
nature communications

Article https://doi.org/10.1038/s41467-022-32199-y

Orbitofrontal cortex contributes to the
comparison of values underlying economic
choices

Sébastien Ballesta 1,4,5, Weikang Shi 1,6 & Camillo Padoa-Schioppa 1,2,3

Economic choices between goods entail the computation and comparison of
subjective values. Previous studies examined neuronal activity in the orbito-
frontal cortex (OFC) of monkeys choosing between different types of juices.
Three groups of neurons were identified: offer value cells encoding the value
of individual offers, chosen juice cells encoding the identity of the chosen
juice, and chosen value cells encoding the value of the chosen offer. The
encoded variables capture both the input (offer value) and the output (chosen
juice, chosen value) of the decision process, suggesting that values are com-
pared within OFC. Recent work demonstrates that choices are causally linked
to the activity of offer value cells. Conversely, the hypothesis that OFC con-
tributes to value comparison has not been confirmed. Here we show that weak
electrical stimulation of OFC specifically disrupts value comparison without
altering offer values. This result implies that neuronal populations in OFC
participate in value comparison.

Recent work demonstrated that offer values encoded in OFC are
causal to choices1. In contrast, where in the brain and how exactly
values are compared to make a decision remains an open question.
Several hypotheses have been put forth. When monkeys choose
between goods, different groups of cells in OFC encode the choice
input (offer values) and the choice outcome (chosen good, chosen
value)2,3, suggesting that the cell groups identified in this area con-
stitute the building blocks of a decision circuit. Experimental
findings4,5 and computational models6–8 support this hypothesis, but
the evidence remains correlative. Other studies suggested that eco-
nomic decisions take place in motor systems9,10, through distributed
processes11,12, through shifts of visual attention13, by integrating hip-
pocampal signals14, or without the explicit comparison of values15.
However, none of these proposals has been validated by causal evi-
dence. The present study specifically examined whether OFC con-
tributes to value comparison.

We introduce a paradigm to assess whether a neural population
contributes to a decision. At the neural level, a binary decision is

ultimately a comparison between two neural signals. For example, in
the random dot task used to study the visual perception of motion16,
the decision is a comparison between two neural signals representing
motion in the two valid directions. Conversely, in economic choices,
the decision is a comparison between two neural signals representing
the offer values. In general, the signals to be compared are the input of
the decision process. Now consider an experiment in which altering
the activity of a neuronal population induces higher choice variability
(shallower psychometric curves). In principle, an increase in choice
variability may be due (a) to noisier (more ambiguous) input signals,
(b) to a noisier decision process, or (c) to the disruption of the sub-
sequent motor response. If one can exclude (a) that the manipulation
makes input signalsmore noisy and (c) that it disruptsmotor planning,
one may conclude (b) that the neural population participates in the
decision process. We now consider three previous results in this light.

First, classic studies showed that low-current stimulation (≥10 μA)
of the middle temporal area biased perceptual decisions16,17. Further-
more, high-current stimulation (≥40 μA) increased choice variability18.
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The latter observation was interpreted as follows. At low current, sti-
mulation affected only neurons within one minicolumn, resulting in a
bias. At high current, stimulation also affected neurons in other mini-
columns,with opposite preferreddirection19. This increased ambiguity
and lead to higher choice variability. In the language adopted here, the
increase in choice variability was due to noisier input signals.

Second, experiments in mice found that optogenetic inactivation
of OFC increased choice variability, and that this effect was due to
animals reverting to stereotyped behavior20. In otherwords,whenOFC
was inactive, mice “chose” by adopting strategies such as selecting the
same juice chosen in the previous trial or consistently licking on one
side. These results indicated that OFC is necessary for economic
choices. However, the results did not disambiguatewhetherOFC’s role
is in value assignment, value comparison, or both.

Third, in our recent experiments, monkeys chose between two
juices offered sequentially1. Electrical stimulation was delivered dur-
ing presentation of the first offer (offer1) or the second offer (offer2)
at 25, 50, or 125 μA (in separate sessions). We measured three beha-
vioral effects: range-dependent bias, changes in order bias, and
increase in choice variability. Both range-dependent bias and changes
in order bias were interpreted as due to the stimulation altering offer
values by increasing the activity of offer value cells (input signals).
These biases were observed in different ways at all current levels ≥25
μA (see “Discussion”). Most relevant here, stimulation at 125 μA dur-
ing offer2 but not during offer1 induced an increase in choice varia-
bility. Since thedecisionwasmadeonlyuponpresentation ofoffer2, it
was tempting to interpret the last results as evidence that the sti-
mulation interfered with value comparison and that this process took
place within OFC. However, high current stimulation could affect

fibers in the white matter adjacent to the stimulation site21 and thus
disrupt transmission to or between other brain areas22. Since the
increase in choice variability wasmeasured only at 125 μA, one cannot
exclude that the decision process took place in some other brain
region and/or that stimulation disrupted the early stages of motor
planning 23.

Ideally, to provide evidence thatOFC contributes causally to value
comparison, one would need some condition in which weak electrical
stimulation increases choice variability but does not induce any range-
dependent bias or change in order bias. In otherwords, the stimulation
should disrupt value comparison without altering offer values per se.
In such a condition, the stimulation weakness would ensure that its
effects are confined to OFC21. Furthermore, the absence of spatial or
motor signals in this area2,24,25 would ensure that the stimulation does
not disrupt motor planning per se. Thus one could conclude that OFC
participates in value comparison. In the experiments described below,
we identified such a condition.

Results
Weak electrical stimulation of OFC disrupts value comparison
In each experimental session, a monkey chose between two juices
labeled A andB,with A preferred, offered in variable amounts. The two
offers were presented sequentially in the center of the monitor
(Fig. 1A). Trials inwhich juice Awas offeredfirst and trials inwhich juice
B was offered first were referred to as “AB trials” and “BA trials”,
respectively. The terms “offer1” and “offer2” referred to the first and
second offer, independent of the juice type and amount. For each pair
of juice quantities, the presentation order (AB, BA) and the spatial
location of the saccade targets varied pseudo-randomly and were
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Fig. 1 | Experimental design and example sessions. A Trial structure. Each trial
began with the animal fixating a dot (0.35° of visual angle). After a brief delay, two
offers appeared in sequence, interleaved by await time. Each offer was represented
by a set of colored squares (side = 1° of visual angle); the color indicated the juice
type and the number of squares indicated the juice amount. Along with the offer, a
small colored circle (0.75° of visual angle) appeared around the fixation dot. The
circle indicated to the animal the juice identity in the case of null offer (0 drops;
forced choices). The animal maintained center fixation throughout the trial until
the go signal, indicated by the extinction of the fixation dot. The animal indicated
its choice with a saccade andmaintained peripheral fixation for an additional delay
before juice delivery. Center fixation was imposed within 3°. Weak electrical

stimulation (5–15 μA) was delivered during offer1 presentation or during offer2
presentation, in separate sessions. B, C Example sessions. Each panel represents
one session. Red and blue refer to AB and BA trials, respectively; light and dark
colors refer to stimOFF and stimON, respectively. Sigmoids were obtained from
probit regressions. For stimOFF trials and stimON trials, the order bias captured the
distance between the red and blue sigmoids. Weak electrical stimulation was
delivered during offer1 (5 μA; panelA) or during offer2 (5 μA; panel B). Stimulation
during offer1 did not substantially alter any of the choice parameters (ρ, ε, η).
Similarly, stimulation during offer2 did not substantially alter the relative value (ρ)
or the order bias (ε). However, stimulation during offer2 significantly decreased the
sigmoid steepness (η). Source data are provided as a Source Data file.
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counterbalanced across trials. Sessions typically included ~400 trials
and offered quantities varied from trial to trial pseudo-randomly. An
“offer type”wasdefinedby two juicequantities in given order (e.g., [1A,
3B] or [3B, 1A]). To discourage monkeys from making a decision prior
to offer2, we designed offer types such that for most values of offer1
the animal split choices between the two offers 26.

Weak electric currentwas deliveredduring offer1 or during offer2,
in separate sessions. In each session, stimulation was delivered in half
of non-forced choice trials, pseudo-randomly selected (see “Meth-
ods”). Compared to previouswork using electrical stimulation of OFC1,
the main difference is that in the present study we used very low
currents, in the range 5–15 μA.

For each session, we examined separately trials with and without
the stimulation (stimON, stimOFF). For each group of trials, we ana-
lyzed choices with a probit regression:

choiceB=ΦðX Þ
X =a0 +a1 logðqB=qAÞ+a2ðδorder,AB � δorder,BAÞ

ð1Þ

where choice B = 1 if the animal chose juice B and 0 otherwise, Φ was
the cumulative function of the standard normal distribution, qA and qB
were the quantities of juices A and B offered, δorder,AB = 1 in AB trials
and 0 in BA trials, and δorder,BA = 1 – δorder,AB. From the fitted para-
meters, we derivedmeasures for the relative value ρ = exp(–a0/a1), the
sigmoid steepness η = a1, and the order bias ε = a2. Intuitively,ρwas the
quantity ratio qB/qA that made the animal indifferent between the two
juices, ηwas inversely related to choice variability, and ε quantified the
order bias. Specifically, ε <0 (ε >0) indicated a bias in favor of offer1
(offer2).

Figure 1B, C illustrates the main results of this study. In one
example session (Fig. 1B), weak stimulation (5μA)wasdeliveredduring
offer1. The stimulation did not substantially alter the relative value (ρ),
the order bias (ε), or the sigmoid steepness (η). In another example
session (Fig. 1C), weak stimulation (5 μA) was delivered during offer2.
Again, the stimulation did not substantially alter the relative value (ρ)
or the order bias (ε). However, electrical stimulation substantially
decreased the sigmoid steepness (η). In other words, weak stimulation
during offer2 selectively increased choice variability.

Similar patterns were observed at the population level. Our data
set included N = 49 sessions in which weak electrical stimulation was
delivered during offer1, and N = 42 sessions in which weak stimulation
was delivered during offer2. In general, neither the relative value (ρ)
nor the order bias (ε) were substantially altered by electrical stimula-
tion in either time window (Fig. 2A, B). In contrast, the sigmoid
steepness (η) was significantly reduced by stimulation delivered dur-
ing offer2 but not during offer1 (Fig. 2C). That is, weak electrical sti-
mulation during offer2 but not during offer1 significantly increased
choice variability. This effect was observed in each of two animals
(Supplementary Fig. 1).

Weak stimulation of OFC does not induce reversion to stereo-
typed behavior
We conducted several control analyses. First, we considered the pos-
sibility that the increase in choice variability measured at very low
current might be driven by reduced motivation or by a generic dis-
engagement from the task. Arguing against this view, electrical sti-
mulation in either time window did not systematically increase the
error rate (Fig. 3A), nor did it alter response times (Fig. 3B).

Second, previous work found that optogenetic inactivation of
OFC in mice induced an increase in choice variability, and that this
effect was due to animals reverting to stereotyped behavior20. We thus
examined whether weak electrical stimulation of OFC in monkeys
affected choices in similar ways. Other things equal, animals might
have a choice bias favoring one side (side bias). Similarly, they might
tend to choose on any given trial the same option chosen in the

previous trial (choice hysteresis)4,27,28. These biases—or stereotyped
behaviors—would contribute to choice variability defined in Eq.1. Thus
in a series of analyses, we examined whether electrical stimulation
altered these biases. Of note, in our choice task, the tendency to repeat
choices (choice hysteresis) could refer to the juice type, the target
location, or the presentation order. Using probit regressions, we
considered each potential bias in turn.

For the side bias, we examined each group of trials (stimOFF,
stimON) with the following model:

choiceB=ΦðX Þ
X =a0 +a1 logðqB=qAÞ+a2ðδA,right � δB,rightÞ

ð2Þ

where δJ, right = 1 if the target associated with juice J was presented on
the right and 0 otherwise, and J = A, B. The side bias was defined as
ξ = a2. A measure ξ >0 indicated that other things equal, the animal
tended to choose the left target. Population analyses showed that the
side bias was not substantially altered by weak stimulation of OFC in
either time window (Fig. 4A). (If anything, stimulation during offer1
reduced the side bias.)

For choice hysteresis (juice type), we analyzed eachgroup of trials
(stimOFF, stimON) with the following model:

choiceB=ΦðX Þ
X =a0 +a1 logðqB=qAÞ+a2ðδn�1,B � δn�1,AÞ

ð3Þ

where δn−1, J = 1 if in the previous trial the animal chose juice J and 0
otherwise, and J = A, B. Choice hysteresis was quantified as θjuice = a2. A
measure of θjuice > 0 indicated that, other things equal, the animal
tended to choose the same juice chosen in the previous trial. Con-
firming previous reports4, a population analysis revealed a consistent
choice hysteresis related to the juice type (mean(θjuice) > 0). Critically,
weak stimulation of OFC in either time window did not systematically
alter this phenomenon (Fig. 4B).

For choice hysteresis (side), we used the following model:

choiceB=ΦðX Þ
X =a0 +a1 logðqB=qAÞ+a2ðδn�1,sideB � δn�1,sideAÞ

ð4Þ

where δn−1,side J = 1 if the target associated with juice J was in the same
spatial position as that chosen in the previous trial and 0 otherwise,
and J = A, B. Choice hysteresis was quantified as θside = a2. Ameasure of
θside > 0 indicated that, other things equal, the animal tended to
choose the same saccade target as that chosen in the previous trial.
Population analyses showed that weak stimulation of OFC in either
time window did not systematically alter choice hysteresis related to
the chosen side (Fig. 4C).

Finally, for choicehysteresis (order),weused the followingmodel:

choiceB=ΦðX Þ
X =a0 +a1 logðqB=qAÞ+a2ðδn�1,orderB � δn�1,orderAÞ

ð5Þ

whereδn−1, order J = 1 if the order of presentation of juice J in the present
trial was sameof the juice chosen in the previous trial and 0 otherwise,
and J = A, B. Choice hysteresis was quantified as θorder = a2. A measure
of θorder > 0 indicated that other things equal, the animal tended to
repeat (as opposed to alternate) choices according to the presentation
order. Population analyses showed that weak stimulation of OFC in
either time window did not systematically alter choice hysteresis
related to the presentation order (Fig. 4D).

In conclusion, the drop in choice accuracy induced by weak
electrical stimulation delivered during offer2 was not due to the ani-
mals reverting to stereotyped behavior.
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Discussion
Electrical stimulation may increase choice variability by interfering
with value computation and/or with value comparison. In our choice
task, value computation took place during presentation of both offer1
and offer2, while value comparison took place only during presenta-
tion of offer2. Two lines of evidence suggest that weak electrical

stimulation selectively affected value comparison. First, choice varia-
bility increased only when the stimulation was delivered during offer2.
Second, the stimulation did not induce any order or range-dependent
bias (i.e., it did not affect valuation per se). In principle, electrical sti-
mulation could also increase choice variability by reducing the ani-
mal’s motivation or engagement in the task. However, the absence of
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Fig. 2 | Weak stimulation of OFC selectively disrupts value comparison.
A Relative value (ρ). The two panels illustrate the effects of stimulation during
offer1 and offer2, respectively. In each panel, x-axis and y-axis represent the relative
value measured for stimOFF and stimON trials, respectively. Each data point
represents one session and the ellipse represents the 90% confidence interval.
Weak OFC stimulation during wither time window did not systematically alter the
relative value. B Order bias (ε). Weak OFC stimulation during offer2 presentation

did not affect the order bias. Stimulation during offer1 marginally increased this
bias (p =0.02, t test). C Sigmoid steepness (η). Weak OFC stimulation during offer2
but not during offer1 induced a significant increase in choice variability. Each panel
reports thep valuesobtained froma two-tailedWilcoxon test and a two-tailed t test.
The two sessions illustrated in Fig. 1B, C are highlighted in green. Source data are
provided as a Source Data file.
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any effect on error rates or reaction times argues against this
hypothesis. Finally, stimulation could increase choice variability by
disrupting the early stages of action planning. However, the primate
OFC lacks spatial or motor representations2,25, and stimulation at very
low current is unlikely to affect neurons in other brain regions. In
conclusion, our results indicate that neuronal activity in OFC con-
tributes to value comparison.

In the present study, the increase in choice variability induced by
weak stimulation of OFC was not due to the animals reverting
to stereotyped behavior. In contrast, we previously observed
that optogenetic inactivation of OFC in mice significantly increased
stereotyped behavior (and thus increased choice variability)20.
This apparent discrepancy may be interpreted considering that
optogenetic inactivation, which was procured through excitation of
inhibitory interneurons, had a dramatic effect on the activity of OFC
neurons, as confirmed by simultaneous neuronal recordings. In
essence, optogenetic inactivation shut down and thus “took offline”
the target area. Absent the neural substrate normally devoted to the
computation and comparison of offer values, animals’ motor
responses were presumably guided by alternative computations—i.e.,
stereotyped behaviors such as repeating on any given trial the same
choice made in the previous trial. In this view, the mental processes
guiding choices under optogenetic inactivation were qualitatively

different from those taking place under normal conditions. In con-
trast, theweak electrical stimulation used here presumably had amild
effect on neuronal activity in OFC, inducing noise or degrading the
quality of value comparison without completely preventing neuronal
computations from taking place. Thus, the mental processes guiding
animals’ choices were noisier, but not fundamentally different from
those taking place under normal conditions.

It is interesting to contrast the results of weak electrical stimu-
lation, described here, with those previously obtained with higher
currents1. As noted above, we quantified three behavioral effects:
range-dependent bias, changes in order bias, and increase in choice
variability. To compare the results obtained with different protocols,
we normalized the effect sizes (see “Methods”). Inspection of Fig. 5
reveals that three effects varied with the current level in differ-
ent ways.

First, the range-dependent bias had a bell-shaped trend. All our
measures are consistent with the understanding that electrical stimu-
lation up to ~50 µA induced physiological increases in neuronal firing
rates21,29–31. The tuning curves of offer value cells are linear and range
adapting32,33. Thus increasing firing rates is equivalent to increasing
each offer value by a quantity proportional to the value range. Hence,
stimulation induced a choice bias favoring the juice offered with the
larger range. This effect increased with the current level until 50 µA.
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A Error rate. Left and right panels illustrate the results obtained for stimulation at
5–15 μA during offer1 and offer2, respectively. In each panel, x-axis and y-axis
represent the error rate measured for stimOFF and stimON trials, respectively.
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the fraction of trials that did not end in juice delivery) was not significantly altered

by stimulation in either timewindow.B Response time. In each panel, x-axis and y-
axis represent the mean response time measured for stimOFF and stimON trials,
respectively. Other conventions are as in panel A. Response times were not sig-
nificantly altered by stimulation in either time window. All p values were obtained
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Source Data file.
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At higher currents (≥100 µA), electrical stimulation affects cells in
more complex ways such as inducing antidromic spikes that can col-
lide with natural spikes (neuronal hijacking)34–36. Consequently, the
range-dependent bias disappeared 1.

Second, changes in the order bias grew with the current level. All
themeasures are consistent with the idea that this effect was driven by
decelerating response functions37,38 and/or by neuronal hijacking at
high currents 1.

Third, the increase in choice variability had a U-shaped trend: it
was observed at very low current (5–15μA) and at the highest current
(125μA), but not between the extremes (25 and 50 μA). Notably, the

effect size at weak current exceeded that measured at high current
(Fig. 5). The U-shaped trend suggests that increases in choice varia-
bility at very low current and at high current were mediated by dif-
ferent cellular mechanisms. Low current stimulation is believed to
primarily activate inhibitory interneurons, which are smaller, have
higher firing rate, and thus have lower stimulation threshold com-
pared to pyramidal cells39. Notably, neuronal recordings in monkeys
performing the same choice task used here indicated that decisions
rely on circuit inhibition26,40. Furthermore, current computational
models suggest that value comparison relies on a balance between
recurrent excitation and pooled inhibition6,41,42. In these models,
increasing inhibition makes decisions less accurate43,44. Thus we
speculate that weak electrical stimulation (≤15μA) disproportionately
increased inhibition and thus disrupted the excitation-inhibition
balance, which specifically affected value comparison. Conversely,
stimulation at intermediate currents (25–50 μA), which presumably
activated both pyramidal cells and interneurons, might have
affected choices in other ways while preserving the excitation-
inhibition balance. Finally, stimulation at high current (125 μA)
might have increased choice variability for several reasons, including
by inducing antidromic spikes and/or by affecting fibers of passage.
Future work should examine these hypotheses in more detail.
Importantly, regardless of the specific cellular mechanisms through
which weak electrical stimulation affects neuronal activity, our
results indicate that neurons in the primate OFC participate in value
comparison.

Leveraging the power of causal manipulation, our results
demonstrate that value comparison—i.e., the decision process—enga-
ges neurons in OFC and thus a good-based representation of options
and values45. Lowcurrent levels and the absenceof spatial signals in the
primate OFC strongly suggest that electrical stimulation in our
experiments did not affect action planning per se. Confirming this
point, reaction timeswerenot alteredby stimulation. At the same time,
our results do not address the possible role of other brain regions. In
other words, we cannot exclude that neurons in some other area,
including motor areas, also contribute to value comparison. With this
premise, our results are at odds with action-based models, according
to which decision making generally involves a competition between
possible action plans taking place in motor or premotor regions9,10.
Conversely, our results are consistent with the good-based model45

and with the distributed consensus model11, both of which posit that a
broad class of choices takes place partly or fully in good-based
representations. (For the present purposes, the good-basedmodel and
the distributed consensus model differ in relatively subtle ways.
According to the former, economic choice is a distinct mental process
categorically distinct from other cognitive functions that may be
construed as requiring a choice45,46. According to the latter, there is a
substantial continuity between different types of choice, all of them
engage multiple neuronal representations, and the relative weight of
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Fig. 4 | Weak stimulation of OFC does not increase stereotyped behaviors.
A Side bias. Left and right panels illustrate the results obtained for stimulation
during offer1 and offer2, respectively. In each panel, x-axis and y-axis represent the
side bias measured for stimOFF and stimON trials, respectively. Each data point
represents one session and the gray ellipse represents the 90% confidence interval.
In essence, the side bias was very modest, and electrical stimulation in either time
window did not systematically increase it. B Choice hysteresis, juice type. Same
conventions as in panel (A). As previously observed, monkeys generally showed
significant choice hysteresis. However, this bias was not increased by electrical
stimulation in either time window. The square symbol on the left panel represents
one outlier (y = 3.28; distance from mean = 5.11 SD), which was removed from sta-
tistical analyses. C,D Choice hysteresis, side and order. Both biases were negligible
and neither one was significantly altered by electrical stimulation in either time
window. All p values were obtained from two-tailedWilcoxon tests and two-tailed t
tests. Source data are provided as a Source Data file.
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each representation depends on the type of choice. In particular,
choices such as those examined here rely primarily or exclusively on
good-based representations11).

Our findings are also at odds withmodels where binary decisions
take place in a sequential manner. In particular, the attentional drift
diffusion-model (aDDM) holds that decisions are guided by shifts of
gaze or visual attention. In this view, while choosing, subjects shift the
attentional focus back and forth between the two options; at any
given shift, a comparator increments a decision variable in favor of
the currently attended offer13,47. In our choice task, the subsequent
appearance of the two offers at the center of the monitor effectively
mimics a gaze shift. If the decision mechanism was that proposed by
the aDDM, decisions would be affected by electrical stimulation
during either offer1 or offer2. Conversely, the fact that the stimulation
induced higher choice variability only when the electric current
was delivered during offer2 argues against the aDDM. Along similar
lines, our results are hard to reconcile with the proposal that binary
choices are constructed through a sequence of accept/reject
decisions15,48. If this was the case, choices in our experiments should
have been affected by electrical stimulation delivered during either
offer1 or offer2, contrary to the observations. (Other arguments
casting doubts on sequential decisions models were discussed
elsewhere26,49).

To conclude, in the past 20 years, a series of neurophysiology
studies identified in the primate OFC different groups of neurons
encoding individual offer values, the binary choice outcome, and the
chosen value. The fact that these variables capture both the input and
the output of the choice process leads to the hypothesis that these
groups of neurons constitute the building blocks of a decision circuit.
Experimental and computational results have generally supported this
notion, but until recently the evidence remained correlative. Our
experiments using electrical stimulation demonstrated that neurons in
OFC are causally involved in both the computation and comparison of
offer values. These results substantially restrict the domain of defen-
sible hypotheses regarding the neuronal underpinnings of economic
choices. In this respect, these resultsmay be viewed as a breakthrough.
Looking forward, a major goal will be to shed light on the organization
and mechanisms of the decision circuit. Open questions concern the

connectivity between different cell groups in OFC, the connectivity
between these cell groups and other brain regions, and the functional
role of neuronal inhibition. Future research shall address these fun-
damental questions.

Methods
All the experimental procedures conformed to the NIH Guide for the
Care and Use of Laboratory Animals and were approved by the Insti-
tutional Animal Care and Use Committee (IACUC) at Washington
University.

Experimental procedures
The study was conducted on two male rhesus monkeys (Macaca
mulatta): G (age 8, 9.1 kg) and J (age 7, 10.0 kg). Experimental proce-
dures anddata analyses closely resembled thosepreviously described1.
Before training, we implanted in each monkey a head-restraining
device and an oval recording chamber under general anesthesia.
During the experiments, the animals sat in an electrically insulated
enclosure with their head restrained. A computer monitor was placed
57 cm in front the animal. The behavioral task was controlled through
custom-written software (http://www.monkeylogic.net/). The gaze
direction was monitored by an infrared video camera (Eyelink; SR
Research) at 1 kHz.

The chamber provided bilateral access to OFC. Structural MRIs
(1mm sections) performed before and after surgery were used to
guide electrode penetrations. Electrical stimulation focused on the
central orbital gyrus, in a region corresponding to area 13/11. During
stimulation sessions, low-impedance (100–500 kΩ) tungsten elec-
trodes (100 µm shank diameter; FHC) were advanced using a custom-
built motorized micro-drive driven remotely. The stimulating elec-
trode was always positioned well within the gray matter. A second
electrode advanced inparallel using the samemicro-drivewas used to
confirm the depth and to record neuronal activity. Stimulation trains
were generated by a programmable analog output (Power 1401,
Cambridge Electronic Design) and triggered through a TTL by
the computer running the behavioral task. Monopolar electric cur-
rents were generated by an analog stimulus isolator (Model 2200,
A-M Systems).
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Fig. 5 | Normalized effect sizes measured at different current levels. Each effect
was rectified andnormalizedacross current levels such that theexpectedeffectwas
>0 (see “Methods”). The range-dependent bias effect was defined as Pearson’s
correlation between the change in relative value (ρstimON – ρstimOFF) and the dif-
ference in value range (ΔVA – ΔVB). The change in order bias was defined such that
the effectwouldbe >0 if electrical stimulation in one timewindowbiased choices in
favor of the offer presented in the other time window. For choice variability, the
effect was defined >0 if electrical stimulation increased choice variability. Effects

were normalized such that themaximum across conditions =1 for each effect. Here
histogram bars are population averages, error bars are standard errors, and
asterisks indicate statistical significance (p <0.01; two-tailed Pearson’s correlation
for range-dependent bias; two-tailed Wilcoxon test for all other effects). Exact p
values and sample sizes are provided in Supplementary Table 1. For the range-
dependent bias, sessions in which stimulation was delivered during offer1 or offer2
were pooled. Data at 5–15 μA are the same as in Fig. 2. Data at 25, 50, and 125 μA are
from ref. 1. Source data are provided as a Source Data file.
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Electric current was delivered during offer1 or during offer2, in
separate sessions. For the present study, stimulation parameters were
as follows. Stimulation started 0–100ms after offer onset and lasted
300–600ms. The stimulation train was constituted of biphasic pulses
(200μs eachpulse, 100μs separationbetweenpulses) delivered at 125-
200Hz frequency. In different sessions, current amplitudes varied
between 5 and 15 µA. Stimulation was performed in both hemispheres
of monkey G (left: AP 31:36, ML –7:–12; right: AP 31:36, ML 4:9) and in
both hemispheres ofmonkey J (left: AP 31:35,ML–8:–10; right AP 31:35,
ML 6:10) (Supplementary Fig. 2). Electric current was delivered uni-
laterally or bilaterally, in separate sessions. All the parameters were set
at the beginning of each session andwere not adjustedwithin sessions.
Similar parameters were used for stimulation at higher currents (≥25
μA; 144 sessions total) 1.

Our present data set includes a total of 91 sessions (58 from
monkey G, 33 from monkey J). The number of sessions was not pre-
cisely pre-determined at the beginning of the study. Our previous
study included 17–29 sessions per condition1. Since we expected that
the effects of weak stimulation would be subtle, we planned the
number of sessions to be in that range for each animal. For
offer1 stimulation,we ran a fewmore sessions to ensure that the lack of
significant effects was not due to insufficient statistical power.

Data analysis: Comparing effect sizes across current levels
Data were analyzed in Matlab (MathWorks Inc). For each session, we
examined separately trials with and without the stimulation (stimON,
stimOFF). For each group of trials, we analyzed choices using probit
regressions. From the fitted parameters, we derived measures for the
relative value, the sigmoid steepness, and several choice biases (Eqs.
1–5). A comparison of the behavioral effects of electrical stimulation at
different current levels focused on three measures, namely the range-
dependent bias, the change in order bias, and the increase in choice
variability. Each effect was computed in each session, rectified such
that the expected effect was >0, averaged across the relevant popu-
lation, and normalized across conditions. The normalized effect sizes
were thus defined as follows.
(1) Increase in choice variability. For each session, we measured the

change in sigmoid steepnessΔη = ηstimON–ηstimOFF. The change in
choice variability was defined as Δcv = –Δη. Thus Δcv > 0 indi-
cated that the stimulation increased choice variability. For each
time window (offer1, offer2) and for each current level (≤15, 25,
50, and 125μA), we averagedΔcv across the relevant sessions.We
thus obtained a measure Δcvcondition for each of the 8 conditions.
Finally, we divided these measures by the maximum, and
obtained the normalized effect size shown in Fig. 5.

(2) Change in order bias. For each session,wemeasured the change in
order bias induced by the stimulation Δε = (εstimON – εstimOFF).
Suitable stimulation during offer1 (offer2) is expected to increase
(decrease) the order bias. Thus we rectified the measures
obtained for sessions where stimulation was delivered upon
offer2 by changing the sign. For each timewindow (offer1, offer2)
and for each current level (≤15, 25, 50, and 125 μA), we averaged
Δε across the relevant sessions. We thus obtained a measure for
Δεcondition for each of the 8 conditions. Finally, we normalized
these measures dividing by the maximum, and obtained the
normalized effect size shown in Fig. 5.

(3) Range-dependent bias. Suitable electrical stimulation increases
the firing rates of offer value cells and the effect is equivalent to
increasing both offer values. Because of range adaptation, each
offer value increases by a quantity proportional to the corre-
sponding value range. As a result, the stimulation is expected to
bias choices in favor of the juice offered with the larger value
range. More precisely, indicating with ΔVA and ΔVB the value
ranges for juices A and B, respectively, the expected change
in relative value Δρ = ρstimON – ρstimOFF is proportional to the

difference in value range ΔV =ΔVA – ΔVB
1. We previously found

that this effect was most pronounced at 50 μA and did not
depend on the stimulation window1. To generate Fig. 5, we
pooled sessions based on the current level (≤15, 25, 50, and 125
μA). For each current level, the effect size was Pearson’s corre-
lation r(Δρ, ΔV) computed across sessions. The four measures
were normalized dividing by the maximum effect size across
current levels.

All the measures shown in Fig. 5 for current levels ≥25 μA sum-
marize results described in a previous study1. Of note, here we use
the label “125 μA” instead of “≥100 μA” for clarity, because in the
majority of these sessions (47/54) the current was set at 125 μA.
In the remaining sessions (7/54), the current was set between 100
and 200 μA.

In each population analysis, we identified as outliers data points
that differed from themean by >3 STD on either axis, and we removed
them from the data set. This criterion excluded 1/91 sessions at ≤15 μA
and 6/144 sessions at ≥25 μA, as previously described1, only from the
analyses of range-dependent biases. Including these sessions in the
analyses did not substantially alter any of the results. Exact p values for
these analyses are provided in Supplementary Table. 2.

Every trial that did not result in juice delivery was considered an
error and included inFig. 3A. Error trials included failures to initiate the
trial (i.e., to acquire the initial fixation), breaks of center fixation at any
time prior to the go signal, failure to indicate a choice after the go
signal, and breaks of peripheral fixation after target acquisition.
Excluding from the analysis failures to the initiate the trial markedly
reduced the error rates but did not significantly alter the results
of Fig. 3A.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The supplementary material includes the equivalent of Fig. 1BC for
each session in the data set. Raw data are available at: https://github.
com/PadoaSchioppaLab/2022_NatComms_lowCurrent Source data
are provided with this paper, and can be found at: https://github.com/
PadoaSchioppaLab/2022_NatComms_lowCurrent/tree/main/source_
data Source data are provided with this paper.

Code availability
The Matlab code used for the analysis are available at: https://github.
com/PadoaSchioppaLab /2022_NatComms_lowCurrent.
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