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NHC-Ni(II)-catalyzed cyclopropene-isocyanide
[5+ 1] benzannulation
Jian–Qiang Huang1✉, Meng Yu1,2,3, Xuefeng Yong 3 & Chun–Yu Ho 1,2,3✉

Isocyanides are common compounds in fine and bulk chemical syntheses. However, the

direct addition of isocyanide to simple unactivated cyclopropene via transition metal catalysis

is challenging. Most of the current approaches focus on 1,1-insertion of isocyanide to M-R or

nucleophilc insertion. That is often complicated by the competitive homo-oligomerization

reactivity occurring at room temperature, such as isocyanide 1,1-insertion by Ni(II). Here we

show a (N-heterocyclic carbene)Ni(II) catalyst that enables cyclopropene-isocyanide [5+ 1]

benzannulation. As shown in the broad substrate scope and a [trans-(N-heterocyclic car-

bene)Ni(isocyanide)Br2] crystal structure, the desired cross-reactivity is cooperatively con-

trolled by the high reactivity of the cyclopropene, the sterically bulky N-heterocyclic carbene,

and the strong coordination ability of the isocyanide. This direct addition strategy offers

aromatic amine derivatives and complements the Dötz benzannulation and Semmelhack/

Wulff 1,4-hydroquinone synthesis. Several sterically bulky, fused, and multi-substituted ani-

lines and unsymmetric functionalized spiro-ring structures are prepared from those easily

accessible starting materials expediently.
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A lkenes and isocyanides are easily accessible primary
starting materials that have often been used in both fine
and bulk chemical syntheses through insertion, respec-

tively (Fig. 1a-h)1–8. Their homo-dimerization and polymeriza-
tion reactivity often occur readily in the presence of transition-
metal salts at r.t. (Fig. 1b, c, e). Such a high homo-insertion
reactivity implies that a selective cross-reaction is difficult to
control. The current methods are mostly done indirectly by an
in situ generated imidoyl-M species (i.e., a two-steps process)4,8,
either through a 1,1-insertion of isocyanide to the M-R (Type 1:
σ-bond insertion, Fig. 1f), such as LnNi-R and LnPd-R from an
alkene or by a nucleophilic attack on the electrophilic isocyanide
for a subsequent an alkene insertion (Type 2: nucleophilic
insertion, Fig. 1g)9–17. There are only handful of examples that
can join them together directly. Pioneering examples are those
using trienes and cyclobutenes with a stoichiometric amount of
Zirconocene and Titanocene complexes18–21, the corresponding
catalytic version is still under development. Cyclopropene seems
to be an obvious choice for further study, yet isocyanide just
served as a ligand in metalloid insertion to cyclopropenes
(Fig. 1h)22, and as an additive in Ni(II)/MAO catalyzed ethene
polymerization at r.t23. Recently, cationic (NHC)Ni(II) has been
developed as an efficient and selective catalyst for insertion and
cyclopropene rearrangement24–28. This prompted us to investi-
gate the (NHC)Ni(II) potential in directing a cross-reaction
between a cyclopropene 1 and an isocyanide 2.

In this work, instead of developing more practical imidoyl-M
generation methods, we explore an alternate strategy that focuses
on a formal addition of those two substrates in the absence of an

additional component at the end. Here we show a catalytic
intermolecular isocyanide-cyclopropene [5+ 1] benzannulation
by NHC/NiBr2DME/NaBARF (1:1:2)29–36. This work is the rare
C-C forming reaction between electronic neutral cyclopropene
and isocyanide (Fig. 1i). It generally provides ring-expanding
rather than the ring-opening products reported in the early 70 s’
that relies on activated cyclopropene37. In sharp contrast to those
highly competitive homo reactivities of 1 or 2 as shown in
Fig. 126,32,38–44, a (hetero)fused aromatic amine product 3 is
obtained. That serves as an aza-synthetic alternative to the Dötz
benzannulation formed by metal carbene and alkyne, the Sem-
melhack/Wulff 1,4-hydroquinones synthesis mediated by Cr/Mo/
W(CO)n (Fig. 1d), as well as the catalytic [2+ 2+ 2]/[4+ 2]
cycloadditions of π-systems45–49. This finding also complements
the vinyl cyclopropanes [5+ 1] reactions reported recently as well
as those imidoyl insertions reactivities50–52. Unlike several other
intramolecular ring-expanding strategies based on 1 for the
syntheses of phenols and saturated N-cycles (e.g., cycloisome-
rizations of 1 bearing 3,3-dicarbonyl53 and [4+ 3] cycloadditions
of 1 bearing N-heteroaromatics54, respectively), our inter-
molecular strategy offers fused anilines and endocyclic dienes.
Overall, it signifies an exciting catalytic synthesis of aromatic
products with a broad substrate scope from two structurally
diverse and readily accessible substrates.

Results and discussion
Catalyst development and optimization. Inspired partly by the
Ni-catalyzed alkene cyanation55, and the high structural
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similarities between the Ni(II)isocyanide and the L.A. activated
Ni(II)CN (L.A.=Al, B)56,57, we surmised that a cyclopropene
may undergo an isocyanide addition by a cationic (NHC)Ni(II)
under appropriate condition. We commenced our investigation
by using 1a and 2a as a substrate pair and the L1/NiBr2DME/
NaBARF (in 1:1:2 ratio, See Fig. 2 for L structure) as the catalyst
in toluene for 12 hrs at 80 °C (Table 1, entry 1). Unlike the cross-
hydroalkenylation rearrangement reactivity of 1a and alkyne that
we anticipated earlier26, an aromatic amine 3aa was obtained
unexpectedly in ~15% yield rather than other possible acyclic
products. The structure of 3aa was confirmed by crystallography,
and it highly resembles a 1,4-hydroquinone derived from an
LM(CO)n mediated cyclopropene-CO coupling process.

One might envision the [5+ 1] benzannulation of 1 and 2
involved a 6-π electron styrenyl ketenimine rearrangement
process36 (c.f. Figs. 1d, 3a, typical operation temp: ~120–160 °C
bearing electronic activators)58–61 instead of an isocyanide addition
to an alkene. This is because a relevant styrenyl ketene intermediate
can be obtained from 1 by an M(0) oxidative addition62–65 and/or
acidic metal salts directed rearrangement to the vinylcarbenoid
(then Type 3 isocyanide insertion to M(carbene)). So we decided to
determine the active components and the catalyst oxidation state
that are required for the desired reactivity before optimization.
Interestingly, subjecting the independently synthesized styrenyl
ketenimines to the (NHC)Ni(0)/(II) at 80 °C conditions did not
offer the [5+ 1] benzannulation (Fig. 3b), and most of the
ketenimine was hydrolyzed to amide after 12 hrs. Also, aromatic
isocyanides (2a, 2b, and 2g, see structure later) did not participate
in that reaction in either toluene at 80 °C or refluxing THF for
12 hrs. Indeed, the [5+ 1] benzannulation attempts were
unproductive by various (NHC)Ni(0) species, like L1/Ni(methyl
methacrylate)266, L1/Ni(cod)2, isolated L1Ni(2a)367, and in situ
Ni(II) reduction68(Table 1, entry 3). Moreover, common cyclo-
propene rearrangement products derived from vinylcarbenoid44,
SEAr43,69, σ-bond metathesis or oxidative addition mechanisms,
like the 1-methyl indene and indane derivatives 4a′ were not
observed as well (Fig. 1c)68,70–73. The major side products obtained
from 1 is a mixture of dimer 4a and oligomerization, which
contrasts to the M(vinylcarbenoid) mechanism predicted and is
similar to the Pd(II) directed dimerization reactivity of 1 at r.t.
(Fig. 1b). In other words, all the above results do not fit the
rationale based on a typical 6-π electron styrenyl ketene
rearrangement pathway. Thus, the similar performances of the
Ni(II)halides were not caused by an unexpected reduction of Ni(II)
to Ni(0) (entry 2). And it is not surprising to see a reasonably good
reactivity by a L1Ni(II) at 40 °C, which is supposed to be a less
favorable temperature for an oxidative cyclopropene-opening
(entry 4 vs Fig. 3).

Control experiments identified that the NHC, the Ni(II) salts,
and the NaBArF are all crucial components for the desired
reactivity (entry 5-9). In particular, the NaBArF was proved
essential for a high catalyst performance (entry 2 vs 5) like the
typical Ni(II) catalyzed alkene insertions74. Meanwhile, the NHC
steric optimization showed an increase in yield and selectivity of 3
(entry 2, 10–15, Fig. 2, L1 vs L2-3, L6 vs L7). A good balance of
desired reactivity and yield was achieved by L7-NiBr2 and
NaBARF in a 1:2 ratio (entry 16–17), and this catalyst seems
promising to cover smaller isocyanides (entry 1 vs 2, 15 vs 18, and
16 vs 19). Such progress was attributed mainly to an optimal
steric repulsion among the NHC-Ni(II) and 2, whereby the strong
coordination ability of 2 on cationic (NHC)Ni(II) was fine-tuned,
and the desired reactivity of 1 was maintained (L1-7). Thus, a
cationic Ni(II) catalyst free of NHC could not provide 3ab from
1a and bulky 2b (entry 9). Ran the reaction in the presence of
TEMPO did not result in a significant drop in yield (entry 20, 1:1
to Ni(II)) while using a (IPr)Ni(I)Cl dimer as a catalyst in
chlorobenzene only gave <5% desired product (no matter with
NaBARF or not, See SI), both results suggesting that Ni(I) was not
the active catalyst. By using our optimized catalyst under forcing
conditions (i.e., without 2), the undesired conversion of 1a was
dominated by oligomerization, and dimer 4a was still observed
(entry 21)75. The [5+ 1] reaction can be done on a larger scale
under a slightly modified condition (5 mmol), 1.28 g of 3ab was
obtained successfully (81% yield of 3ab, 3:4 > 95/5, see SI).

Scope of the (NHC)Ni(II) catalyzed [5+ 1] benzannulation.
With the above basic information in mind, we decided to study
the substrate scope and gain mechanistic insight accordingly.
First, the scope of 1 was tested by 2b as a substrate pair and L7/
NiBr2/NaBArF as a catalyst in toluene at 80 °C for 12 h. To our
delight, the scope of R1 and R2 on 1 are broad (Fig. 4), it offers an
exemplary method for making a fused aromatic aniline 3 with
various side chains at the p- and m-positions (3ab-3fb). It covers
linear/branch alkyls, functional groups vulnerable to oxidative
addition, and radical and nucleophile 2b are compatible (e.g.,
cyclopropyl and benzyl ether). When a cyclopropene bearing a
trisubstituted olefin, the ring-opening event occurs regioselec-
tively, in which only a m- over o-substituted naphthamine
regioisomers (3eb and 3fb) was obtained from 1e-f (Trisub-
stituted olefin with R1 = H, R2 = nBu, Aryl = p-C6H4CF3 could
be used as a pair with 2b at ~120 degree and 20 mol% catalyst
loading (see SI, 58% yield, r.r. >95:5)). Besides, ring-strain relief
was found as a key factor that governs the reaction76,77. Terminal
alkene near the cyclopropene did not interfere with the desired
reactivity and no new cyclopropane was formed there (3fb),
suggesting that the postulated Ni(vinylcarbenoid) commonly
found in Ni(II) reaction with cyclopropene is not an active
intermediate in this reaction again.

Such a [5+ 1] reactivity is not limited to 1 bearing an
unsubstituted Ph only. Other electronic activated phenyls (1g-k),
naphthyl (1 l), and heteroaryls (1m-q) are all possible substrates
in this catalysis (Fig. 5a–c). Electronically activated naphthamines
at 5-, 6-, 7-positions, and (hetero)aryl-fused anilines78 with
different relative positions to the NHR were prepared, respec-
tively. This method represents a general route to build several
medicinally79–88 and photochemically89–91 important cores
bearing different activators and features92. Notably, 1r bearing a
spiro ring was utilized successfully93. That opened up a route to
prepare amine-functionalized 2,3-dihydro-1H-phenalenes, a
common motif in OLEDs. After a closer look at the results,
aromatic substituents on 1 which can donate a higher electron
density to the cyclopropene 3-position are more effective
substrates. This finding inspired us to consider a cyclopropane
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ring-strain relief mechanism by the donor-acceptor push-pull
reactivity of 1,2-disubstituted cyclopropanes reported in the
literature30, in which the isocyanide serves as acceptor and the
aryl at 3-position serves as a donor (see discussion later).

The above results in Fig. 4 and Fig. 5a–c implies that the
benzannulation scope is not limited to cyclopropene substituted
with an aryl. Other electron-donors on the cyclopropene Csp3 (3-
position) that may form the proposed 1,2-disubstituted cyclo-
propane for the donor-acceptor push-pull reactivity should be a
possible substrate of this reaction. Cyclopropenes with simple
alkenyls and unsymmetric diaryls at the 3-position were tested
next (Fig. 5d, e, 1s-z), assuming the isocyanide addition selectivity
still follows the olefin ring-strain, the vinylcarbenoid formation
remains slow, and the isocyanide addition is still accessible even
when both the upper and lower sides of 3-position are sterically
shielded heavily. Indeed, those substrates followed most of the
above assumptions, revealed a route that can prepare alkyl-
substituted anilines from non-aromatic cyclopropenes, and 3

substituted with different p-aryl substituents. In particular, cyclic
and acyclic alkenyl groups with different substitution patterns are
all compatible, 2,4-/3,4-dialkyl substituted anilines from isocya-
nide directly. Again, no cyclopropanation was detected here, in
which a cyclohexenyl group was used to make an aniline fused
with cycloalkyl structure (3 sb) and indicated the isocyanide
addition selectivity was not simply favored by a cyclic olefin. Up
to 95% yield and reasonable π-system selectivity was observed in
diaryl examples, despite the steric challenges is high and the
electronic differences being moderate. However, the desired
product was obtained with a small amount of indene derivative 5
(3:5 > 95/5). This change in side product preference follows the
typical cyclopropene reactivity trend reported in vinylcarbenoid
formation literature.

Isocyanide scope exploration showed that an optimal steric
interaction between the substrate and the NHC is one of the keys
for achieving the desired reactivity and selectivity (Fig. 6). The L7
can manage isocyanides with distinct and challenging structural
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characteristics under our standard conditions. The substituent is
not limited to simple unfunctionalized phenyl groups, many
sterically challenging and electronically diverse groups like
unsymmetric and symmetric (hetero)aryls, alkenyls, and alkyls
are also compatible. Functional groups sensitive to oxidative and
nucleophilic additions in traditional Ni(0)-catalyzed C-N cou-
pling for aromatic amine synthesis, like halides, ester, and nitrile
(2c-d and 2j-l), could be used directly without protection. Those
groups can serve as versatile handles for reduction and cross-
coupling whenever necessary. Undesired reactions like oligomer-
ization of 2 and formation of 5w are more obvious in some less
effective pairs. Yet, a higher concentration of 2 improved the yield
(e.g., 3wm), suggesting a high concentration of 2 favors the
desired reactivity more than the undesired oligomerization. No
amidine and no guanidine product from 2 and 3 was observed in

all cases examined, including the sterically less bulky and more
electron-rich N-alkyl-N-aryl secondary amines. Thus, both the
NH on the N,N-disubstituted amine 3 and the Br are unlikely
nucleophilic enough to form an amidinyl and an imidoyl species
as the reaction intermediate (c.f. the Type 2 isocyanide insertion).

Other than the hints offered by the scope exploration and the
relevant literature, several additional experiments were carried
out to gain mechanistic insight into the reaction (Fig. 7). First, the
5 formation might be caused by the decomposed catalyst at an
elevated temperature, since a parallel set of control experiments
showed that the 5w was formed mainly by a NiBr2DME/NaBARF
catalyst free of NHC L7 (Fig. 7a). This result indicated a strong
NHC coordination to a Ni(II) center is important, it could
suppress the 3,3-diaryl substituted cyclopropene rearrangement
to the corresponding Ni(vinylcarbenoid). Second, we isolated the
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isocyanide complex (Fig. 7b). It was prepared in an excess
amount of 2b, but the spectroscopic information obtained from
the crystal structure revealed a trans-configuration between the
NHC and the isocyanide in a 1:1 ratio, and the axial positions are

shielded sterically by the isocyanide and the NHC substituents.
This complex implied that the NHC can suppress the
simultaneous coordination of two isocyanides. Thus, the
oligomerization of isocyanide was not observed and

PhPh
+

1w 2 3

+CN-Ar
C

Ph

NHAr

IPentAn

NiBr2DME/NaBArF

Toluene
80oC, 12 hrs

30% 65%90% 95%
80/20 72/28>95/5 >95/5

R4

R5

Ar =

N

Me

iPr

35%; 71%a80% 84%
94/6

22% 60%
28/72 92/8

Yield of 3

R4 =

3:5w

3wc 3wd3wa 3we 3wh 3wi3wf 3wg 3wm

R5 =

2 2c 2d2a 2e 2f 2g

R6

R6 =

>95/5

2h 2i

Br
Br
H

Cl
Cl
H

Me
Me
H

Et
Et
H

iPr
H
H

tBu
H
H

tBu
tBu
tBu

Me
Me
Me

>95/5

2m

5w

Ph

Me
+

1v 2 3

CN-R7

C

Me

NHR7

IPentAn

NiBr2DME/NaBArF

Toluene
80oC, 12 hrs

2 = 2p 2q2o 2r2n 2s

C5H11

tBu Ad

81% 71% 78%

>95/5 >95/5 >95/5
Yield of 3

3:4

3vo 3vp 3vq

Bn

3vn

>95/5

29% 71%a,b

>95/5

3vr 3vs

>95/5

80%b

NCNC NC

C5H11

NC NC NC

81%
3wj

>95/5

2j

Me
Me
CN

75%
3wk

90/10

2k

Me
Me
Br

65%
3wl

72/28

2l

Me
Me

COOMe

Fig. 6 Scope of aryl, alkenyl, and alkyl-substituted isocyanides. Standard condition was followed. Superscript a 2 mmol of 2. b Partial hydrolysis of the
enamine was observed. Yield was determined after complete hydrolysis by stirring in MeOH/H2O.

Std
condition

Ln-Ni carbenoid
NiLn

Ph/Me

PhLnw/o 2

Ph
1a

1w
- or -

80% yield
20% yield

Me

Not Observed
Not Observed

5w 5a

NHC = L7

No NHC

2b (1.5 equiv)

NiBr2 DME r.t., toluene

IPr Ni CN-DIPP
Br

Br

65% yield

IPr +

> 70%
< 20%

Std condition

NHC = L7

2b
Only

with NaBArF
without NaBArF

2b conversion

1.844(2)A 1.147(3)A
oo

1a
Only

i) IPr-Ni(allyl)Cl
NaBARF

r.t., toluene
5 mins

ii) D2O
5 mins

Ph

D allyl

d.r. 10:1
~10% yielde

υCNDIPP (cm-1)
~2180 

~2180, 1940

CCDC: 2036409

NaBARF
none.

1 or 2 equiv.

PhPh

EtN

PhPh

CN

170oC
Ph

Ph

CONHEt

+

NHEt

Ph
5-12%c.f. (Int.-1)

+
Et3OBF4

Solvent

50-85%

~ 75% conv.

a

b

c

d

Fig. 7 Mechanistic studies and reaction models. a Effect of NHC and the three-substituent on indene derivative formation; b [trans-IPr-NiBr2(CNDIPP)]
crystal structure, IR studies, and NaBArF effect; c NHC effect on 2b oligomerization; d A cyclopropyl carbonitrile alkylation directed rearrangement; e Syn-
addition of a cationic (NHC)Ni(II) species to cyclopropene.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31896-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4145 | https://doi.org/10.1038/s41467-022-31896-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


manipulations like a slow addition of 2 in a large excess amount
are unnecessary for most of our [5+ 1] reactions. Indeed, the
typical oligomerization reactivity of 2, which can be occurred at
r.t. by a number of metal salts, is now suppressed appreciably
even for 12 h at 80 °C in the presence of NaBArF when an NHC is
employed (Fig. 7c). Next, an IR shift from 2180 to 1940 cm−1 was
observed by treating the [trans-NHC-NiBr2(2b)] precatalyst with
NaBARF (Fig. 7b). This shift is in agreement with an increase in
Ni-CNR backbonding character of a cationic species, rather than
the NHC/P-Ni(II)(η1-/η2-N-aryliminoacyl)Br type of structures
at IR range ~1730–1600 cm−1,94. The halide abstraction product
is quite unstable. Some hydrolysis to amide was indicated by the
peaks at ~ 3100, 1850, and 1800 cm−1 region in less than 10 min.
No metathesis type of reactivity was observed in the typical
[5+ 1] reaction condition. Using two equivalents of NaBArF did
not result in a further drop in frequency, and this result supports
a mono- rather than di-cationic complex formation95. The extra
NaBArF employed in the [5+ 1] condition might be used for a
better anion exchange efficiency. Interestingly, a 4-phenyl-1-
naphthamine derivative, which is similar to our [5+ 1]
benzannulation product structure, was obtained successfully
from a cyclopropyl carbonitrile alkylation (Fig. 7d)76. This result
suggests the donor-acceptor push-pull cyclopropane opening
mechanism is plausible for an aryl and CNR substituted
cyclopropane as Fig. 5a–c suggested, and the isocyanide addition
to the olefin on the cyclopropene is likely involved. Trapping the
intermediate from a reaction between 1a and a cationic [(NHC)
Ni(allyl)]BArF with D2O showed a D-labeled allylcyclopropane
with syn-configuration. This result suggests a cyclopropene can
undergo insertion like the other alkenes with (NHC)Ni(II), and it
may be one of the possible pathways for introducing the (NHC)
Ni(II)-CNR (1.844(2) Å from Fig. 7b) to the cyclopropene.

At this stage, the keys for the desired [5+ 1] reactivity and
broad scope are attributed mainly to the high reactivity of an
isocyanide addition to the cyclopropene π-bond by a cationic
NHC-Ni(II) catalyst, and the high rearrangement reactivity after
that (Fig. 8a). By the optimal coordination ability and steric effect
from NHC, isocyanide and cyclopropene combinations, other
typical pathways related to the acidic metal salt directed

vinylcarbenoid formation and oligomerization are suppressed
accordingly. One of the possible reaction sequences may involve a
cationic (NHC)Ni(II) directed addition of 2 to 1, similar to P-
Pd(II)acetylide insertions to alkenes and resemble hydro-/alkyl-
nickelation to 1 (Fig. 1a, 3)32,96,97. It may be assisted by (a) an
optimal steric repulsion between NHC and 2 (otherwise NHC-
Ni(II)(η2-iminoacyl) complex can be formed at −35 °C by
isocyanide 1,1-insertion), (b) a halide abstraction by
NaBArF14,98–100, and (c) a lowered vinylcarbenoid formation
and oligomerization reactivity of 1 in the presence of strongly
coordinating 2 and NHC (Table 1, entry 21)101. Next, a ring-
strain relief triggered dearomatization may occur (Int.-1)76,77,
similar to the donor-acceptor push-pull reactivity of 1,2-
disubstituted cyclopropanes30. The substituent repulsions
between the bulky L7 and the cyclic tether from 1 may restrict
the Int.-2 conformation. Hence, the ketenimine and the cyclic
tethers were aligned on the same side, and the competing styrenyl
ketenimine formation pathway was suppressed (See SI for
details). Since the postulated Int.-2 has no β-H available for the
Ni(II), ligand exchange with another 2 may facilitate the ring
closure (Int.-3) and regenerate the catalyst. After a facile re-
aromatization over imine hydrolysis, those highly substituted 3
can be formed.

Based on the working hypothesis, a catalytic [5+ 1] endocyclic
diene synthesis was also achieved (Fig. 8b, 8ab-db) by intercept-
ing the postulated re-aromatization step (Int.-3 to 3). Unsymme-
trically substituted spiro-ring structures were obtained from the
corresponding 7 and 2 in just a step by the standard condition
(e.g., spiro[4,5]deca-dien-imine), in which heterocycles are also
tolerated. Notably, by a comparison of the side chains on
cyclopropene 1 and 7, the above examples do not support a
[5+ 1] mechanism initiated by an aryl side chain imidoylation
(by CH activation, then 1,1-insertion of 2). That is simply because
the alkenyl side chain on 7 has no H at the β-position.

Regioselective post-modifications. Finally, the product 3 can
serve as a key building block for a higher substituted aromatic
amine synthesis easily. For instance, a solvent-controlled highly
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regioselective bromination on unsymmetric diaryl amine was
achieved by simply using NBS as Br source (Fig. 9, ratio was
determined by GCMS)102,103. These functionalized sites may
serve as additional handles for preparing other related structures
with similar sets of cores.

We have developed an intermolecular cyclopropene-isocyanide
[5+ 1] benzannulation by a cationic NHC-Ni(II) catalyst with a
BArF anion, in which those two substrates were unreactive to
each other before and were dominated by their own reactivities.
These combinations showed the strength of this catalyst design in
broadening the use of those structurally diversified starting
materials with remarkably good functional group compatibilities
and regulating competitive reactivities of those two substrates at
an elevated temperature. This method serves as an aza-synthetic
alternative for products structurally similar to those in Dötz
benzannulation and Semmelhack/Wulff synthesis based on Cr/
Mo/W(CO)n as well as those in styrenyl ketene 6-π electron
cyclizations. The study also provides a method to make
unsymmetric and functionalized spiro-ring structures catalyti-
cally. This work has revealed several opportunities to utilize
isocyanide and cyclopropene for other potential applications.

Methods
General procedure for the [5+ 1] Benzannulation. To a catalyst mixture
(0.05 mmol L7/NiBr2DME, 0.10 mmol NaBARF) stirred in toluene (1 mL) for
3 min at 80 oC, an indicated amount of a premixed toluene solution of 1 and 2
(1 mL) was added in one-pot and stirred for an additional 12 h. After cooled down
to r.t., it was diluted with 6 mL nhex/EA (10:1) and filtered through a short plug of
silica gel. The solvent was then removed on rotavap. Conversion of 1 and selectivity
of 3 to other possible isomers were determined by 1H NMR or GCMS (average of
two runs). Product structures were confirmed by chromatography and isolation
(5–10% EA/Hex).

Data availability
The compound characterization data generated in this study are provided in the
Supplementary Information. The data sets generated during this study are available from
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (X-
Ray crystallographic data: CCDC 3aa is 2036407 and [trans-IPr-NiBr2(CNDIPP)] is
2036409).
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