6.00E-11 −19.90 3.04 F 3.74 1.83E-04

SNPs are shown if they reach genome-wide significance (p < 5 × 10−8) in one sex and are not significant (p > 0.05) in the other.Genenearest gene. Trait aortic trait with which association in one sex is
genome-wide significant, pvalunadjusted p value from sex-specific GWAS using BOLT-LMM as described in Methods, beta effect size from sex-specific GWAS, SE standard error from sex-specific
GWAS, sigwhich sex the SNP has reached genome-wide significance in, z stat z statistic (two-tailed) for comparison between sexes, z.pval unadjusted p value of sex comparison. All SNPs shown are
significantly different between the sexes after multiple testing correction (see Supplementary Data 12 for more detailed results).
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in functional modules derived from gene associations with all the
aortic phenotypes (FDR <0.05) (see Supplementary Data 16 for full
results).

Phenome-wide association studies and MR-PheWAS
We performed a Phenome-Wide Association Study (PheWAS) and a
subsequent MR—Phenome-Wide Association Study (MR-PheWAS) to
explore associations between our aortic traits of interest and clinical
diagnoses in the whole UK Biobank population for which relevant
clinical datawere available (n = up to 406,827), controlling for age, sex,
and for genotype array and four principal components of genotype for
the MR-PheWAS analysis.

Initial PheWAS identified significant phenotypic associations
between aortic traits and multiple hypertension-related clinical codes.
Aortic areas showed a positive phenotypic association with hyper-
tension (for example, AAmin β = 0.001; p = 2.5 × 10−21; see Supple-
mentary Data 17 for full results). Aortic distensibility was negatively
associated with hypertension (β = −0.217; p = 1.65 × 10−25). There was a
significant negative association for all traits with type II diabetes
mellitus.

A subsequent analysis of genotypic associations using MR-
PheWAS supported a significant causal relationship between AAdis
(MTAG) and aortic aneurysms (Inverse Variance Weighted (IVW)
OR=0.28, 95% CI 0.16–0.50; p value 2.14 × 10−5; consistent directions

of effect with Weighted Median (WM)/MR-Egger and with use of the
single-trait analysis of AAdis as the genetic instrument, though the
latter did not reach significance), suggesting clinicalmeaningfulnessof
the distensibility phenotype. MR-PheWAS also suggested that
ascending and descending aortic areas are causally related to the risk
of aortic aneurysms without evidence of significant pleiotropy (see
Supplementary Data 18 for full results).

Relationship between blood pressure and aortic dimensions
We tested further for bidirectional causal relationships between
quantitative blood pressure traits (using GWAS summary statistics
from a previous study43) and aortic areas using MR. MR results sup-
ported a bidirectional causal relationship between ascending aortic
areas and diastolic blood pressure (DBP; AAmin->DBP; βIVW =0.004,
p = 4.3 × 10−16; DBP- > AAmin: βIVW = 6.6; p = 2.5 × 10−5) and between
ascending aortic area and pulse pressure (PP; AAmin->PP: βIVW =
−0.007; p = 7.1 × 10−15; PP- > AAmin: βIVW = −8.1, p = 4.4 × 10−7). MR-
Egger estimates were consistent for all but the DBP- > AAmin analy-
sis, for which the estimates were in the opposite direction (Supple-
mentary Data 19a–c). Contamination mixture MR (MR-ConMix, see
Methods) showed consistent findings for all analyses (Supplementary
Data 20). Similar analyses for causal relationships with blood pressure
were not performed for distensibility since blood pressure is used for
calculation of the trait.

Table 3 | Most significant 30 genes associatedwith ascending and descending aortic distensibility (gene-based analysis using
MAGMA v1.08 as implemented in FUMA v1.3.6)

AA distensibility DA distensibility

CHR START STOP ZSTAT P (adj) SYMBOL CHR START STOP ZSTAT P (adj) SYMBOL

1 52870236 52886511 5.01 2.68E-07 PRPF38A 2 20883788 21022882 5.6592 7.61E-09 C2orf43

1 52873954 53019159 4.65 1.67E-06 ZCCHC11 3 186935942 187009810 6.3839 8.63E-11 MASP1

1 53068044 53074723 4.96 3.60E-07 GPX7 5 95726119 95769847 4.0163 2.96E-05 PCSK1

3 37027357 37034795 4.52 3.14E-06 EPM2AIP1 7 73442119 73484237 4.4229 4.87E-06 ELN

3 123798870 124445172 4.85 6.25E-07 KALRN 8 75512010 75735548 4.0596 2.46E-05 RP11-758M4.1

4 146678779 146859787 4.60 2.14E-06 ZNF827 8 75736772 75767264 4.3374 7.21E-06 PI15

5 81575281 81682796 4.68 1.40E-06 ATP6AP1L 8 92114060 92231464 5.0794 1.89E-07 LRRC69

5 95726119 95769847 6.11 5.00E-10 PCSK1 8 122624356 122653630 4.6601 1.58E-06 HAS2

5 122424816 122529960 5.10 1.69E-07 PRDM6 9 116638562 116818871 4.6059 2.05E-06 ZNF618

6 12290596 12297427 4.72 1.18E-06 EDN1 10 95753746 96092580 7.3635 8.96E-14 PLCE1

7 73442119 73484237 7.11 5.85E-13 ELN 10 96162261 96295687 5.8888 1.95E-09 TBC1D12

8 38585704 38710546 4.58 2.38E-06 TACC1 10 96305547 96373662 5.2578 7.29E-08 HELLS

8 75512010 75735548 5.26 7.03E-08 RP11-758M4.1 11 61535973 61560274 4.2122 1.26E-05 TMEM258

8 75736772 75767264 6.13 4.27E-10 PI15 12 33527173 33592754 4.8085 7.60E-07 SYT10

8 122624356 122653630 6.11 5.00E-10 HAS2 12 38710380 38717784 4.4827 3.69E-06 ALG10B

10 95753746 96092580 5.22 9.07E-08 PLCE1 12 57489191 57525922 4.3707 6.19E-06 STAT6

11 69924408 70035634 5.15 1.34E-07 ANO1 12 94071151 94288616 4.6778 1.45E-06 CRADD

12 21950335 22094336 5.58 1.19E-08 ABCC9 14 92335756 92414331 5.5917 1.12E-08 FBLN5

12 57489191 57525922 5.26 7.24E-08 STAT6 15 32737307 32747835 4.6319 1.81E-06 GOLGA8O

15 71389291 72075722 5.27 7.01E-08 THSD4 15 74218330 74244478 4.3266 7.57E-06 LOXL1

15 78916461 79020096 4.96 3.47E-07 CHRNB4 15 91426925 91439006 4.7615 9.61E-07 FES

16 75327596 75467383 4.83 6.82E-07 CFDP1 16 75327596 75467383 6.6103 1.92E-11 CFDP1

16 75446582 75498604 4.59 2.19E-06 RP11-77K12.1 16 75446582 75498604 6.2293 2.34E-10 RP11-77K12.1

16 88941266 89043612 5.06 2.12E-07 CBFA2T3 16 75476952 75499395 6.0227 8.58E-10 TMEM170A

16 89006197 89017932 5.07 1.98E-07 RP11−830F9.6 16 75510949 75529282 4.8918 4.99E-07 CHST6

17 1957448 1962981 5.39 3.45E-08 HIC1 16 89724210 89737680 4.1797 1.46E-05 SPATA33

17 1963133 2207065 8.24 8.86E-17 SMG6 17 1963133 2207065 6.0905 5.63E-10 SMG6

17 2206677 2228554 7.68 7.83E-15 SRR 17 2206677 2228554 5.3263 5.01E-08 SRR

17 2225797 2240801 5.33 4.80E-08 TSR1 19 39138289 39222223 5.3381 4.70E-08 ACTN4

20 47240790 47444420 4.61 2.04E-06 PREX1 19 39220827 39260544 4.6378 1.76E-06 CAPN12

CHR chromosome, ZSTAT z statistic from MAGMA35, P(adj) adjusted p values using Bonferroni correction for 19,088 protein-coding genes.
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Genetic relationships between aortic traits and cerebral small
vessel disease or cervical artery dissection
We explored genetic correlations and potential causal relationships
between aortic traits and brain SVD estimated from the brain MRI
measure of WMH burden in 50,970 individuals44. Using LDSC, we
identified a significant genetic overlap between all aortic traits and
WMH burden which defined a positive association with minimum
aortic area and an inverse association for the distensibility measures
(AAmin rg = 0.20, p = 0.001; DAmin rg = 0.22, p = 2.19 × 10−5; AAdis rg =
−0.22, p = 5.0 × 10−4; DAdis rg = −0.33;p = 1.0 × 10−4, see Supplementary
Data 21). In further analyses we found no significant genome-wide
overlap between aortic traits and risks of cervical artery dissection, a
leading cause of stroke in young people which was associated with
aortic phenotypes in an earlier study45. However, the regional level
overlap estimates from a Bayesian pairwise GWAS (GWAS-PW) suggest
a high probability of shared variants between aortic distensibility traits
and the cervical arterydissection (CeAD) risk locus PHACTR1-EDN1 (see
Supplementary Data 22). Most of the other CeAD risk loci with high
probability of shared variants with aortic traits harbour single
nucleotide variants (SNVs) associated at genome-wide significance
with one or more of the aortic traits. Exceptions to this include region
at chromosomes 12 (including c12orf49, RNFT2, PAWR, OTOGL), 16
(including CMIP, PKD1L2, BCO1) and 2 (includingMBD5, EPC2, LYPD6B),
suggesting further novel biologically relevant associations with aortic
traits in these regions.

Exploring relationships between aortic traits and white matter
hyperintensity burden using MR
A lower aortic distensibility or a greater ascending aortic area is
genetically correlated with an increased burden of WMH in our data.
We hypothesised that there might be a causal relationship between
these aortic traits and cerebral small vessel disease. Although a two-
sample MR using genetic associations with aortic traits as the instru-
mental variable and WMH as the outcome showed no evidence for a
causal association for any of the aortic traits after multiple testing
corrections (see Supplementary Data 23 for results), after accounting
for the effect of bloodpressure (either systolic or pulse pressure) using
amultivariableMR,we found evidence for a direct causal effect of both
ascending and descending aortic distensibility and ascending aortic
area on WMH burden. Lower distensibility and higher area were
associated with an increased WMH burden (accounting for systolic
blood pressure, for AAdis β = −0.12, p = 1.49 × 10−3 and DAdis β = −0.21,
p = 1.14 × 10−3 using MTAG-derived associations as the instrumental
variable and for AAmax β = 4.0 × 10−4, p = 1.26 × 10−3 and AAmin
β = 3.8 × 10−4, p = 2.91 × 10−3 using stage 1 associations as the instru-
mental variable; see Supplementary Data 24 for full results). We
attempted to replicate this association directly using multivariable
two-sample MR (MVMR) in a smaller cohort (N = 3317) from the Rhi-
neland study, for whom WMH data and genotyping data were avail-
able. In this underpowered analysis, compounded by low conditional F
statistics (F < 10), we were not able to demonstrate consistent
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Fig. 2 | Heatmap of significantly enriched gene ontologies (GO terms) for
minimum area and distensibility phenotypes generated by DEPICT. Colour
scale denotes the significance of enrichment, (unadjusted p value −log10 scale).
Only GO terms significantly enriched in association with AAdis (FDR <0.01) are

presented. Full results can be found in Supplementary Data 11c. AAdis ascending
aortic distensibility, AAmin ascending aortic minimum area, DAdis descending
aortic distensibility, DAmin descending aortic minimum area.
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replication, although the direction of effect was consistent for the
distensibility traits. Results of the analysis are shown in Supplementary
Data 25.

Discussion
Our analysis provides a first large-scale GWAS of ascending and des-
cending aortic distensibilities, and adds substantively to the literature
concerning the genetic basis of variation in aortic dimensions. We
show that aortic distensibility has a significant heritable component,
with 11% of the variance in AA distensibility and 10% of the variance in
DA distensibility explained by the common genetic variants included
in our study (increasing to 24% and 21% respectively for the MTAG
analysis). We identify 38 loci associated with these measures of aortic
stiffness, and a total of 31 novel loci for aortic traits including aortic
areas (102 loci overall). Annotation of these loci provides evidence for
mechanistic associations of TGF-β, IGF, PDGF and VEGF signalling
pathways with aortic distensibility.

The clinical significance of our findings is suggested by the
potential causal associations between AAdis (and other aortic traits)
and aortic aneurysms defined by MR-PheWAS. Multivariable MR pro-
vides new evidence for possible mechanistic associations between
cerebral small vessel disease and both aortic distensibilities and aortic
area, helping to explain their long-recognised clinical relationships20,44.

Mendelian aortopathy or cardiovascular disease-associated genes
ELN46, THSD438, FBLN547,48, PRDM649 and ABCC950 directly overlap loci

associated with aortic distensibility phenotypes and thus are strong
candidates for expression of functional effects of variation at the
corresponding loci. Similarly, Mendelian disease genes FBN151, MYH752,
TBX2053, MASP154 and LOX55 overlap loci associated with aortic area
phenotypes. Other genes associated with aortic area in our analyses
have previously been associated with risks of acute aortic dissection
(ULK4, LRP156). Several gene ontologies were associated with our
measured aortic traits which are also of significance in Mendelian
aortic disease57. Those GO terms related to the extracellular matrix,
cardiovascular development and vascular smoothmuscle cell function
(with genes such as ELN, ABCC9, ANO1 and PRDM6 associated with
AAdis) were amongst the most consistently identified. This over-
lapping genetic landscape of distensibility (and aortic areas) and aortic
aneurysms, and our finding of a likely causal link between these phe-
notypes usingMR-PheWAS suggest that functional pathways related to
genes associated with quantitative aortic traits contribute to the
pathogenesis of the aortic disease. Together, these observations also
support the growing consensus that cardiovascular disease pheno-
types may be expressed as a result of extremes of normal genetic
variation in the population58, and support the use of distensibility to
predict both aneurysm formation and progression4.

Our data also support the role for TGF-β signalling in determining
aortic distensibility in the general population. The TGF-β pathway has
long been recognised as an important modulator of aortic function,
with variants in many of the major components identified as causal in

Fig. 3 | Co-expression networks for aortic distensibility GWAS genes generated
with primate single cell expression data for the aorta42. The co-expression
networks were derived from extended models (r >0.2) in aortic endothelial (ECs)
and aortic smooth muscle cells (SMCs). Round circles represent genes which were
significantly associated (unadjusted p value <5 × 10−8) with an aortic trait in the
current GWAS. Diamonds represent other genes significantly co-expressed in the
published single-cell data for the cell-type indicated. The deeper the shade of red,
the higher the level of expression of that gene in the specified cell-type. The
strength of co-expression is denoted by the colour of the lines joining genes with
higher correlations indicated by darker lines. “Hub genes” are found in the centres

of these modules. a Co-expression networks derived from genes associated with
ascending aortic distensibility (AAdis) and expression data from aortic endothelial
cells (ECs). b Co-expression networks derived from genes associated with des-
cending aortic distensibility (DAdis) and expression data from aortic endothelial
cells (ECs). cCo-expression networksderived fromgenes associatedwithAAdis and
expressiondata fromaortic smoothmuscle cells (SMCs).dCo-expressionnetworks
derived from genes associated with DAdis and expression data from aortic smooth
muscle cells (SMCs). See Supplementary Figs. 14–17 for further co-expression
results.
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Mendelian aortic disease such as Loeys-Dietz syndrome59. Our data
highlight less well-known TGF-β pathway components such as LTBP4
and HIPK3 (Z score = 4.33, p = 7.5 × 10−6) through their association with
ascending aortic distensibility. Our eQTL analysis suggests that var-
iants associated with increased expression of TGF-β pathway compo-
nents are also associated with decreased distensibility, and variants
associated with increased expression of TGF-β pathway inhibitors are
associated with increased distensibility. This is in keeping with pre-
vious observations that TGF-β signalling is up-regulated in aortic
diseases60–62, and that aortic distensibility is reduced in several of these
conditions2,4. Gene ontologies and cell-specific co-expressionmodules
associated with the measured aortic traits suggest that IGF, PDGF and
VEGF signalling also play significant roles in determining aortic biol-
ogy. IGF signalling plays a fundamental role in development and tissue
homoeostasis63 and may modulate smooth muscle cell turnover and
affect smooth muscle cell phenotype64. The roles of insulin and of
insulin-like growth factor signalling are of considerable therapeutic
interest for aortic pathology given recent evidence suggesting that
metformin, a known regulator of both signalling pathways65, could be
an effective treatment for abdominal aortic aneurysm, and the con-
sequent initiation of clinical trials testing this66,67.

Each of these gene sets offers interesting candidates in the search
for new Mendelian aortic disease genes. Our results also add to the
literature on sex differences in the genomic regulation of cardiovas-
cular traits68,69, with new evidence presented here suggesting distinct,
biologically relevant associations inmales and females and implicating
genes such as ADAMTS7, SCAI, ALDH2 and FES as sex-specific deter-
minants of aortic traits and thus possibly also the related diseases.

The strongest SNV association with ascending aortic distensibility
was found in close proximity and upstream of ELN, the gene encoding
elastin, a functionally central component of aortic elastic fibres. Many
aortic pathologies – both genetic and acquired – share a final common
pathway of degradation of elastic fibres and elastin in the aortic media.
It is notable that elastin production occurs at very low levels in adults (it
is almost undetectable inmice >3weeks old)70.Whether the association
with aortic distensibility arises developmentally through impact of the
SNP on elastin expression or its timing, through impact on elastic fibre
structure, or via an effect in later life on signalling via elastin breakdown
products71, remains to be elucidated. Insoluble elastin also functions to
regulate vascular smooth muscle cell proliferation, with a functional
haploinsufficiency of ELN causing the Mendelian disease Williams-
Beuren syndrome, which is characterised by supravalvular aortic ste-
nosis amongst other systemic features46,72. FBLN5 was strongly asso-
ciated with DAdis. This encodes fibulin-5, a secreted, extracellular
matrix protein and a mediator of elastic fibre assembly73. Variants in
FBLN5 cause a Mendelian form of cutis laxa associated with aortic
aneurysm, vascular tortuosity and supravalvular aortic stenosis47,48. The
importanceof extracellularmatrix (ECM) composition and regulation is
demonstrated by the identification of multiple ECM-related GO terms
associatedwith aortic phenotypes. Specific gene associations also serve
to emphasise this, including three members of the ADAMTS family,
which regulate ECMturnover:ADAMTS7 andADAMTS8, bothpreviously
associated with aortic minimum areas and replicated here, and a novel
association of ascending aortic distensibilitywithADAMTS9. The strong
association of AAdis with HAS2 (encoding a hyaluronan synthetase)
demonstrated that glycosaminoglycan components of the ECMare also
key determinants of aortic traits.

Other specific associations provide insights into the complexity of
aortic biology. For example, the second most significant association
withAAdis is within a long, non-codingRNA (lncRNA) just 3’of PCSK1, a
proprotein convertase whose substrates includemany hormones such
as renin, insulin and somatostatin (associated previously with body
mass index and obesity74) and therefore which may mediate multiple
endocrine influences on aortic traits. The third most significant locus
associated with AAdis was previously associated with coronary artery

disease75 and spans SMG6 (a regulator of nonsense-mediated decay)
and SRR, a serine racemase. The causal gene at this locus is thought to
be SMG6, although functional data demonstrating strong eQTLs for
SRR in all the risk alleles identified suggests it remains a candidate gene
for this locus.

The shared genetic basis of ascending and descending dis-
tensibilities is limited (Supplementary Fig. 4), consistent with the dif-
ferent developmental origins of these parts of the aorta, and
associated differences in structures of the aortic wall, in which elastin
content diminishesmoredistally76. Themost significant association for
descending aortic distensibility is in PLCE1, a gene previously asso-
ciated with blood pressure traits43,77. Evidence from knockout mice
suggests that PLCE1 contributes to the integration of β-adrenergic
signalling with inputs from IGF-1 and other pathways to regulate car-
diomyocyte differentiation and growth. We speculate that it might
play a similar integrative role in the development and remodelling of
aortic tissues.

Associations between aortic traits and brain small vessel disease
have long been recognised, but the mechanisms responsible have not
been defined clearly20,78. This has been a particularly difficult rela-
tionship to untangle, as both are subject to confounding influences of
blood pressure and other pleotropic factors. Our multivariate MR
provides novel evidence suggesting that aortic traits including dis-
tensibility are causally linked to WMH and that this relationship is
independent of (and additive to) the effects of blood pressure. By
inference, as WMH burden predicts cognitive decline and dementia
(with evidence supporting a causal association with Alzheimer's type
dementia16,44), these results indirectly suggest that aortic stiffening
could also contribute to cognitive decline and dementia, e.g. through
altered haemodynamics and resultant changes in cerebral blood flow
leading to effects on brain endothelial cell function and small vessel
remodelling79,80.

A shared genomic influence on aortic distensibility and cervical
artery dissections was identified at the PHACTR1/EDN1 locus. Pre-
viously, this locus was implicated in coronary artery disease81, myo-
cardial infarction82, migraine83, fibromuscular dysplasia84 and cervical
artery dissection85. We demonstrated an association of EDN1 with
ascending aortic distensibility, and further characterised EDN1 as a
hub gene in co-expression networks derived from aortic endothelia,
suggesting that EDN1 may be responsible for (or functionally con-
tribute to) this shared genetic association with both CeAD risk and
aortic distensibility,

Although we have made several novel observations, there are
obvious limitations of our study. The GWAS was restricted to the
analysis of Caucasian individuals and additionally, it is well-recognised
that UK Biobank is not representative of the UK population as a
whole86. While genotype-phenotype associations can be biased by
population stratification, our analysis was adjusted for ethnicity and
relatedness. Nonetheless, the “healthy volunteer” selection bias of the
cohort could be a potential confound if it significantly influenced the
aortic traits of interest87. To address this potential confound we now
have demonstrated replication in an independent European popula-
tion cohort (SHIP) for our primary GWAS findings and have shown that
the findings in UK Biobank can be used to predict related cardiovas-
cular traits (WMH) in this independent cohort. Second, the accuracy
(and possibly also the precision) of the distensibility measures likely
was reduced by the need to use non-invasive blood pressure mea-
surements (acquired on the same day as the imaging) as proxies for
central blood pressure recordings. The ascending and descending
aortic distensibility measures also suffer from confounding due to a
likely bidirectional relationship with blood pressure, given the use of
blood pressure indices in the derivation of the phenotype. Uncon-
trolled confounding from residual effects of blood pressure could bias
the MR analyses. Nevertheless, our genetic associations were sig-
nificantly enriched for genes expressed in the aorta and identified
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genes known to be important in aortic biology, affording some con-
fidence in the robustness of our results.

In summary, our results provide genetic association data high-
lighting roles for TGF-β and other growth factors (IGF, PDGF, VEGF)
signalling pathways in the elastic function of the aorta and, by infer-
ence, in aortic disease. We present new evidence for potential causal
links between lower aortic distensibility and increased risk of aortic
aneurysm and for common causal mechanisms relating cerebral small
vessel disease and aortic structure and function that could explain the
clinically observed relationships between late-life cognitive decline
and aortic disease14,18. A better understanding of the underlying
mechanisms based on these genetic data could lead to the identifica-
tion of new therapeutic targets for the reduction of both cardiovas-
cular disease and dementia risks.

Methods
Data: main cohort
The UK Biobank CMR imaging was conducted using a rigorously con-
trolled acquisition protocol88. The cohort has been well-described
previously and ethics approval for UK Biobank has been given by the
North West Multi-Centre Research Ethics Committee (MREC). These
analyses were conducted under Application number 18545. The mean
age at the time of CMR was 64 ± 8 years (range 45–82, 49% of partici-
pants were male [see Supplementary Data 1]). Exclusion criteria for
imaging included a range of relative contraindications to magnetic
resonance imaging scanning as well as childhood-onset disease and
pregnancy. Aortic cine images were acquired using transverse bSSFP
sequence at the level of the pulmonary trunk and right pulmonary
artery on clinical wide bore 1.5 Tesla scanners (MAGNETOM Aera,
Syngo PlatformVD13A, SiemensHealthcare). Each cine image sequence
consists of 100 time frames. The typical image size is 240 × 196 pixel
with the spatial resolution of 1.6 × 1.6mm2. Brachial blood pressure was
obtained using a manual sphygmomanometer and converted into
central blood pressure for the distensibility calculations by applying a
brachial-to-aortic transfer function using the Vicorder software88.

Derivation of imaging phenotypes: main cohort
A recurrent convolutional neural network was developed for aortic
image segmentation and trained using manual annotations of 800
ascending aorta anddescending aorta images (400 subjects and 2 time
frames per subject)25,27 The network was applied to segmenting aortic
images across the cardiac cycle. A semi-automated quality control was
performed for all segmentations, consisting of automated checking of
missing or fragmented segmentation and subsequent manual check-
ing on segmentation screenshots. Quality control (QC) used the fol-
lowing criteria: (1) the aorta appears in all the time frames of the image
sequence; (2) there is no abrupt change of aortic areas between adja-
cent time frames; (3) the aortic segmentation constitutes a single
connected component. Any segmentations that did not fulfil these
criteria were excluded from analyses. For validation of the automated
segmentation, an image analyst trained for cardiac imaging visually
segmented images. By comparing automated and manually seg-
mented images, we found that the neural network achieves a Dice
metric of 0.960 for the ascending aorta and 0.953 for the descending
aorta as reported previously25. The Dice metric is a commonly used
metric for evaluating image segmentation accuracy. A Dice metric of
over 0.95 is typically regarded as of high accuracy.

Six aortic imaging phenotypes were calculated based on the
automated segmentations, including those for the maximal area,
minimal area and distensibility for both the ascending aorta and des-
cending aorta4. Distensibility was calculated as

Dis =
Amax� Amin

Amin× ðSBP � DBPÞ ð1Þ

where Amax and Amin denote the maximal and minimal area and SBP
and DBP denote the systolic and diastolic central blood pressure,
measured at the imaging visit during the study protocol (measured
brachially and converted to central blood pressure by applying a
brachial-to-central transfer function as described above). Aortic
images were available for 37,891 subjects. After running the image
segmentation pipeline and performing quality control, imaging
phenotypes were available for 36,995 participants.

Genomic analyses: main cohort
We performed stage 1 GWAS on six imaging phenotypes (AAmax,
AAmin, DAmax, DAmin, AAdis and DAdis). Outliers with phenotype
values >4 standard deviations (SDs) from the mean were excluded to
ensure we did not include patients with undiagnosed aortic aneurysm
in our results. After exclusions for image quality control, outlying BMI
(< 15 or >40), stage IV hypertension, missing covariates, diagnosis of
aortic disease and non-white ethnicity, 4,405 participants were exclu-
ded leaving 32,590 individuals for the GWAS of AAmax, AAmin,
DAmax, and DAmin, and 29,895 for the GWAS of AAdis and DAdis (the
latter figure is lower due to more missing contemporaneous blood
pressure recording data and incomplete imaging sets). See Supple-
mentary Fig. 1 for more details on exclusions. After exclusions, we
rank-normalised the distensibility phenotypes due to the non-normal
distribution of the distensibility phenotypes (Supplementary Fig. 2).
Aortic area phenotypes approximated a normal distribution and so
raw areas were used to facilitate interpretation of the effect sizes. The
genetic model was adjusted for age at the time of imaging, sex, mean
arterial pressure, height, and weight. We used the linear mixed model
approach implemented in BOLT-LMM (v2.3.4)89. The genetic relation-
ship matrix (GRM) constructed by BOLT was based on all directly
genotyped SNPs (N = 340,336) passing the threshold settings (MAF >
0.05, p(HWE) > 1e−6 and genotype calling rate >98.5). For the main
analysis, a threshold of MAF >0.01 was applied to the SNPs. Genomic
inflation (lambda) was calculated in R as the median chi-square values
derived from the p values divided by the expected median of a chi
square distribution with 1 degree of freedom. Power heatmaps are
provided in Supplementary Fig. 18 for a rangeofMAF and standardised
betas appropriate for our cohort sizes (whole cohort and sex-specific).
Calculation using gwas-power (v1) in R (which uses the formulae in
Appendix 1 of Visscher et al.90) and checkedwithQuanto (https://pphs.
usc.edu/download-quanto/) suggest that the power with our full
cohort size of 32,590 for a beta of 0.05 at aMAF of 0.3 is 0.66 to detect
genome-wide significant associations at p < 5 × 10−8. Increasing the
sample size by 10,000 individualswould increase thepower todetect a
beta of 0.05 at a MAF of 0.3, to 0.89. These figures motivated us to
increase power using MTAG as described.

We used MTAG (version 1.0.8)28 for multi-trait analysis of GWAS
summary statistics to increase power. MTAG can identify genetic loci
associated with a particular phenotype where the single-trait GWAS is
underpowered. The method uses the correlation structure of the trait
in questionwith other traits to boost power.MTAGhas been described
in detail inTurley et al28 andused acrossmanypublishedGWAS studies
(fromour group andmany others) to boost power58,91,92. The key idea is
that when there is a correlation between GWAS estimates from dif-
ferent traits, it is possible to improve the accuracy and power of the
effect estimates for each individual trait by including information
contained in the GWAS estimates for the other traits. It implements a
generalisation of inverse variance-weighted meta-analysis, assuming a
constant variance:covariance matrix of effect sizes across traits. It
therefore may fail to identify trait-specific loci but will increase the
power to detect loci associated with the other related and correlated
traits. We used all 6 aortic phenotypes for our MTAG analysis.
Regression coefficients (beta) and their standard errors were used for
MTAG. The results of themulti-trait analyses are shown in Fig. 1c, d and
in Supplementary Figs. 7, 8, as well as Supplementary Data 6.
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We additionally conducted a sex-specific analysis by performing
GWAS on aortic areas for autosomal SNPs in men and women sepa-
rately, using the BOLT-LMMpipeline as above, and compared the sizes
of the sex-specific genetic associations for SNPs with a P value smaller
than 5 × 10−8 using a z test93. We did not repeat this analysis for dis-
tensibility phenotypes as it was underpowered because of the reduced
cohort size and smaller effect sizes for the distensibility SNPs aswell as
lower heritability estimates for these traits.

To classify genomic loci associated with our imaging phenotypes,
GWAS summary statistics were processed using FUMA (v1.3.6)34 and a
pre-calculated LD structure based on the European population of the
1000 Genome Project94. SNPs that reached genome-wide significance
(p < 5 × 10−8) and with r2 < 0.6 were defined as independently sig-
nificant. All variants with r2 ≥0.6were labelled as candidate variants for
further annotation by FUMA. In a second clumping procedure to
define lead SNPS, those correlated with r2 < 0.1 were defined as inde-
pendently significant. Finally, proximal LD blocks of independent sig-
nificant SNPs with <250kb distance were merged and considered as a
single genomic locus. To consolidate genomic loci across different
traits, the merge function implemented in bedtools (v2.29.2) was
applied95.

For the association of SNPs with genes, biological processes and
tissue expression, we applied the SNP2GENE function implemented in
FUMA to the summary SNP statistics. For the positional mapping of
SNPs to genes, a maximal distance of 10kB was set. eQTLmapping was
performed based on the aorta tissue samples in GTEx v8 (using only
gene pairs with significant SNPs with the default settings of FDR <0.05
or p value <1e−3). 3D chromatin interaction mapping was based on HiC
aorta data (GSE87112) within a promotor region window of 250 bp
upstream and 500bp downstream from the transcriptional start site
and a threshold for significant loops of FDR < 1e−6. Enhancer and pro-
motor regions were annotated using the aorta epigenome (E065) from
the Roadmap Epigenome Project (http://www.roadmapepigenomics.
org/). MAGMA (Multi-marker Analysis of GenoMic Annotation) was
employed to obtain the significance of individual genes with the spe-
cificity of tissue expression based on 54 types in GTEx v8 and the
associationwith 10,678 gene sets fromMsigDB v6.2 (with 4761 curated
gene sets and 5917 GO categories). Further annotation of significant
SNPs and loci was performedmanually with SNP lookups in GTEx v829;
normalised effect sizes (NES) are reported from this data set using
“Artery-Aorta” for the main analysis and including other arterial tissue
types (“Artery – Tibial” and “Artery – Coronary”) where stated.

To aggregate eQTL data over genes to investigate the direc-
tionality of associations between gene expression and imaging phe-
notypes, we aligned the direction of NES of eQTLs to the direction of
the phenotype effect sizes (betas) obtained from BOLT or MTAG.
Thus, in the “direction-corrected” data, a positive NES corresponds
to the case where the effect allele has the same direction of asso-
ciation as the eQTL – ie the allele which is associated with increased
phenotype value is also associated with increased gene expression
while negative NES indicates that allele associated with increased
phenotype value is associated with decreased gene expression. To
facilitate interpretation, direction-corrected NES of eQTLs linked to a
gene were subsequently aggregated by averaging. In total, 8326
eQTLs mapped by FUMA and linked to 164 unique candidate genes
could be aligned to at least one of the six imaging phenotypes
(presented in Supplementary Data 15c). Candidate genes associated
with TGF, IGF, VEGF, PDGF pathways or ECM were selected based on
KEGG and GO annotations.

For Gene Ontology (GO) enrichment analysis, the Data-driven
Expression Prioritised Integration for Complex Traits (DEPICT) soft-
ware was applied (v1 beta rel194, www.broadinstitute.org/depict),
which is based on probabilistic memberships of genes across recon-
stituted gene sets96 For LD-based clumping by PLINK (v2.0)97, which
precedes the DEPICT analysis, a p value threshold of 10−5, a distance

threshold of 500 kb and a LD threshold of 0.1 was set (following the
recommendations on the DEPICT website). Note that DEPICT excludes
any SNPs in the HLA region, on a sex chromosome, or not found in the
1000 Genomes Project data.

Comparisons between our data and those reported by Pirruccello
et al.30 and Tcheandjieu et al.31 were made using the lead SNPs and
corresponding beta-values. The overlaps are reported in Supplemen-
tary Data 11. To assess the degree of convergence of their studies with
our results, lead SNPs were assigned to a genomic locus found in our
study if they were within the locus or a 250kb distance interval.

Replication data: Study of Health in Pomerania (SHIP) cohort
Cohort characteristics and recruitment criteria have previously been
reported33 and details of the study population, image acquisition
protocols, genotyping and statistical analysis are reported in Supple-
mentary Information. Ethics approval was given by the medical ethics
committee of the University of Greifswald. In brief, 2787 individuals
recruited as part of two separate cohorts within this population study
(SHIP and SHIP-Trend; see Supplementary Information for details), had
baselinewhole-body CMR scans. Aortic areasweremanuallymeasured
from the axial images at the level of the pulmonary bifurcation. Gen-
otyping was performed using Affymetrix Genome-Wide Human SNP
Array 6.0 and Illumina Human Omni 2.5 array and imputation was
performed in the Michigan Imputation Server using the HRC v 1.1
reference panel. Genome-wide linear regression analyses were per-
formed in each cohort separately using EPACTS-3.2.9 (https://github.
com/statgen/EPACTS) adjusted for sex, age, mean arterial pressure,
body height, body weight, array type (SHIP-Trend only), and the first
two genetic principal components. The results of both cohorts were
subsequently meta-analysed using an inverse variance weighted
method implemented in METAL (v2011-03-25)98. Lookups were per-
formed in the meta-analysed data.

LD Score regression
We performed LD Score regression using LDSC (LD SCore) v1.0.1
(https://github.com/bulik/ldsc)94,99 to assess the heritability of the
imaging phenotypes. The genetic correlation between imaging phe-
notypes and blood pressure by LD score was computed using 1000
Genomes European data94. We used the GWAS summary statistics for
SBP, DBP and pulse pressure (PP) from the International Consortium
for Blood Pressure (ICBP)43 for the corresponding analyses for genetic
correlation with blood pressure.

Co-expression analysis
Co-expression networks for aortic phenotypes were derived using a
single cell RNA-seq (scRNA-seq) data set for primate arteries42. The
data were obtained from Gene Expression Omnibus (accession num-
ber GSE117715) and included read counts for over 9000 single cells
from aortas and coronary arteries of 16 Macaca fascicularis. Low
abundance genes were removed if they had read counts of less than 5%
of the cells, leaving a total of 9903 genes for further analysis. The
Bioconductor package scater (v1.14.6) was applied in R (v3.6.0) to
compute log-transformed normalised expression values from the
count matrix100. Subsequently, correlation of expression and its sig-
nificance was derived using the correlatePairs function of the Bio-
conductor scran (v1.14.6) package, which calculated modified
Spearman correlation coefficients and derived their significance using
a permutation approach101. A basal co-expression network was con-
structed using gene pairs with significant correlation (false discovery
rate; FDR <0.01) and aminimum Spearman correlation coefficient rho
of 0.1 or 0.2. Subsequently, sub-networks for imaging phenotypes
were derived by retrieving gene pairs with at least one gene associated
by MAGMA or FUMA with the specific phenotype.

Functional enrichment of genes connected with variants identi-
fied on GWAS was carried out using overrepresentation enrichment
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analysis implemented in the Bioconductor clusterProfiler (v3.14.3)
package102. The background gene set (or universe) was defined by the
genes covered by the scRNA-seq data after exclusion of low
abundance genes.

Mendelian randomisation
To investigate potentially causal relationships between aortic pheno-
types and diseases, we performed bidirectional two-sample MR using
our GWAS for aortic imaging phenotypes and the International Con-
sortium for Blood Pressure GWAS on blood pressure43. We limited our
MR analyses to AAmax, AAmin, DAmax, and DAmin because blood
pressure is included in the calculation of the distensibility measure.

For either direction of potential causal relationships between the
aortic phenotypes and blood pressure, we selected SNPs associated
with the exposure at genome-wide significance level (P value < 5 × 10−8

and F-statistic > 10). For SNPs correlated with r2 > 0.1, we used only the
SNP with the smallest p value for the SNP-exposure association. We
tested the validity of the genetic variants as instrumental variables
using the contamination mixture method (MR-ConMix) using the R
package MendelianRandomization (v0.6.0)103. The contamination
mixture method constructs a likelihood function based on the SNP-
specific estimates and evaluates the SNP-specific contribution to the
likelihood.

In each case, we estimated SNP-specific associations as the ratio of
SNP outcome to exposure associations (Wald ratio)104. SNP-specific
associationswere combined using the inverse varianceweighted (IVW)
estimator105. The putative causal effect (βIVW) of exposure on a given
outcome was estimated using the inverse variance weighting (IVW)
method as the weighted sumof the ratios of beta-coefficients from the
SNP outcome associations for each variant (j) over corresponding
beta-coefficients from the SNP-exposure associations (βj). The ratio
estimates from each genetic variant were averaged after weighting on
the inverse variance (Wj) of βj across L uncorrelated SNPs,

βIVW =
∑L

j = 1Wjβj

∑L
j = 1Wj

ð2Þ

Wealso usedweightedmedian (WM) andMR-Egger regressions as
sensitivity methods to test the robustness of associations105. Potential
horizontal pleiotropic effects were investigated using MR-Egger106.
Outlier SNPs identified by MR-PRESSO were excluded from the
analyses107. In an additional analysis, we tested the validity of the
genetic variants as instrumental variables using MR-ConMix103. We
accounted for multiple comparisons of four aortic imaging pheno-
types, three blood pressure traits, and two directions using Bonferroni
correction with a P value threshold of 0.05/(4*3*2)=0.002.

MR analysis was also used to investigate the potential causal
relationships between different aortic traits with WMH. In addition to
IVW, WM, and MR-Egger, we implemented R package RadialMR (v1.0,
available throughCRAN repositories)108. A p value < 0.01 correcting for
6 tests (for the 6 aortic traits) was considered significant. In the pre-
sence of heterogeneity (PHet < 0.01, Cochran’s Q statistic) due to hor-
izontal pleiotropy, RadialMR was used in the identification of
pleiotropic SNPs that have the largest contribution to the global
Cochran’s Q statistic by regressing the predicted causal estimate
against the inverse variance weights. After excluding influential outlier
SNPs, the IVW test was repeated along with MR-Egger regression in
which the regression model contains the intercept term representing
any residual pleiotropic effect109. Non-significant MR-Egger intercept
was used as an indicator to formally rule out horizontal pleiotropy.
Relative goodness of fit of the MR-Egger effect estimates over the IVW
approach was quantified using QR statistics, which is the ratio of the
statistical heterogeneity around the MR-Egger fitted slope divided by
the statistical heterogeneity around the IVW slope. A QR close to 1

indicates that MR-Egger is not a better fit to the data and therefore
offers no benefit over IVW108.

Multivariable MR
We also conducted MVMR using the MVMR package in R110 to esti-
mate the direct effect of aortic traits on the cerebral small vessel
disease (cSVD) outcome (WMH) after accounting for potential
confounding with blood pressure traits, by conditioning on every
other explanatory variable included in the model. Different com-
binations of explanatory variables were considered and the FTS
conditional on the other variables was calculated as a measure of
instrument strength111. Briefly, MVMR by regressing a given instru-
mental variable on all the remaining variables as controls generates
a predicted value for the instrumental variable that is not correlated
with other variables in the model thus accounting for possible
pleiotropic effects.

MR phenome-wide association studies (MR-PheWAS) and
PheWAS
We performed an MR-PheWAS using data from UK Biobank parti-
cipants who did not undergo aortic imaging to assess the effects of
aortic traits on clinical disease classifications. Using the PheWAS
package (https://github.com/PheWAS/PheWAS), we mapped 1157
phecodes with more than 200 cases from the International Classi-
fication of Diseases, 9th Revision, Clinical Modification and the
International Classification of Diseases, 10th Revision, Clinical
Modification (ICD-10-CM)112. For each aortic imaging phenotype, we
selected SNPs with a p value < 5 × 10−8 and minor allele frequency
>0.05 from the single-trait GWAS for AAmax, AAmin, DAmax, and
DAmin, and from the multi-trait GWAS for AAdis and DAdis. Given
that we considered a large number of phecodes as the outcome in
theMR-PheWAS analysis with the number of cases ranging from 201
to 116,879 (median = 1353), we used a more stringent LD threshold
for independent SNPs (r2 < 0.01) to achieve a better-stablised
model. The PheWAS model was adjusted for age, sex, genotype
array, and its four principal components for population stratifica-
tion. MR estimates were then obtained for each pair of aortic traits
and phecode by combining the SNP-specific associations using IVW,
WM, and MR-Egger. We accounted for multiple comparisons of 1157
phecodes using Bonferroni correction with p value < 0.05/
1157 = 4.3 × 10−5. Standard (non-MR) PheWAS was also performed,
using Python (v3.8.10) with the statsmodels (v0.12.2) package.
Logistic regression was performed for each disease code against
each imaging phenotype, adjusting for sex, age and BMI. The
regression coefficient and two-tailed p value of the imaging phe-
notype were reported.

Analyses of associations of whitematter hyperintensities, aortic
and cervical artery dissection
LD score regression (LDSR) method was applied to test genetic
correlation at the genome-wide scale for the different aortic traits
with the most common MRI feature of cSVD, WMH and with CeAD.
GWAS summary statistics were obtained from recently published
consortia GWAS of cerebral phenotypes (from the CHARGE and
CADISP consortia respectively)44,85. For this, common variants,
mapping to the Hapmap3 reference panel were employed. As the
slope from the regression of the Z score product from the two
GWAS summary statistics on the LD score gives the genetic covar-
iance, the intercept of the genetic covariance was used as an
indirect measure of sample overlap99, which corresponds to the
average polygenic effects captured by genetic variants spread
across the genome. A p value < 0.006 (adjusting for 8 simultaneous
tests) was considered significant.

LDSR could potentially miss significant correlations at the regio-
nal level due to the balancing effect113. A Bayesian pairwise GWAS
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approach (GWAS-PW) was applied to systematically test for locally
correlated regions114. The GWAS-PW identified trait pairs with high
posterior probability of association (PPA) using a shared genetic var-
iant (model 3, PPA3 > 0.90). To ensure that PPA3 is unbiased by sample
overlap, fgwas v.0.3.6115 was run on each pair of traits and the corre-
lation estimated from regions with null association evidence
(PPA3 <0.20) was used as a correction factor. Additionally, to estimate
the directionality of associations between trait pairs in regions with
PPA3 >0.90, a simple rank-based correlation test was applied. Inde-
pendence between regions was estimated as proposed by Berisa and
Pickrell116. Only the most strongly associated variant for the outcome
per region showing high PPA3 is reported.

Assessment of WMH in the Rhineland study
Details on the acquisition117, segmentation and quality assurance of
WMH in the Rhineland Study have been described previously. In brief,
we automatically segmented WMH using an in-house developed
pipeline based on DeepMedic118, where we utilised image information
from the T1-weighted, T2-weighted, and FLAIR sequences. Estimated
intracranial volume was extracted using FreeSurfer’s automated seg-
mentation (Aseg)119. Population characteristics have also previously
been reported117. The total number of study participants for analysis
was 3317. Genotyping strategy has been reported in detail elsewhere120.
MVMRwas applied using the samemethods as described above for the
main study.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The results of stage 1 GWAS and MTAG generated in this study have
been deposited in the Imperial College data repository at https://doi.
org/10.14469/hpc/10653 and are freely available for download. Raw
data from the UKBB participants can be requested from the UKBB
Access Management System (https://bbams.ndph.ox.ac.uk). Other
publicly available data used for annotation and analysis are available
as follows: eQTL data used in this study from aortic tissue are avail-
able at the GTEx portal (v8) (https://www.gtexportal.org/home/
tissue/Artery_Aorta). HiC aorta data used for 3D chromatin interac-
tion mapping was based on HiC aorta data (accession number
GSE87112). Co-expression data used in this study are available from
Gene Expression Omnibus (accession number GSE117715).

Code availability
All the code used for the analyses is freely available. The main GWAS
code (BOLT-LMM) is available for download at https://alkesgroup.
broadinstitute.org/BOLT-LMM/downloads/. MTAG is available at
https://github.com/JonJala/mtag.
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