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Transferability of genetic loci and polygenic
scores for cardiometabolic traits in British
Pakistani and Bangladeshi individuals

Qin Qin Huang 1,18, Neneh Sallah2,3,18, Diana Dunca2,3, Bhavi Trivedi4,
Karen A. Hunt4, Sam Hodgson 5, Samuel A. Lambert 6,7,8, Elena Arciero1,
John Wright9, Chris Griffiths 10, Richard C. Trembath 11,
Harry Hemingway 2,12,13, Michael Inouye 6,7,8,14,15, Sarah Finer 4,
David A. van Heel 4, R. Thomas Lumbers 2,13,16,19, Hilary C. Martin 1,19 &
Karoline Kuchenbaecker 3,17,19

Individuals with South Asian ancestry have a higher risk of heart disease than
other groups but havebeen largely excluded fromgenetic research.Usingdata
from 22,000 British Pakistani and Bangladeshi individuals with linked elec-
tronic health records from the Genes & Health cohort, we conducted genome-
wide association studies of coronary artery disease and its key risk factors.
Using power-adjusted transferability ratios, we found evidence for transfer-
ability for the majority of cardiometabolic loci powered to replicate. The
performance of polygenic scores was high for lipids and blood pressure, but
lower for BMI and coronary artery disease. Adding a polygenic score for cor-
onary artery disease to clinical risk factors showed significant improvement in
reclassification. In Mendelian randomisation using transferable loci as instru-
ments, our findings were consistent with results in European-ancestry indivi-
duals. Taken together, trait-specific transferability of trait loci between
populations is an important considerationwith implications for risk prediction
and causal inference.

Individuals with South Asian ancestry account for more than a fifth of
the global population and experience a higher risk of coronary artery

disease (CAD) than other ancestries. For example, British South Asians
have three- to four-fold higher CAD risk than White British people1.
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Understanding the determinants of excess CAD burden in South Asian
populations and improving prediction to enable preventive interven-
tions to represent important public health priorities.

Common genetic variation is an important determinant of CAD
and of upstream risk factors, such as blood pressure, lipids, and body
mass index (BMI). The genetic component of disease risk can be har-
nessed to identify underlying disease genes and pathways, to estimate
the unconfounded effects of risk factors byMendelian randomisation,
and to improve risk prediction through the application of polygenic
scores (PGS). However, the genetic basis of CAD risk is not well char-
acterised in South Asian ancestry populations because genome-wide
association studies (GWAS) have been mostly limited to European
ancestry populations2.

Fundamental questions remain about the extent to which the
genetic determinants of cardiometabolic traits are sharedby European
and South Asian ancestry populations. These have important impli-
cations for translational applications of genetic data, such as causal
inference with Mendelian randomisation which could prioritise dif-
ferent prevention strategies or drug targets between ancestries, and
clinical risk prediction. Whilst the predictive performance of PGSs
derived from European ancestry populations in other ancestry groups
decreaseswith genetic distance3–6, the extent towhich this attenuation
is due to genetic drift (differences in linkage disequilibrium and allele
frequency7) versus heterogeneity of causal genetic effects remains
unclear.

Furthermore, most previous large-scale studies assessed genetic
risk prediction using data from a research setting. These findings may
not generalise well to a real-world clinical setting. Firstly, clinical risk
factors may be measured less comprehensively than in a research
setting, affecting the performance of integrated risk models combin-
ing these factors with PGSs8–10. Secondly, there is evidence that the
performance of PGSs may be modified by factors, such as educational
attainment and socioeconomic status for which research studies are
often not representative11,12. The robustness of PGSs applied to South
Asian-ancestry individuals in a real-world healthcare system is largely
unknown.

Here, we perform a comparative analysis of the genetics of CAD
and upstream cardiometabolic traits in European and South Asian
ancestry populations, using data from the Genes & Health (G&H)
cohort13. G&H is a community-based cohort of British Pakistani and

Bangladeshi individuals with linked electronic health record data
(N = 22,490 individuals). This unique cohort represents an under-
studied and clinically vulnerable population with high levels of socio-
economic deprivation, and this is, to our knowledge, the first major
genetic study focused on it. We apply new approaches to the trans-
ferability of genomic risk loci across populations, perform ancestry-
specific and trans-ancestry Mendelian randomisation analysis, inves-
tigate the transportability of PGSs for CAD and its risk factors, and
estimate the incremental improvement in CAD prediction when
incorporating the CAD PGS into clinical risk tools.

Results
We conducted GWAS of CAD and key cardiometabolic traits in the
G&H cohort which was the primary data resource for this study. In
G&H, 4.9% (N = 1110) of the individuals had coronary artery disease
(CAD), with the age of onset ranging from 17 to 97 years old (median
55). A quarter of the G&H participants were on active statin prescrip-
tions, 23% onBPmedications, 29% hadhigh TC levels (>5mmol/L), and
30% had high LDL-C levels (>3mmol/L; Supplementary Data 6).

We used publicly available GWAS summary statistics derived from
predominantly European ancestry individuals to compare the genetic
architecture and assess whether reported GWAS loci are transferable
to G&H (Fig. 1). We evaluated the performance of European ancestry-
derived PGSs in G&H and compared it to performance in European
ancestry samples from eMERGE. Finally, we used Mendelian rando-
misation analysis to test the causal relationship between the cardio-
metabolic traits and CAD by comparing genetic instruments based on
the GWAS data generated from European ancestry and from British
South Asian ancestry individuals. The datasets that were used in each
analysis are described in Supplementary Data 4.

Shared genetic architecture of cardiometabolic traits
We compared the genetic architecture of CAD and upstream risk fac-
tors, namely HDL-C, LDL-C, triglycerides (TG), total cholesterol (TC),
systolic and diastolic blood pressure (SBP & DBP), between British
Pakistanis and Bangladeshis from G&H, and European ancestry indi-
viduals from the electronic health record-based eMERGE cohort, since
phenotypes had been ascertained in a similarway. All traits were found
to have significant SNP heritability (h2 = 0.04–0.20) in G&H, with esti-
mates similar to those in eMERGE (Supplementary Data 7, Fig. 2a),

Fig. 1 | Summary of study design, research questions and analyses conducted.
The coloured boxes indicate input data. Within the white boxes, the black text
indicates the analyses we used to address the questions in blue. BPB British
Pakistanis and Bangladeshi ancestry, EUR European ancestry, SAS South Asian

ancestry, CADcoronary artery disease, BMI bodymass index, SNP single nucleotide
polymorphism, GWAS genome-wide association study, MR Mendelian randomisa-
tion, PGS polygenic score, UKBB UK Biobank. Datasets and discovery GWAS that
were used in each analysis are provided in Supplementary Data 4.
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except for LDL-C and blood pressure which had significantly lower
values in G&H than eMERGE (e.g. for LDL-C, h2 was 0.18 [95% CI:
0.14–0.22] in eMERGE and 0.06 [95% CI: 0.02–0.11] in G&H; z test one-
sided p = 7.3 × 10−5). We observed high genetic correlations between
G&H and European ancestry samples fromUKBB for all traits, with the
lowest value seen for SBP (rg = 0.71 [95% CI: 0.36–1.06], p = 0.09;
Fig. 2b). The only trait for which the genetic correlation differed
nominally significantly fromonewasBMI (rg = 0.85 [95%CI: 0.71–0.99],
p =0.02, not adjusted for multiple comparisons).

High transferability of cardiometabolic loci
We assessed whether published trait-associated genomic loci identi-
fied in predominantly European ancestry populations were shared by
theBritish Pakistani andBangladeshi populations representedbyG&H.
To account for differences in LD patterns, our assessment of trans-
ferability was based on the credible sets of variants per locus, likely to
contain the causal variant, rather than the sentinel variants alone. Low
numbers of transferable loci may be due to limited statistical power

rather than a lack of causal variant sharing. Therefore, we compared
the number of observed transferable loci with the number expected
given the sample size and allele frequency in G&H if all causal variants
were shared. The number of expected transferable loci varied widely
between traits (e.g. we expected to be able to detect significant asso-
ciations for 56%ofHDL-C loci but only for 18%of SBP loci), highlighting
the importance of accounting for power when assessing transfer-
ability. We report the observed number divided by the expected
number of loci and call this new approach the power-adjusted trans-
ferability (PAT) ratio. Across most traits examined, the observed
number of transferable loci closely matched the loci we expected
(Table 1 and Supplementary Data 8). For example, for BMI we expec-
ted to be able to find evidence for transferability for 20%of loci andwe
did indeedobserve transferability for 21%of loci, yielding a PAT ratioof
1.05. The PAT ratio for CAD was only 0.62, with the number of
observed transferable loci (13%) lower than the expected number
(21%), although this difference was only marginally significant (bino-
mial p-value = 0.05; one-sided and not adjusted for the multiple com-
parisons). To explore whether this was likely to be due to ancestry
differences or other factors, we also calculated the PAT ratio in
eMERGE, and observed a similarly low PAT ratio for CAD (0.69, bino-
mial p-value = 6 × 10−4) (Table 1 and Supplementary Data 9).

We also assessed whether there were any specific loci that were
not transferable despite being well powered to observe an association
(power > 80%). Out of a total of 184 well-powered loci tested across all
traits, only nine were non-transferable; that is, no variant in the cred-
ible set was significant at p < 0.05 and no variant within 50kb of the
locus was significant at p < 1 × 10−3 (Fig. S4). These nine loci were all
associated with lipid traits: EVI5, NBEAL1, GPAM, CETP, STAB1, TTC39B,
SH2B3, ACP2, and NECAP2 (Supplementary Data 10). Of these loci,
CETP, which has been reported to be associated with both HDL-C and
LDL-C levels in European ancestry samples, was strongly associated
with HDL-C in G&H (p = 7.08 × 10−56), but not with LDL-C levels
(p = 0.23) (Fig. S5) despite having >80% power for replication.

Even when there are associations in the same region in two
ancestry groups, it is possible that they are driven by different causal
variants, as previously seen14. To assess the extent of sharing of causal
variants between ancestries at previously reported loci with evidence
of transferability, we applied trans-ancestry colocalisation for G&H
with UKBB European ancestry samples as the reference. Colocalisation
methods can estimate the likelihood of causal variant sharing without
the need to identify the specific causal variant. We found evidence for
themost extensive sharing of causal variants for transferable lipid loci:
total cholesterol (61% of loci had significant colocalisation), followed
byTG (56%), HDL-C (48%), and LDL-C (47%) (Table 1). For BMIwe found
evidence for sharing of causal variants for only 26% of transferable loci
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Fig. 2 | SNP heritability and trans-ancestry genetic correlations for cardiome-
tabolic traits. a SNP heritability was estimated using GCTA in G&H (orange) and
eMERGE (grey) for cardiometabolic traits, namely coronary artery disease (CAD;
n = 17,348 and 32,816 unrelated samples from G&H and eMERGE, respectively),
body-mass index (BMI; n = 13,926 and 37,160), high-density lipoprotein cholesterol
(HDL-C; n = 11,316 and 16,049), low-density lipoprotein cholesterol (LDL-C;
n = 12,856 and 15,856), triglycerides (TG; n = 11,125 and 14,384), systolic blood
pressure (SBP), and diastolic blood pressure (DBP; n = 15,908 and 11,864 for blood
pressure). Medication data are not available in eMERGE so the highest measure-
ments for LDL-C, SBP, and DBP are used. Error bars represent 95% confidence
intervals in both plots. bGenetic correlations were estimated using Popcorn based
on GWAS summary statistics generated from G&H and European-ancestry indivi-
duals from UK Biobank. Red indicates that the genetic correlation is nominally
significantly lower than 1 (p-value = 0.02 for BMI; two-sided and not adjusted for
multiple comparisons). Medication-adjusted lipid and blood pressure levels are
used. For rg estimates of 1 (TG and DBP), the method cannot derive confidence
intervals. Sample sizes of GWAS for cardiometabolic traits in G&H are in Table 1.

Table 1 | Transferability of loci for cardiometabolic phenotypes from European ancestry (EUR) discovery GWAS to British
Pakistani and Bangladeshi individuals

Trait No. of samples
(cases:controls)

Loci associated
in EUR

Observed transfer-
able loci (%)

Expected transfer-
able loci in %

PAT ratio
(p-value)

Shared causal var-
iant/loci assessed (%)

PAT ratio in
eMERGE (p-value)

BMI 16,890 662 140 (21%) 20 1.05 (0.79) 15/58 (26%) 0.91 (0.05)

LDL-C 12,746 82 51 (62%) 50 1.24 (0.99) 15/32 (47%) 0.60 (1.6 × 10−5)a

HDL-C 14,944 103 66 (64%) 56 1.14 (0.96) 14/29 (48%) 0.91 (0.20)

TC 15,641 107 61 (57%) 49 1.16 (0.96) 23/38 (61%) –

TG 13,037 95 47 (49%) 47 1.04 (0.72) 14/25 (56%) 0.96 (0.35)

DBP 18,536 175 36 (21%) 23 0.91 (0.26) NaN 0.76 (0.07)a

SBP 18,536 171 30 (18%) 22 0.82 (0.12) NaN 0.77 (0.12)a

CAD 22,008 (1110:20898) 71 9 (13%) 21 0.62 (0.05) NaN 0.69 (6 × 10−4)a

Transferability was defined as a significant association of a variant in the credible set at a locus. The power-adjusted transferability (PAT) ratio is calculated as dividing the observed number of
transferable loci over the expected number. One-sided p-values were calculated using binomial tests and were not adjusted for multiple comparisons. For transferable loci with good genotyping
coverage trans-ancestry colocalisation (TAColoc) was used to evaluate whether the associations are driven by the same causal variant in both populations.
aIn eMERGE, medication data were not available thus we used the highest measurements for LDL-C, SBP, and DBP. CAD was defined based on ICD10 codes only (Supplementary Methods). Total
cholesterol levels were not available.
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assessed (Table 1 and Supplementary Data 11). Causal variants in major
lipid loci such as PCSK9were among variants thatwere consistently not
shared (pJLIM > 0.05) between the two populations (Fig. S6 and Sup-
plementary Data 11).

Variable performances of polygenic scores
To assess the performance of PGSs for cardiometabolic traits derived
from European ancestry populations in British Pakistani and Bangla-
deshi individuals, we compared predictive performance inG&H to that
in European ancestry individuals from eMERGE. We quantified pre-
dictive accuracy using the “incremental AUC” statistic for CAD and the
“incremental R2” statistic for continuous risk factor traits; these are the
gain in AUC or R2 when adding the PGS to the regression of phenotype
on the baseline covariates (sex, age, and genetic PCs).

We first evaluated previously published PGSs from the PGS Cat-
alog (Supplementary Data 5). The CAD PGSs that proved to have the
best performance in G&H and eMERGE were two different scores
optimised in South Asian15 and European ancestry samples16, respec-
tively. PGSs for all phenotypes assessed were significant predictors of
their target trait inG&H (Fig. 3). For prediction inG&H, the incremental
R2 for BP was low (~1.8%), but it was higher for lipids and BMI, ranging
from 3.9% to 6.7%. Relative accuracy of PGS in G&H versus eMERGE,
determined by the ratio of incremental AUC or R2, was close to 1 for
HDL-C, TG, SBP, and DBP, and lower for CAD (42%, 95% CI: 30–59%)
and BMI (78%, 95% CI: 68–88%; Supplementary Data 5). Amongst the
cardiometabolic traits, prediction of LDL-C had the lowest relative
accuracy (66%, 95% CI: 53–79%), probably due to the fact that we did
not adjust for statin usage since medication data were not available in
eMERGE, and British Pakistani and Bangladeshi individuals were more
likely to be treated with statins17. Incremental R2 for the PGS for LDL-C
increased from 3.9% (3.3–4.5%) to 6.2% (5.3–7.1%) when using
statin-adjusted LDL-C in G&H (Supplementary Data 5), although the
heritability for statin-adjusted and unadjusted LDL-C was not sig-
nificantly different (Supplementary Data 7; one-sided p-value from z
test = 0.34).

We explored the factors that may impact the relative accuracy of
PGSs. We considered the effect on the relative accuracy of the trans-
ancestry genetic correlation, ratio of heritability estimates in G&H
versus eMERGE, as well as the product of the previous two terms.
However, none of them showed a significant association with the
relative PGS performance (Fig. S7).

To assess whether the performance of PGS based on European
ancestry GWAS could be improved in British Pakistani and Banglade-
shi samples, we next constructed PGS using the clumping and p-value
thresholding (C + T) method and optimised them separately within
G&H and eMERGEusing 10-fold cross-validation. The numbers of SNPs
in the most frequently selected best C + T PGSs are similar between
eMERGE andG&H, and PGSs for lipids contained fewer SNPs (194–454)
than other traits (>20,000; Supplementary Data 12, Fig. S8). C + T PGSs
and PGSs from the PGS Catalog showed similar performance in G&H
across traits, although they were optimised in different ancestry
populations (British Pakistani and Bangladeshi and primarily European
ancestry, respectively; Fig. S9).

We then assessedwhether PGSmethods that account for ancestry
differences improved predictive accuracy in G&H. PGSs were con-
structed using a meta-score strategy18 and using PRS-CSx19, both inte-
grating the European ancestry GWAS and that from UKBB South Asian
ancestry samples. The improvement in accuracy was modest
(0.3–10.5%) (Fig. S10). This may be due to the low sample sizes in the
UKBB South Asian ancestry GWASs.

Modest improvement in CAD risk prediction by adding PGS to
clinical risk score
A CAD PGS derived from European ancestry GWAS summary statistics
and tuned in South Asian ancestry individuals from UKBB15

(PGS000296 in the PGS Catalog), showed the highest predictive
accuracy in British Pakistani and Bangladeshi individuals in G&H. This
score had anORper SD of 1.63 (95%CI: 1.51–1.76) and incremental AUC
of 0.009 (95% CI: 0.006–0.012; Supplementary Data 5). Individuals in
the top quintile of PGS were predicted to have a 2.2-fold increase (95%
CI: 1.78–2.76) in disease risk relative to the middle quintile (quintiles
were determined in controls; Fig. S11). We investigated the additional
predictive power of PGS on top of established clinical risk factors for
CAD, and the net reclassification improvement (NRI) achieved by
adding the PGS to a clinical risk score.

To calculate the clinical risk score, we used the QRISK3 algorithm
to estimate 10-year risk of cardiovascular disease at a baseline time
point, selected so that the participants in G&H had about 10 years of
follow-up. QRISK3 was a strong predictor of CAD events and had a
concordance index (C-index) of 0.843 (95% CI: 0.828–0.858; Fig. S12,
Supplementary Data 13). Consistent with previous findings in Eur-
opean ancestry individuals8, the CAD PGS was uncorrelated with
QRISK3 (Pearson’s correlation coefficient r = −0.0056 and p-value =
0.62). The integrated score combiningQRISK3 and the CAD PGS had a
non-significant improvement in the C-index (0.853, 95% CI:
0.838–0.867) but a significant improvement in reclassification (cate-
gorical NRI: 3.9%; 95% CI: 0.9–7.0%) using a 10-year risk threshold of
10% based on the threshold for preventive intervention with statin
treatment recommended by National Institute for Health and Care
Excellence20. The integrated score reclassified 3.2% of the population
as high risk and 2.5% as low risk (Supplementary Data 13). This
improvementwasmostlydriven by the enhanced identification ofCAD
cases in peoplebetween 25 and 54 years of age (NRI in cases being 7.0%
vs. NRI in controls being −1.2%), and of controls in people between 55
and 84 of age (NRI in cases being 0.0% vs. NRI in controls being 6.8%)
(Fig. 4, Supplementary Data 13). The QRISK3 classified most (91.4%) of
the individuals at 55–84 years old as high risk. Using the integrated
score, 7.6% of the individuals older than 55 years were down-classified
from high to low risk (Supplementary Data 13). Using continuous NRI,
the integrated score showed significant improvement (27.0%; 95% CI:
17.7%–36.2%) and similar trends in age groups (Fig. S13, Supplementary
Data 13). To assess the potential effects of missingness of QRISK3
variables (Fig. S3), we included additional data for HDL-C and TC that
were measured more recently, which were not used in the above
standard method (Supplementary Methods). The new QRISK3 score
was more accurate with the C-index increased to 0.851, but we still
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Fig. 3 | Comparison of the predictive accuracy of polygenic scores in people of
British Pakistani and Bangladeshi versus European ancestry. Incremental AUC
is shown for coronary artery disease (CAD; n = 17,348 and 32,816 unrelated samples
from G&H and eMERGE, respectively) and Incremental R2 is shown for its con-
tinuous risk factors, namely body-mass index (BMI; n = 13,926 and 37,160), high-
density lipoprotein cholesterol (HDL-C; n = 11,316 and 16,049), low-density lipo-
protein cholesterol (LDL-C; n = 12,856 and 15,856), triglycerides (TG; n = 11,125 and
14,384), systolic blood pressure (SBP), and diastolic blood pressure (DBP;
n = 15,908 and 11,864 for blood pressure). Grey indicates European-ancestry (EUR)
individuals from eMERGE and orange British Pakistani and Bangladeshi (BPB)
individuals from G&H. Error bars represent 95% confidence intervals estimated by
bootstrap resampling of samples. The highest measurements for LDL-C, SBP, and
DBP are compared between eMERGE and G&H.
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observed a positive categorical NRI (3.33%; 95% CI: 0.01–6.74) for the
integrated score (Supplementary Data 13).

Estimated causal effects of CAD risk factors largely consistent
We carried out two-sample Mendelian randomisation analyses to
estimate potentially causal effects of the risk factors on CAD in G&H
andcomparedfindingswith Europeanancestry samples fromeMERGE.
For G&H, we used transferable loci as genetic instruments to benefit
from theprecisionof largely European ancestry discoveryGWASwhilst
ensuring only valid instruments are used. In eMERGE, estimates of
causal effects for BMI, BP, and lipids, except TG, were statistically
significant (Fig. 5). Consistent with this, we found that higher BMI
(OR = 1.73, p-value = 0.01), higher LDL-C (OR = 1.55, p-value = 4 × 10−4)
and lower HDL-C levels (OR =0.75, p-value = 8 × 10−3) were associated
with increased risk of CAD in G&H. The effects for SBP and DBP were
not statistically significant in G&H. However, both had relatively small
numbers of loci as instruments and confidence intervals of the effect
estimates were wide.

We also compared different strategies for instrument selection in
G&H, such as using all loci associated at genome-wide significance in
European ancestryGWAS for the risk factors (Fig. S14).When following
the standard approach of using an independent ancestry-matched
sample (UKBB South Asian ancestry) to derive the instruments, an
insufficient number of genome-wide significant instruments
(p < 5 × 10−8) were identified (Fig. S15). To address this, we also tested a
less stringent p-value threshold (p < 5 × 10−5) for selecting instruments.
For the lipid biomarkers, the results were consistent regardless of
which loci were chosen as instruments. However, the association of
BMI with CAD was significant only for transferable loci (Fig. S14).

We found evidenceof heterogeneity betweenMRestimates based
on Cochran’s Q statistic for DBP when using the trait loci from Eur-
opean ancestry GWAS as instruments (p-value = 0.04), LDL-C when
using the UKBB South Asian ancestry-ascertained loci (p-value = 0.02)
and HDL-C for transferable loci (p-value = 1 × 10−3). However, the
results of the weighted median and weighted mode models were
consistent with those obtained by the inverse-variance weighted
Mendelian randomisation model (Supplementary Data 14). We also
carried out a multivariable MR for the lipid biomarkers to adjust for
potential horizontal pleiotropy. Effect estimates remained highly

consistent with those observed in the univariable MR (Supplementary
Data 15).

Discussion
We conducted the first study to systematically assess the transfer-
ability of genetic loci and PGSs for cardiometabolic traits in individuals
of South Asian descent with real-world clinical data, using ~22,000
individuals from the G&H cohort. For lipids and blood pressure, we
found evidence that causal genetic variants at published loci arewidely
shared with European ancestry populations. The prediction accuracy
of PGSs derived from European ancestry GWASs for these traits was
similar between G&H and European ancestry samples. However, the
predictive performance of BMI and CAD PGS was reduced by 22% and
58%, respectively (for the PGS Catalog scores) and CAD also had fewer
transferable loci. A CAD PGS optimised for South Asian ancestry indi-
viduals nonetheless yielded an appreciable improvement in risk
reclassification (categorical NRI = 3.9%; 95% CI: 0.9–7.0%) when com-
bined with the QRISK3 clinical risk score.

Other genetic studies of CAD and related traits that have eval-
uated reproducibility of loci in South Asian ancestry populations have
either been limited by small sample sizes or have restricted their
comparisons to the index SNP identified in the GWAS, which does not
take LD or statistical power for replication into account21–23. A recent
study compared genetic determinants of >200 lipid metabolites in
5000 South Asians from Pakistan and 13,000 Europeans and found
high overlap in the detected associations24. Using a new method, our
paper goes further by empirically demonstrating that, in most cases
where loci do not replicate, it is due to the lack of power. These find-
ings suggest that, in large part, the genes and pathways that influence
the tested cardiometabolic traits are shared between these ancestrally
divergent populations. One surprising finding was that the major

Fig. 5 | Mendelian randomisation estimates of risk factors on coronary artery
disease in European (eMERGE) and British South Asian (G&H) ancestry indivi-
duals. Two-sample Mendelian randomisation (MR) estimates for the causal effects
are presented based on genetic instrument variables identified from EUR discovery
GWAS for each risk factor. All independent genome-wide significant loci were used
as instruments for eMERGE and only the transferable loci for G&H. Effect estimates
are presented as odds ratios with 95% confidence intervals per standard deviation
increase in the reported unit of the trait: triglycerides (TG), systolic blood pressure
(SBP), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cho-
lesterol (HDL-C), diastolic blood pressure (DBP), body mass index (BMI). The two-
sided p-value (P; not adjusted for multiple comparisons) and the number of single
nucleotide polymorphism instruments (N SNPs) included in the MR analysis are
shown for each exposure. GWAS for CAD was performed in n = 22,008 (1110 cases)
samples from G&H, and n = 32,816 (6815 cases) unrelated samples from eMERGE.
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Fig. 4 | Net reclassification index (NRI) for coronary artery disease with the
addition of a polygenic score to QRISK3. Estimates for categorical NRI for the
integrated score compared to QRISK3 in all samples (n = 420 unrelated cases and
7702 unrelated non-cases) as well as in age-by-sex subgroups (n = 207 and 2779 in
males aged 25–54; n = 51 and 4187 in females aged 25–54; n = 114 and 344 in males
aged 55–84; n = 48 and 392 in females aged 55–84) are shown. Red indicates NRI in
cases and blue in controls. The error bars indicate 95% confidence intervals esti-
mated using the bootstrap method.
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LDL-C locus atCETPwasnot associatedwith this biomarker in G&Hbut
exhibited pleiotropic effects on HDL-C. This is consistent with the
observation from a recent study in ancestrally diverse individuals25.
Abnormalities in CETP are linked to accelerated atherosclerosis and
might play an important role in increasing risk in South Asian ancestry
individuals26.

For benchmarking we also assessed the transferability of genetic
loci in European-ancestry participants from eMERGE. For HDL-C, tri-
glycerides, and blood pressure, the PAT ratio was close to one
(Table 1). For LDL-C, we observed a low PAT ratio (0.60, one-sided
binomial p-value = 1.6 × 10−5), probably because statin-adjust data were
used in the discovery GWAS but lipid-lowering medication data were
not available in eMERGE. For CAD, eMERGE had more cases (6815 vs.
1110), and we were able to replicate 31 loci (9 in G&H). Nevertheless,
this is significantly lower than what would be expected given the
replication power for eMERGE. In fact, the PAT ratio (PAT =0.69, one-
sided binomial p-value = 6 × 10−4) was similar to G&H (PAT =0.62, one-
sided binomial p-value = 0.05). The lower PAT ratio for CAD in both
G&HandeMERGEmay indicate that it is amore complex outcome than
measurable continuous biomarkers and the definition of CAD is
potentially affected by cohort-specific factors such as how the diag-
nosis is coded in different health care systems. Procedure codes
were not available in eMERGE and thus were not considered in
defining CAD cases, which adds another source of uncertainty to the
comparison.

BMI had the lowest proportion of transferable loci with shared
causal variants as well as lower accuracy of the PGS in G&H relative to
samples of European descent in eMERGE and a genetic correlation
nominally significantly lower than one. South Asian ancestry indivi-
duals are known to have higher visceral fat at the same BMI compared
to European ancestry individuals in Western countries27,28. Consistent
with this, the estimated causal effect of BMI on CAD was significant
only when using the transferable loci as instruments in the Mendelian
randomisation analysis. Visceral adiposity is a strong risk factor for
cardiometabolic diseases, independent of total fatmass; thesefindings
warrant further study andmay suggest that BMImaynot be anoptimal
biomarker of adiposity in South Asian ancestry individuals29.

We observed variable performances of PGS developed in Eur-
opean ancestry and applied in British Pakistani and Bangladeshi indi-
viduals for the cardiometabolic traits that were investigated in this
work, with relative accuracy in G&H versus eMERGE ranging from 131%
for DBP to 42% for CAD. Consistent with previous studies30,31, PGSs for
HDL-C and triglycerides had similar predictive accuracy between the
two ancestry groups. It is perhaps not surprising to observe a reduc-
tion in the accuracy of the CAD PGS in BPBs, given that it did not
transfer well even within European-ancestry subpopulations32. Medi-
cation data were not available in eMERGE, we thus compared the PGS
accuracies using the unadjusted, “highest ever” measurements for
LDL-C and blood pressure. In G&H where medication data were avail-
able, PGSs for SBP and DBP showed similar performance in predicting
the adjusted and unadjusted values (Supplementary Data 5). Unlike
HDL-C and TG which showed high relative accuracy, PGS for LDL-C
showed lower accuracy in G&H than eMERGE, but we were limited in
drawing any conclusion because we did not correct for statin usage
and PGS showed higher accuracy in G&H when using statin-
adjusted LDL-C.

We explored the factors that may impact the relative accuracy of
PGSs. Based on a recently proposed theory, relative accuracy is pro-
portional to the product of the trans-ancestry genetic correlation and
the ratio of heritability estimates7. Neither the trans-ancestry genetic
correlation nor the heritability of the trait was associated with the
relative PGS performance. Thismaybe because the theorywas derived
for PGSs based on genome-wide significant SNPs (whereas our PGSs
include many SNPs with less significant p-values), and because the
relative accuracy also depends on differences in allele frequencies and

LD patterns at these SNPs between populations, which we have not
factored in and may differ between traits.

Several groups have shown improvements in PGS performance
in diverse ancestry groups when incorporating summary statistics
from ancestry-matched samples18,19,33. Incorporating UKBB South
Asian ancestry GWAS data in meta-PGSs proposed by Marquez-Luna
et al. 18,33 and using PRS-CSx19 did not show a large improvement in
G&H. A likely reason is the limited sample size of the South Asian
ancestry samples in UKBB for some of the traits. Larger samples of
South Asian ancestry individuals are needed to examine if ancestry-
matched GWAS data can improve prediction accuracy over and
above what would be expected from the increased sample size. The
increased value of increasing European-ancestry samples versus
diversifying ancestries in GWAS will depend on the extent to which
the causal variants are shared. For traits for which the causal variants
are shared, there is more to be gained frommore powerful European
ancestry GWASs, evenwithout adding samples of the target ancestry.
However, increasing diversity in GWASs will greatly improve the
resolution of fine-mapping and the power to identify the causal
variants by leveraging the LD differences across ancestries31,34.

We assessed the clinical value of the PGS for CAD on top of the
traditional clinical risk factors captured in the QRISK3 algorithm.
Similar work has been done previously in research cohorts8–10,35; our
study represents an important addition since it captures the noise
with which QRISK3 is actually measured within a real-world clinical
setting (as opposed to using comprehensive measures taken for
research purposes), which may affect the performance of integrated
risk models combining these factors with PGSs. We note that only
about 4% of the ~8 million individuals used for developing QRISK3
were of South Asian ancestry36, and the weights for each conven-
tional risk factor might not be optimal for South Asian ancestry
individuals. QRISK3 was developed to predict cardiovascular disease
(CVD), which is a composite outcome of CAD and stroke. However,
our analysis focused on CAD, which is an important component of
CVD and the main focus in GWASs and genetic prediction studies.
The PGS forCADdeveloped byWang et al. showed robust association
with CAD in G&H, with a similar OR per SD in PGS (1.63, 95% CI:
1.51–1.76) as in their study (1.60, 95% CI: 1.32–1.94)15. The integrated
score combining PGS and QRISK3 showed significant reclassification
improvement against QRISK3 alone (NRI 3.9% (95% CI: 0.9–7.0%)).
Previous studies in UKBB European ancestry samples reported simi-
lar improvement, with NRI estimates of 3.5% (95% CI: 2.4–4.5%)8 and
3.7% (95% CI: 3.0–4.4%)35 in two different analyses using CAD as the
outcome. However, these NRI estimates are probably affected by
using UKBB samples that are healthier than the general UK popula-
tion without recalibrating risk to a primary care setting9. In G&H, the
PGS improved the identification of high-risk individuals in people
younger than 55 years as well as low-risk individuals in people older
than 55 years, both of which are important in a clinical setting. We
anticipate that, like European ancestry individuals8,9,35, the British
Pakistani and Bangladeshi community (and potentially other South
Asian ancestry populations) would also benefit from the use of
integrating PGS in primary prevention settings.

Mendelian randomisation has emerged as a powerful tool to
explore the potential causal effects of risk factors on disease out-
comes. Statistical power can be the limiting factor when extending
these analyses to ancestrally diversepopulations because independent
ancestry-matched GWAS for risk factors of interest may not be suffi-
ciently large. To increase power to estimate the MR causal effects of
risk factor traits onCAD inBritishPakistanis andBangladeshis,we used
genetic instruments derived from large European ancestry GWAS.
Some of the loci may be invalid instruments for other populations.
However, restricting the published loci to the ones that were trans-
ferable in this population successfully addressed this issue for BMI and
shows promise as a new approach for trans-ancestry Mendelian
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randomisation. An assumption that requires further study is whether
the effect sizes of transferable loci are the same for each ancestry
group. Future research should also further investigate the impact of
pleiotropy on the causal effect estimate for HDL-C.

Our study has several limitations. Firstly, due to the limited sam-
ple size in each age-by-sex subgroup, we could not recalibrate risk
prediction models in G&H to what would be expected in an unbiased
primary care setting9. Secondly, for the comparisons of results in G&H
with other cohorts, it should be noted that each of the cohorts
examined here is unique. We selected eMERGE, which is also based on
electronic health records, for comparison with G&H. Although UK
Biobank would have been a better match in terms of country, we were
unable to use it for comparison because it was one of the studies
included in the published GWAS meta-analyses for the cardiometa-
bolic traits that formed the source of locus discovery as well as the PRS
training data. Differences in ascertainment (including the age dis-
tribution) and clinical measurements within different cohorts and
healthcare systems may have impacted the genetic associations. Dif-
ferent genotyping arrays and imputation panels of different sizes and
ancestries were used in G&H and eMERGE, which might lead to
potential bias in the comparisons of the two cohorts. The lack of
medication data in eMERGE meant we were limited in the conclusions
we could draw from comparisons of heritability, transferability (PAT
ratio), and PGS performance for LDL-C and blood pressure data. G&H
is enriched for young people (median age 40 years old), given that the
median age of onset for CAD is 55, some young individuals in this
cohort will develop CAD beyond the observation period, which might
lead to the underestimation of accuracy and clinical value of the CAD
PGS. Finally, our transferability analyses evaluated whether there is
evidence for a directionally consistent association in G&H but we did
not assess heterogeneity in effect sizes which would also impact
genetic risk prediction.

In conclusion, our work provides the first comprehensive assess-
ment of the transferability of cardiometabolic loci to a non-European
ancestry populationand its impacton twokey applications of genetics,
causal inference and risk prediction. Our protocol and our new
approach for transferability can serve as methodological standards in
this developing field. We have shown high transferability of GWAS loci
across several cardiometabolic traits between European ancestry and
British Pakistani and Bangladeshi populations. The performance of
PGSs is trait-specific. Our results suggested there would be clinical
value in adding PGS to conventional risk factors in the prediction of
CAD in primary care settings to improve the more efficient use of
preventive interventions, such as lipid-lowering medications. Our
investigation contributes to the increasing representation of indivi-
duals of diverse ancestry and varying socio-economic status in
research studies, which we hope will help to decrease health
disparities.

Methods
Genes & Health cohort
Genes&Health (G&H) is a community-based cohort of British Pakistani
and Bangladeshi individuals recruited primarily in East London13. All
participants have consented for lifelong electronic health record
access and genetic analysis. The study was approved by the London
South East NRES Committee of the Health Research Authority (14/LO/
1240). 97.4% of participants in G&H are in the lowest two quintiles of
the Index of Multiple Deprivation in the UK. About two-thirds are
British Bangladeshi and the remainder British Pakistani. The median
age at recruitment was 37 (interquartile range [IQR] = 16) and 43
(IQR= 19) years for female andmale participants, respectively (Fig. S1).
The cohort is broadly representative of the background population
with regard to age, but slightly over-sampled females and those with
medical problems since two-thirds of people were recruited in
healthcare settings such as GP surgeries13.

Quality control and imputation of genotype data from Genes &
Health
We used the 2020 February data release which contained 28,022
individuals genotyped on the Illumina Infinium Global Screening
Array v3 with additional multi-disease variants. Of these, 22,490 (80%)
individuals had linkage to primary or secondary care data, of which
56.5% were female. Quality control of genotype data was performed
using Illumina’s GenomeStudio and plink v1.9. We removed variants
with low call rate (<0.99), rare variants with minor allele frequency
(MAF) < 1%, and variants that failed the Hardy–Weinberg test
(p < 1 × 10−6) in a subset of samples with low level of autozygosity
(Supplementary Methods). We excluded individuals who did not have
Bangladeshi or Pakistani ancestry (further than +/− 3 standard devia-
tions [SD] from the mean of PC1 for the individuals who self-reported
as coming from that group), and those who self-reported as coming
from other ethnic groups or who did not report this informa-
tion (Fig. S2).

We used theMichigan Imputation Server37 to perform imputation
with the GenomeAsia pilot reference panel38, imputing from 336,133
autosomal, biallelic SNPs withmatched alleles. Eagle v2.4 andMinimac
v4 were used for phasing and imputation, respectively. We excluded
SNPs with imputation INFO score <0.3 or MAF <0.1%, which left
9,527,863 autosomal SNPs.

We applied more stringent QC on GWAS results using the
EasyQC package followed39: allele mismatch and allele frequency
difference of >0.2 with reference panel, imputation INFO score <0.7
(<0.9 for downstream analysis i.e. correlation and colocalisation),
MAF <0.5% (<1% for downstream analysis i.e. correlation and
colocalisation).

Quality control and imputation of genotype data from eMERGE
We used European ancestry samples from the eMERGE cohort (hen-
ceforth eMERGE), a consortium of USmedical research institutions, to
carry out comparisons with G&H. Network Phase III data (N = 61,377)
were downloaded from dbGaP (Accession number: phs001584.v1.p1).
Quality control of genotype data and imputation to the Human
Reference Consortium (HRC) reference panel have been described
previously40. We projected eMERGE participants onto the PC space
generated from the 1000 Genomes project phase 3 dataset and
applied Uniform Manifold Approximation and Projection (UMAP)41,
and identified 43,877 European ancestry individuals. Well-imputed
(INFO≥0.3) bi-allelic SNPs with MAF ≥0.1% (N = 11,625,805) were
retained for downstream analysis.

Phenotype and covariate definitions from electronic health-
record data
Coronary artery disease (CAD) cases and controls in G&Hwere defined
using the same ICD10 and OPCS4 codes as Khera et al. 42 (Supple-
mentary Data 1; Supplementary Methods). Data processing for BMI,
lipids, and blood pressure is in Supplementary Methods. Both the
highest and medication-adjusted measurements were available in
G&H. Sample sizes are shown in Table 1 (all individuals) and Supple-
mentary Data 2 (unrelated).

We calculated the QRISK3 10-year predicted risk for CAD36 in G&H
using the R package “QRISK3” v0.3.043. We used data available up until
1 January 2010 to calculate QRISK3 (Supplementary Methods). Defini-
tions of variables in theQRISK3 algorithm are shown in Supplementary
Data 3, following8.

Phenotype data in eMERGE were downloaded from dbGaP
(phs001584.v1.p1, phs000888.v1.p1, and phs001584.v2.p2; Supple-
mentary Methods). Data on medications affecting lipid and BP mea-
surements were not available, so the highest measurements for LDL,
TC, SBP, and DBP were used when comparing heritability estimates
and performance of PGSs with G&H in order tominimise the effects of
medications.
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Genome-wide association analyses in Genes & Health
GWAS was performed with SAIGE44 and adjusted for age, age2, sex
and the first twenty principal components. For total cholesterol
and LDL-C, adjustments were made for use of statins as
described above.

Heritability and trans-ancestry genetic correlations
Datasets that were used in analyses are provided in Supplementary
Data 4. We used GCTA to estimate SNP heritability in unrelated
individuals from G&H and eMERGE, correcting for age, sex, and first
10 genetic PCs45. For CAD, we estimated SNP heritability on the lia-
bility scale using 6.7% as the prevalence estimate in the US46, and
3.33% for theUKbackgroundpopulation fromwhichG&H is sampled,
defined as all people from South Asian ethnicities (N = 255,066 aged
≥20 years) registered with a primary health physician/GP in four east
London boroughs.

For the genetic correlation analyses, we used GWAS summary
statistics generated in European ancestry individuals fromUKBiobank
(UKBB), since we needed a larger sample size of ancestrally homo-
geneous individuals than is available through eMERGE to obtain
accurate estimates. We used Popcorn (https://github.com/brielin/
Popcorn) to estimate the trans-ancestry genetic correlations between
G&H and UKBB European ancestry individuals while accounting for
differences in LD structure (SupplementaryMethods)47. A two-sided p-
value < 0.05 indicated that the genetic correlation was significantly
different from one.

Assessment of transferability of trait loci
Previous studies that evaluated the reproducibility of GWAS loci in
South Asian individuals did not formally account for differences in
power or LD patterns21–23. We assessed whether published trait-
associated loci were reproducible in G&H (Supplementary Data 4),
i.e. whether a locus affects the same trait in both populations,
regardless of effect sizes. Credible sets for trait loci were generated
and consisted of lead (independent) variant plus proxy SNPs (r2 ≥0.8)
within a 50 kb window (based on the European ancestry 1000 Gen-
omes data) of the sentinel variant andwith p-value < 100 × psentinel. The
locus was defined as being ‘transferable’ if at least one variant from the
credible set was associated at two-sided p < 0.05 with the relevant trait
in G&H, and the direction of effect matched in both datasets. For loci
harbouringmultiple signals, we only kept themost strongly associated
variant (i.e. smallest p-value). The statistical power to observe an
association of a given locus in G&H was calculated using alpha =0.05,
the effect size estimate for the leadvariant from the European ancestry
discovery GWAS, and the allele frequency of the variant and sample
size in G&H (Supplementary Methods). For SBP and DBP, the raw
measurements were used in the discovery GWAS, we thus calculated
power with effect size estimates in UK Biobank European-ancestry
individuals by Neale’s group where normalised blood pressure values
were used. The power estimates were summed up across published
loci for a given trait to give an estimate of the number of loci expected
to be significantly associated in G&H. This is the expected number if all
loci are transferable and account for the statistical power for replica-
tion. We calculated the power-adjusted transferability (PAT) ratio by
dividing the observed number of loci with p <0.05 amongst the
published loci in G&H over the expected number. To our knowledge,
this is a novel approach for assessing the reproducibility of GWAS
findings.

We also highlighted published trait loci that we deemed to
be ‘non-transferable’ despite sufficient statistical power: they con-
tained at least one variant in the credible set with >80% power
for replication and yet none of the variants in the credible set had
p <0.05 and no variant within 50 kb of locus had p < 1 × 10−3 in G&H.
LocusZoom (http://locuszoom.org/) was used to create regional
association plots.

Trans-ancestry colocalisation
We used the Trans-ancestry colocalisation method (TAColoc) (https://
github.com/KarolineKuchenbaecker/TEColoc)30 which tests whether a
specific locus has the same causal variant in two groups with different
ancestry, and applied it to G&H and UKBB European ancestry indivi-
duals (Supplementary Methods).

Construction of polygenic scores
We evaluated the performance of PGSs in G&H and eMERGE. We first
assessed PGSs that were previously constructed (mostly optimised in
European ancestry samples) from the PGS Catalog48. We restricted to
7,353,388 bi-allelic SNPs that had INFO≥0.3 and MAF ≥0.1% in both
eMERGEandG&H. Variant information in existing PGSwas harmonised
to GRCh37 using dbSNP mappings from Ensembl Variation and lift-
over. We calculated PGSs as weighted sums of imputed allele dosages
using plink2.0–score function. When multiple PGSs were available in
the PGSCatalog, we reported the best scoreper trait. The details of the
scores are in Supplementary Data 5.

We also calculated PGSs using the clumping and p-value thresh-
olding method (C+T) and optimised PGSs in G&H and eMERGE
separately using 10-fold cross-validation (Supplementary Methods).
Lastly, in G&H we calculated meta-PGSs proposed by Marquez-Luna
et al. 18 and PGS using the PRS-CSx method19 that incorporated GWAS
summary data from the panUKBB South Asian-ancestry individuals
(Supplementary Methods).

Assessment of PGS accuracy and clinical performance
Age at recruitment was used as a covariate for analysis of disease
status, and age atmeasurement for analysis of quantitative traits. PGSs
were standardised to a mean of 0 and SD of 1. We fitted the following
two models: (1) the full model which had PGS and covariates namely
sex, age, age2, and the first 10 genetic PCs, and (2) the referencemodel
which accounted for the covariates only. For continuous risk factors,
linear regression was fitted, and the gain in R2 when adding PGS as an
additional predictor, or incremental R2, was calculated as the differ-
encebetween theR2 of the fullmodel and the referencemodel. Logistic
regression was used to assess the associations between PGSs and CAD.
The area under the receiver operating characteristic curve (AUC) was
estimated for both models with the R package “pROC” v1.16.2 and
incremental AUC was calculated similarly. We performed bootstrap
resampling of individuals 1000 times to estimate the 95% confidence
intervals for incremental R2 and incremental AUC. We estimated the
effect size per SD of PGS from the full model. Effect size for quintiles,
and for the top 10% versus middle 40–60% was reported as well.
Relative accuracy was calculated as the ratio of incremental AUC (or
incremental R2 for continuous traits) in G&H to that in eMERGE.

QRISK3 scores were calculated for 8112 unrelated individuals as
described in Supplementary Methods (420 CAD cases and 7702 con-
trols). We followed Riveros-Mckay et al. 8 to integrate QRISK3 scores
with the PGS for CAD developed by Wang et al. 15. Cox regression was
performed using the R package “survival” v3.2-7. The concordance
indices (C-indices) of the following models were compared: (1) age at
assessment + sex, (2) PGS + age at assessment + sex, (3) QRISK3, and
(4) the integrated score. We calculated the continuous net reclassifi-
cation index (NRI) and categorical NRI (using 10% as the threshold to
classify high-risk individuals) for the integrated score compared to
QRISK3 alone. NRI was calculated as the sum of NRI for cases and NRI
for controls (noncases):

NRI =Pðup∣caseÞ � Pðdown∣caseÞ+Pðdown∣noncaseÞ � Pðup∣noncaseÞ

For continuous NRI, P(up|case) and P(down|case) indicate the
proportions of cases that had higher or lower risk estimates using the
integrated score, respectively. For categorical NRI, P(up|case) indicates
the proportions of cases that were reclassified as high-risk individuals
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(i.e. with <10% risk by QRISK3 but >10% by the integrated scores). We
calculated NRI in two age groups (25–54 versus 55–84 years old at
baseline, chosen since the average age of onset in this cohort was 55.3
years old), as well as in age-by-sex subgroups. Bootstrap resampling
(1000 times) was used to estimate confidence intervals for NRI. All
reported p-values are two-sided.

Mendelian randomisation analysis
Wemodelled liability to CAD as our outcome within a univariable two-
sample Mendelian randomisation (MR)49 framework using the cardio-
metabolic traits (BMI, SBP, DBP, LDL-C, HDL-C, TG) as exposures. To
identify genetic instruments for the exposure, we explored three
alternative approaches: (a) published loci significant at p < 5 × 10−8 in
the original European ancestry GWAS; (b) transferable loci defined as
described in the transferability section of the methods, taking the
effect size from the original European ancestry GWAS; and (c) loci
significant at p < 5 × 10−8 in the South Asian ancestry group of the Pan-
UKBB GWAS, LD-clumped to an r2 < 0.2 with a LD window of 50kb,
based on South Asian 1000 Genomes project LD reference. Where
insufficient numbers of genome-wide significant instruments were
identified, we used a more permissive p-value threshold of p < 5 × 10−5

for instrument selection in UKBB South Asian. The primary Mendelian
randomisation analysis was performed using, as outcome, summary
association data from the G&H CAD GWAS performed as described
above, using the inverse-variance weighted method under a random
effectmodel, implementedwith theTwoSampleMRRpackage v0.5.550.
For comparison, a two-sample Mendelian randomisation approach
was also performed using summary data for CAD from eMERGE and
established loci significant at p < 5 × 10−8 in the original European
ancestry GWAS. We also undertook several sensitivity analyses. In
brief, we evaluated the Egger intercept to assess directional pleiotropy
and Cochran’s Q statistic51 as an indicator of heterogeneity. Mendelian
randomisation analysis using MR pleiotropy residual sum and outliers
methods (MR-PRESSO)52, weighted median53 and weighted mode
methods54 models were additionally performed in the presence of
heterogeneity. To investigate the individual direct effect of HDL-C,
LDL-C, and TG on the risk of CAD and simultaneously account for
horizontal pleiotropy, we replicated the analysis in a multivariable MR
(MVMR)55 setting with the TwoSampleMR R package. Genetic instru-
ments for theHDL-C, LDL-C, and TG joint exposurewere selected from
sampleswith Europeanancestry inUKBB, if associatedwith at leastone
of the three lipids (p < 5 × 10−8). The instruments werefiltered based on
MAF >0.005 and LD-clumped to an r2 < 0.01 with a window of 50kb,
based on the EUR 1000Genome project LD reference, using plink2. All
reported p-values are two-sided.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genes&Heath imputed genotype data (GRCh 37) have been deposited
in EGA under study accession number: EGAS00001005373 (https://
ega-archive.org/datasets/EGAD00001007815). The electronic health
records from Genes & Health are available under restricted access for
bonafide research; researcherswishing to access them should apply to
the G&H Executive (www.genesandhealth.org/research/scientists-
using-genes-health-scientific-research). GWAS summary statistics
generated inGenes &Health are available at www.genesandhealth.org/
research/scientific-data-downloads. The transferable loci generated in
this study are provided in the Supplementary Data file. Publicly avail-
able GWAS summary statistics that were used in this study (Supple-
mentary Data 4) are available via the CARDIoGRAMplusC4D
Consortium (http://www.cardiogramplusc4d.org), GIANT (https://
portals.broadinstitute.org/collaboration/giant/index.php/Main_Page),

GLGC (http://csg.sph.umich.edu/willer/public/lipids2017/), and GWAS
Atlas (https://atlas.ctglab.nl/traitDB/). SNPs and the weights for poly-
genic risk scores are available in the PGSCatalog (www.pgscatalog.org)
and score IDs are provided in Supplementary Data 5.

Code availability
Code used to assess the transferability of genetic loci and calculate the
PAT ratio is available at https://github.com/Nsallah1/GH_Manuscript.
TAColoc used to perform trans-ancestry colocalisation analysis is
available at https://github.com/KarolineKuchenbaecker/TEColoc.
Code used to assess the accuracy and clinical utility of polygenic risk
scores is available at https://github.com/QinqinHuang/GnH28k_
polygenic_scores56. All additional software is available online.
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