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Evidence accumulation occurs locally in the
parietal cortex

Zhewei Zhang 1,2, Chaoqun Yin 1 & Tianming Yang 1

Decision making often entails evidence accumulation, a process that is
represented by neural activities in a network ofmultiple brain areas. Yet, it has
not been identified where exactly the accumulation originates. We reason that
a candidate brain area should both represent evidence accumulation and
information that is used to compute evidence. Therefore, we designed a two-
stage probabilistic reasoning task in which the evidence for accumulation had
to be first determined from sensory signals orthogonal to decisions. With a
linear encoding model, we decomposed the responses of posterior parietal
neurons to each stimulus into an early and a late component that represented
two dissociable stages of decision making. The former reflected the transfor-
mation from sensory inputs to accumulable evidence, and the latter reflected
the accumulation of evidence and the formation of decisions. The presence of
both computational stages indicates that evidence accumulation signal in the
parietal cortex is computed locally.

Ramping activities associated with evidence accumulation during
decision making are considered as a signature of brain areas involved
in decision making. The lateral intraparietal area (LIP) was among the
first where neurons were demonstrated to exhibit such an activity
pattern and therefore proposed as a critical decision-making area
where neurons accumulate evidence for decisions1,2. Since then, simi-
lar evidence-dependent ramping activities have been demonstrated in
many other brain structures, including the prefrontal cortex3–5, the
striatum6, and the superior colliculus7–9. These results, although by
themselves not against LIP’s role in decision making, raised the ques-
tion of whether evidence accumulation signals in LIP only reflect the
computation carried out somewhere else in the brain. This question
cannot be examined with lesions experiments, which have been used
to provide clues on whether LIP activities causally contribute to
behavior10–12. Whether LIP plays a causal role in decision-making or not
does not exclude the possibility that LIP sits downstream of where
decisions are computed and inherits the evidence accumulation signal
from there.

Here, we approached the question from a different angle. We
reason that if LIP inherits evidence accumulation signal from some-
where else, we are unlikely to observe computation stages that happen
before the accumulation. In particular, the transformation from

sensory inputs to accumulable evidence, which has not been well
studied in thefield, is a necessary computation stage in certain types of
decision making. This computation may be trivial in some perceptual
decision-making tasks, including the classic random dot motion dis-
crimination task, as the evidence is approximately linearly encoded
by the firing rate of the sensory neurons and can be directly
accumulated13,14. Yet, in other tasks where evidence is conferred via
arbitrary stimulus-evidence associations, extra steps are necessary to
compute evidence from the sensory information15–17. In these cases, we
distinguish the evidence that can be readily accumulated based on its
neural representation from the raw sensory information that requires
additional preprocessing. Although it has been shown that LIP activ-
ities represent evidence accumulation in these tasks15,16, it is unclear
where the extra steps take place locally or in a different brain structure.
Representations of the sensory-to-evidence transformation in LIP, if
demonstrated, would argue strongly for the hypothesis that evidence
accumulation is computed in LIP.

To this end, we adapted a probabilistic reasoning task that
was previously used to investigate evidence accumulation in the
LIP16. Just as in the original task, the monkeys were required to
accumulate evidence from a series of visual stimuli to form eye
movement decisions between a green and a red peripheral target.
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However, in the new task, each stimulus could be either red or
green, and its shape provided information only on the reward
probability of the target that had the same color. Therefore, the
evidence associated with each shape had to be determined from
both the shape and the color of the stimulus before it was accu-
mulated. We observed that the LIP neuronal activity could be
decomposed into an early and a late component. The early
component encoded the shape weights and additional computa-
tion signals, which were independent of the eye movement
decisions and represented the sensory-evidence transformation.
The late component, in the familiar form of ramping activity,
reflected the accumulation of evidence and the formation of
decisions. By showing that both the sensory-to-evidence trans-
formation process and the evidence accumulation process are
represented in LIP, we conclude that the evidence accumulation
signal in LIP arises locally.

Results
Behavior
We trained two monkeys with a probabilistic reasoning task (Fig. 1a).
The monkeys chose between a red target and a green target based on
six sequentially presented stimuli. Either the red or the green target
would appear in the recorded neuron’s receptive field in a trial. Each
stimulus was presented for 333ms with a 133ms interval in between.
The stimulus set included six shapes, and each could be either red or
green. The stimuli in each trial were independently and randomly
sampled with replacement from the stimulus set. Each shape was
assigned a unique weight. The targets may yield a big or a small
amount of juice reward. The probability of getting a large juice amount
by choosing a target was determined from the summed weights of the
shapes with the same color in the stimulus sequence:

P Red∣Sr1 , . . . Srn
� �

= 10∑n
i = 1W redi = 1 + 10∑n

i = 1W redi

� �
, ð1Þ

and

P Green∣Sg1
, . . . Sgm

� �
= 10∑m

i = 1W greeni = 1 + 10∑m
i = 1Wgreeni

� �
, ð2Þ

where n andm are the numbers of red and green shapes displayed in a
trial (n +m = 6), PðRed∣Sr 1, . . . SrnÞ is the reward probability of the red
target given all the red shapes Sr 1, . . . Srn, whoseweights areW redi, and
PðGreen∣Sg 1, . . . SgmÞ is the reward probability of the green target given
all the green shapes Sg 1, . . . Sgm, whose weights are W greeni. Positive
weights indicated larger than 0.5 probabilities of getting a big amount
of juice.

The monkeys had to maintain fixation when viewing the stimuli
and choose the better target by saccading toward it when the fixation
point was turned off. The reward was delivered based on the reward
probability of the chosen target for Monkey M. For monkey H, we
delivered a juice reward only when the target with a higher reward
probability was chosen to encourage a better performance. Regardless
of the different reward schemes in the two monkeys, decision making
in this task required both monkeys to evaluate evidence associated
with each shape based on its shape and color and accumulate evidence
accordingly.

The task required the monkeys to accumulate evidence based on
both the shape and the color of the stimuli. A shape in green with a
positive weight supports the green choice, but a green shape with a
negative weight supports the red choice. Likely, a shape in red may
support either the green or the red target depending on the sign of its
assignedweight. The choice should depend on the difference between
the totalweight of the red shapes (∑W red) and thatof the green shapes
(∑W green). This choice pattern was found in both monkeys: they were
more likely to choose the red target when ∑W red was larger than
∑W green (Fig. 1b). Furthermore, the monkeys did not only use the red

or the green shapes to perform the task, as their choices were corre-
lated with the total weights of shapes in both colors (Supplemen-
tary Fig. 1).

The monkeys learned the weights assigned to each shape,
although imperfectly. With logistic regression, we estimated the
leverage of each shape on the monkeys’ choices. The regression
coefficients, termed subjective weights16, mostly correlated with the
assignedweights, especially formonkeyM (Fig. 1c, top panel).Monkey
H did not learn the shapes with negative weights well (Fig. 1c, bottom
panel). Those were the shapes that indicated the corresponding target
would have a small reward probability. Nevertheless, 5 out of the
6 shapeswere significantly different from0, and the subjectiveweights
were overall in the same ranking order as the assigned weights. To
account for monkey H’s performance, we used the subjective weights
in the neuronal analyses instead of the weights that we assigned to the
shapes. Using actual weights leads to qualitatively similar results. All
analyses were performed and presented for each monkey individually
to ensure our conclusions are valid across the two monkeys.

Finally, all stimuli in the sequence were used by the monkeys for
their decisions.We looked at the effects of the stimuli by their order on
the monkeys’ choices with another logistic regression model (see
“Methods”). All stimuli in the sequence exerted significant influenceon
the monkeys’ choices, suggesting that they were integrated to form
choices (Fig. 1d).

LIP activity represented accumulated evidence
After the monkeys learned the task, we recorded single-unit activities
fromLIP. Onlywell-isolated neuronswith persistent activity and spatial
selectivity during the delayperiod in amemory saccade taskwere used
for the analyses. We collected data from 207 neurons from two mon-
keys (monkey M: 115, monkey H: 92). We identified the neurons’
receptive field location with the memory saccade task. During the
recording, one of the targets was located in the receptive field (Tin) of
the neuron being recorded, and the other target was in the opposite
visual hemifield (Tout). The color of Tin and Tout was random trial-
by-trial.

Consistent with what has been reported previously15,16, the LIP
neurons’ activities exhibited a ramping pattern and encoded the
accumulated evidence. We quantified the accumulated evidence with
the difference between Tin and Tout’s total subjective weights
(∑SW in �∑SWout). We grouped all trials by choice, divided the trials
of each choice into quintiles according to the accumulated evidence in
each epoch, and plotted the average responses of each quintile
(Fig. 2a, c). The responses in trials with Tin choices were overall larger.
Within each choice group, the trials withmore evidence supporting Tin
elicited higher responses. We further calculated the average firing rate
between 300 and 800ms after the stimulus onset in each epoch and
plotted it as a function of the accumulated evidence separately for the
Tin and Tout choices. While the slopes of the fitting lines for the Tout

trials were stable across the epochs, those for the Tin trials tended to
decrease, to the point that they became statistically zero in the last
epoch (Fig. 2b, d and Supplementary Fig. 2).

LIP encoded weights
So far, the current results mostly replicate the previous findings of LIP
neuronal responses reflecting the accumulation of evidence16. The
main purpose of the study is, however, to find out whether LIP is
involved in computing evidence from sensory inputs. In this task, the
evidence provided by each stimulus is determined from both the sti-
mulus shape and the stimulus color: the shape is associated with a
weight that affects the target’s reward probability, and the color indi-
cates the relevant target. Both shape weight and color are orthogonal
to eye movement decisions. Any representations of shape weight and
color should precede that of evidence if they are used for computing
evidence.
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We first looked at the encoding of shape weight. We plotted the
population PSTH to each shape averaged across trials and epochs
(Fig. 3a). In bothmonkeys, LIP neurons’ responses were suppressed by
the shapes with a positive weight, but only transiently. In approxi-
mately 1000ms after the shape onset in both monkeys, all traces
merged, and the representation of shape weight disappeared (Fig. 3a).
Each shape lasted 333ms on the screen, but it affected LIP neurons
responses well beyond its presentation period until after the next
shape. We disentangled the effect of each shape’s weight on LIP
responses with a Poisson generalized linear model (GLM) (see “Meth-
ods”). The kernel for shapeweight from theGLMcaptures the dynamic
relationship between shape weight and the neurons’ spiking prob-
ability. We plotted the kernel for each neuron in Fig. 3b and the
population average kernel in Fig. 3c.Again, theGLMrevealed thatmost
neurons’ responses were negatively correlated with shape weight after
the stimulus onset, denoted by the blue color in Fig. 3b and the early

dip below 0 in the population kernels in Fig. 3c (negative: 76/115 in
monkey M, 53/92 in monkey H; positive: 1/115 in monkey M, 10/92 in
monkey H). The kernel weights faded away gradually to 0, suggesting
that shape weight only had a transient effect on the neurons’
responses.

To compare LIP neurons’weight encodings against their evidence
encoding, we extracted the neurons’ response kernels for evidence
with the same Poisson GLM. Plotted in Fig. 4a are the neuron’s evi-
dence kernels, and the neurons are indexed in the same order as in
Fig. 3b. The population average kernel is shown in Fig. 4b. Themajority
of LIP neurons had positive evidence kernel weights, denoted by the
warm colors, meaning that the neurons had larger responses when the
evidence was in favor of Tin. Moreover, unlike the encoding of shape
weight, the encoding of evidence did not fade away andwaspersistent.
These results are consistent with Fig. 2, both indicating a representa-
tion of accumulated evidence in LIP.

Fig. 1 | The task and themonkeys’ performance. a The schematic diagram of the
probabilistic reasoning task. Targets are displayed in the periphery at 567ms after
the fixation acquisition. After another 533ms, six stimuli are presented sequentially
at the center. The stimuli are randomly selected from a pool of six shapes; each
assignedwith aweight (bottom left). The shapes can be either red or green, and the
reward probability of each target is determined by the total weights of the shapes
with the same color. b Psychometric curve. Themonkeys tended to choose the red

targetwhen the total evidence supported the red target. cThe subjectiveweight for
each shape. The shapes with a positive weight favored the choice toward the target
with the same color. The error bars indicating S.E. are too small to be seen formost
data points. * p <0.001, *** p < 1e−10, two-tailed t test. d Effects of stimulus order.
Data are presented asmean values +/− S.E. Plots in the upper and the lower panel in
(b–d) include 56,074 and 42,516 trials from monkeys M and H, respectively.
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In terms of the timing, we found that the representation of shape
weight preceded that of evidence. Based on theGLM,weestimated the
onset latency of both shape weight and evidence encoding for each
neuron (see Methods). The average latency of the shape weight
encoding across neurons was significantly shorter than that of the
evidence encoding (Fig. 4c, Monkey M: 211.95 ± 8.78ms vs.
681.72 ± 34.19ms, Monkey H: 237.66 ± 13.42ms vs. 940.31 ± 39.01ms),
which is consistent with the idea that the LIP activity reflects the
transformation from sensory inputs to the evidence for eye move-
ments. Although the exact values of latency may differ significantly
with different ways to determine the latency, and our particular
methodmayoverestimate the latencies, the latency order between the
two encodings remains robust.

Despite the timing difference, the encoding of shape weight and
evidence was strongly coupled in individual neurons. This is apparent
in Fig. 4a,where the evidencekernels appearwell ordered even though
the neurons are indexed with their shape weight kernels. We further
used the GLMs to calculate the coefficients of partial determination

(CPD) of shape weight and evidence to estimate the fraction of the
response variance uniquely explained by each variable (see “Meth-
ods”). A large CPD indicates a strong contribution to explaining the
response variance that other variables cannot explain. There was a
clear positive correlation between the two CPDs (Fig. 4d): the neurons
that encoded evidence strongly also tended to encode shapeweight. A
single pool of LIP neurons encoded both variables.

The stimulus-to-evidence transformation
The shape weight alone is not sufficient for LIP neurons to compute a
shape’s evidence for the eye movement decision. The neurons also
need to know the shape’s color and Tin’s color.With these three pieces
of information, there are two routes to compute evidence. One is to
first determine whether the shape’s color is the same as Tin’s color
(color consistency). The evidence is the shape weight if their colors
match, and theminus shapeweight if they do not (Fig. 5a, route 1). The
other route is tofirst combine the shape’sweight and color to compute
the evidence for the target with the same color (color evidence), and
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then determine the evidence based onwhether this target is Tin or Tout
(Fig. 5a, route 2).

To examine whether any of the two computation routes were
reflected by the LIP activity, we investigated the representation of the
intermediate variables, i.e., color evidence and color consistency, in
LIP, again with Poisson GLM (see Methods). The results were different
between the two monkeys. For monkey M, color consistency, but not
color evidence, was represented in its LIP (Fig. 5b, d). 47 out of 115
neurons showed significant selectivity for color consistency. Their
responseswere lowerwhen the colors of the stimulus and Tinmatched.
Just as shape weight, color consistency only had a transient influence
on the LIP responses. The average latency of color consistency
encoding was between those of shape weight and evidence (Fig. 5f,
weight: 211.95 ± 8.78ms, consistency: 357.50 ± 14.89ms, evidence:
681.72 ± 34.19ms). In addition, at the single neuron level, the encoding
of color consistency is coupledwith the encoding of both shapeweight
(Fig. 5g) and evidence (Fig. 5h), suggesting the three variables were
represented by the same neurons. The encoding of color evidencewas
not found in monkey M (Fig. 5c, e). The results suggested that LIP in
monkey M carried out the computation according to route 1.

Monkey H, however, showed a distinct pattern. Color consistency
was encoded inmonkeyH’s LIP, but only by a small number of neurons
(Fig. 5b, 2 out of 92 neurons) and only weakly at the population level
(Fig. 5d). On the other hand, color evidence was encoded robustly at
the population level (Fig. 5e). At the individual neuron level, although
many neurons exhibited a trend of encoding color evidence (Fig. 5c),
only one out of 92 neuron’s encoding was significant, preventing us
from assessing the encoding latency and whether the encoding of
color evidence correlated with the encoding of the other variables.
Overall, the data favors the hypothesis that LIP inmonkeyHused route
2 to compute evidence.

Although the LIP activity patterns in the two monkeys sug-
gested that they computed evidence in two different routes, via
color consistency in monkey M and via color evidence in monkey H,
the results from both monkeys consistently showed that the early
component of LIP responses reflected the intermediate variables in
the transformation from the sensory inputs to the evidence for eye
movement decisions. These variables are orthogonal to eye move-
ments but encoded by the same neurons that accumulate evidence
for eye movement decisions.

Accumulation of difference, not the difference of accumulation
One final scenario that has not been discussed so far is that the LIP
neurons might only accumulate a shape’s evidence when the
shape’s color matches its response field target’s, and the final
decision might be based on the comparison between two popula-
tions of neurons, each accumulates evidence for Tin’s and Tout’s
color, respectively. Therefore, we investigated whether LIP activity
reflects a decision process based on the competition between the
evidence accumulated separately for the two targets or on the
accumulation of each shape’s evidence favoring one target versus
the other.

We first compared how the evidence associated with each sti-
mulus affected the LIP neurons’ responseswhen its colormatched Tin’s
(SW in) andwhen itmatchedTout’s (SWout), againwith the PoissonGLM.
If the evidence for each colored target is integrated separately, LIP
neurons would only accumulate the evidence when the stimulus color
matched Tin’s, and SWout should have negligible impact on their
responses. This is not what we observed. Figure 6a shows the popu-
lation response kernels for SW in and SWout. After the initial dip shared
by both, likely caused by the negative shape weight encoding, the
neurons’ responses became positively correlated with SW in and
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negatively correlated with SWout. The kernel weights were roughly
symmetric for both SW in and SWout in the later period, indicating that
the LIP neurons’ responses were equally, although in opposite direc-
tions, affected by a shape’s evidence, nomatter whether the shape had
the same color as Tin or not.

We further studied the encodings of SW in and SWout at the level of
single neurons. Based on the neurons’encoding latency for evidence
(Fig. 4c), we chose a time window at 750–1500ms (monkey M) and
at 1000–1750ms (monkey H) after the stimulus onset for this analysis.
We computed each neuron’s average kernel weights within these time
windows. A large fraction of the LIP neurons encoded both SW in and
SWout (blue and blackmarkers in Fig. 6b, 83/115 in monkeyM, 54/92 in
monkeyH),withmany of themare statistically indistinguishable (black
markers in Fig. 6b, 41/115 in monkey M, 35/92 in monkey H). Only a
small number of neurons encoded just SW in (redmarkers in Fig. 6b, 13/
115 in monkey M, 18/92 in monkey H) or SWout (green markers in
Fig. 6b, 10/115 inmonkeyM, 9/92 inmonkeyH). Overall, the encodings
of SW in and SWout were similar but in opposite signs. The results
further confirmed that the LIP neurons accumulated evidence differ-
ence between SW in and SWout regardless of whether the shapes’ color
matched with the color of Tin or not. The evidence was not accumu-
lated separately for each color.

Discussion
Using a probabilistic reasoning task, we show that the ramping activity
observed in LIP during decisionmaking canbe segmented into anearly

component and a late component. While the later and sustained
component reflected the accumulated evidence for eye movement
decisions, the early but transient component represented the variables
in the transformation from sensory inputs into the evidence before
accumulation. The parsimonious interpretation of these results is that
LIP is where evidence is evaluated and accumulated towards a
decision.

Although the early components of LIP responses reflected the
sensory inputs, they were unlike shape selectivity18, color selectivity19,
or motion selectivity20–22 previously reported for the LIP neurons. In
those studies, the selectivities were measured by stimuli in the
response field of the neurons, and it is not clear how these selectivities
are related to evidence accumulation or decision making. In the cur-
rent study, we focused on the neurons that showed delay activity in a
delay saccade task, and in all aspects of their response properties, they
were the same type of neurons that were reported in earlier decision
making studies2,15,16. The stimuli were always presented at the center,
while the response fields of the neurons were peripheral.

Our findings suggest that LIP computes and accumulates evi-
dence based on arbitrary sensory inputs. In several previous studies of
LIP with random dots motion stimuli, it was found that the dots’
motion information was encoded in LIP before a motor plan was
formed23,24. However, these results are not sufficient for arguing for
LIP’s general role in evidence accumulation. This is because LIP sits in
the dorsal stream of visual processing for motion and carries motion
information21,25. The observed motion information may be
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conveniently used in the motion direction discrimination tasks, but
one cannot assume other types of sensory information are also enco-
ded in LIP and used for decision making based on these studies. In
contrast, our study demonstrated LIP’s representations of the sensory
information and extra computations before evidence accumulation.
In addition, the strengths of the representations of the early
sensory component and the late evidence component, evident from

the early negative peak and the late sustained activation in Fig. 3c
and 4a, were comparable, suggesting that the encoding of the early
component was not weak or secondary. Therefore, our findings argue
strongly for the hypothesis that LIP computes and accumulates evi-
dence based on arbitrary sensory inputs, which in our case required
multiple steps of computation before their associated evidence can be
accumulated.
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The representation of both the evidence accumulation and the
computation before accumulation has not been demonstrated in any
other brain areas. In particular, our results provide an interesting
contrast against the findings from the prefrontal cortex. In a recent
study, Lin et al. used a similar but simpler task to study evidence
accumulation in the prefrontal cortex5. Although the dorsolateral
prefrontal cortex (DLPFC) was also found to accumulate evidence for
eye movements, it only weakly encoded stimuli’s color weights, which
were quantities comparable to shapeweight in the current study, and a
correlation between the encoding of color weight and evidence at
individual neuron level was absent. Even though DLPFC neurons are
well known for their heterogeneity26, their responses did not fully
capture the transformation from sensory inputs to accumulated evi-
dence. In addition, the signal for accumulated evidence in the DLPFC
had a later onset than what was found in LIP in the current study.
Therefore, the accumulated evidence signal in LIP is unlikely to come
from the DLPFC. Between the two areas, LIP is a more likely candidate
where evidence accumulation occurs.

Although we interpret the early component of LIP responses as
sensory, it is relative to the later accumulated evidence and eye
movement signals. Shape weight represented in LIP is already an
intermediate variable between raw sensory inputs and the following
computations. The shape weight signals may arise from the orbito-
frontal cortex (OFC). Shape weight is a quantity tied to value, and the
OFC has been shown to encode value associated with visual
stimuli5,27,28.

The current literature cannot explain why the early LIP responses
negatively encoded the shapes’ weight regardless of their color.
Because shape weight is related to targets’ reward probability, the
results mean that stimuli that led to larger reward probabilities sup-
pressed LIP neurons’ responses. This is opposite to the studies that
showed that the LIP activities were positively correlated with choice
reward29,30, suggesting that the weight encoding cannot be explained
by choice reward. The negative encoding also cannot be explained by
salience31, which may be quantified as the absolute value of shape

weight in our experiment. The weight encoding in LIP was signed:
positive weights induced suppression of LIP responses, and negative
weights increased the neurons’ responses. We suspect that the nega-
tive encoding reflected the nature of the inputs from the brain area
where LIP receives this information. Depending on where information
comes from and how information is encoded in the source brain area,
we may observe different encoding patterns of sensory inputs in LIP.
The encodingmay be consistent with, orthogonal to, or even opposite
to the eyemovement signals in LIP. In a recent study, LIP neurons were
found to encode evidence negatively in a face discrimination task,
providing another example where the encoding of sensory inputs was
seemingly contradictory to evidence accumulation17.

The early negative weight encoding may also explain the “dip” in
the LIP activity right after themotiononset. The dip has been observed
in many previous random-dot studies. It was proposed that the dip
may be caused by the lateral inhibition within the LIP network or a
general normalizationmechanism32. This explanation is not supported
by our data, because theweight encoding thatweobservedhad a short
latency and preceded the encoding of evidence. In addition, the dip
occurred after each stimulus in the trial sequence (Fig. 1a, b and Sup-
plementary Fig. 3), which excludes the possibility that the dip was
associated with any particular events related to the starting of the
accumulation. The dip also could not be explained by a temporal
attraction of attention away from the eye movement targets and
toward the stimuli at the fixation33. If this was the case, we would
expect the dip reflected stimulus salience, which should be high for
shapes with both large positive weights and large negative weights.
The negative encoding of the weights contradicts this scenario.

In summary, we demonstrated that LIP activity represented
the computation of the sensory-stimulus transition in addition to
the evidence accumulation during decision making. The repre-
sentation of both stages of computation suggests that the evi-
dence accumulation signal in LIP may arise locally, and thus
provides a strong argument for LIP’s important role in evidence
accumulation during decision making.
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Methods
Subjects and materials
Two adult male rhesus macaques (Macaca mulatta) were used in the
study (M and H). They weighted on average 10–11 kg during the
experiments. All experimental procedures were approved by the Ani-
mal Care Committee of Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences (Shanghai, China).

During training and recording sessions, the monkeys were seated
in a primate chair. Visual stimuli were presented on a 23.6-inch video
monitor, which was placed at a 60 cm distance from the monkey. The
behavioral paradigm was controlled through custom code with the
MatLab-based MonkeyLogic Version 1. The eye movements were
trackedwith a high-speed infrared camera at a sampling rate of 500Hz
(Eyelink 1000, SR-Research). Juice or water reward was provided as
rewards based on the monkeys’ preference. The liquid delivery was
controlled by a computer-controlled solenoid. The monkeys drank
~200–350ml per experimental session.

Probabilistic reasoning task
Monkeys started each trial by fixating on a central fixation point
(FP) (0.3° in diameter). After 567 ms, a red and a green target
(0.2° in diameter) were displayed on the left and right sides of the
FP, equidistant from the FP. During the recording sessions, one of
the targets was in the response field of the neuron being recor-
ded, and its color varied trial by trial. After 533ms, six visual
stimuli were shown at the center of the screen sequentially. Each
was displayed for 333ms and followed by a 133ms delay. After the
last shape disappeared, there was a variable delay (randomly
selected from 433/533/633ms). Afterward, the FP was turned off,
instructing the monkey to report its choice by making a saccade
to one of two targets and fixating on the target for 283ms. The
reward was delivered based on the chosen target’s reward
probability.

The stimuliwere randomly sampledwith replacement fromapool
of six shapes. Each shape was assigned a unique weight. The stimulus
color was randomly chosen between red and green. The color indi-
cated the target that the stimulus carried information about. Each
target yields either a large reward or a small reward, and the prob-
ability was determined by the total weight of the shapes with the same
color that appeared in the trial (Eqs. 1 and 2). For monkey M, a large
reward (120μl/drop, 2 drops) was delivered with a probability of
PðtargetchosenÞ, and a small reward (60μl/drop, 1 drop) was delivered
with a probability of 1� PðtargetchosenÞ. We rewarded monkey H only
when the target with a larger reward probability was chosen. A large
reward (200μl/drop, 2 drops) was delivered with a probability of
PðtargetchosenÞ, and a small reward (100μl/drop, 1 drop) was delivered
with a probability of 1� PðtargetchosenÞ.

Surgery procedures and recordings
The monkeys received a chronic implant of a titanium headpost
with standard procedures before the training. After their perfor-
mance reached a satisfactory level, we performed a second surgery
to implant an acrylic recording chamber over the intraparietal
sulcus, which allowed electrophysiological recording from LIP.
The inner diameter of the cylindrical chamber was 19 mm. All
surgery procedures were done under aseptic conditions. The
monkeys were sedated with ketamine hydrochloride (5–15 mg kg−1,
i.m.) and anesthetized with isoflurane gas (1.5–2%, to effect). Their
body temperature, heart rate, blood pressure, and CO2 were
monitored during the surgeries.

Electrophysiology
A plastic grid (1mm spacing) was placed inside the chamber to pre-
cisely locate the targeted brain areas. Single tungsten electrodes
(Alpha Omega) were used for recordings, and electrodes were

accurately placed with a microdrive (Electrode Positioning System,
Alpha Omega). The neural responses were collected with an AlphaLab
SnR System 2.0.4.5 (Alpha Omega).

In each session, one or two single electrodes were placed in the
ventral division of LIP (LIPv), which was located based on structural
magnetic resonance imaging and transitions of white and gray matter
during penetrations. Action potential waveforms were isolated online
using a window discriminator or sorted offline (Offline Sorter Appli-
cation Version 4.5.0). Only units with well-isolated waveforms were
recorded and used for analysis.

Units with persistent activity and spatial selectivity in a memory-
guide saccade taskwereused for further analysis. In thememory-guide
saccade task, a target appeared shortly (200ms) in the peripherywhile
the monkey fixated the central fixation point. After a variable delay
period (uniformly selected from 533/633/733ms), the fixation point
disappeared, instructing the monkey to make a saccade toward the
target. The receptive field was defined as the target position where the
unit showed the maximal responses during the delay period. During
the probabilistic reasoning task, one of two targets was placed in the
receptive field, and the other was in the opposite visual hemifield. We
collected data from 207 neurons (monkey M, 115 neurons, monkey H
92 neurons).

Behavioral analyses
Logistic regression was applied to determine how each shape affected
the choice. The probability of choosing the red target is a function of
the sum of leverages, Q, provided by the presented stimuli:

P choice= redð Þ= 1

1 + 10�Q , ð3Þ

Q=β0 + ∑
6

i = 1
βiNredi

� ∑
6

i = 1
βiNgreeni

, ð4Þ

where Nredi
and Ngreeni

indicate how many times shape i appeared in a
trial in red and in green, respectively (i = 1…6). β0 is the bias term. β1 ~ 6

provide the estimates of the weight that the monkey assigned to the
shapes and are defined as the shapes’ subjective weights (Yang and
Shadlen, 2007).

We performed logistic regression to assess whether the stimuli in
all epochs affected monkeys’ choice as follows,

P choice= redð Þ= 1

1 + 10�Q , ð5Þ

Q= β0 + ∑
6

i= 1
βnSW redi

� ∑
6

i = 1
βnSW greeni

, ð6Þ

where SW redi
and SW greeni

are the subjective weight of the red or the
green shape appearing in epoch i. SW redi

=0 if the stimulus in epoch i is
not red, and SW greeni

=0 if the stimulus is not green. β0 is the bias term,
β1 ~ 6 are the fitting coefficients of the shapes in each epoch (six epochs
in total).

Neural data analyses
We performed all electrophysiological analyses separately for two
monkeys.

The generalized linear model (GLM). We followed the previously
published model that described the probability of spike trains,
p r∣x,θð Þ, with external variables34. Themodel assumes the spikes follow
a Poisson distribution with a time-varying spike rate λt , which results
from the linear convolution of the time course of the task variables
with their corresponding kernel ki:

λt = e
∑i

�
ki * f ðxiÞ

�
tð Þ ð7Þ
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p r∣x,kð Þ=
YT

t =0
p rt ∣x,k
� � /

YT

t =0
4λrtt e

�4λt ð8Þ

where xi is the ith variable, ki is the corresponding kernel,
�
ki*f ðxiÞ

�
tð Þ

indicates the linear convolution between f ðxiÞ and ki, Δ is the time bin
size (10ms), and T is the number of time bins in each trial. f ðxiÞ is a
boxcar function for all variables, which lasts 1500ms for the variables
related to the shapes and 3000ms for target onset and target con-
figuration. The response function ki was fitted to minimize
−log(p r∣x,kð Þ) across the whole trial period with Matlab’s build-in
function fminunc. The model’s predicted responses generated from
the 5th and the 6th stimulus extend beyond the end of a trial, but only
the part before the end of the trial was considered during the fitting.
We did not use any regularization or penalize high-valued kernel
weights for us to determine the significance of the kernel weightsmore
easily. The fitting results were validated with five-fold cross-validation
(Supplementary Fig. 4).

To quantify the encoding significance, we shuffled the external
variables across trials and performed the GLM on the shuffled data
sets. The significance of the kernel weight at each time point was
determinedwith a two-tailed t test (p <0.01).We calculated the longest
duration of the time window during which the kernel weights were
significantly different from 0. This procedure was repeated 100 times
to obtain the 95th percentile of the longest encoding duration. A
neuronwas considered to encode a certain variable significantly only if
its kernel’s longest encoding duration was above this 95th percentile.
In addition, a neuron’s encodingwas considered positive if the average
kernel weight during the first significant encoding duration was posi-
tive. Negative encoding neurons were similarly defined. The neuron’s
encoding latency was defined as the beginning of the first significant
encoding duration.

In the GLM in Figs. 3–5, the variables that we included were sti-
mulus onset, subjective weight associated with stimulus shape, sti-
mulus color (1: red, −1: green), evidence, color consistency (1: stimulus
color = Tin color, −1: stimulus color ≠ Tin color), color evidence, target
onset, and target configuration (1: Tin is red, −1: Tin is green).

In Fig. 6, stimulus onset, stimulus color, SW in, and SWoutwere
used in the GLM. The other stimulus and target variables included in
the GLM above were not considered here, because SW in and SWout

were calculated with those variables.
For fair comparisons, all comparisons of average latency, kernel

weight, and CPD were based on results from the same GLM.

Coefficient of partial determination (CPD). The CPD analyses in
Fig. 4d and Fig. 5g, h were based on the same GLMs described above.
The CPD of variable i and neuron j was calculated as follows:

CPDi,j =
SSE X�i,j

� �
� SSE Xall,j

� �

SSE X�i,j

� � , ð9Þ

where SSE Xall,j

� �
and SSE X�i,j

� �
are the sum of the squared estimate

of errors of the full model and the model with variable i shuffled. This
procedure was repeated 100 times, and the CPD plotted in Fig. 4d and
Fig. 5g, h were the averages.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Zenodo
database and are accessible at https://doi.org/10.5281/zenodo.
6555461.

Code availability
All customcodeused for reportedanalyses in this study are available at
https://github.com/zwzhangi36/sensory-evidence_transformation_
in_LIP.
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