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Surrogate- and invariance-boosted contrastive
learning for data-scarce applications in science
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Deep learning techniques have been increasingly applied to the natural sciences, e.g., for

property prediction and optimization or material discovery. A fundamental ingredient of such

approaches is the vast quantity of labeled data needed to train the model. This poses severe

challenges in data-scarce settings where obtaining labels requires substantial computational

or labor resources. Noting that problems in natural sciences often benefit from easily

obtainable auxiliary information sources, we introduce surrogate- and invariance-boosted

contrastive learning (SIB-CL), a deep learning framework which incorporates three inex-

pensive and easily obtainable auxiliary information sources to overcome data scarcity. Spe-

cifically, these are: abundant unlabeled data, prior knowledge of symmetries or invariances,

and surrogate data obtained at near-zero cost. We demonstrate SIB-CL’s effectiveness and

generality on various scientific problems, e.g., predicting the density-of-states of 2D photonic

crystals and solving the 3D time-independent Schrödinger equation. SIB-CL consistently

results in orders of magnitude reduction in the number of labels needed to achieve the same

network accuracies.
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In recent years, there has been increasing interest and rapid
advances in applying data-driven approaches, in particular,
deep learning via neural networks, to problems in the natural

sciences1–4. Unlike traditional physics-informed approaches, deep
learning relies on extensive amounts of data to quantitatively
discover hidden patterns and correlations to perform tasks such
as predictive modeling4,5, property optimization6,7, and knowl-
edge discovery8,9. Its success is thus largely contingent on the
amount of data available and a lack of sufficient data can severely
impair model accuracy. Historically, deep learning applications
have overcome this by brute-force, e.g., by assembling vast
curated data sets by crowd-sourced annotation or from historical
records. Prominent examples include ImageNet10 and CIFAR11

in computer vision (CV) and WordNet12 in natural language
processing (NLP) applications. The majority of problems in the
natural sciences, however, are far less amenable to this brute-force
approach, partly reflecting a comparative lack of historical data,
and partly the comparatively high resource-cost (e.g., time or
labor) of synthesizing new experimental or computational data.

A popular approach to alleviate the reliance on labeled data is
transfer learning (TL)13–17, which refers to the strategy of fine-
tuning a neural network which has been pre-trained on a large
labeled source dataset for a target task. TL has been explored and
proven effective in various works within the natural sciences
18–21; however, most works often make use of source data from a
different problem18,19 or domain20,21 thus limiting the efficacy of
TL due to the dissimilarity between the source and target
problems22,23. In this work, we overcome this limitation by using
a prominent feature unique to problems in the natural sciences—
that they often benefit from exact and approximate analytical
techniques or general insights requiring minimal or no compu-
tational cost. While this concept was previously explored by
Zhang and Ling24, their method uses kernel ridge regression
(KRR) and thus cannot take advantage of inductive biases com-
monly used in deep learning without specialized kernels.

More recently, an increasingly popular technique is that of self-
supervised learning (SSL)25,26, which primarily differs from TL in
that the pre-training stage uses unlabeled rather than labeled data.
Specifically, pretext tasks like image rotation prediction27 and
jigsaw puzzle solving28 are invented for the data to provide its
own supervision. In particular, contrastive SSL26 (or contrastive
learning) is an increasingly popular technique where the pretext
task is constructed as contrasting between two variations of a
sample and other samples, where variations are derived using
image transformations. The goal is for the pre-trained model to
output embeddings where similar (differing) instances are closer
(further) in the embedding metric space. In this work, we leverage
contrastive learning to invoke symmetries in the problem.

Exploiting physical insights and symmetries has been a highly
effective strategy in scientific machine learning. For example, in
molecular sciences, symmetry knowledge is often invoked via
hand-crafted features29 or using deep tensor neural networks30–33

with components analytically formulated to respect physical laws
and create chemistry-related inductive biases. In these works,
invariance is achieved either through the parameterization of the
inputs30,31 or due to intrinsic symmetry preservation of the
architecture itself32,33. These approaches are, however, highly
domain-specific since the architecture is either hand-crafted or
analytically formulated specifically for atomistic systems. Equiv-
ariant neural networks34–37 provides a domain-agnostic alter-
native to exploit symmetries; they have been generalized to
spherical images38, volumetric data37, and has been effectively
applied to the natural sciences39,40 as well. However, the design of
such architectures still involves deep technical expertize to
mathematically construct the symmetry-preserving specialized
kernels. In contrast, contrastive learning provides a domain- and

model-agnostic approach to exploit symmetries, where a black-
box approach is used to embed physical knowledge instead of
through the network architecture or input parameterization,
bearing some similarities to conventional data augmentation41–44

strategies. While some applications have been explored in various
works45–48, most are confined within graph architectures; appli-
cations to the natural sciences have been scarce, partly owing to
the intricacy of designing transformation strategies49 suitable for
scientific problems.

Here, we introduce Surrogate- and Invariance- boosted Con-
trastive Learning (SIB-CL), a deep learning framework based on the
unique disposition of problems in natural sciences, where auxiliary
information sources are often accessible a priori or can be obtained
by inexpensive means (see Fig. 1). Specifically, these are: (1) abun-
dant unlabeled data; (2) prior knowledge in the form of invariances
of the physical problem, which can be governed by geometric
symmetries of the inputs or general non-symmetry related invar-
iances of the problem; (3) a surrogate dataset on a similar problem
that is cheaper to generate, e.g., by invoking simplifications or
approximations to the labeling process. SIB-CL uses popular deep
learning techniques of TL and SSL as effective and broadly-
applicable strategies to incorporate these auxiliary information
sources, enabling effective and high-quality network training despite
data scarcity. SIB-CL is applicable to domains where a related and
simplified surrogate dataset can be created, common to scientific
disciplines where approximate or analytical approaches50–52 are
prevalent. Examples of such domains include the use of classical
inter-atomic force fields in molecular dynamics51 and the hierarchy
of approximations in density-functional theory (DFT) captured by
multiple distinct rungs of Jacob’s ladder52. Here, SIB-CL’s effec-
tiveness will be demonstrated in various problems in the natural
sciences, in particular, on two systems in the fields of photonics and
quantum physics calculations.

Results
Surrogate- and invariance-boosted contrastive learning (SIB-
CL). We seek to train a neural network to predict desired prop-
erties (or labels) y from input x using minimal training data.

Fig. 1 Overcoming data scarcity with SIB-CL. We propose to overcome
data scarcity by leveraging a an abundance of unlabeled data, b prior
knowledge of the underlying physics (e.g., symmetries and invariances of
the data), and c knowledge from a possibly-approximate surrogate data
which is faster and cheaper to generate (e.g., coarse-grained computations
or special-case analytical solutions). d SIB-CL incorporates these auxiliary
information into a single framework to accelerate training in data-scarce
settings. Examples show unit cells of square 2D photonic crystals (see
also Fig. 3).
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More precisely, for a target problem Dt ¼ fxi; yigN t
i¼1 consisting of

Nt input-label pairs, we focus on problem spaces where Nt is too
small to successfully train the associated network. To overcome
this, we introduce two auxiliary data sets: (1) a set of zero-cost
unlabeled inputs Du ¼ fxigNu

i¼1 and (2) a surrogate data set Ds ¼
f~xi; ~yigNs

i¼1 consisting of inexpensively computed labels ~yi (e.g.,
from approximation or semi-analytical models) with associated
input ~xi (possibly, but not necessarily, a “simple” subset of all
inputs). The quantity of each of these auxiliary data sets are
assumed to far exceed the target problem, i.e., {Nu, Ns}≫Nt (and,
typically, Nu >Ns).

On the basis of these auxiliary datasets, we introduce our
framework—Surrogate and Invariance-Boosted Constrastive
Learning (SIB-CL)—that significantly reduces the data require-
ments on Dt (Fig. 2). SIB-CL achieves this by splitting the training
process into two stages: a first, interleaved two-step pre-training
stage using the auxiliary data sets Du and Ds (Fig. 2a, b), followed
by a fine-tuning stage using the target data set Dt (Fig. 2c).

In the first step of the pre-training stage (Fig. 2a), we exploit
contrastive learning to learn invariances in the problem space
using unlabeled inputs aggregated from the target and surrogate
data sets DCL ¼ fxigNu

i¼1 ∪ f~xigNs
i¼1. We complement DCL by a set of

known, physics-informed invariance relations {g} (which we
formally associate with elements of a group G) which map
input–label pairs (xi, yi) to (gxi, yi), i.e., to new input with identical
labels. We base this step on the SimCLR technique53, though we
also explore using the BYOL technique54 later (see “Discussion”
and SI section S1). Specifically, for each input xi in DCL (sampled
in batches of size B), two derived variations gxi and g 0xi are
created by sampling two concrete mappings g and g 0 from the
group of invariance relations G (see Methods). The resultant

2B inputs are then fed into encoder and then projector
networks, H and J respectively, producing metric embeddings
zið0Þ ¼ JðHðgð0ÞxiÞÞ. A positive pair fzi; zi0 g is the pair of metric
embeddings derived from the two variations of xi, i.e., gxi and
g 0xi; all other pairings in the batch are considered negative. At
each training step, the weights of H and J are simultaneously
updated according to a contrastive loss function defined by the
normalized temperature-scaled cross entropy (NT-Xent) loss53:

Lii0 ¼ � log
expðsii0=τÞ

∑2B
j¼1½i≠j� expðsij=τÞ

; ð1Þ

where sii0 ¼ ẑi � ẑi0 (and ẑi ¼ zi= zi
�� ��) denotes the cosine

similarity between two normalized metric embeddings ẑi and
ẑi0 , [i ≠ j] uses the Iverson bracket notation, i.e., evaluating to 1 if
i ≠ j and 0 otherwise, and τ is a temperature hyperparameter
(fixed at 0.1 here). The total loss is taken as the sum across all
positive pairs in the batch. In our batch sampling of DCL, we
sample one-third of each batch from Ds and two-thirds from Du.
Conceptually, the NT-Xent loss acts to minimize the distance
between embeddings of positive pairs (numerator of Eq. (1))
while maximizing the distances between embeddings of negative
pairs in the batch (denominator of Eq. (1)) Consequently, we
obtain representations H(xi) that respect the underlying invar-
iances of the problem.

Each epoch of contrastive learning (i.e., each full sampling of
DCL) is followed by a supervised learning step—the second step of
the pre-training stage (Fig. 2b)—on the surrogate dataset Ds, with
each input from Ds subjected to a random invariance mapping.
This supervised step shares the encoder network H with the
contrastive step but additionally features a predictor network G,
both updated via a task-dependent supervised training loss

Fig. 2 Surrogate- and invariance-boosted contrastive learning (SIB-CL) framework. Network training proceeds via a pre-training stage (a, b) followed by
a fine-tuning stage (c). The pre-training stage alternates a contrastive learning step a using unlabeled data DCL with a supervised learning step b using
surrogate data Ds. Contrastive learning encourages representations that respect the underlying invariances of the problem and supervised learning on the
surrogate dataset attunes both representations and a predictor network to the desired prediction task. c After 100–400 epochs of pre-training, the
encoder, and predictor weights are copied and subsequently fine-tuned by supervised learning on the target dataset Dt.
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function (which will be separately detailed later). This step pre-
conditions the weights of G and further tunes the weights of H to
suit the target task.

The pre-training stage is performed for 100–400 epochs and is
followed by the fine-tuning stage (Fig. 2c). This final stage uses Dt

to fine-tune the networks H and G to the actual problem task—
crucially, with significantly reduced data requirements on Dt.
Each input from Dt is also subjected to a random invariance
mapping; the associated supervised training loss function is again
problem-dependent and may even differ from that used in the
pre-training stage.

In the following sections, we evaluate the effectiveness of SIB-
CL on two problems: predicting the density-of-states (DOS) of
two-dimensional (2D) photonic crystals (PhCs) and predicting
the ground state energy of the three-dimensional (3D) non-
interacting Schrödinger equation (see SI for additional experi-
ments, including predictions of 2D PhC band structures). To
investigate the effectiveness of various auxiliary information
sources used in SIB-CL, we benchmark our results against the
following baselines:

1. Direct supervised learning (SL): randomly initialized net-
works H and G are trained using supervised learning on
only the target dataset Dt. This reflects the performance of
conventional supervised learning, i.e., without exploiting
any auxiliary data sources.

2. Conventional transfer learning (TL): networks H and G are
first pre-trained using supervised learning on the surrogate
dataset Ds and then subsequently fine-tuned on Dt. This
reflects the performance of including surrogate information
via conventional transfer learning on a desirable well-
aligned transfer task .

3. Supervised Learning with invariances (SL-I): each input is
subjected to a transformation randomly sampled from {g}
each time before it is fed into network H and trained as per
SL. This reflects the performance boost when incorporating
invariance information via a standard data augmentation
approach.

Finally, to critically evaluate SIB-CL’s effectiveness in incor-
porating these auxiliary information sources, we contrast SIB-CL
with the combination of items 2 and 3 above, i.e., transfer
learning with invariances (TL-I). Notably, both SIB-CL and TL-I
leverage an equal level of auxiliary information—both invariances
and a simplified surrogate dataset—and vary only in their
learning algorithm.

Data generation for 2D photonic crystals. Photonic crystals
(PhC) are wavelength-scale periodically-structured materials,
whose dielectric profiles are engineered to create exotic optical
properties not found in bulk materials, such as photonic band
gaps and negative refractive indices, with wide-ranging applica-
tions in photonics55,56. Prominently among these applications is
PhC’s ability to engineer the strength of light-matter
interactions56—or, equivalently, the density of states (DOS) of
photonic modes. The DOS captures the number of modes
accessible in a spectral range, i.e., the number of modes accessible
to an spectrally narrow emitter, directly affecting e.g., sponta-
neous and stimulated emission rates. However, computing the
DOS is expensive: it requires dense integration across the full
Brillouin zone (BZ) of the PhC and summation over bands.
Below, we demonstrate that SIB-CL enables effective training of a
neural network for prediction of the DOS in 2D PhCs, using only
hundreds to thousands of target samples, dramatically reducing
DOS-computation costs. Such neural networks could help to

accelerate the design of PhC features, either directly via
backpropagation57 or by offering a cheap evaluation for multiple
invocations of the model, replacing conventional design techni-
ques like topology optimization58 and inverse design59.

PhCs are characterized by a periodically varying permittivity,
ε(r), whose tiling makes up the PhC’s structure. For simplicity, we
consider 2D square lattices of periodicity a with a “two-tone”
permittivity profile, i.e., ε∈ {ε1, ε2}, with εi∈ [1, 20]. We assume
lossless isotropic materials so that ε(r) and the resultant
eigenfrequencies are real. We use a level-set of a Fourier sum
function (see Methods for details) to parameterize ε(r),
discretized to result in a 32 × 32 pixel image, which form the
input to the neural network. Special care was taken in the
sampling algorithm to create diverse unit cells with features of
varying sizes, with examples depicted in Fig. 3a.

We define the DOS of 2D PhCs by60

DOSðωÞ ¼ A

ð2πÞ2 ∑n
Z
BZ
δðω� ωnkÞ d2k; ð2Þ

with ω denoting the considered frequency, ωnk the PhC band
structure, n the band index, k the momentum in the BZ and
A= a2 the unit cell area. In practice, we evaluate Eq. (2) using the
generalized Gilat–Raubenheimer (GGR) method61—which incor-
porates the band group velocity extrapolatively to accelerate
convergence—in an implementation adapted from ref. 62. The
band structure and associated group velocities are evaluated using
the MIT Photonic Bands (MPB) software63 for the transverse
magnetic (TM) polarized bands (Fig. 3b, also see Methods).

We define labels for our network using the computed DOS
values (Fig. 3c) subjected to three simple post-processing steps
(see Methods): (i) spectral smoothing using a narrow Gaussian

Fig. 3 2D photonic crystals dataset generation. a We generated
20000 square 2D PhC unit cells using a level set of Fourier sums, giving
two-tone permittivity profiles ε(r)∈ {ε1, ε2} with εi∈ [1, 20]. 7000 of these
unit cells were randomly selected; b their TM photonic band structures
were computed via MPB, and c their corresponding density-of-states
(DOS) were computed. The DOS spectrums were then smoothed,
standardized, and the “empty-lattice” DOS were subtracted from them to
derive the labels of the dataset.
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kernel SΔ, (ii) shifting by the DOS of the “empty-lattice” (i.e.,
uniform lattice of index navg), DOSELðωÞ ¼ ωa2n2avg=2πc

2, and
(iii) rescaling both DOS- and the frequency-values by the natural
frequency ω0= 2πc/anavg. More explicitly, we define the network-
provided DOS labels as

y≜ω0½ðSΔ � DOSÞ � DOSEL�ðω=ω0Þ; ð3Þ
and sample over the normalized spectral range 0 ≤ ω/ω0 ≤ 0.96.
Step (i) accounts for the finite spectral width of physical
measurements and regularizes logarithmic singularities associated
with van Hove points; step (ii) counteracts the linear increase in
average DOS that otherwise leads to a bias at higher frequencies,
emphasizing instead the local spectral features of the DOS; and
step (iii) ensures comparable input- and output-ranges across
distinct unit cells, regardless of the cell’s average index.

In our experiments, we use 20,000 unlabeled unit cells for
contrastive learning, select a target dataset of varying sizes
Nt∈ [50, 3000] for fine-tuning, and evaluate the prediction
accuracy on a fixed test set containing 2000 samples.

For the surrogate dataset of inexpensive data, Ds, we created a
simple dataset of 10000 PhCs with centered circular inclusions of
varying radii r∈ (0, a/2] and inclusion and cladding permittivities
sampled uniformly in εi∈ [1, 20]. This simple class of 2D PhCs is
amenable to semi-analytical treatments, e.g., Korringa-
Kohn–Rostoker or multiple scattering approaches64–67, that
enable evaluation of the DOS at full precision with minimal
computational cost. Motivated by this, we populate the surrogate
dataset Ds with such circular inclusions and their associated
(exact) DOS-labels (here, we computed their labels using MPB
directly since we are motivated mainly by proof-of-principle
rather than concrete applications—and we had access to a
preponderance of computational resources provided by MIT
Supercloud).

Invariances of the PhC DOS. The considered PhCs possess no
spatial symmetries beyond periodicity. Despite this, as an
intrinsic, global quantity (or, equivalently, a k-integrated quan-
tity) the DOS is setting-independent and invariant under all size-
preserving transformations, that is, under all elements of the
Euclidean group E(2). For simplicity’s sake, we restrict our focus
to the elements of E(2) that are compatible with a pixelized unit
cell (i.e., that map pixel coordinates to pixel coordinates). This
subset is the direct product of the 4mm (C4v) point group G0 of
the point lattice spanned by ax̂ and aŷ and the group Gt of pixel-
discrete translations. In more detail:

1. Point group symmetry (G0): 4 mm includes the identity
operation (1), 2- and 4-fold rotations (C2 and C ±

4 ), and
horizontal, vertical, and diagonal mirrors (σh, σv, and σð0Þd ),
i.e., G0 ¼ f1;C2;C

�
4 ;C

þ
4 ; σh; σv; σd; σ

0
dg. Formally, this is the

PhCs’ holosymmetric point group.
2. Translation symmetry (Gt): While the DOS is invariant

under all continuous translations t, the pixelized unit cells
are compatible only with pixel-discrete translations; i.e., we
consider the (factor) group Gt ¼ fiN�1ax̂ þ jN�1aŷgN�1

i;j¼0
with N= 32.

Additionally, the structure of the Maxwell equations endows
the DOS with two non-Euclidean “scaling” invariances55:

3. Refractive scaling (Gs): The set of (positive) amplitude-
scaling transformations of the refractive index g(s)n(r)=
sn(r) define a group Gs ¼ fgðsÞ j s 2 Rþg and map the PhC
eigenspectrum from ωnk to s−1ωnk. Equivalently, g(s) maps
DOS(ω) to sDOS(sω) and thus leaves the y-labels of Eq. (3)
invariant under the ω0-normalization.

4. Size scaling (G0
s): Analogously, the size-scaling transforma-

tions g 0ðsÞr ¼ sr define a group G0
s ¼ fg 0ðsÞ j s 2 Rþg, and

also map ωnk to s−1ωnk and DOS(ω) to sDOS(sω); i.e., also
leaving the y-labels invariant.

Of Gs and G0
s, only the amplitude-scaling Gs is pixel-compatible

(G0
s can be implemented as a tiling-operation in the unit cell,

which, however requires down-sampling). Accordingly, we
restrict our focus to the pixel-compatible invariances of the
product group G ¼ G0 ´Gt ´Gs and sampled its elements
randomly. In practice, the sampling-frequency of each element
in G is a hyperparameter of the pre-training stage (see Methods
and SI section S5).

Prediction of PhC DOS. To assess the trained network’s per-
formance in an easily interpretable setting, we define the eva-
luation error metric, following ref. 62:

Leval ¼ ∑ω=ω0
jDOSpredΔ � DOSΔj
∑ω=ω0

DOSΔ
; ð4Þ

where DOSΔ ¼ SΔ � DOS ¼ ω�1
0 y þ DOSEL and DOSpredΔ ¼

ω�1
0 ypred þ DOSEL are the true and predicted SΔ-smoothened

DOS, respectively, and the sums are over the spectral range
0.24 ≤ ω/ω0 ≤ 0.96 (we omit the spectral region 0 ≤ ω/ω0 < 0.24
during evaluation to get a more critical metric, since the DOS has
no significant features there). The network architecture and
training details (loss functions, hyperparameters, layers etc.) are
discussed in the Methods section.

The performance of SIB-CL under this error measure is
evaluated in Fig. 4 and contrasted with the performance of the
baselines. In practice, to minimize the fluctuations due to sample
selection, we show the mean of Leval for three separate fine-tuning
stages on distinct randomly-selected datasets of size Nt, evaluated
on a fixed test set.

A significant reduction of prediction error is observed for SIB-
CL over the baselines, especially for few fine-tuning samples: e.g.,
at Nt= 100, SIB-CL has 4.6% error while SL, SL-I and TL have
7.6, 7.1 and 6.9% error respectively. More notably, we see a large
reduction in the number of fine-tuning samples Nt needed to
achieve the same level of prediction error, which directly
illustrates the data savings in the data-scarce problem. We obtain
up to 9×(7×) savings in Nt when compared to SL (SL-I or TL) at a
target prediction error of ~5.1%. These savings highlight the
effectiveness of SIB-CL over simple supervised learning (SL) as
well as techniques leveraging a single source of auxiliary
information, here represented by surrogate-based TL or
invariance-augmented SL (SL-I). The predicted and true DOS
are compared as functions of frequency in Fig. 4b across a range
of error levels as realized for different unit cell input. Further,
SIB-CL also incorporates the combined invariance and surrogate
information more effectively than is achievable e.g., by incorpor-
ating the invariance information as data augmentation in
surrogate-based transfer learning (invariance-augmented transfer
learning, TL-I). This is demonstrated by Table 1, where a steady
performance advantage of SIB-CL over TL-I is observed.

A strong motivation for exploring deep learning methods in
scientific predictive modeling is to accelerate design processes,
since trained neural networks are able to offer cheap evaluations
of the target problem; it is thus instructive to assess the
computational savings of a trained network. For the DOS
problem, the inference time of our trained neural network takes
0.005s on a single Intel Xeon Gold 6148 CPU core, while the
traditional numerical method takes 14.5s for a single photonic
crystal on the same hardware, resulting in a ≈ 3000 factor speed
up. Such savings are highly significant, particularly for design

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31915-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4223 | https://doi.org/10.1038/s41467-022-31915-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


optimization applications where a huge number of forward
predictions are often necessary.

To demonstrate that the effectiveness of SIB-CL extends
beyond the DOS prediction problem, we also trained a network
using SIB-CL and all baselines to predict the PhC band structure
(see SI section S2). For this task, the network labels y are ωnk/ω0,
sampled over a 25 × 25 k-grid and over the first 6 bands, i.e.,
y 2 R6 ´ 25 ´ 25

≥ 0 , while the input labels x remain unchanged. Unlike
the DOS, the band structure is not invariant under the elements
of G0, but remains invariant under translations (Gt) and refractive
amplitude scaling (Gs), i.e., G ¼ Gt ´Gs. Also for this task, we
found SIB-CL to enable significant data savings, ranging up to
60× relative to the SL baseline.

Data generation for 3D Schrödinger equation. As a test of the
applicability of SIB-CL to higher-dimensional problems, we
consider predicting the ground state energies of the single-par-
ticle, time-independent Schrödinger equation (TISE) for random
3D potentials in box. This problem demonstrates a proof-of-
principle application to the domain of electronic structure cal-
culations, which is of fundamental importance to the under-
standing of molecules and materials across physics, chemistry,
and material science.

The eigenstates ψn and eigenenergies En of a (non-relativistic)
single-particle electron in a potential U(r) are the eigensolutions
of the TISE:

Ĥψn ¼ ðT̂ þ ÛÞψn ¼ Enψn; ð5Þ
where Ĥ ¼ T̂ þ Û is the Hamiltonian consisting of kinetic T̂ ¼
� 1

2∇
2 and potential energy Û ¼ UðrÞ contributions. Here, and

going forward, we work in Hartree atomic units (h.a.u.). For
simplicity, we consider random potentials U(r) confined to a
cubic box of side length 10 Bohr radii (a0), with values in the
range [0, 1] Hartree (see Methods for details). Examples of the
generated potentials are shown in Fig. 5a (left).

We associate the network input–label pairs (x, y) with the
potentials U(r) (sampled over a 32 × 32 × 32 equidistant grid) and
ground state energies E0, respectively. We evaluate E0 by using
(central) finite differences with implicit Dirichlet boundary
conditions to discretize Eq. (5), which is subsequently solved
using an iterative sparse solver68. The target dataset Dt is
computed using a 32 × 32 × 32 finite-differences discretization,
with an estimated mean numerical error ≈0.1% (Fig. 5b, left).

In the previously considered PhC DOS problem, the surrogate
dataset Ds was built from a particularly simple input class with
exact and inexpensive labels. Here, instead, we assemble Ds by
including the original range of inputs x but using approximate
labels ~y. In particular, we populate the surrogate dataset with
input–label pairs ðx;~yÞ, with ~y ¼ ~E0 computed from a low-
resolution finite-difference 5 × 5 × 5 discretization of U(r)
(Fig. 5b). ~E0 has a relatively high error of ~10% (Fig. 5b, right)
but is orders of magnitude faster to compute: e.g., a naive power
iteration eigensolver requires O(n2) operations per iteration (with
n ¼ N3 denoting the number of grid-voxels and N the grid-points
per dimension), such that iterations at N= 5 require ~ 105-fold
less work than at N= 32.

To assess the impact of the choice of surrogate data, we also
examine an alternative surrogate dataset, with input-label pairs
ð~x;~yÞ, derived from quantum harmonic oscillator (QHO)
potentials:

~x ¼ ~UðrÞ ¼ 1
2
ω�2 � ðr� cÞ�2; ð6Þ

where ðA�nÞi ¼ An
i is the Hadamard (element-wise) power

operator. We define the associated surrogate labels by the open-
boundary QHO energies, i.e., by ~y ¼ ~E0 ¼ 1

2∑iωi, and assign the
input ~x by the in-box grid discretization of ~UðrÞ. The ~y labels
consequently reflect an example of analytically approximated
labels (here, with approximation-error due to the neglect of the

Fig. 4 Network prediction results for PhC-DOS problem. a Network
prediction error against fine-tuning dataset sizes, Nt, between 50 and
3000, when using our SIB-CL framework (based on SimCLR53 for
contrastive learning) compared against the baselines: direct supervised
learning (SL) and standard approaches involving transfer learning (TL) or
involving invariances via data augmentation (SL-I). A 9-fold (7-fold)
reduction in target data requirements is obtained by using SIB-CL over SL
(SL-I, TL) at a relative error target of ~5.1%. Error bars show the 1σ
uncertainty level estimated from varying the data selection of Dt.
b Examples of the DOS spectrum predicted by the SIB-CL-trained network
compared against the actual DOS at various error levels (insets depict
associated unit cells, shown here using the network-inputs' resolution of
32 × 32).

Table 1 PhC-DOS prediction.

Nt= 500 Nt= 1000 Nt= 3000

TL-I 3.40 ± 0.06 2.98 ± 0.03 2.38 ± 0.02
SIB-CL 3.25 ± 0.04 2.82 ± 0.05 2.16 ± 0.03

Comparing SIB-CL with a simple, invariance-augmented transfer learning (TL-I) approach.
Both techniques incorporate the same level of auxiliary information, varying only in their learning
algorithm. Values give the network prediction error (in %) at different fine-tuning dataset sizes Nt.
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Dirichlet boundary conditions); see SI section S3. For quicker
training of the network, we use the 2D version of the TISE with
this surrogate dataset (i.e., Ds and Dt consist of 2D QHO
potentials and 2D random potentials respectively).

Prediction of the ground-state energy of 3D Schrödinger
equation. The ground-state energy is invariant under elements of
the symmetry point group, i.e., G ¼ G0 in 2D. In 3D, we instead
have the m3m point group, which notably has 48 elements
(instead of just 8 in G0).

Figure 5c shows the results using the surrogate dataset of
reduced resolution data, compared against the baselines. We
observe up to 40 × data savings for SIB-CL when compared to SL.
Additionally, consistently with our PhC experiments in Table 1,
SIB-CL also here outperforms invariance-augmented TL (SI
section S3). As a validation step, the prediction accuracies are
noted to be in the orders of ≈1%, making the surrogate (target)
dataset with ≈10% (≈0.1%) numerical error an appropriate design
choice as approximate (target) data. For the experiments using
the QHO surrogate dataset, we obtain up to 4 × savings when
using SIB-CL compared to SL (see SI section S3); the data savings
are diminished, within expectations, since the QHO dataset is
way simpler and contains less information to transfer.

Discussion
The widespread adoption and exploitation of data-driven tech-
niques, most prominently deep learning via neural networks, to
scientific problems has been fundamentally limited by a relative
data scarcity. That is, data is only rarely available in the quantities
required to train a network to faithfully reproduce the salient
features of nontrivial scientific problems; moreover, even if such
data can be generated, it typically requires excessive computa-
tional effort. Here, we have introduced SIB-CL, a framework that
overcomes these fundamental challenges by incorporating prior
knowledge and auxiliary information, including problem invar-
iances, “cheap” problem classes, and approximate labels. With
SIB-CL, the required quantities of costly, high-quality training
data is substantially reduced, opening the application-space of
data-driven techniques to a broader class of scientific problems.

We demonstrated the versatility and generality of SIB-CL by
applying it to problems in photonics and electronic structure,
namely to the prediction of the DOS and band structures of 2D
PhCs and the ground state energies of the TISE. Through our
experiments, we demonstrated that even very simple sources of
auxiliary information can yield significant data savings. For
instance, the group of invariances G can be just a set of simple
rotations and mirrors as in the TISE problem. Similarly, there are
diverse options for constructing the surrogate dataset: here, we
explored the use of simplified structures where (semi-) analytical
solutions exist (e.g., circular structures of PhCs), approximate
calculations of the target problem (e.g., reduced resolution com-
putations of TISE), and even a combination of the two (e.g.,
approximated energies of QHO potentials in the TISE problem).
Most natural science disciplines, especially physics, have deep and
versatile caches of such approximate and analytical approaches
which can be drawn from to create suitable surrogate datasets.

In the problems studied here, SIB-CL outperformed all base-
lines (including invariance-augmented baselines, see SI sec-
tion S4). We conjecture that SIB-CL’s performance advantage
stems predominantly from enforcing problem invariances via a
contrastive loss, which is more effective than naive data aug-
mentation (cf. the performance edge of SIB-CL over TL-I). To
substantiate this hypothesis, we performed several ablation
experiments (see SI Section S5). Firstly, when all invariance
information are disregarded in SIB-CL (i.e., if the group of
invariances G is reduced to the trivial identity group), we observe
very similar performance to TL. This demonstrates that the
constrastive stage is only effective in combination with invariance
information, or, equivalently, that the utility of the contrastive
stage hinges strongly on attracting nontrivial positive pairs rather
than merely repelling negative pairs.

Next, we explored the consequences of selectively and
increasingly removing invariances from G. We found that
including more invariances strictly improves SIB-CL’s perfor-
mance, consistent with expectations since the elements of G are
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Fig. 5 3D Time-independent Schrödinger Equation (TISE). a 3D random
`in-a-box' potentials and their associated ground-state energies, E0. b Left: The
surrogate dataset was generated by reducing the input unit cell resolution from
32 × 32 × 32 to 5 × 5 × 5. Right: The relative numerical error of E0 at various
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show 1σ uncertainty over 10 random samples. c Network prediction error
against fine-tuning dataset sizes Nt for SIB-CL and the baselines on the TISE
problem. The plot for SIB-CL shows the best results among the two contrastive
learning techniques, SimCLR53 and BYOL54. Error bars show the 1σ uncertainty
when varying dataset selection. SIB-CL was seen to give up to 40×(6×) data
savings when compared to SL (TL).
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true invariances of the downstream task. This is contrary to the
standard self-supervised learning (SSL) paradigm which is task-
agnostic, i.e., the downstream task is not known during the
contrastive learning stage, and transformations may not be true
invariances of the downstream problem so including more
transformations can sometimes be harmful49,53,69. To determine
the relative and combined efficacy of SIB-CL’s usage of transfer
learning and contrastive learning, we performed ablation
experiments (see SI section S5). From these experiments, we
establish both the constrastive and transfer learning stages con-
tribute significantly to the accuracy of SIB-CL, with the con-
strastive stage being the dominant contribution. Pre-training has
currently become a standard approach in deep learning with TL
and SSL being popular instantiations. TL relies on labeled data
leading to task specification while SSL relies on unlabeled data
and auxiliary pretext tasks to derive representations that gen-
eralize well due to its non-specificity to any particular task. The
effectiveness of SIB-CL stems from combining desirable features
from each of these pre-training techniques into a coherent fra-
mework. More concretely, the use of TL alone may lead to
undesirable overfitting to the simplified surrogate labels; con-
currently, the higher-dimensional nature of labels common in
scientific applications may render SSL techniques to be ineffective
if transformations provided via pretext tasks does not provide
sufficient context to learn the final predictive task. The combi-
nation of unsupervised objectives and end-task objectives can
lead to improved performance and data efficiency70; this is fur-
ther exemplified in SI Section S5, showing the gains of SIB-CL
over its individual components.

While contrastive learning has gained enormous popularity in
recent years, its techniques has mainly found applications in com-
puter vision tasks (e.g., image classification on ImageNet10) while its
utility to regression problems has remained largely unexplored.
Techniques like SimCLR are based on instance discrimination, i.e.,
the network is trained to discriminate between negative pairs in the
batch. Intuitively, such techniques may seem less well-suited to
regression problems where the latent space is often continuous
rather than discrete or clustered as in classification problems.
Indeed, we made several empirical observations that disagree with
the findings of standard contrastive learning applications on clas-
sification problems. Notably, it is widely corroborated53,71,72 that
using a larger batch size is always more beneficial, which can be
interpreted as the consequence of having more negative pairs for
instance discrimination. This empirical finding was not echoed in
our experiments, thus suggesting that instance discrimination may
not be highly appropriate in regression problems. Motivated by this,
we also explored the BYOL technique54 which is not based on
instance discrimination and does not use explicit negative pairs in
its loss function (see SI section S1), but found no performance
advantage. Despite many empirical successes, SSL methods remains
poorly understood and lacks a solid theoretical explanation49,73–75

for why and when these algorithms work well. Our work further
underscores and motivates the need to develop such an improved
foundation, not only to address the noted deviations from expec-
tations but also to guide the emerging application of contrastive
learning techniques to regressions tasks.

Exploiting prior knowledge of symmetries and physical
insights has shown to be highly effective for deep learning in the
scientific domain. For instance, architectures with hand-crafted or
analytically formulated components are commonly used in
molecules to invoke chemically meaningful inductive biases or to
respect quantum–mechanical properties30,31,33,76. There also
exists a growing body of work on equivariant networks for var-
ious symmetry groups35–37,77, particularly for applications in the
natural sciences40,78, of which our work is highly complementary
to. These works are mainly motivated by the fact that the

exploitation of symmetry or physical insights provides a strong
inductive bias, which constrains the space of possible models or
allow it to properly model physical limits, ultimately achieving
better predictive accuracy and higher data efficiency. Like these
networks, SIB-CL also aims to create a network that exploits
underlying symmetries and known physical invariances of the
problem. However, rather than hard-coding invariance infor-
mation into the model architecture, the process is implemented/
achieved organically via contrastive learning. The price paid for
this more generic approach, is that feature invariance to the
symmetry group G is only approximately achieved—to a degree
expressed indirectly by the NT-Xent loss (Eq. (1))—rather than
exactly as is the case for hard-coded problem-specific archi-
tectures. Conversely, SIB-CL has the advantage of being simple
and readily generalizable to any known invariance, i.e., requires
no specialized kernels or mathematical construction, and can
readily incorporate additional invariances without changes to the
underlying architecture. Given the ubiquity and impact of
symmetry-preserving equivariant architectures in scientific deep
learning, we compared SIB-CL against one prominent archi-
tecture in this domain, namely the E(2)-equivariant CNNs pro-
posed by Weiler and Cesa79 (see SI section S7). Our experiments
show that SIB-CL remains competitive, and even outperforms,
such equivariant architectures. Relatedly, SIB-CL’s superior per-
formance over TL-I (Table 1) similarly suggests that using con-
trastive learning to enforce invariances is likely to be more
effective than naive data augmentation.

Our work provides insights on how issues of data scarcity can
be overcome by leveraging sources of auxiliary information in
natural science problems. The SIB-CL framework presented in
this work demonstrates how such auxiliary information can be
readily and generically incorporated in the network training
process. Our work also provides insights on the thus-far less-
explored application of contrastive learning for regression tasks,
opening up opportunities for applications in several domains
dominated by regression problems, in particular, the natural
sciences. Finally, we note that SIB-CL was developed with the
motivation that many problems in the natural sciences are
endowed with approximate or analytical approaches that can be
used to create a surrogate dataset at low computation cost and
thus are limited to domains as such.

Methods
PhC unit cells and DOS processing. We parameterize ε(r) by choosing a level set
of a Fourier sum function ϕ, defined as a linear sum of plane waves with fre-
quencies evenly spaced in the reciprocal space (up to some cut-off). i.e.,

ϕðrÞ ¼ Re ∑
9

k¼1
ck expð2πink � rÞ

� �
; ð7Þ

where each nk is a 2D vector (nx, ny) and we used 3 Fourier components per
dimension, i.e., nx, ny∈ [− 1, 0, 1] (and thus the summation index k runs over 9
terms). ck is a complex coefficient, ck= reiθ with r, θ separately sampled uniformly
in [0, 1). Finally, we uniformly sample a filling fraction, defined as the fraction of
area in the unit cell occupied by ε1, in [0, 1) to determine the level set Δ so as to
obtain the permittivity profile:

εðrÞ ¼ ε1 ϕðrÞ ≤ Δ

ε2 ϕðrÞ>Δ

�
: ð8Þ

This procedure produces periodic unit cells with features of uniformly varying
sizes due to the uniform sampling of the filling ratio and without strongly divergent
feature scales thus corresponding to fabricable designs.

With the MIT Photonic Bands (MPB) software63, we use 25 × 25 plane waves
(and also a 25 × 25 k-point resolution) over the Brillouin zone −π/a < kx,y ≤ π/a to
compute the band structure of each unit cell up to the first 10 bands and also extract
the group velocities at each k-point. We then computed the DOS for ω/ω0∈ [0, 0.96]
over 16000 equidistantly-spaced frequency samples using the generalized
Gilat–Raubenheimer (GGR) method61,62. Next, we computed the SΔ-smoothened
DOS, i.e., DOSΔ ¼ SΔ � DOS, using a Gaussian filter SΔðωÞ ¼ e�ω2=2Δ2

=
ffiffiffiffiffi
2π

p
Δ of

spectral width Δ= 0.006ω0. Before defining the associated network labels y, we
downsampled DOSΔ to 400 frequency points. Finally, the network y-labels are
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constructed according to Eq. (3), i.e., by subtracting the background “empty-lattice”
DOS—i.e., DOSELðωÞ ¼ a2n2avgω=2πc

2, the DOS of a uniform unit cell Ω of index

navg ¼ 1
jΩj

R
ΩnðrÞ d2r—and rescaling by ω0. Subtracting DOSEL removes a high-

frequency bias during training and was found to improve overall network accuracy.

3D TISE unit cells. To generate samples of U(r), we follow the same procedure in
Eqs. (7) and (8) to first create two-tone potential profiles in 3D, i.e., r= (x, y, z) and
nk= (nx, ny, nz) are now 3D vectors. We create finer features by increasing the
number of Fourier components to nx, ny, nz∈ [−2, −1, 0, 1, 2] (and hence the
summation in Eq. (7) now runs over 125 terms). We also modify the range of
potential, i.e., ε1 in Eq. (8) is set to 0, while ε2 is uniformly sampled in [0, 1]. The
periodicity is removed by truncating 20% of the unit cell from each edge. A
Gaussian filter with a kernel size 8% of the (new) unit cell is then applied to smooth
the potential profile and, finally, the unit cells are discretized to a resolution of
32 × 32 × 32. This procedure is illustrated in SI section S3 and is similarly used to
produce the 2D unit cells, discretized to 32 × 32, when using the QHO surrogate
dataset. The ratio between the length scale and potentials’ dynamic range was also
carefully selected to produce non-trivial wavefunctions, so as to create a meaningful
deep learning problem (see SI section S3 for further discussion).

Model architecture. Our encoder network, H consists firstly of 3 to 4 convolu-
tional neural network (CNN) layers followed by 2 fully connected (FC) layers,
where the input after the CNNs was flattened before being fed into the FC layers.
The channel dimensions in the CNN layers and number of nodes in the FC layers
vary for the different problems, and are listed in Table 2. For TISE, the CNN layers
have 3D kernels to cater for the 3D inputs, while the CNNs for the remaining
problems uses regular 2D kernels used in standard image tasks. For the predictor
network, G, we used 4 FC layers for all the problems, with number of nodes listed
in Table 3. The predictor network for the band structure problem consists of 6
blocks of the same layer architecture, each block leading to each of the 6 bands and
separately updated using the loss from each band during training. A similar
architecture was used in previous work5. We included BatchNorm80, ReLU81

activations and MaxPooling between the CNN layers, and ReLU activations
between all the FC layers in H and G. For the projector network J, we used 2 FC
layers with hidden dimension 1024 and ReLU activation between them; the final
metric embeddings have dimension 256. J is fixed across all problems. Using the
DOS prediction problem, we also experimented with deeper projector networks

(i.e., increasing to 4 FC layers with the same hidden dimensions), as well as
including BatchNorm between the layers, and found small improvements.

Invariance sampling during contrastive learning. In conventional contrastive
learning applications in computer vision (CV), different instances of the input are
often created via a pre-optimized, sequential application of various data augmentation
strategies such as random cropping, color distortion, and Gaussian blur53,54.
Adopting this technique, we also apply transformations from each sub-group of G in
the randomly determined order ½Gt;G0;Gs� and, additionally, experimented various
algorithms for performing contrastive learning; see SI Section S5. We find that
introducing stochasticity in transformation application is an effective strategy and
thus use it in SIB-CL. More specifically, for each sub-group Gα , with α∈ {0, t, s}, we
set a probability pα to which any non-identity transformation is applied. (Equiva-
lently, inputs are not transformed with probability (1− pα).) {pα} is a set of hyper-
parameters that are often intricately optimized for in standard CV applications
(among other hyperparameters such as the order and strength of augmentations);
here, for simplicity, we omitted this optimization step. We set pα= 0.5 for all α’s, and
sampled the elements uniformly, i.e., each transformation in Gα is applied with
probability 0.5/mα with mα being the total number of non-identity elements in Gα .

PhC DOS prediction loss functions. In step b of the pre-training stage where we
trained using supervised learning loss on Ds (Fig. 2b), we used the pre-training loss
function

LPT ¼ meanðω=ω0 Þ logð1þ jypred � yjÞ� �
; ð9Þ

for each sample in the batch, where ypred and y are the network prediction and the
true label of that sample respectively and ∣ ⋅ ∣ gives the element-wise absolute value.
We take the mean over the (normalized) frequency axis (ω/ω0) to get a scalar for
LPT . This loss function was used during pre-training (for SIB-CL and the TL
baselines); its purpose is to encourage the network to learn from the surrogate
dataset the general features in the DOS spectrum and underemphasize the loss at
places where the DOS diverges, i.e., at the Van Hove singularities. In our experi-
ments, we found that LPT indeed gave better prediction accuracies than the
standard L1 or mean squared error (MSE) loss functions. After the pre-training
step, the standard L1 loss function was used during fine-tuning on Dt (Fig. 2c) for
SIB-CL and all the baselines.

PhC band structure prediction loss functions. During supervised training (for
both pre-training and fine-tuning), we use the MSE loss function; for evaluation,
we use a relative error measure (for easier interpretation) given by,

Leval ¼ meank
1
6
∑
6

n¼1

jωpred
n ðkÞ � ωnðkÞj

ωnðkÞ

	 

; ð10Þ

where ωn(k) are the eigen frequencies indexed over band numbers n= 1, 2, ..., 6 and k
are the wave vectors restricted to the Brillouin zone, i.e., −π/a < kx,y ≤ π/a. The
evaluation loss is taken as the mean over all 6 bands and over all (25 × 25) k-points.

Ground-state energy prediction loss functions. The MSE loss function is
similarly used during both the pre-training and fine-tuning stages of supervised
training of the ground-state energy prediction problem. During evaluation, we use
a simple relative error measure,

Leval ¼ jypred � yj=y; ð11Þ
where ypred is the network prediction and y= E0 is the recorded ground-state
energy, for each sample in the test set.

Training hyperparameters. For training the networks in all problems, we used
Adam optimizers82, with learning rates for the different steps specified in Table 4.
We also use an adaptive learning rate scheduler for the fine-tuning stage. Even

Table 2 Network architecture for H.

Problem Channel dim per CNN layer # nodes per FC layer

DOS [64, 256, 256] (2D) [1024, 1024]
Band structure [64, 256, 256] (2D) [256, 1024]
TISE [64, 256, 256, 256] (3D) [256, 256]

Bold values indicate the dimension of the representation for the different problems.

Table 3 Network architecture for G.

Problem # nodes per FC layer

DOS [1024, 1024, 512, 400]
Band structure [256, 512, 512, 625] × 6
TISE [256, 256, 32, 1]

Bold values indicate the dimension of the network output which matches the label dimension for
that problem.

Table 4 Set of hyperparameters tuned over in the contrastive learning (CL), pre-training (PT) of G, and fine-tuning (FT) steps of
SIB-CL.

Problem CL (step a) PT of G (step b) FT (step c)

DOS B∈ {192, 768} B∈ {16, 32, 64, 128} B∈ {16, 32, 64, 128}
α∈ {10−5, 10−4, 10−3} α∈ {10−5, 10−4, 10−3} α 2 10�4; 5 � 10�4

�
;

10�3; 5 � 10�3
�

Bandstructure B∈ {192, 768} B∈ {16, 32, 64} B∈ {16, 32, 64}
α∈ {10−4, 10−3} α∈ {10−4, 10−3} α∈ {10−4, 10−3}

TISE B∈ {384} B∈ {32, 64, 128} B∈ {32, 64, 128}
α∈ {10−6, 10−5} α∈ {10−5, 10−4} α∈ {10−4, 10−3}

The baseline algorithms were also tuned with a similar level of effort; (see SI section S6 for details). The main hyperparameters we varied are the batch size (B) and the learning rates (α).
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though standard contrastive learning methods implement a cosine annealing
scheduler83, we found that this was not beneficial for SIB-CL on our problems and
thus omitted it. Additionally, in order to prevent networks H and G from over-
fitting to the surrogate dataset, we explored various conventional regularization
techniques during the pre-training stage, such as weight decay and dropout. We
found that these were not beneficial; instead, we used early stopping where we
saved the pre-trained model at various epochs and performed the fine-tuning stage
on all of them, picking only the best results to use as the final performance. For
SIB-CL, the pre-trained model was saved at {100, 200, 400} epochs, and for TL
(both with and without invariances), the pre-trained model was saved at {40, 100,
200} epochs. (See SI section S6 for more details on the checkpoint choices). Finally,
another important hyperparameter in our experiments is the kernel size (nk) of the
CNN layers; apart from optimizing the learning process, this hyperparameter can
be used to adjust the network size. This is important in our experiments since we
are training/fine-tuning on varying sizes Nt of the target dataset; a smaller (bigger)
dataset is likely to need a smaller (bigger) network for optimal results. For the DOS
prediction, we varied nk∈ {5, 7}; for band structures, nk∈ {7, 9, 11} and for TISE,
nk∈ {5, 7}. The same set of nk was applied for both SIB-CL and all baselines in
every problem. Apart from those mentioned here, SIB-CL involves many other
hyperparameters not explored here; see additional comments in SI section S6.

Data availability
PhC band structures were computed using MPB63. DOS calculations were carried out
using the GGR method, adapted from the MATLAB implementation in ref. 62.
Numerical solution of the TISE ground-state energies was implemented in Python using
SciPy84. The datasets generated in this study and source codes used to generate them are
available via the code repository at https://github.com/clott3/SIB-CL85.

Code availability
The neural networks were implemented and trained using the PyTorch framework86. All
source codes used for training, for both SIB-CL and the baselines presented in this work,
are publicly available at https://github.com/clott3/SIB-CL85.
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