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Value-free random exploration is linked
to impulsivity

Magda Dubois 1,2 & Tobias U. Hauser 1,2

Deciding whether to forgo a good choice in favour of exploring a potentially
more rewarding alternative is one of themost challenging arbitrations both in
human reasoning and in artificial intelligence. Humans show substantial
variability in their exploration, and theoretical (but only limited empirical)
work has suggested that excessive exploration is a critical mechanism
underlying the psychiatric dimension of impulsivity. In this registered report,
we put these theories to test using large online samples, dimensional analyses,
and computational modelling. Capitalising on recent advances in disen-
tangling distinct human exploration strategies, we not only demonstrate that
impulsivity is associated with a specific form of exploration—value-free ran-
dom exploration—but also explore links between exploration and other psy-
chiatric dimensions.

Protocol registration

The Stage 1 protocol for this Registered Report was accepted in principle on
19/03/2021. The protocol, as accepted by the journal, can be found at https://
doi.org/10.6084/m9.figshare.14346506.v1.

That human and non-human animals differ in their impulsivity is one of
the earliest and most influential observations of inter-individual
differences1. Impulsivity is often described as ‘acting without think-
ing’ and is traditionally assessed using self-report questionnaires1,2. It is
a broad and heterogenous construct1,3–5 whose relevance not only
comes from theobservation of a substantial variation amonga ‘healthy’
population, but also its importance in psychiatry.More recently, highly
influential reinterpretations of psychiatric disorders have proposed
impulsivity as an overarching symptom conglomerate encompassing
multiple psychiatric disorders, such as addictions,manias, and—almost
archetypically—attention-deficit/hyperactivity disorder6 (ADHD).

Despite the relevance of impulsivity, relatively little is known
about the neurocomputational mechanisms that underlie this trait.
Impulsivity has been linked to imbalances in catecholamine
functioning7–13 but how these imbalances affect behaviour remains
unknown. One suggestion about the function and role of impulsivity is
as elegant as it remains speculative. Using simulations, Williams and
Taylor14 suggested that impulsivity is characterised by heightened
exploration behaviour, meaning that impulsive participants are more

likely to forego certain high valued outcomes for the benefit of
exploring lesser known choice options that may hide even higher
valued outcomes. Even though such a behaviour could be detrimental
for an impulsive individual, the authors demonstrated that such
behaviour could be of great benefit on a societal level14. Several the-
oretical accounts have embraced this concept and demonstrated how
increased exploration canarise due to catecholamine imbalance6,12,15–17,
how this may be implemented neurally12, and how an excessive
exploration can explain other behaviours observed with
impulsivity12,15, such as delay discounting18–20.

Outside of theoretical work, however, empirical evidence so far is
still sparse. Only the first few studies using ADHD patients21 or looking
at ADHD symptoms in youths22 have found empirical evidence for
heightened exploration in impulsivity using computational methods.
Their insights are particularly limited as recent work on exploration-
exploitation trade-offs has shown that exploration itself is not a
homogenous concept. Empirical work in healthy participants has
clearly demonstrated that humans deploy multiple different explora-
tion strategies and that these strategies differ in sophistication and
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computational demand23–25. In particular, one can distinguish between
sophisticated and complex exploration strategies, such as upper
confidence bound26 (UCB), which take the expectation as well as the
uncertainty of all possible choice options into account25,27–30, versus
heuristic strategies, which require relatively less computation.
Amongst the latter, we and others have found evidence for novelty
exploration, a strategy that focuses only on completely unknown
choice options23,29,31. In addition, there is evidence for exploration
strategies that deliberately omit all existing knowledge to choose all
options equally likely, termed value-free random exploration23. Such
‘value-free’ random exploration ignores all available information (i.e.,
expectation and uncertainty of choices) and thus forgoes any costly
computation. This is in contrast to more refined ‘value-based’ random
exploration that adds stochasticity during choice value computation
or directed exploration, which biases choice towards information
gain24,25. Even though such mechanisms are suboptimal, their low
computational demand has made them popular in artificial
intelligence32 (i.e., ϵ-greedy) and we have found clear signatures in
humans23.

Whether exploration mechanisms (and if so, which ones) are
altered in impulsivity remains unknown. However, this is of critical
importance as recent animal33 and human23 work have demonstrated a
specific role of catecholamine functioning in different forms of
exploration. In particular, we have shown that only value-free random
exploration is sensitive to noradrenaline (but not dopamine)
functioning23, which is a neurotransmitter that has repeatedly been
suggested to be critical in impulsivity disorders6,7,12,17,34–38.

In this study, we put the large body of theoretical work to test and
exploited the recent advances in the exploration literature to empiri-
cally investigate the link between impulsivity andexploration. Here, we
investigated impulsivity as a broad spectrum across the general
population and also with respect to a more specific ADHD-related
impulsivity. We used a preregistered, dimensional approach via large
sample online testing to provide a clear answer. We advanced on a
method that has recently proven the most promising for detecting
meaningful mechanisms underlying psychiatric symptoms39–42. We ran
a big data dimensional study using our recently developed exploration
task23, which was designed to disentangle the exploration strategies
that have been put forward in the literature, and which allowed us to
provide an answer to whether exploration behaviour is linked to
impulsivity. To determine not only whether, but also which, explora-
tion mechanism predicts impulsivity, we made use of computational
modelling. Supported by previous findings that impulsivity is asso-
ciated to increased avoidance of mental effort43 and that ADHD is
associated to increased value-free randomexploration22, we tested our
hypothesis that it is specifically value-free random exploration (cap-
tured by our model parameter ϵ) which correlates with impulsivity
measures (cf. Table 1), therefore determining which of these
mechanisms is impaired in impulsive participants. In addition, our data
allowed us to explore how exploration impairments may be linked to
other psychiatric domains (e.g., to OCD and other avoidance of
uncertainty disorders44,45; to depression, anxiety and anhedonia46–48)
using data-driven methods.

Results
To capture different forms of exploration, we used our previously
lab-validated Maggie’s Farm task23 (cf. Fig. 1), which is essentially a
3-armed variant of the Horizon task24. In this task, participants had to
choose which bandit (depicted as trees) to draw a sample from (i.e.,
pick an apple) in order to maximise a sum of reward (represented by
the apples’ size; Fig. 1a). To help them with their decision, at the
beginning of each trial, participants had some information about
how good each bandit was in the form of ‘initial samples’ (i.e., apples
that have been picked before). Bandits carried either a lot, some, or
no prior information (i.e., 3, 1 or 0 initials samples) and had either a

standard or a low rewardmean. In effect, there were 4 different types
of bandits: the certain-standard bandit (standard mean, 3 initial
samples), the standard bandit (standard mean, 1 initial sample), the
novel bandit (standard mean, 0 initial samples) and the low-value
bandit (low mean). A real-life example would be having to choose
between four different ice-cream flavours in an Italian city: chocolate,
which you have enjoyed 3 times in the past, Toblerone, which you
have enjoyed once in the past, hibiscus, which you have never tried,
and spinach, which you have disliked once in the past. The decision
horizon (cf. below), represents how often you will come back to this
exact same ice-cream shop (e.g., the number of vacation days left,
assuming you have once ice-cream per day). On each trial, 3 out of
those 4 bandit types were used. In the analysis, the bandit with the
highest mean reward of prior samples (either 1 or 3) is referred to as
the ‘high-value bandit’.

This task allowed to distinguish between complex exploration
strategies and exploration heuristics, namely, value-free random
exploration and novelty exploration (cf. Methods for detail). We
manipulated the number of prior samples and the rewards of the
bandits. This allowed us to capture complex exploration strategies,
because they take expected values and the uncertainty of the expected
values into account. Value-free random exploration is a computa-
tionally very light heuristic that does not take any prior knowledge into
account, de facto choosing randomly between options, even those
known to be bad (e.g., associated to a low reward prior sample). The
low-value bandit is thus a signature of such a heuristic and therefore
allows quantification of its contribution. Similarly, the novel bandit
allows us to capture novelty exploration, a heuristic which targets
entirely novel options.

To promote and assess exploration, we manipulated the number
of choices per trial (i.e., decision horizon; Fig. 1b), similarly to the
Horizon Task24. Participants could perform either one draw, encoura-
ging exploitation (short horizon condition), or six draws, encouraging
more substantial explorative behaviour (long horizon condition) as in
the latter condition, the newly gained information could be subse-
quently exploited. Going back to the ice-cream example, knowing that
youwill comeback to the sameplacemany timeswill encourage you to
explore different flavours (i.e., other than chocolate), as it can help
guide your future choices. In the analysis, if not stated otherwise, we
compared the short horizon’s single draw to the long horizon’s first
draw in alignment with previous studies using the same
manipulation23,24. All tests were two-tailed. Detailed statistics for all
measures can be found in Supplementary Table 2.

Step 1.1. Are exploitation and exploration horizon-modu-
lated? Yes
To assess whether the horizon manipulation promoted exploration,
we analysed which bandit participants chose in the long (versus
short) horizon condition. We found, as hypothesised, that partici-
pants chose bandits with a lower expected value (computed as the
mean of the bandits’ initial samples) in the long horizon compared to
the short horizon, a sign of increased exploration in the condition
where they could benefit from it (expected value of chosen bandit:
Wilcoxon signed-rank two-tailed test:V = 110057,p < 0.001,Wilcoxon
effect size: r = 0.265; Supplementary Fig. 3a). Further analysis
revealed that this was driven by multiple behavioural shifts. We
found a reduced frequency of picking the high-value bandit in the
long horizon (V = 157079.5, p < 0.001, r = 0.797; Fig. 2a; Hypothesis
1.1.a. in Table 1), showing that participants forego the option with the
best expected outcome. We found that this exploration was goal-
directed, with participants choosing bandits they knew less about
(lower number of initial samples, i.e., more informative) in the long
horizon (number of initial samples of chosen bandit: V = 160109.5,
p < 0.001, r = 0.796; Supplementary Fig. 3b). Concretely, they
increasingly chose both the low-value bandit (V = 34420, p < 0.001,
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r = 0.425; Fig. 2a; Hypothesis 1.1.b. in Table 1) as well as the novel
bandit (V = 10355, p < 0.001, r = 0.750; Fig. 2a; Hypothesis 1.1.c. in
Table 1), for which there were no initial information available. Our
findings thus match our preregistered hypotheses of an increase in
exploration in the long horizon.

Step 1.2. Is exploration beneficial for participants? Yes
To evaluate whether participants were able to use their exploration
beneficially, we looked at their performance (i.e., the outcomes they
obtained). In alignment with the above analyses, we observed that
participants obtained a lower reward (i.e., apple size) in the first draw
of the long horizon (i.e., when we observed increased exploration)
compared to the singledraw in the short horizon (V = 131612,p <0.001,
r =0.53; Supplementary Fig. 3c; Hypothesis 1.2.a. in Table 1). To assess
the long-term benefits of exploration, we calculated the long horizon
average reward (across 6 draws) and found that this was higher than
the short horizon reward (V = 264, p < 0.001, r =0.864; Supplementary
Fig. 3c; Hypothesis 1.2.b. in Table 1). This indicated that participants
made good use of the additional information earned by exploring as
observed in previous studies22,23 in alignment with our preregistered
hypotheses. For an analysis of score per trial and per block cf. Sup-
plementary Fig. 4.

Step 1.3. Do participants use exploration heuristics? Yes
To assessmore formally which exploration strategies were being used,
we turned to computational modelling, which allows us to tease apart
different exploration strategies. In line with our previous studies22,23,

we found that participants used a mixture of computationally
demanding (i.e., Thompson sampling) and two heuristic exploration
strategies (i.e., value-free random exploration ϵ and novelty explora-
tion η) as captured by the winning model (comparison of BIC average
scores: Thompson+η+ϵ vs Thompson model: V = 3089, p <0.001,
r =0.835; Hypothesis 1.3. in Table 1; Thompson+η+ϵ vs UCB+η+ϵ
model: V = 46440, p <0.001, r = 0.389; Supplementary Fig. 5a). The
pilot data (cf. Supplementary Information) and our preregistered
hypotheses (cf. Table 1) predicted the same winning model.

Step 1.4. Are exploration heuristics used more in the long hor-
izon? Yes
Next, we were interested to assess which exploration strategies were
deployed more in the long horizon, which is why we examined the
winning model’s (Thompson+η+ϵ) fitted parameters. We found an
increase in the ϵ-greedy parameter in the long horizon, which captures
the contribution of value-free random exploration (V = 35367,
p <0.001, r =0.503; Fig. 2b; Hypothesis 1.4.a. in Table 1). Similarly, the
novelty bonus η, which captures the intrinsic reward of selecting a
novel option, was also increased in the long horizon (V = 10334,
p <0.001, r =0.76; Fig. 2b; Hypothesis 1.4.b. in Table 1). This thus
confirms our preregistered hypothesis of a flexible deployment of
these exploration heuristics (cf. Table 1). In addition, we found that the
prior variance, capturing complex, uncertainty-related exploration,
was also increased in the long horizon (prior variance fitted parameter:
V = 54537, p <0.001, r =0.306; Fig. 2b), which supports the notion that
the long horizon facilitates the exploration strategies we assessed in
this task.

Step 2.1. Is impulsivity linked to value-free random explora-
tion? Yes
Next, we looked at the link between impulsivity and exploration. First,
we characterised general impulsivity as a broad concept, and expected
it to be linked with value-free random exploration. For this, we used
the total score on the Barratt Impulsiveness Scale (BIS), the most
commonly administered self-report measure for impulsiveness49. We
assessed its link to the model parameter and behavioural measure of
value-free random exploration, the ϵ-greedy parameter and the low-
valuebandit picking frequency. As hypothesized (cf. Table 1), we found
a significant association between the BIS total score and the ϵ-greedy
parameter (r(578) = 0.171, p < 0.001, Fig. 3a; accounting for age and IQ:
r(573) = 0.117, p =0.005; Hypothesis 2.1. in Table 1; cf. Methods for
details and Supplementary Table 1 for demographics), which was also
reflectedby a correlation between theBIS total score and the low-value
bandit frequency (r(578) = 0.174, p < 0.001, Fig. 3b; accounting for age
and IQ: r(573) = 0.117, p =0.005; Hypothesis 2.1. in Table 1). In line with
these results, when performing a repeated-measures ANOVA with the
horizon as within-participant factor, we found a main effect of impul-
sivity on how frequently the low-value bandit was chosen (BIS main
effect: F(1,578) = 18.103, p <0.001, partial eta squared η2

p =0.03; hor-
izon main effect: F(1,578) = 113.614, p < 0.001, η2

p =0.164; BIS-by-
horizon interaction: F(1,578) = 0.773, p = 0.380, η2

p =0.001) and on
the ϵ-greedy parameter (BIS main effect: F(1,578) = 17.454, p <0.001,
η2
p =0.029; horizon main effect: F(1,578) = 125.804, p <0.001,

η2
p =0.179; BIS-by-horizon interaction: F(1,578) = 0.084, p =0.772,

η2
p <0.001), but no significant interaction effects, suggesting that this

exploration strategy was increased in both horizons.
In summary, these findings confirmed our preregistered

hypothesis that value-free random exploration is linked to general
impulsivity traits in this large convenience sample, and our
exploratory analyses (cf. Step 4. Exploratory analyses) showed that it
was not associated with any other exploration strategy. Detailed
correlations can be found in Supplementary Table 5. Detailed cor-
relations with all questionnaires can be found in Supplementary
Table 10 and Supplementary Table 11.

Fig. 1 | Exploration task. In theMaggie’s farmtask, participants had to choose from
three bandits (depicted as trees) to maximise their overall reward. The rewards
(apple size) of each bandit followed a normal distribution with a fixed sampling
variance. aAt the beginning of each trial, participants are providedwith some initial
samples (number varied depending on the bandits present on that trial) on the
wooden crate at the bottom of the screen and participants had to select which
bandit they want to sample from next. b Depending the condition, they can either
performonedraw (short horizon) or six draws (long horizon). The empty spaces on
the wooden crate (and the position of the sun) indicate howmany draws they have
left. Image adapted from our previous study23.
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Step 2.2. Are ADHD symptoms linked to value-free random
exploration? Yes
After having established the association between value-free random
exploration and general impulsivity, we sought to investigate the
association more specifically, focusing on ADHD symptoms. Based
on our previous preliminary findings of a positive association
between ADHD traits and value-free random exploration22 in
youths, we thus investigated how the ASRS total score is linked to
this form of exploration. A correlation of r = 0.63 (cf. Supplemen-
tary Fig. 10) between the above BIS total score and the ASRS total

score suggests that they are similar, but not entirely overlapping
constructs.

As hypothesized in our preregistration (cf. Table 1), we found an
association between the ASRS total score and the ϵ-greedy parameter
(r(578) = 0.157, punc < 0.001, Fig. 3e; accounting for age and IQ:
r(573) = 0.115, punc = 0.006; Hypothesis 2.2. in Table 1). Likewise, the
same effect was present when looking at the association with its
behavioural equivalent, the low-value bandit frequency (r(578) = 0.151,
punc < 0.001, Fig. 3f; accounting for age and IQ: r(573) = 0.104, punc =
0.012; Hypothesis 2.2. in Table 1).

Fig. 2 | Increased exploration in the long horizon. a Behavioural horizon effects:
in the long (versus short) horizon participants sampled less from the high-value
bandit (two-sided Wilcoxon signed-rank two-tailed test: V = 157079.5, p = 1.536e-81,
Wilcoxon effect size r =0.797) and more from the novel (V = 10355, p = 1.811e-72,
r =0.750) and low-value bandit (V = 34420, p = 2.817e-24, r =0.425). b Model para-
meters: in the long (versus short) horizon participants had higher value of ϵ (i.e.,
value-free random exploration; V = 35367, p = 9.831e-34, r =0.503), η (i.e., novelty
exploration; V = 10334, p = 7.411e-75, r =0.076) and σ0 (their uncertainty about a
bandit’s mean before seeing any samples; V = 54537, p = 1.868e-13, r =0.306). The

parameters were fitted to each participant’s first draw, and they were fitted to each
horizon separately. ***p <0.001. For detailed statistics cf. Supplementary Table 2.
For details about model parameters cf. Supplementary Table 4. Data are shown as
mean ± 95% CI and each dot/line represent one participant. Sample size for statis-
tics:N = 580 humanparticipants. Source data are provided as a SourceData file. Bar
values: High-value bandit: Short Horizon (SH): 52.134, Long Horizon (LH): 42.088;
Novel bandit: SH: 36.801, LH: 46.073; Low-value bandit: SH: 3.928, LH: 5.026;
ϵ-greedy parameter: SH: 0.099, LH: 0.134; Novelty bonus η: SH: 1.919, LH: 2.884;
Prior variance σ0: SH: 1.085, LH: 1.186.

Fig. 3 | Value-free random exploration linked to impulsivity. General impul-
sivity (as measured by the BIS49) was significantly associated to value-free ran-
dom exploration. This was observed both in a the model parameter, the
ϵ-greedy parameter (Pearson’s correlation: r(578) = 0.171, p = 3.398e-05) and in
b the behaviour, the frequency of picking the low-value bandit (r(578) = 0.174,
p = 2.442e-05). The motor subscore of the BIS was most closely associated with
value-free random exploration, both in c the model parameter (Bonferroni
corrected (n = 3): r(578) = 0.198, pcor = 5.318e-06, punc = 1.772e-06) and d the
behaviour (r(578) = 0.205, pcor = 2.249e-06, punc = 7.495e-07). Similarly, ADHD-

related impulsivity (as measured by the ASRS72) was significantly associated to
value-free random exploration, both in e the model parameter (r(578) = 0.157,
p = 1.466e-04) and in f the behaviour (r(578) = 0.151, p = 3.069e-04). The
hyperactivity-impulsivity subscore of the ASRS was most tightly associated to
novelty exploration, both in g the model parameter (Bonferroni corrected
(n = 2): r(578) = 0.205, pcor = 1.352e-06, punc = 6.764e-07) and h the behaviour
(r(578) = 0.193, pcor = 6.319e-06, punc = 3.159e-06). The filled lines represent the
95%CI. Sample size for statistics: N = 580 human participants. Source data are
provided as a Source Data file.
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Similar to the above findings, we did not find any interaction with
horizon, neither in the low-value bandit (ASRS main effect:
F(1,578) = 13.187, p <0.001, η2

p = 0.022; horizon main effect:
F(1,578) = 113.468, p <0.001, η2

p =0.164; ASRS-by-horizon interaction:
F(1,578) = 0.025, p =0.875, η2

p < 0.001) nor the ϵ-greedy parameter
(ASRS main effect: F(1,578) = 14.609, p <0.001, η2

p =0.025; horizon
main effect: F(1,578) = 126.34, p <0.001, η2

p =0.179; ASRS-by-horizon
interaction: F(1,578) = 2.549, p = 0.111, η2

p =0.004). Our exploratory
analyses (cf. Step 4. Exploratory analyses) showed that it was not
associated with any other exploration strategy. These results thus
confirmed our preregistered hypothesis that value-free random
exploration is linked to ADHD symptoms. Detailed correlations can be
found in Supplementary Table 5.

Step 3. Preregistered exploratory analyses

Step 3.1. Investigating subscales of impulsivity and ADHD
Toexplore the associationbetween value-free randomexplorationand
general impulsivity further, we performed an exploratory analysis of
the BIS subscores (i.e., attentional, motor, and non-planning impul-
sivity), correcting for multiple comparisons using Bonferroni correc-
tion (N = 3). Those subscores allow to differentiate between attentional
impulsiveness, an ‘inability to focus attention or concentrate’, motor
impulsiveness, ‘acting without thinking’, and non-planning impulsive-
ness, a lack of ‘futuring’ or ‘forethought’49.

We found that the BIS motor subscore was associated with value-
free random exploration in all indicators of that exploration heuristic
(Bonferroni corrected (n = 3): ϵ-greedy parameter: r(578) = 0.198,
pcor < 0.001, punc < 0.001, Fig. 3c [accounting for age and IQ:
r(573) = 0.159, pcor < 0.001, punc < 0.001]; frequency of low-value ban-
dit: r(578) = 0.205, pcor < 0.001, punc < 0.001, Fig. 3d [accounting for
age and IQ: r(573) = 0.165, pcor < 0.001, punc < 0.001]). We did not
observe any robust association with the BIS non-planning subscore
when correcting for age and IQ (using the ϵ-greedy parameter:
r(578) = 0.120, pcor = 0.012, punc = 0.004 [accounting for age and IQ:
r(573) = 0.058, pcor = 0.501, punc = 0.167]; using the low-value bandit:
r(578) = 0.128, pcor = 0.006, punc = 0.002 [accounting for age and IQ:
r(573) = 0.065, pcor = 0.364, punc = 0.121]) or with the BIS attentional
subscore (using the ϵ-greedy parameter: r =0.095, pcor = 0.067,
punc = 0.022 [accounting for age and IQ: r(573) = 0.067, pcor = 0.331,
punc = 0.11]; using the low-value bandit: r(578) = 0.086, pcor = 0.118,
punc = 0.039 [accounting for age and IQ: r(573) = 0.054, pcor = 0.592,
punc = 0.197]). This suggests that it is the motor dimension of general
impulsivity, i.e., acting without thinking, that is related to value-free
random exploration the most. Detailed correlations can be found in
Supplementary Table 6.

Next, we further explored how the value-free random
exploration is associated with the two ADHD subdomains (as
assessed by the ASRS), namely inattention and hyperactivity-
impulsivity (Bonferroni correcting for N = 2 tests). We found that
value-free random exploration was linked to the hyperactivity-
impulsivity subscore (using the ϵ-greedy parameter: r(578) = 0.205,
pcor < 0.001, punc < 0.001, Fig. 3g [accounting for age and IQ:
r(573) = 0.152, pcor = 0.001, punc < 0.001]; using the low-value ban-
dit: r(578) = 0.193, pcor < 0.001, punc < 0.001, Fig. 3h [accounting for
age and IQ: r(573) = 0.136, pcor = 0.002, pcor = 0.001]) but not reli-
ably with the ASRS inattention subscore (using the ϵ-greedy para-
meter: r(578) = 0.087, pcor = 0.074, punc = 0.037 [accounting for age
and IQ: r(573) = 0.061, pcor = 0.292, punc = 0.146]; using the low-value
bandit: r(578) = 0.085, pcor = 0.082, punc = 0.041 [accounting for age
and IQ: r(573) = 0.057, pcor = 0.348, punc = 0.174]). This suggests that
value-free random exploration is more closely linked to the
impulsivity-hyperactivity dimension of ADHD than the other sub-
domains. Detailed correlations can be found in Supplementary
Table 6.

Step 3.2. Investigating exploration across transdiagnostic
dimensions
Thus far, we exclusively focused on our hypothesised association
between exploration and impulsivity / ADHD symptoms. However, to
be able to explore the wider associations with other symptom
dimensions, we additionally collected data from further ques-
tionnaires, in the same spirit as previous transdiagnostic dimensional
approaches39,41,42.

As specified in our preregistration, we conducted a factor analysis
across all items of the collected questionnaires (including BIS and
ASRS). This factor analysis of individual questionnaire items revealed
three distinct latent factors (Fig. 4a) which we labelled as “anxious-
depression”, “uncertainty-related distress” and “impulsivity” factor, in
accordancewith the strongest individual item loadings (cf. Fig. 4b). For
correlations between questionnaires and factors cf. Supplemen-
tary Fig. 10.

As we had initially expected, our two impulsivity-related ques-
tionnaires (BIS and ASRS) primarily loaded onto one factor (labelled as
impulsivity factor). We thus explored the association between this
impulsivity factor and value-free random exploration. We found that
value-free random exploration was more closely related with the
impulsivity factor thanwith each questionnaire separately (i.e., BIS and
ASRS).We found an association between the impulsivity factor and the
ϵ-greedy parameter (correcting for multiple comparison using Bon-
ferroni correction across 4 parameters x 3 factors, i.e., N = 12;
r(578) = 0.257, punc < 0.001, pcor < 0.001, Fig. 5a; accounting for age
and IQ: r(573) = 0.204, punc < 0.001,pcor < 0.001) aswell as between the
impulsivity factor score and the low-value bandit frequency (correct-
ing for multiple comparison using Bonferroni correction across 3
bandits x 3 factors, i.e., N = 9; r(578) = 0.247, punc < 0.001, pcor < 0.001,
Fig. 5b; accounting for age and IQ: r(573) = 0.191, punc < 0.001, pcor <
0.001). Together, our results suggest that value-free random
exploration is associated with a general impulsivity that spans across
multiple questionnaires.

Having established the link with value-free random exploration,
we now exploredwhether impulsivity was also linked to other formsof
exploration. When linking the impulsivity factor with the parameters
capturing the other exploration strategies, we did not observe any
significant correlation (Bonferroni correction withN = 12), neither with
the novelty bonus η (r(578) = 0.051, pcor = 1, punc = 0.223; accounting
for age and IQ: r(573) = 0.058, pcor = 1, punc = 0.167; Fig. 5e), nor the
prior variance σ0 (r(578) = −0.02, pcor = 1, punc = 0.631; accounting for
age and IQ: r(573) = 0.01, pcor = 1, punc = 0.816; Fig. 5e), or the prior
meanQ0 (r(578) = −0.006, pcor = 1, punc = 0.891; accounting for age and
IQ: r(573) = −0.016, pcor = 1, punc = 0.701; Fig. 5e). This suggests that the
impulsivity is first and foremost linked with value-free random
exploration.

As a second step, we explored whether exploration correlates
with the other factors identified in the factor analysis. Similar to pre-
vious studies40–42,50,51, we retrieved a factor, labelled anxious-depres-
sion, which was mainly capturing depression, social anxiety and trait
anxiety questions (SDS, LSAS and STAI-Y2 questionnaires respec-
tively). As for the third factor, we obtained a factor that was mainly
capturing intolerance of uncertainty (IUS questionnaire), labelled as
uncertainty-related distress.

First, we looked at the anxious-depression factor and all
exploration strategies as captured by the model parameters (cor-
recting for multiple comparison using Bonferroni correction
across all parameters x factors, i.e., N = 12). Our exploratory ana-
lysis revealed that the anxious-depression factor correlated posi-
tively with the novelty bonus η (r(578) = 0.14, pcor = 0.008,
punc < 0.001, Fig. 5c; accounting for age and IQ: r(573) = 0.126,
pcor = 0.03, punc = 0.002). None of the other parameters was linked
to the anxious-depression factor (ϵ: r(578) = −0.047, pcor = 1,
punc = 0.262; accounting for age and IQ: r(573) = −0.078, pcor = 0.73,
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punc = 0.061; σ0: r = 0.099, pcor = 0.203, punc = 0.017; accounting for
age and IQ: r(573) = 0.107, pcor = 0.121, punc = 0.01; Q0:
r(578) = 0.073, pcor = 0.925, punc = 0.077; accounting for age and IQ:
r(573) = 0.052, pcor = 1, punc = 0.209; Fig. 5e).

This pattern was also reflected in the behavioural indicators
when looking at the correlation between the 3 factors and the
bandit picking frequencies. Correcting for multiple comparisons
(Bonferroni correction with N = 9), we found that with the anxious-
depression factor, the novel bandit frequency was increased
(r(578) = 0.19, pcor < 0.001, punc < 0.001, Fig. 5d; accounting for age
and IQ: r(573) = 0.17, pcor < 0.001, punc < 0.001), and in turn the high-
value bandit frequency decreased (r(578) = −0.174, pcor < 0.001,
punc < 0.001; accounting for age and IQ: r(573) = −0.138, pcor =
0.008, punc = 0.001; Fig. 5f). We did not observe any correlation
with the low-value bandit frequency (r(578) = −0.058, pcor = 1,
punc = 0.165; accounting for age and IQ: r(573) = −0.093, pcor = 0.232,
punc = 0.026; Fig. 5f). Together our results demonstrate that the
anxious-depression factor is associated with an increase in novelty
exploration.

Lastly, we explored whether the uncertainty-related distress
factor was associated with any exploration strategy. We did not
observe any significant association (after correcting for multiple
comparisons) in neither in the model parameters (ϵ: r(578) = 0.107,
pcor = 0.119, punc = 0.01; accounting for age and IQ: r(573) = 0.072,
pcor = 0.997, punc = 0.083; η: r(578) = 0.001, pcor = 1, punc = 0.99;
accounting for age and IQ: r(573) = −0.002, pcor = 1, punc = 0.97; σ0:
r(578) = −0.006, pcor = 1, punc = 0.877; accounting for age and IQ:
r(573) = 0.009, pcor = 1, punc = 0.821; Q0: r(578) = 0.054, pcor = 1,
punc = 0.197; accounting for age and IQ: r(573) = 0.048, pcor = 1,

punc = 0.251; Fig. 5e) nor in the behaviour (low-value bandit:
r = 0.075, pcor = 0.625, punc = 0.069; accounting for age and IQ:
r(573) = 0.035, pcor = 1, punc = 0.399; novel bandit: r(578) = 0.039,
pcor = 1, punc = 0.343; accounting for age and IQ: r(573) = 0.037,
pcor = 1, punc = 0.371; high-value bandit: r(578) = −0.09, pcor = 0.266,
punc = 0.03; accounting for age and IQ: r(573) = −0.073, pcor = 0.732,
punc = 0.081; Fig. 5f).

Taken together, these findings thus suggest that – as hypo-
thesized – impulsivity is associated with value-free random
exploration. In addition, we also find a non-hypothesised associa-
tion between the novelty exploration heuristic and an anxious-
depression factor. Detailed correlations can be found in Supple-
mentary Table 7.

Step 3.3. Associations with cognitive flexibility and autism
We did not observe any correlation between autism and value-free
random exploration (the AQ1052 total score with the low-value bandit
frequency: r(578) = 0.025, p =0.545; accounting for age and IQ:
r(573) = 0.022, p =0.592; with the ϵ-greedy parameter: r(578) = 0.023,
p =0.584; accounting for age and IQ: r(573) = 0.02, p = 0.631), nor
between cognitive flexibility and value-free random exploration (the
CFS53 total score with the low-value bandit frequency: r(578) = −0.042,
p =0.317; accounting for age and IQ: r(573) = 0.002, p =0.954; with
the ϵ-greedy parameter: r(578) = −0.038, p =0.361; accounting for age
and IQ: r(573) = 0.004, p =0.927).

Step 4. Non-preregistered exploratory analyses
The analyses mentioned below were not part of the preregistration.

Fig. 4 | Transdiagnostic parcellation of symptoms. a Three latent factors were
identified when performing a factor analysis on individual questionnaire items.
b The 10 most loading items for each factor illustrate the aspects that con-
tribute to each dimension. Abbreviations: ASRS: Adult ADHD Self-Report Scale,
BIS: Barratt Impulsiveness Scale, LSAS: Liebowitz Social Anxiety Scale, STAI:
State-Trait Anxiety Inventory, IUS: Intolerance of Uncertainty, OCIR:

Obsessive-Compulsive Inventory-Revised, SDS: Zung’s Self-rating Depression
Scale, CFS: Cognitive Flexibility Scale, AQ10: Autism spectrum Quotient. (-)
indicates reversed items. For correlations between each questionnaire total
score cf. Supplementary Fig. 10. For loading weights of individual items on
each factor cf. Supplementary Table 10–18. Source data are provided as a
Source Data file.
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Step 4.1. Improved performance following exploration is not
strategy-specific
To investigate whether the improved performance following
exploration (cf. Supplementary Fig. 3c) was specific to an explora-
tion strategy, we split the data by their first choice (i.e., high-value
bandit, novel bandit or low-value bandit; cf. Supplementary Fig. 3d).
The higher outcome (in the long run) following exploration was
irrespective of the exploration strategy used (i.e., novel or low-value
bandit).

Step 4.2. No association between the BIS and other exploration
strategies
We explored whether the BIS score was correlated with any of the
other exploration strategies (uncertainty-driven Thompson explora-
tion, novelty exploration; correcting for multiple parameters N = 4).
We did not observe any association with any of these parameters (η:
r(578) = 0.061, corrected pcor = 0.565, uncorrected punc = 0.141;
accounting for age and IQ: r(573) = 0.073, pcor = 0.32, punc = 0.08; σ0:
r(578) = 0.012, pcor = 1, punc = 0.767; accounting for age and IQ:

Fig. 5 | Exploration associations with transdiagnostic psychiatric factors. The
factor analysis-derived impulsivity factor was significantly associated to value-free
random exploration. This was observed both in a the model parameter, the
ϵ-greedy parameter (Bonferroni corrected (n = 12); Pearson’s correlation:
r(578) = 0.257, punc = 3.352e-10, pcor = 4.023e-09) and in b the behaviour, the fre-
quencyofpicking the low-value bandit (Bonferroni corrected (n = 9): r(578) = 0.257,
punc = 1.561e-09, pcor = 1.405e-08). Similarly, the anxious-depression factor was
significantly associated with the novelty exploration, both in c the model

parameter, the novelty bonus η (Bonferroni corrected (n = 12): r(578) = 0.14,
punc = 7.041e-04, pcor = 0.0084), and in d the behaviour (Bonferroni corrected
(n = 9): r(578) = 0.19, punc = 4.084e-06, pcor = 3.675e-05), the frequency of picking
the novel bandit. Pearson correlations for each factor and e model parameters as
well as f behavioral task measures (i.e., bandit picking frequencies). Significant
uncorrected correlations are displayed. Significant corrected correlations are
indicated with asterisks (*p <0.05, **p <0.01, ***p <0.001). Sample size for statis-
tics: N = 580 human participants. Source data are provided as a Source Data file.
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r(573) = 0.041, pcor = 1, punc = 0.331; Q0 : r(578) = 0.029, pcor = 1, punc =
0.491; accounting for age and IQ: r(573) = 0.026, pcor = 1, punc = 0.531),
while the correlation with value-free random exploration (as detailed
above) remained significant (ϵ: r(578) = 0.171, pcor < 0.001, punc <
0.001; accounting for age and IQ: r(573) = 0.117, pcor = 0.019,
punc = 0.005).

Step 4.3. No association between the ASRS and other explora-
tion strategies
We explored whether the ASRS score was correlated with any of the
other exploration strategies (correcting for multiple parameters
N = 4). We did not observe any robust associationwith any of the other
parameters (η: r(578) = 0.083, pcor = 0.187, punc = 0.047; accounting for
age and IQ: r(573) = 0.087, pcor = 0.152, punc = 0.038; σ0: r(578) = 0.015,
pcor = 1, punc = 0.713; accounting for age and IQ: r(573) = 0.038, pcor = 1,
punc = 0.369; Q0 : r(578) = 0.03, pcor = 1, punc = 0.466; accounting for
age and IQ: r(573) = 0.022, pcor = 1, punc = 0.603), while the correlation
with value-free random exploration remained significant (ϵ:
r(578) = 0.157, pcor = 0.001, punc < 0.001; accounting for age and IQ:
r(573) = 0.115, pcor = 0.023, punc = 0.006).

Step 4.4. Analysis of 2nd winning model
Value-free random exploration (captured by the ϵ-greedy parameter)
was similar in the 1st winning model (Thompson+ϵ+η) and in the 2nd

winning model (UCB+ϵ+η), both in the short horizon (Pearson corre-
lation: r(578) = 0.87, p < 0.001; Supplementary Fig. 7a) and in the long
horizon (r(578) = 0.85, p <0.001; Supplementary Fig. 7b). Similarly,
novelty exploration (captured by the novelty bonus η) was similar
across bothmodels, both in the short horizon (r(578) = 0.71, p < 0.001;
Supplementary Fig. 8a) and in the long horizon (r(578) = 0.72,
p <0.001; Supplementary Fig. 8b).

Similar to the 1st winning model, we observed an association
between value-free random exploration (i.e., ϵ-greedy parameter) as
captured by 2nd winning model, and impulsivity. We observed a sig-
nificant association between ϵ and the BIS total score (r(578) = 0.155,
p <0.001; controlling for age and IQ: r(573) = 0.101,p = 0.015), between
ϵ and theASRS total score (r(578) = 0.167,p <0.001; controlling for age
and IQ: r(573) = 0.126, p = 0.006), between ϵ and the impulsivity factor
(cf. Fig. 4; r(578) = 0.250, p < 0.001; controlling for age and IQ:
r(573) = 0.196, p <0.001).

Additionally, we observed an association between novelty
exploration (i.e., novelty bonus η) and the anxious-depression
factor (r(578) = 0.124, p = 0.003; controlling for age and IQ:
r(573) = 0.101, p = 0.015).

Step 4.5. Further analysis of impulsivity factor and value-free
random exploration association
In line with the previous impulsivity results, when performing a
repeated-measures ANOVAs with horizon as the within-participants
factor, we found a main effect of impulsivity (i.e., impulsivity factor
score) on the low-value bandit (impulsivity main effect:
F(1,578) = 37.664, p <0.001, η2

p = 0.061; horizon main effect:
F(1,578) = 113.474, p <0.001, η2

p =0.164; impulsivity-by-horizon inter-
action: F(1,578) = 0.059, p =0.808, η2

p =0) and on the ϵ-greedy para-
meter (impulsivitymain effect: F(1,578) = 40.872, p < 0.001,η2

p =0.066;
horizon main effect: F(1,578) = 126.418, p <0.001, η2

p =0.179;
impulsivity-by-horizon interaction: F(1,578) = 2.906, p =0.089,
η2
p =0.005), but no horizon interaction.

Discussion
In this preregistered study, we investigated how impulsivity is related
to exploration, and more specifically, how a computationally light
exploration heuristic, value-free random exploration, is associated
with different measures of impulsivity. Using a behavioural task and
computational modelling we demonstrate that inter-individual

variability in value-free random exploration usage is associated with
general impulsivity in a large-sample online study.

We and others have previously shown that humans deploy a
multitude of different strategies for exploration22–25,30,54 that all
approximate an optimal exploration strategy, which is intractable in
open-ended decision problems. In our current data, we confirmed that
our participants utilised a mixture of resource-requiring complex
strategies and computationally light heuristics. The resource-
demanding strategies (such as Thompson sampling or UCB) demand
keeping track of expectedmeans anduncertainties across thedifferent
choice options. The computationally lighter heuristic strategies,
namely value-free random exploration (captured by ϵ-greedy) and
novelty exploration (captured using a novelty bonus η), although
being less optimal, require substantially less computational power,
making them very useful in practice. Using model comparison as well
as model simulations, we were able to demonstrate the presence of
both complex andheuristic exploration strategies. Thewinningmodel,
combining complex Thompson with novelty (η) and value-free ran-
dom (ϵ) exploration, was not entirely distinguishable from the 2nd
winning model, combining complex UCB with novelty and value-free
random exploration, but was well distinguishable from other models
(cf. confusion matrix, Supplementary Fig. 6b) with relatively high
confidence regarding its generative origins (cf. inversion matrix, Sup-
plementary Fig. 6c). This suggests that the two complex exploration
strategies make similar predictions in our task, preventing us to dis-
entangle them properly. However, we capture similar amounts of
value-free random exploration, irrespective of the complex model
used, demonstrating the robustness of our result. Our results there-
fore show that participants supplemented complex strategies (UCB or
Thompson sampling) with two heuristic strategies. Given that we find
an association between value-free random exploration and impulsivity
irrespective of the complex model used, this does not impact the
conclusions in the given study.

Impulsivity is a crucial construct across both general and clinical
populations, but the links to specific computational mechanisms are
still far from clear4. Based on previous theoretical6,12,14–17 and some
experimental work21,23, exploration is believed to be increased in
impulsivity14 and especially in ADHD. Here, we extend these previous
studies by identifying that it is value-free random exploration specifi-
cally which is increased, whilst other forms of exploration were not
found to be robustly linked. This form of exploration is the compu-
tationally least demanding as it simply ignores all existing information.
This is well aligned with a notion of impulsivity as ‘acting without
thinking’, which is also captured in the motor impulsivity scale of the
BIS. The latter showed a much closer association with value-free ran-
dom exploration than the other attentional and non-planning impul-
sivity BIS subscores, which capture the inability to concentrate or a
lack of forethought. We did not find a significant association between
this form of exploration and a measure of global cognitive flexibility
(cf. Supplementary Information), supporting the idea that cognitive
flexibility and planning inabilities might of different neurocognitive
constructs. However, it would be interesting to investigate whether
value-free randomexploration is related tomore specific tasks, such as
set shifting, inhibition or other decision making and learning tasks,
given that cognitive flexibility in itself is a relatively heterogeneous
construct55.

Fromour results, it remains unclearwhich brain processes exactly
mediate value-free random exploration. Interestingly, we have pre-
viously found that this form of exploration is modulated by nora-
drenaline functioning23, a neurotransmitter which plays an important
role in impulsivity-related disorders such as ADHD6,7,12,17,34–38, which
could be a potential mechanism. Previous findings that linked nora-
drenaline functioning towhat is traditionally seen asmotor impulsivity
support this notion56. This form of exploration may be also related to
brain circuits generally seen to be linked to noradrenaline functioning

Registered report https://doi.org/10.1038/s41467-022-31918-9

Nature Communications |         (2022) 13:4542 9



(for a detailed discussion of noradrenaline and executive functions,
see Chamberlain & Robbins56). In particular, anterior cingulate cortex
would be a candidate as it is heavily innervated by noradrenaline and
linked and linked to similar exploratory behaviour33. In addition,
fronto-striatal loops including orbito-frontal and dorso-lateral pre-
frontal cortex may also be involved, as they have often been found to
be involved in tasks that aremodulated by noradrenaline related to set
shifting56,57. However, the precise neural processes underlying value-
free random exploration needs to be examined in more detail.

Given that value-free random exploration ignores all prior infor-
mation, it begs the question why humans use this strategy in
exploration. Interestingly, inducing randomness or noise has often
been shown to benefit a system both in living species and inmachines,
supporting the importance of such strategies12,58–62. Here, the main
benefit of value-free random exploration is that it does not require
demanding computations, allowing exploration even with restrained
neural resources63 or a limited ability/willingness to engage with
mentally effortful computations43. Exploring in a seemingly random
way can be beneficial, either at an individual or a group level, in many
different contexts. For example, in the case of an absence of prior
knowledge14, increased stochasticity can help to speed up learning.
Additionally, in a case of imprecise or even inaccurate prior knowl-
edge, random exploration ignores such erroneous priors and prevents
them from penalizing future decision-making. Introducing stochasti-
city can also be beneficial in the case of dynamic environments e.g.,
where values can change drastically and thus agents should not rely
solely on their expectations62. Our findings of such exploration heur-
istics are also well aligned with recent findings showing that limiting
cognitive resources impacts the use of exploration strategies64, and
shifts in exploration strategies can be induced by applying constraints
such as time pressure65. Overall, our findings suggest at least two roles
for exploration in impulsivity: amoreflexibleway of explorationwhich
does not rely on (potentially wrong) prior knowledge and a way to
circumvent mental effort. Importantly, value-free random exploration
is used by all participants in a goal-directed manner (i.e., they used it
more when exploration was beneficial). This means that participants
adapt their usage of value-free random exploration to the demands of
the task.

Because impulsivity is a feature of multiple psychiatric disorders,
we investigated it in a transdiagnostic, population-based dimensional
manner. This approach allowed us to capture a more general dimen-
sion of impulsivity rather than a sub-trait of a specific disorder. To
obtain a transdiagnostic impulsivity factor, we performed a factor
analysis similar to previous studies39–42. Such an approach also helps to
reduce the noise that is present when investigating individual ques-
tionnaires. We identified an impulsivity factor, capturing both impul-
sivity questionnaires (BIS, ASRS) as well as some aspects of OCD (as
captured by OCI-R that was also related to value-free random
exploration, cf. Supplementary Fig. 11). Interestingly, this factor was
associated to value-free random exploration to an even stronger
degree than the individual impulsivity questionnaires.

In addition to the impulsivity factor, we also identified an anxious-
depression factor, but unlike previous studies we did not find a sepa-
rate compulsivity factor. This is most probably due to the fact that we
did not use the exact same set of questionnaires (previous studies
includedmore compulsivity-relatedquestionnaires). As someprevious
studies have suggested that depression and anxiety are associated to
abnormal exploration45,47,48, we explored these possible links in our
dataset. After controlling for multiple comparisons, we indeed
observed an association between the anxiety-depression factor and
our parameter capturing the intrinsic value of novelty, the novelty
bonus η. We did not observe any association between the third,
uncertainty-related factor, nor any specific exploration strategy. Our
findings suggest that those with increased anxiety-depression traits
deployed the novelty-related exploration heuristic more eagerly. This

is aligned with previous findings showing increased exploration in
participants with higher levels of anxiety66,67. It is believed that this is
because exploration aids in overcoming long-term uncertainty, and an
uncertainty aversion is commonly reported in anxiety68. Targeting
novelty in exploration might be a way to save cognitive resources as
one does not need to compute expected values and uncertainties of
the other options, but instead can be simply guided by what has not
been encountered before. This strategy thus seems deployable even
under increased stress and anxiety. Even though we have rigorously
controlled for multiple comparisons, we believe an independent
replication of this somewhat unexpected result would be desirable.
Moreover, it would be interesting to assess whether the deployment of
such novelty exploration is more closely linked to apathy or anhedo-
nia, as they are both important features of depression.

We did not find any direct association between the trans-
diagnostic factors and our complex exploration strategy (here:
Thompson sampling). It needs to be noted that our taskwas optimised
to detect the exploration heuristics. As a consequence, the complex
exploration strategies make relatively similar predictions (cf. Supple-
mentary Information). It is thus possible that in other tasks (e.g., by
varying the generative bandit variance25,65,69; or larger decision
spaces30), the coexistence of Thompson andUCBexploration is clearer
and may be more directly linked to one of the trans-diagnostic
dimensions.However, this is unlikely to impact the impulsivityfindings
presented here, as we find them irrespective of the complex strategy
we are using in our computational models (cf. Supplementary Infor-
mation). In addition, alternative exploration strategies, such as
repeating one’s previous choice could provide additional insight65.

In this registered report, we demonstrated that transdiagnostic
impulsivity is associated with value-free random exploration. By pre-
registering and peer-reviewing our specific hypotheses using a
previously-validated task22,23 and a well-defined dimensional
approach39–41,70, we were able to demonstrate this specific association.
Our results aid in understanding the adaptivity of impulsivity and are
important for the understanding of behaviour in the general and in
clinical populations given the high prevalence of impulsivity. None-
theless, future studies should investigate the validity of those effects in
clinically diagnosed patient populations.

Methods
Ethics information
The study has been approved by the UCL research ethics committee
(REC No 15301/001) and written informed consent was obtained from
all participants. Participants were reimbursed for their participation on
an hourly basis and received a bonus according to their performance
(proportional to the sum of obtained rewards). The total compensa-
tion was bound between £8.25 and £12.0 per hour.

Design
Task. Participants were recruited online on Prolific Academic (www.
prolific.ac), which manages the participant allocation and their reim-
bursement. Participants signed an online consent form and were
redirected to the task.

We deployed a multi-armed bandit task which we have recently
developed23, and which allows us to capture different forms of
exploration. On each trial, participants had to choose between differ-
ent bandits (depicted as trees; cf. Figure 1) which one they want to
draw a sample (i.e., pick an apple) from and therefore obtain a reward
(the apple’s size). Participants were instructed to maximise their score
(i.e., sum of apple sizes) in order to maximise their overall reimbur-
sement (i.e., they were instructed that they will receive a cash bonus
proportional to their performance). Prior to the participants’ first
choice, bandits display varying levels of information about the plau-
sible rewards they carry. Information is given in the form of ‘initial
samples’, i.e., apples that have been picked before. We varied the
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number of initial samples that were displayed for each bandit (identi-
fiable by colour) to dissociate different forms of exploration (cf.
below). The initial samples of each bandit are drawn from their gen-
erative normal distributions (cf. Supplementary Information for
detail), meaning that initial samples carry important information for
future choices as the mean of already observed bandits can be
estimated24.

To induce changes in exploration, similar to thehorizon task24 and
our previous studies22,23, we manipulated the number of samples they
could draw from a given set of bandits24. This decision horizon varied
between two conditions (intermixed trials): they could either perform
one draw (short horizon condition) or six draws (long horizon condi-
tion). The long horizon promotes exploration as obtained information
can subsequently be used24. Although therewould be no interest for an
optimal agent to explore in the short horizon, humans still show signs
of exploration even when it is not beneficial, though to a much lesser
extent14,58. In fact, exploration in the short horizon has previously been
observed in humans23,24,71.

We constructed the reward and information of each bandit to be
able to assess the contributions of different exploration strategies that
have previously been put forward23–25. Each bandit i is from one of four
generative groups characterised by different means μi and number of
initial samples, following the same procedure as other studies24. The
size of the apple is determined by its radius (cf. Supplementary Fig. 1).
Manipulating the amount of information participants have before they
make their choice (i.e., initial samples) avoids a potential reward-
information confound24. The samples of each bandit are then sampled
from a normal distribution with a fixed sampling varianceNðμ, 0:8Þ,
truncated to [2, 10], and rounded to the closest integer. Each mean μ
was sampled from N μoverall, 1:4

� �
, with an “overall mean” μoverall spe-

cific to each bandit type. The overall mean was computed similarly to
previous studies:24 On each trial we set the overall mean for one of the
bandits, the ‘certain-standard bandit’, to be either 4.5 or 6.5. We
determine the overall mean of the ‘standard bandit’ by adding a
number sampled uniformly from [−2, −1, +1, +2] to the certain-standard
bandit overall mean. Similarly, we determine the overall mean of the
‘novel’ bandit by adding a number sampled uniformly from [−2, −1, +1,
+2] to either the certain-standard bandit overall mean or the standard
bandit overall mean. By doing this, we make sure that the means of
those 3 bandits are comparable. This results in the means of the
standard bandit and novel bandit spanning a slightly larger range
compared to the certain-standard bandit means (cf. Supplementary
Table 3). Tomake sure that the ‘low-value’ banditmean was always the
smallest, it’s overall mean is computed by subtracting 1 to the mini-
mum of the above-mentioned average means. Bandits also carry dif-
ferent amounts of information: The certain-standard bandit provides 3
initial samples, the standard bandit provides 1 initial sample, the novel
bandit does not provide any initial samples and the low-value bandit
provides 1 initial sample. Even though the absolute range of reward is
set, randomly scaling each reward mean around the certain-standard
bandits’ rewardmean allows to maintain uncertainty about the overall
average reward on each trial similarly to previous studies24,27. On each
trial, the average value of the certain-standard bandit initial samples is
compared to the valueof the standard bandit initial sample. Thebandit
with such a higher value is referred to as the (expected) ‘high-value’
bandit. For detailed comparison between those average rewards cf.
Supplementary Table 19. At the beginning of each trial, the initial
samples of the presented bandits are sampled from their respective
distributions. We ensured that the initial sample from the low-value
bandit is the smallest by resampling from this bandit in the trialswhere
it is not the case, similar to our previous study. For detailed informa-
tion about the value of initial samples, first draw and later draws cf.
Supplementary Table 3. The order of all initial samples is then per-
muted to avoid biases. Additionally, to be able to compute choice
consistency which is specifically reduced in value-free random

exploration23, each trial is duplicated. Overall, eachparticipant is asked
to play 400 trials (200 in each horizon condition). The trees’ positions
(left, middle or right) as well as their colour (8 sets of 3 different
colours) where shuffled between trials.

The task has originally been developed in a lab setting23 and has
nowbeen adapted for online use.We have adjusted the instructions,
making them as clear as possible while keeping the participants’
attention. Following the initial task instructions, to make sure that
they understood what they need to do, they were asked to answer 5
questions. Similar to previous online studies40–42, failing to correctly
answer these questions guided the participant back to the instruc-
tions until all correct answers are given. To make sure that partici-
pants understood that the apples from the same tree are always of
similar size (generated following a normal distribution), partici-
pants additionally performed several training trials. In this training,
based on three displayed apples of similar size, they had to guess,
between two options, which apple is the most likely to come from
the same tree and receive feedback about their choice. If partici-
pants gave a wrong answer in at least 3 of the 10 trials, they were
asked to restart the training. Task pilot data (N = 61, cf. below)
demonstrated comparable effects and effect sizes (cf. Data analysis,
Step 1) to our previous lab-based data23.

Behavioural analysis nomenclature. For the behavioural analysis,
we categorized each bandit according to the number and size of
initial samples (apples shown before the first draw). The bandit with
the highest sampling mean, carrying either a lot or some prior
information (i.e., 3 or 1 initial samples; for further split cf. Supple-
mentary Information), is referred to as the ‘high-value bandit’. The
bandit for which no prior sample was shown is named the ‘novel
bandit’, and the bandit with one initial sample from a substantially
lower generative mean (trials were constructed to have sufficient
number of such trials23) is called the ‘low-value bandit’. The high-
value bandit is an evident signature of exploitation (choosing
maximal expected value), the novel bandit is captured amongst
other by ‘novelty exploration’ which is biased towards options for
which nothing is known, and the ‘low-value bandit’ appeals to the
value-free random exploration alone as it is the only strategy which
does not take expected values into account23.

Assessing psychiatric symptoms. After completing the task, partici-
pants were asked to fill-in several self-report questionnaires. To assess
impulsivity, our key dimension of interest, we used the Adult ADHD
Self-Report Scale72 (ASRS) and the Barratt Impulsiveness Scale49 (BIS).
In addition, we collected further questionnaires to investigate addi-
tional psychiatric dimensions (cf. Data analysis, Step 3). These entail
the Liebowitz Social Anxiety Scale73 (LSAS), the State-Trait Anxiety
Inventory74 (STAI-Y2), Intolerance of Uncertainty Scale75 (IUS),
Obsessive-Compulsive Inventory-Revised76 (OCI-R), and Zung’s Self-
rating Depression Scale77 (SDS), in accordance with similar previous
approaches40–42, as well as the Cognitive Flexibility Scale53 (CFS) and
the Autism spectrum Quotient52 (AQ-10). To control for confounding
factors, such as intelligence and medication, participants additionally
completed the International Cognitive Ability Resource sample test78

(ICAR) and were asked whether they take psychoactive medication
and/or medication to increase attention/concentration on a regular
basis. As ameasure of data quality, attention checks are added to every
questionnaire to make sure that participants read the questions79.
Failure in 1 or more attention check resulted in the participants’
exclusion from data analysis.

Blinding and randomisation do not apply for this study. The full
code (written using the open source React JavaScript library) of
the task can be found online (https://github.com/MagDub/
MFweb-app).
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Sample
Power analyses
The analysis consisted of two preregistered steps addressing separate
research questions. Step 1 consisted of expanding our pilot data (cf.
Data analysis) and replicating the main characteristics of the pre-
viously lab-based task23 in an online setting. In Step 2 we assessed our
main research questions and looked at associations between
exploration measures and impulsivity traits. Lastly, an exploratory
factor analysis was conducted at Stage 2 and is reported subsequently.
In Step 3 the factor analysis across all questionnaires allowed us to
explore the relationship between psychiatric dimensions and
exploration measures more broadly.

For Step 1’s sample size estimation, in which we attempted to
replicate the task main effects, we collected online pilot data (N = 61
after exclusion). A total of 4 hypotheses were tested (hypothesis 1.1 to
1.4; cf. Table 1 and Data analysis for details). The lowest effect size
across all tests in the pilot study (Wilcoxon signed-rank effect size =
0.410)was used for our power analysis, which suggested that a sample
of N = 83 is sufficient to reach 95% power for all hypotheses. For a
summary of the statistics performed on all measures on the pilot data
cf. Supplementary Table 20. Importantly, Wilcoxon signed-rank tests
was used instead of paired t-tests if the Shapiro normality assumption
was violated.

For Step 2’s sample size estimation, where the link between
exploration and impulsivity was investigated, the correlation coeffi-
cient of our previous study using the same task22 was used for our
power analysis. In this prior study, a Pearson correlation of r =0.26,
p < 0.001 was observed between an impulsivity measure80 (the Con-
ners ADHD questionnaire) and value-free random exploration in
youths. Assuming a similar correlation in adults, our power analysis
suggested that a sample of N = 190 is sufficient to reach 95% power
(G*Power analyses suggest a similar sample size of N = 186). This
moderate size correlation factor is in line with previous studies linking
BIS-measured impulsivity to behaviour (e.g., with delay
discounting81–84). Similarly, for Step 2’s Stage 2 exploratory analysis in
which we looked at the correlation between value-free random
exploration and the three subdomains of BIS, G*Power analyses sug-
gested that a sample size ofN = 228 is sufficient to reacha 95%power at
a significance corrected for multiple comparisons using Bonferroni
correction.

However, assuming a lower association strength and taking
into account previous dimensional analyses using exploratory fac-
tor analysis (similar to our exploratory Step 3), we additionally
considered the correlation coefficients obtained from these pre-
vious big data dimensional studies. These previous studies have
observed correlations from r = 0.15 (negative association between
dogmatism and metacognitive sensitivity39) up to correlations of
r = 0.25 (association between confidence and compulsivity41). The
relatively small effect sizes can be explained by the higher noise
associated with large online samples as well as the lack of precision
of behavioural and questionnaire measures. In this study we
account for these facets and consider the study as a first step to
establish associations between measures by conducting thorough
effect size and power calculations. The lowest correlation (r = 0.15)
was used to extend our power analysis, which suggested that a
sample of N = 580 is sufficient to reach 95% power (cf. Supplemen-
tary Fig. 12; G*Power analyses suggested a similar sample size of
N = 571). Taking all steps together, to reach at least 95% power
across all measures, we collected a total sample of N = 580 partici-
pants. A sensitivity power analysis (performed in G*Power) pre-
dicted that with such a sample size, we would be able to detect an
effect size (Minimal Detectable Effect, MDE) of 0.15 with 95%.
Importantly, the lower bound of the 95% Confidence Interval of each
pilot data measures’ effect size was above this MDE (cf. Supple-
mentary Table 20), ensuring a detectable effect.

Effect sizes as well as hypothetical sample sizes to reach a 95%
power can be found in Table 1 (details about each measure in the pilot
data can be found in Supplementary Table 20). For power analysis, we
used the G*Power Software85 for the t-tests in Step 1 (using the pilot
data). Power analysis for the correlations in the further steps was
performed using simulations in MATLAB. The ‘matter’ gallery of the
‘cmocean’ colourmap was used for the figures86,87. We obtained sum-
mary statistic scores or correlations from previous studies and used
bootstrapping to simulate data. Concretely, for t-tests, n simulated
participantswere sampled fromeachgroupnormal distribution:N(m1,
std1) and N(m2,std2) and significance was assessed using paired t-test
on those 2 data sets. For correlations, n simulated participants were
taken from the bivariate distribution of mean = [0, 0] and covariance
matrix = [1, R; R,1]. To assess power of a given sample size, we assessed
the number of significant tests (p <0.05) of a total number of
N = 10000 simulations. The summary statistics for Step 1 were taken
from our pilot data (cf. Supplementary Information), for Step 2 from
our previous study in youths22, and for Step 3 from previous big data
studies39,41.

Participant recruitment. To take part in the study, participants had to
be above 18 years of age and have their current residence in the UK. To
ensure data quality, participants were excluded according to the fol-
lowing criteria: data was incomplete, the mean score (i.e., apple size)
was lower than 5.5 indicating participants were performing at chance
level40 (cf. Supplementary Fig. 2b), the first draw mean reaction time
was faster than 1500ms (based on our pilot data and previous study23)
indicating participants were not allocating much thought to their
choice (cf. Supplementary Fig. 2c) and if participants failed at least one
attention check during the questionnaires meaning that they were not
reading the questions40,41,79. According to these exclusion criteria,
N = 77 participants were excluded (cf. Supplementary Fig. 2) and
replaced prior to data analysis in order to reach a final sample of
N = 580 (N = 3 participants were excluded out of N = 64 in the
pilot data).

Data analysis
Step 1
This step aims at replicating the main characteristics of the previously
lab-based task23 in an online setting. Here, we report results from our
pilot data set (N = 61), which we collected online using the exact same
online task to estimate the effect sizes. The analysis follows the pipe-
line which we have successfully used in our previous studies22,23. In line
with previous studies investigating horizon-dependent
exploration23,24,71, we only investigated the first draw of each horizon
in the main analysis. This allowed us to compare between horizon
conditions preventing biases of collected reward and unequal
variance.

Participants explore more when it is worth it. To assess whether the
horizon manipulation promoted exploration, we analysed whether
participants explored more in the long (versus short) horizon condi-
tion, in which additional information can inform later choices. To this
end, we assessed which bandit participants chose on their first draw.
Replicating our previous studies22,23, we expected several exploration
markers todiffer.Wepredicted that participantswould choose bandits
with a lower expected value (computed as the mean of the bandits’
initial samples) in the long horizon (pilot data: t(60) = 3.585, p =0.001,
95% confidence interval of the mean: CIM = [0.047,0.165], effect size:
Cohen’s d = −0.459, 95% confidence interval of the effect size CIES =
[−0.727, −0.195]). This is reflected by the frequency of picking the
high-value bandit, which we predicted to decrease in the long horizon
(pilot data: t(60) = 8.45, p <0.001, 95%CIM = [6.92,11.211], d = −1.082,
95%CIES = [−1.407,−0.769]). Similarly for the frequency of picking the
low-value bandit, we predicted it to increase in the long horizon (pilot
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data: t(60) = −3.446, p =0.001, 95%CIM = [−1.568,−0.416], d = 0.441,
95%CIES = [0.178,0.708]). We predicted this exploration to be goal-
directed, with participants choosing bandits they know less about
(lower number of initial samples, i.e., more informative) in the long
horizon (pilot data: t(60) = 9.625, p <0.001, 95%CIM = [0.184, 0.281],
d = −1.232, 95%CIES = [−1.576, −0.903]). This is largely reflected by the
frequency of the novel bandit, which we predicted to increase in the
long horizon (pilot data t(60) = −8.586, p <0.001, 95%CIM =
[−11.178,−6.954], d = 1.099, 95%CIES = [0.784,1.427]).

Participants use exploration beneficially. To evaluate whether
participants were able to use exploration beneficially, we looked at
their performance (i.e., the outcomes they obtained). We first
compared the reward (i.e., apple size) obtained in the short horizon
with the first reward obtained in the long horizon. As the latter is
driven by exploration, we expected it to be lower (pilot data:
t(60) = 6.522, p < 0.001, 95%CIM = [0.059,0.112], d = −0.835, 95%
CIES = [−1.134,−0.545]). As observed in previous studies22,23, we
expected them to make good use of the additional information
earned by exploring, and therefore their long horizon average
reward (across 6 draws) was expected to be higher than the short
horizon reward (pilot data: t(60) = −16.096, p < 0.001, 95%CIM =
[−0.245,−0.191], d = 2.061, 95%CIES = [1.626,2.524]).

Participants explore using heuristics. To formally assess which
exploration strategies were being used, we turned to computational
modelling. Similar to the behavioural analysis, only the first draw of
each trial was analysed. We compared 16 models that make different
predictions about the usage of exploration strategies (cf. Supple-
mentary Information). Similar to our previous studies22,23, we expec-
ted participants to use a mixture of computationally demanding (i.e.,
Thompson sampling and/or UCB) and heuristic exploration strategies
(i.e., value-free random exploration and novelty exploration) cap-
tured by the winningmodel (pilot data: BIC average score: Thompson
+η+ϵ vs Thompson model: t(60) = −10.187, p < 0.001, 95%CIM =
[−72.866,−48.946], d = 1.304, 95%CIES = [0.967,1.657]). Model com-
parison was computed using the commonly used Bayesian Informa-
tion Criterion (BIC). The winning model, i.e., the model with the
lowest BIC score, was used for subsequent analyses. All models that
were not significantly different than the 1st winningmodel would have
been used for subsequent analysis to demonstrate the generalisability
of the effect (similar to previous studies22). Model fitting was per-
formed using the maximum a posteriori probability (MAP) estimate,
which allows incorporation of prior beliefs. All the parameters besides
participants’ initial estimate of a bandit’s mean (Q0; prior mean) and
the contribution of each model in the hybrid model (w) were free to
vary as a function of the horizon as they capture different exploration
forms (cf. Supplementary Information for details).

Participants rely more on heuristics in the long horizon. To assess
the changes in exploration strategy, we examined the winning
model’s fitted parameters. Those parameters were fitted to the first
draw of all trials of each participant. We expected the ϵ-greedy
parameter, which captures the contribution of value-free random
exploration, to be increased in the long (versus short) horizon (pilot
data: t(60) = −3.23, p = 0.002, 95%CIM = [−0.058,−0.014], d = 0.413,
95%CIES = [0.152,0.679]). Similarly, we expected the novelty bonus η,
which captures the intrinsic reward of selecting a novel option, to be
increased in the long horizon (pilot data: t(60) = −9.43, p < 0.001, 95%
CIM = [−1.265,−0.822], d = 1.207, 95%CIES = [0.881,1.548]).

Step 2
In this step we tested our main hypothesis about value-free random
exploration being linked to impulsivity and ADHD traits. Our key
measure of interest is the mean ϵ parameter22 - measuring value-free

randomexploration - andhow it is related to our specific questionnaire
measures. For the correlations, we used the Pearson correlation
coefficient and we performed both a bivariate correlation as well as a
partial correlation to control for age and IQ22. The IQ score was com-
puted as the sum of the correct answers on the ICAR sample test78.
Additionally, we also performed repeated-measures ANOVAs with
within factor horizon and a between participants variable [impulsivity/
ADHD-symptoms] to assess these effects further.

Step 2.1. First, we looked at impulsivity within a broad spectrum, and
expected it to be linked with value-free random exploration. For this,
we used the total score on the Barratt Impulsiveness Scale (BIS). The
BIS is the most commonly administered self-report measure for
assessment of impulsiveness49, and has already been used in online
studies40,41. We looked at the correlation between the BIS total score
and the low-value bandit frequency, and between the BIS total score
and the ϵ-greedyparameter. Theseassociations allowedus to conclude
that value-free random exploration is linked to impulsivity traits in
general, which has implications for impulsivity disorders
beyond ADHD.

Considering that impulsivity is a broad heterogenous
construct1,3–5, in Stage 2 we performed an exploratory analysis of the
three subdomains of BIS (i.e., attentional, motor, and non-planning
behaviour88) similarly to previous studies89. We investigated whether
value-free random exploration is linked to a specific subdomain by
looking at the correlationswith eachof them. Specifically, we looked at
the correlation (corrected for multiple comparisons using Bonferroni
correction) between the low-value bandit frequency and the BIS sub-
domains: attentional, motor and non-planning, as well as the correla-
tion (corrected for multiple comparisons using Bonferroni correction)
between the ϵ-greedy parameter and the BIS subdomains: attentional,
motor and non-planning.

Step 2.2. Second, we looked at ADHD symptoms across our sample
and expected to find an association of higher ADHD scores being
related to increased value-free random exploration. This analysis
extends our previous preliminary findings showing a positive asso-
ciation in youths (9–18 year olds) between ADHD traits (the Conners
ADHD questionnaire80) and value-free random exploration22. We
looked at the correlation between the ASRS total score and the low-
value bandit frequency, and between the ASRS total score and the
ϵ-greedy parameter. It allows a definitive answer to the hypothesis
whether ADHD symptoms are linked to value-free random
exploration12,21,23. The ADHD measure we used was the total score on
the Adult ADHD Self-Report Scale (ASRS), a questionnaire which was
developed by theWorld Health Organization and is used for screening
ADHD in the general population72. In Stage 2 we additionally per-
formed an exploratory analysis of the sub-scales of the ASRS (i.e.,
inattention, hyperactivity-impulsivity). Specifically, we looked at the
correlation (corrected for multiple comparisons using Bonferroni
correction) between the low-value bandit frequency and the ASRS sub-
scales: inattention andhyperactivity-impulsivity.We also examined the
correlation (corrected for multiple comparisons using Bonferroni
correction) between the ϵ-greedy parameter and the ASRS sub-scales:
inattention and hyperactivity-impulsivity.

Step 3 (Stage 2)
In Stage 2, we performed a further exploratory step. In order to
investigate whether there exists a latent trans-diagnostic structure
which can help to explain exploration differences, we performed a
factor analysis. First, we used the raw scores from all questionnaire
items as variables to reduce their dimensionality similarly as previous
studies40–42. Factor analysiswas conducted using the fa() function from
the Psych package in R, with an oblique rotation (oblimin; we draw the
reader’s attention to the fact that the factanal() function, which does
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not allow for such rotation, was erroneously mentioned in the Stage 1
protocol). The number of factors was based on the Cattel’s criterion90,
using the Cattell-Nelson-Gorsuch test (nFactors package in R). Factors
were labelled based on the items which loaded the most strongly in a
consensus discussion among the authors.

First, we expected our two impulsivity questionnaires (BIS and
ASRS) to primarily load onto one factor, andwe expected this factor to
be at least as much associated with value-free random exploration as
the impulsivity/ADHD questionnaires alone (cf. above). In addition to
the hypothesized increase in value-free random exploration, we
investigated usingmultiple comparisonwhether impulsivity correlates
with other forms of exploration (e.g., complex strategies).

As a second step, we investigated whether exploration correlates
with other factors. In particular, similar to previous studies40–42,50,51, we
expected to retrieve a depression / anxiety dimension, on which
depression, social anxiety and anxiety would load onto (SDS, LSAS and
STAI-Y2questionnaires respectively) and a compulsivity dimension, on
whichOCD and uncertainty intolerance traits load onto (OCIR and IUS
questionnaires) respectively. Indeed, previous research has found that
impulsivity and compulsivity only show a modest overlap63, which is
also why previous studies that used factor analyses have found that
these items load onto different factors40,42. Previous studies have
demonstrated increases in exploration inOCDpatients44,91, but it is not
clear which exploration strategy is concerned. We therefore looked at
the correlation (corrected for multiple comparisons using Bonferroni
correction) between the compulsivity dimension and each exploration
free parameter (depending on the model). Similarly, studies have
demonstrated abnormality in exploration in patients with
depression47, anxiety48 and other disorders related to avoidance of
uncertainty45. However, different exploration strategies have not been
tested. We therefore looked at the correlation (corrected for multiple
comparisons using Bonferroni correction) between the depression/
anxiety dimension and each exploration freeparameter (depending on
the model). We also investigated two separate questions. First, we
looked at the correlation between the autism scale, AQ-10 total score
and value-free random exploration, as autism has overlapping symp-
toms with ADHD92. An association between the autism score and our
impulsivity measure would have resulted in further analysis using
partial correlations. Second, we looked at the correlation between the
cognitive flexibility scale (CFS) and value-free random exploration, as
cognitive flexibility is thought to play a role in the exploration-
exploitation trade-off93,94.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw (anonymized) and processed data are available at Github
https://github.com/MagDub/Mfweb-data and Zenodo: https://doi.org/
10.5281/zenodo.652206095. The pilot data are available at Github
https://github.com/MagDub/Mfweb-pilot_data and Zenodo: https://
doi.org/10.5281/zenodo.652206296. Source data are provided with
this paper.

Code availability
Code for power simulations, computational modelling and data ana-
lysis can be found on Github: https://github.com/MagDub/MFweb-
data_analysis and Zenodo: https://doi.org/10.5281/zenodo.644566197.
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