
ARTICLE

Discovering the drivers of clonal hematopoiesis
Oriol Pich 1,4, Iker Reyes-Salazar1, Abel Gonzalez-Perez 1,2✉ & Nuria Lopez-Bigas 1,2,3✉

Mutations in genes that confer a selective advantage to hematopoietic stem cells (HSCs)

drive clonal hematopoiesis (CH). While some CH drivers have been identified, the com-

pendium of all genes able to drive CH upon mutations in HSCs remains incomplete. Exploiting

signals of positive selection in blood somatic mutations may be an effective way to identify

CH driver genes, analogously to cancer. Using the tumor sample in blood/tumor pairs as

reference, we identify blood somatic mutations across more than 12,000 donors from two

large cancer genomics cohorts. The application of IntOGen, a driver discovery pipeline, to

both cohorts, and more than 24,000 targeted sequenced samples yields a list of close to 70

genes with signals of positive selection in CH, available at http://www.intogen.org/ch. This

approach recovers known CH genes, and discovers other candidates.
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C lonal hematopoiesis (CH) is a condition related to aging
across the human population1–9, driven by somatic
alterations that appear in hematopoietic stem cells (HSCs)

and confer them a selective advantage. It was recognized
through cytogenetic studies in the 1960s and its genetic bases and
prevalence with aging were first discovered through studies of
non-random X chromosome inactivation in women10,11.
In recent decades, genomic studies of thousands of donors
without any hematologic phenotype identified CH causal somatic
variants in genes known to be associated to hematopoietic
malignancies, such as DNMT3A, TET2, ASXL1, TP53, JAK2 and
SF3B11,2,8,10,12–15. The progeny of an HSC bearing mutations of
one of these genes develops in a process of clonal expansion. The
presence of CH, in turn, is known to be associated with other
health risks, such as the development of hematopoietic malig-
nancies or increased incidence of cardiovascular disease2,4,5,7,16.

The aforementioned human genomic studies, and more recent
analyses16–22 have identified a list of CH-causing somatic var-
iants. Nevertheless, their identification is hampered by the fact
that the clonal expansion related to CH is rather modest, and
therefore, it presents with low variant allele frequency (VAF).
This has determined the development of two main strategies of
detection of CH drivers. On the one hand, some projects with
access to deep sequencing data of particular sites of the human
genome (e.g., tumor panel sequencing) identify CH with exquisite
sensitivity, but only if the causing variant overlaps with the sites
sequenced14,16–18,20. On the other hand, whole-genome or whole-
exome sequencing data has been exploited to identify blood
somatic variants exploring the region of VAF below the one
corresponding to germline variants13,21–23. This approach is thus
only able to detect relatively large CH clones. One important
caveat of both approaches is that not all genes affected by
mutations across blood samples (even known cancer driver
genes) are drivers of CH. Whereas sequencing more blood sam-
ples will lead to the identification of more recurrently mutated
suspicious genes, many of them are prone to be passengers of this
clonal expansion process.

Thus, an accurate and complete list of CH-related genes
remains elusive to date. Completing it is essential to compre-
hensively identify CH in individuals, to ascertain their risk to
develop related diseases and to complete our knowledge of the
molecular mechanisms underlying CH.

In recent years efforts to identify genes with mutations under
positive selection in tumorigenesis have begun to uncover the
compendium of mutational cancer driver genes24–27. Since the
clonal expansion that drives CH is reminiscent of that observed in
tumors, methods to detect positive selection in the mutations of
genes across tumors may be applied to identify the complete list
of CH-related genes. Detecting these signals of positive selection
depends on an accurate identification of blood somatic mutations.

Here, we repurpose blood and tumor samples of donors with
no known hematopoietic malignancy obtained from primary28

(N~8,000) and metastatic29 (N~4000) cancer genomics initiatives
to detect somatic mutations in blood. To this end, we use the
paired tumor sample as the reference germline genome of the
donors in these two cohorts. On the set of blood somatic muta-
tions identified in these two cohorts and across 24,146 other
targeted sequenced tumors, we then run the Integrative Onco-
Genomics (IntOGen25) pipeline that implements seven state-of-
the-art driver discovery methods. As a result, known CH-related
genes and other genes with no previous report of association with
CH are identified. Our results serve as a proof of concept of the
validity of this strategy and open up the opportunity to repurpose
cancer genomics data in the public domain to identify the com-
pendium of CH driver genes, of which this paper presents
a snapshot.

Results
Identifying somatic mutations in blood samples. We reasoned
that low-coverage whole-genome sequencing of blood samples
routinely carried out in cancer genomics projects may be repur-
posed to detect CH. To this end, we obtained the DNA sequences
of blood and tumor samples (paired samples) from two large
cancer cohorts. The first cohort comprised 3785 paired samples
obtained from metastatic solid cancer patients (metastasis cohort)
sequenced at the whole-genome level29. The second included
8530 paired samples collected from primary solid tumor patients
(primary cohort) sequenced at the whole-exome level28. In both
cohorts, we focused only on donors with solid tumors because in
hematopoietic malignancies a full clonal expansion associated
with the cancer is present in the blood sample.

Although possible, the identification of somatic mutations
in the blood samples taken from the donors of these cohorts is
extremely challenging due to the low coverage employed to
sequence them. In this scenario, subclonal mutations are hard to
distinguish from random sequencing errors. Moreover, germline
variants may be falsely called somatic if a somatic mutations
calling is carried out on the blood sample alone. We reasoned that
this problem could be overcome using the second (tumor) sample
taken from the same patient as a reference of their germline
genome. A comparison of the variants identified in the blood
sample and the tumor sample with respect to the human
reference genome would then reveal the somatic mutations
specific to hematopoietic cells (Fig. 1a).

We thus–inspired by a previous approach to identify
early mutations in the development of the hematopoietic
system30–implemented a pipeline to systematically carry out this
“reverse” somatic mutation calling on the paired samples of the
two cohorts (Fig. 1b; Supp. Figure 1a; Supp. Note 1). First, blood
mutations are identified using a somatic mutation caller widely
employed in cancer genomics studies31, and a set of filters are
applied to guarantee that these are true somatic mutations rather
than germline variants or random sequencing errors. In the
metastasis cohort, this yields ~1 million candidate whole-genome
somatic mutations across 3785 blood samples. We call this
the full catalog of somatic mutations. Two further filtered sets are
obtained applying one of two criteria (Fig. 1b): mutations also
identified by a second widely-employed somatic caller32 (mutect
catalog), or mutations also identified as likely somatic by
MosaicForecast, an algorithm trained for this task using phased
mutations33 (mosaic catalog; Supp. Figure 1b). Importantly, the
reverse calling approach empowers the detection of variants in
known CH genes at values of VAF unattainable by a typical
calling of germline variants (hereafter, germline calling) on a
single whole-genome sequenced blood sample (Fig. 1c). Taking as
example three well known CH drivers (TET2, DNMT3A and
ASXL1), more than 30% of all mutations identified by the reverse
calling are missed by a germline calling. Across 15 well-known
CH driver genes34 37% of all variants are identified by the reverse
calling, but missed by the germline calling. More importantly,
91% (1566 out of 1714) of all variants that the germline calling
would identify across these genes are likely not somatic, as
evidenced by the fact that they are not identified by the reverse
calling (Fig. 1c). These two comparisons highlight that the reverse
calling attains higher sensitivity and specificity in the identifica-
tion of blood somatic mutations than the germline calling.

Somatic mutations in blood samples show evidences of clonal
hematopoiesis. Only variants shared by enough blood cells–those
that derive from the clonal expansion underlying CH– are
expected to appear above the limit of detection of the sequencing.
Therefore, the detection of these somatic mutations through the
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reverse calling approach is an evidence of CH in the samples of
both cohorts (Fig. 1b and Supp. Figure 1a).

We expect that these mutations exhibit a tri-nucleotide profile
characteristic of variants spontaneously appearing as HSCs
divide35. The identification of mutational signatures active in
the blood samples of the metastatic cohort yielded 6 distinct
profiles. Some of these are similar to signatures previously
associated with sequencing artifacts36 (Supp. Figure 1c, d; Supp.
Data file 1). Nevertheless, the most pervasive mutational
signature in the cohort shows a profile that is virtually identical
(cosine similarity = 0.96) to that of the known hematopoiesis
signature (Fig. 1d). This constitutes further evidence that a set of
somatic mutations contributed by hematopoiesis are present

across these healthy blood samples. Moreover, it is further
indication that CH is present across at least some of the donors.

We also expect that blood somatic mutations contributed by
HSC divisions increase with the age of the donors35,37. First, the
chance of appearance of a CH mutation (a mutation affecting a
CH driver), and in consequence the chance of the expansion of a
HSC clone, increases with age. Second, the number of
hematopoietic mutations in this HSC clone founder (which
become amplified due to the clonal expansion), also increases
with age, because hematopoietic mutations are acquired at a
steady rate with every HSC division. Third, the longer the time
elapsed between the beginning of the clonal expansion and
the obtention of the sample (which naturally increases with the

Fig. 1 The reverse calling approach to detecting blood somatic mutations. a Somatic mutations in blood are identified by comparing variants in the blood/
tumor paired samples from a cancer patient. We applied this approach to two cohorts of primary and metastasis tumors totalling 12,315 blood donors with
no known hematologic malignancy. b Flowchart of the reverse calling and filtering approach. Numbers correspond to mutations remaining in the dataset of
the metastasis cohort (full, mosaic or mutect) after each filtering step. c Somatic mutations identified by the reverse calling and a one-sample germline
variant calling across blood samples in the metastasis cohort (N= 3,785). Boxplots represent the distribution of VAF of variants affecting well-known CH
driver genes identified only by the reverse calling (gray), by both approaches (yellow) or only by the germline calling (green). In the boxplots, the box
represents the second and third quartiles, separated by a line indicating the median; the whiskers represent the minimum and maximum of the distribution
excluding outliers. Right-hand barplots illustrate the fraction of mutations affecting each gene that are identified only by the reverse calling approach. d Top,
activity of mutational signatures in the blood samples of donors across the metastasis cohort (N= 3,785) identified using the mosaic set; bottom,
mutational profile of tri-nucleotide probabilities of one of the signatures extracted from the cohort which highly resembles (cosine similarity= 0.96) that of
a signature active in healthy hematopoietic stem cells (HSCs). e Relationship between the number of mutations contributed by the HSC signature across
blood samples in the metastasis cohort and the (binned) age of their donors. The mean activity of the signature across donors of each bin is represented as
the dark blue line, with its standard deviation in light blue color. A significant positive correlation between the two variables is apparent. The p-value
corresponds to the Pearson’s regression coefficient. WGS whole genome sequencing, HMF metastasis cohort, TCGA primary cohort, WEX whole exome
sequencing, VAF variant allele frequency, CH clonal hematopoiesis, SBS single base substitution, HSC hematopoietic stem cell, cos cosine. Source data for
panels c, d and e are provided as Source Data files.
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donor’s age), the higher the VAF of the hematopoietic mutations,
and the likelihood that they rise above the limit of detection of
bulk sequencing. In agreement with this expectation, we observed
that the number of hematopoiesis mutations identified in the
metastasis cohort applying the reverse calling approach increases
with the age of the donor (Fig. 1e; Supp. Figure 1d illustrates the
relationship for all phased mutations). On the contrary, the
number of mutations contributed by the other signatures
extracted from the cohort does not increase steadily with age
(Supp. Figure 1e).

In summary, several lines of evidence provide support to the
reverse calling approach as an efficient method to identify
somatic mutations in blood samples of patients with CH when a
paired tissue sample is available.

Discovery of clonal hematopoiesis drivers. We reasoned that, as
is the case in the clonal expansion related to tumorigenesis25,38,
the mutational patterns of CH-associated genes should exhibit
signals of positive selection across donor blood samples. There-
fore, methods that have been developed to identify these signals
of positive selection in cancer25,38–41 could be applied to somatic
mutations in blood samples to identify the genes with significant
deviations from their expected patterns of mutations under
neutrality. Anchored in these methods, cancer genomics
researchers have set the goal of uncovering the compendium of
cancer driver genes. Analogously, exploiting these methods
empowers us to open a roadmap to the compendium of CH
driver genes.

To test this concept, we applied the IntOGen pipeline25 (which
runs seven state-of-the-art driver discovery methods42–48 and
combines their results) to blood somatic mutations in the primary
and metastatic cohorts (Fig. 2a). We filtered out blood somatic

mutations with VAF above 0.4, to minimize the risk that falsely
called mutations enter the discovery process (Supp. Note 1). Each
of these methods identifies one or more signals of positive
selection (e.g., abnormally high recurrence of mutations,
unexpected clustering of mutations in certain regions of the
gene, or exceptionally high functional impact of the observed
mutations) in the mutational pattern of genes across samples
(Fig. 2a and Supp. Note 1). False positive genes identified by a
particular method are filtered out by the combination of their
outputs through a voting-based approach25. Finally, 15 genes that
are significant according to the combination approach are filtered
out as they are deemed suspicious after a careful vetting that
considers gene expression across HSCs, somatic hypermutation
processes, common sequencing artifacts and frequent false
positive genes of the driver discovery process (Supp. Note 1).
We also applied the IntOGen pipeline to the somatic mutations
identified across 24,146 targeted-sequenced paired blood/tumor
samples17,49 (targeted cohort) in which a mutation calling
filtering variants in common with the tumor sample was carried
out (Supp. Note 1).

The lists of CH drivers are composed of 26 genes identified in
the metastasis cohort, 21 genes from the primary cohort, and 43
in the targeted cohort (Fig. 2b; Supp. Data files 1 and 2). All
fifteen well-known CH-related genes, obtained from Fuster
et al.34 (CH known drivers) are identified. Validation of the
involvement of 26 other genes (such as ATM and CHEK2) comes
from the fact that they have been identified as drivers of
hematopoietic malignancies17 (Fig. 2b). We did not find previous
reports of involvement of the remaining 23 genes, some of which
(e.g., ABL2, FOXP1 and TP63) are known cancer drivers50, in CH.
Nevertheless, several lines of evidence gathered across the
literature (summarized in Supp. Data file 2) support the
involvement of the majority of them in CH. We –as others
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before– observe an important overlap between CH drivers and
known cancer drivers. Mutations affecting these genes and
conferring mutant HSCs a growth davantage are likely to be
under positive selection in CH development, similarly to their
role in tumorigenesis. While much less is known of the potential
role of purifying selection in the evolution of CH, a recent report
suggests that it is probably not negligible51.

In summary, the identification of signals of positive selection in
the pattern of somatic mutations of the genes across blood samples
of individuals without hematologic disease is an effective way to
discover CH-related genes, it recovers most known CH genes and
has the power to discover others. This compendium–the snapshot
presented in this work–comprises the genes identified across
the primary, the metastasis and the targeted cohorts and is
available in Supplementary Data file 2 and through https://www.
intogen.org/ch.

The drivers of clonal hematopoiesis. To characterize the dis-
covered CH-related genes, we probed the association of their
mutations with several physiological and clinical variables rele-
vant to the development of CH (Fig. 3a, b). As previously
reported17, across patients in the metastasis cohort, we found
that the emergence of CH is positively influenced by age and
by the exposure to cytotoxic (but not non-cytotoxic) antic-
ancer treatments (Fig. 3a). This positive association with age is
maintained when mutations in CH-related genes that are not in
the list of well-known CH drivers across the primary cohort are
analyzed as a group (Supp. Figure 2a)–and some of them, indi-
vidually–, supporting the involvement of these genes in the
development of age-related CH. We also recapitulated the prior
knowledge that mutations in certain genes, such as PPM1D and
CHEK2 are positively associated with prior exposure to platinum-
based drugs (Fig. 3b). Indeed, mutations in a group of three
DNA-damage response genes (TP53, PPM1D, CHEK2) appear
significantly associated with the exposure to platinum (Fig. 3b),
probably because HSCs carrying them possess a better chance
at survival than others when exposed to these DNA-damaging
chemotherapeutics2. When the representation of cancer types
across donors in the primary cohort is taken into consideration, a
strong significant relationship between thymomas and CH cases
is apparent. This could be related with the appearance of auto-
immunity mediated by the clonal expansion of T-cells that
is observed in thymomas52. A weaker negative association with
cases of breast and bladder cancer is also observed. In any event,
the detection of CH showed no significant association with the
majority of malignancies represented in the primary cohort
(Supp. Figure 2b), indicating that CH frequency in this cohort
likely reflects the underlying risk of CH in the general population.
There are no apparent differences in the distribution of VAF of
the somatic mutations affecting known CH drivers, known
myeloid drivers and other putative CH drivers across the primary
and metastasis cohorts (Supp. Figure 2c).

We then asked whether the pattern of CH-related mutations of
known cancer genes differ from that of their oncogenic mutations
(Fig. 3c and Supp. Figure 3a). In the case of DNMT3A, one of the
main hotspots of CH-related mutations (affecting residue 882)
also appears recurrently mutated across tumors, while two other
hotspots (residue 635 and 736) seem to be more specific to CH. In
the case of TP53 mutations in both CH and cancer cases appear
clustered within the DNA binding domain. The distribution of
mutations of PPM1D is very similar across CH and cancer cases.
In both scenarios, PPM1D truncating mutations close to the
C-terminal yield a protein product lacking a degron, which is thus
abnormally stable and results in the down-regulation of DNA-
damage response and the proliferation of cells in the presence of

such damage53. Mutations across CH and cancer cases are also
very similarly distributed along the gene in the case of MYD88
(with one dominant hotspot), but their distributions differ in
IDH2. The pattern of mutations observed in these CH genes
across the primary and metastasis cohorts resembles those
obtained across the targeted cohort (Supp. Figure 4a). The
distribution of mutations along the sequence of other genes in the
compendium is shown in Supplementary Figure 3a.

While many CH drivers exhibit similar frequency of truncating
mutations across both CH and myeloid cancer cases, in some, a
clear enrichment (TET2, PPM1D) or depletion (NOTCH1,
ARID2) of truncating mutations is observed across CH (Fig. 3d).
Interestingly, the rate of truncating mutations in CH driver genes
across donors of the primary and metastatic cohorts is very
similar to that observed in the targeted cohort (Supp. Figure 4b).
The case of NOTCH1, mutations of which are related with the
development of hematopoietic malignancies, such as ALL and
CLL, could indicate that different selective constraints underlie
the development of CH and these malignancies54. (The low share
of truncating mutations of NOTCH1 is observed across the three
cohorts analyzed; Supp. Figure 4b.) Overall, the observed
differences between CH and cancer may have their origin not
only in different evolutionary constraints in the development of
both processes, but also in the disparate array of mutational
processes active in healthy blood and tumors.

Detecting clonal hematopoiesis across ~12,000 donors. We
then identified all patients across the primary and metastasis
cohorts with a potential protein-affecting somatic mutation in
one or more genes in the compendium of CH drivers (Fig. 4a).
The rate of mutations of the most frequently mutated CH genes
varies between both cohorts (Fig. 4b), likely reflecting differences
in mutational processes and evolutionary constraints related to
CH emergence. The most frequent mutational hotspots affect
JAK2 and DNMT3A (Fig. 4c). Interestingly, while more than
three-quarters of the patients with mutations affecting CH drivers
across both cohorts present only one mutation affecting a CH
gene, more than one are identified in 18% (Fig. 4d). These co-
occurring mutations affect some CH-related genes more fre-
quently (Fig. 4e; Supp. Fig. 5a) with FOXP1, SF3B1 and PPM1D
among the genes with most frequent co-mutations.

The range of VAF of the mutations in these genes reveals a
wide spectrum of clonal expansion across CH cases (Supp.
Fig. 5b). The rate of hematopoiesis mutations –that is, the activity
of the hematopoiesis mutational signature– per year of age
detected in patients with an identified mutation in a CH-related
gene is significantly greater than that detected across patients
without an identifiable CH-related mutation (Fig. 4f; Supp.
Fig. 5c). The explanation for this finding is that hematopoietic
mutations are more likely to appear above the threshold of
detection of bulk sequencing the greater the CH clone. In samples
carrying a mutation in a bona fide CH driver, it is more likely that
this clone has expanded enough to identify a set of hitchhiking
mutations through the reverse calling. Conversely, among
samples without a CH-related mutation it is more likely that
the clone is smaller or not present at all (detected hematopoietic
mutations may be false positives of the reverse calling). In either
case, the number of identified mutations is expected to be smaller
across these patients.

We then set out to detect all CH cases across the metastasis
(Fig. 4g) and primary cohorts (Supp. Fig. 5c–e). First, we
determined that 141 CH cases in the metastasis cohort would
be detected just by identifying somatic variants affecting genes in
the list of 15 known CH drivers on the bases of the blood
germline calling (4% of the patients in the metastasis cohort).
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Using the reverse calling to identify somatic variants affecting
these genes would add 99 CH cases (ascending to 7% of the total
number). The addition of all CH-related genes to the compen-
dium in this paper identifies 110 further CH cases (up to 10%),
with 59 (ascending to 11%) more added if the set of CH driver
genes identified across the targeted cohort is also considered.

Across donors in the primary cohort, 27% are detected as CH
cases following the same criteria (Supp. Fig. 5d,e).

Finally, we assumed that any sample with a rate of
hematopoiesis mutations per year above the median of the
distribution of values observed for samples carrying CH-related
mutations is a case of CH, even in the absence of identified driver
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mutation (Fig. 4f). Thus, 562 (totalling 15%) blood samples in the
metastasis cohort with no detectable CH-related mutations
exhibit a rate of hematopoietic mutations comparable to that of
samples with a mutation in a bona fide CH driver (Fig. 4g). We
reasoned that at least some of these CH cases–with an appreciable
clonal expansion–could be driven by mutations affecting yet
unidentified CH drivers or may have resulted from expansion of
HSCs due to non-genetic mechanisms.

Still, some CH cases may be driven by noncoding mutations.
Whole-genome sequenced blood samples could in principle be
employed to identify such non-coding driver mutations. This is
not an easy task, as demonstrated by the search for non-coding
cancer driver events55,56. The possibility is nevertheless opened
by the reverse calling demonstrated here to set out to identify
signals of positive selection in the observed pattern of mutations
of different non-coding genomic elements. This is demonstrated
with the results of OncodriveFML42, MutSigCV_NC56 and
DriverPower57 on mosaic mutations in non-coding genomic
elements (Supp. Fig. 6a and Supp. Data file 3). The results of such
analyses need to undergo a rigorous vetting process, as the
distribution of mutations under neutrality in non-coding regions
is still very difficult to model58. Alternatively, the functional effect
of mutations overlapping particular non-coding regulatory
elements, such as the binding site of a transcription factor in an
enhancer element, may be assessed. For example, Supplementary
Figure 6b illustrates the potential disruption of a binding site for
RARA in an enhancer element regulating TET2 according to
geneHancer59. Supplementary Figure 6c (see more examples in
Supp. Data file 4) presents the potential creation of a SALL4
binding site in an enhancer regulating the expression of GNAS.

Discussion
The extent of CH across patients with no known hematologic
phenotype is currently not well gauged, although population
studies have revealed that it is probably higher than anticipated a
few years ago2,3,13,14,16,21,22. Understanding this extent and
comprehensively identifying CH across healthy individuals is key
to predicting potential future health hazards. One stepping stone
in this path is the identification of all genes with mutations
capable of driving CH. Moreover, the identification of all CH-
related genes is a requisite to understanding the mechanisms
behind this process and its relationship with disease conditions,
as has been done for mutations affecting chromatin remodelling
and DNA damage response genes classically associated with the
condition2,16,17,53. In this regard, the discovery of CH-related
genes across populations of various ethnicities and with different
lifestyles, will allow us to understand the different constraints
faced by hematopoietic cells in their evolution.

The main contribution of this work to the study of CH is the
demonstration that cancer donor cohorts may be successfully
repurposed–using tools developed for cancer genomics–to
unbiasedly identify CH driver genes. First, we demonstrate that
the existence of a second non-blood sample of the same donor
refines the identification of somatic mutations in a blood sample,
even if this is sequenced at low depth. The reverse calling
implemented and tested here identifies blood somatic mutations
with more sensitivity (across all discovery CH drivers) and more
specificity (owing to the tumor paired sample) than a regular
germline calling on a single blood sample, as done by previous
studies22. (Importantly, the identification of mutational sig-
natures active in a blood sample that may be the result of
sequencing artifacts calls to caution when interpreting these blood
mutations.) Second, we show that CH-related genes may be
systematically and unbiasedly identified through the repurposing
of tools aimed at identifying genes under positive selection in
tumorigenesis.

The compendium of CH drivers that the combination of these
two elements brings within reach will improve the identification
of CH across healthy individuals. Importantly, some CH cases
may be driven by larger chromosomal events, such as copy
number changes, rather than by (or in addition to) point
mutations60. While the size of the cohorts employed here limits
the power of the discovery of CH drivers, and the mechanistic
inferences that can be made from them, we envision that the
application of this rationale to large tumor sequencing cohorts
will contribute to expanding the list of CH drivers. This effort
would benefit–as is apparent from the previous paragraph–from
deeper sequencing of the reference blood samples in cancer
genomics studies. Moreover, the evidence that CH may be present
in a substantial number of samples in the absence of mutations of
genes in the compendium underlines the pressing need to extend
the discovery of CH drivers. In this regard, an analysis that
repurposes many more tumor/blood paired samples obtained in
the context of cancer genomics projects following the approach
demonstrated in this paper is of paramount importance.

The experimental validation of the mutations observed in the
genes of the compendium is out of the scope of this work.
Nevertheless, before the compendium of mutational CH drivers
may be translated into epidemiological studies and, in particular,
into interventions aimed at preventing the effects of CH, the
implications of mutations affecting CH driver candidates need to
be established through combinations of in vitro, in vivo and
population studies.

One clear benefit of a compendium produced via a systematic
driver discovery effort with respect to the identification of
recurrently mutated suspicious genes is that it will consider only
those with clear signals of positive selection. Therefore, mutated

Fig. 3 The drivers of clonal hematopoiesis. a Logistic regression showing the relationship between several factors and the development of CH across 3121
donors with treatment annotation in the metastasis cohorts. For this analysis, a donor is considered to suffer CH if they bear a nonsilent mutation in a CH
gene discovered in the analysis of the primary and/or metastasis cohorts. The age of the donors in these cohorts as well as their prior exposure to
cytotoxic therapies significantly increase their likelihood of presenting clonal hematopoiesis. The bars represent the 95% confidence interval of the
regression coefficients. P-values correspond to the results of the logistic regression. b Logistic regression showing the relationship between the presence of
mutations in several genes and the prior exposure of donors in the metastasis cohort to platinum-based therapies across 3121 donors with treatment
annotation in the metastasis cohort. Mutations in CHEK2 and PPM1D are significantly more likely detected across platinum-exposed donors. The bars
represent the 95% confidence interval of the regression coefficients. P-values correspond to the results of the logistic regression corrected by multiple
tests carried out separately for different treatments. c Distribution of blood somatic mutations affecting seven genes selected from the CH drivers
compendium across donors of the primary and metastasis cohorts (above the horizontal axis) in comparison to those observed in the same genes across
28076 tumors analyzed by the IntOGen resource25 (below the horizontal axis). d Relationship between the fraction of truncating variants identified in
genes with 10 or more mutations across blood samples in the primary and metastasis cohorts and across several cohorts of tumors25. The mutations in
tumor samples have been obtained from the IntOGen resource. The p-value corresponds to the Pearson’s correlation coefficient. Source data for panels
a, b, c, and d are provided as Source Data files.
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genes that are passengers to the CH process will not be con-
sidered, even if they are known to be involved in tumorigenesis in
solid tissues (see examples in Supp. Note). This, in turn, will
result in a more accurate identification of CH cases across donors.

Although a set of CH-genes common to both cohorts is
apparent from the discovery, a plethora of genes specific to each
of them also appears. This is probably due to differences in both
cohorts: primary vs metastatic tumors, with many donors in the

latter having been exposed to chemotherapies. Mutations in some
CH-related genes are indeed known to provide an advantage to
hematopoietic cells under exposure to certain cytotoxic treat-
ments. Other aspects, such as the different composition of both
cohorts, in terms of human populations and tumor types repre-
sented may also have a bearing on the differences in CH-related
genes discovered in each61. Further studies are needed to clarify
this point, which the availability of the discovery presented here
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Fig. 4 Clonal hematopoiesis across 12,000 donors. a Blood somatic mutations in the 20 most recurrently mutated genes in the compendium across the
metastasis (top) and primary (bottom) cohorts. b Frequency of mutation of CH drivers across the metastasis and primary cohorts. c The 16 most
recurrently mutated hotspots in genes in the CH drivers compendium. d Number of donors in the two cohorts with mutations in genes in one or more CH
drivers. e Frequency of co-occurring mutations in genes in the CH drivers compendium. Left, Jaccard’s index; right, frequency of gene pairs co-mutation.
f Distribution of the rate of hematopoietic mosaic mutations per year (total number of HSC mutations divided by age) across (left) donors bearing a
mutation in genes in the CH drivers compendium (N= 420) and (right) donors with no detected mutations in any of these genes (N= 3,247). The
horizontal dashed line extends out of the median of the distribution of rate of mutation per year of age of the donors with mutations in at least one CH
gene, representing the donors in the second group that are considered to be cases of clonal hematopoiesis (see next panel). In the boxplots, the box
represents the second and third quartiles, separated by a line indicating the median; the whiskers represent the minimum and maximum of the distribution
excluding outliers. The two distributions were compared using the two-tailed Wilcoxon-Mann-Whitney test. g Number of donors (above the bars) in the
metastasis cohort with clonal hematopoiesis recognizable using different criteria (cumulative bars). First, donors with mutations (detected in the germline
calling) in any of the 15 known CH genes; second, donors with variants in known CH genes identified in reverse calling; third, donors with mutations in CH
genes discovered across the primary or metastasis cohorts; fourth, donors with mutations in CH genes discovered in the targeted cohort; fifth, donors with
no mutation in any gene within the compendium of CH drivers, but with more hematopoiesis mutations per year of age of the donor than the median rate
of hematopoiesis mutations across donors in the four previous groups. Source data for panels a, b, c, d, e, f and g are provided as Source Data files.
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now makes possible to undertake. Importantly, the fact that some
CH genes reported in the compendium are not common across
hematopoietic malignancies suggests that at least in some cases,
CH and hematopoietic tumors may present totally different
evolutionary paths. Still, CH cases underpinned by mutations in
these genes may have known (e.g., cardiovascular disease or
hypertension) or novel long-term effects on the health of carriers.

The unbiased snapshot of the compendium of CH drivers
identified has a series of implications for both CH and cancer
research. It may be directly employed in the research of the
molecular mechanisms underlying CH in different scenarios. The
list of 64 genes discovered can also be employed to refine the
identification of the condition across human donors. Such donor-
wise identification of CH would require the analysis of a single
blood sample, identifying variants affecting the genes in the
compendium. An important warning arising from this work is
that not all blood mutations affecting cancer driver genes play a
role in CH. Thus, the results from sequencing panels that include
genes without signals of positive selection in CH need to be
carefully interpreted. In the cancer research field, our results
support the idea that sequencing cell-free DNA isolated from
blood samples with the aim of identifying tumor mutations in
circulating genetic material may produce false-positive results
caused by the detection of CH mutations62,63.

Whereas the compendium of CH drivers is a prerequisite for
the detection of CH across individuals, a second necessary step
consists in evaluating the capability of individual mutations in
CH drivers to provide a selective advantage to HSCs. If only
mutations with experimentally validated effect on CH or identi-
fied through epidemiological studies are considered as CH dri-
vers, the prevalence of CH is underestimated. On the other hand,
taking into consideration all mutations affecting CH drivers
probably leads to an overestimation of CH. We envision that the
approach of in silico saturation mutagenesis of genes involved in
tumorigenesis recently developed by us will become useful in this
task64.

Methods
Sequences of samples from the primary and metastasis cohorts. The
sequences of solid tumors and their paired blood samples (BAM files) were
obtained from the Genomic Data Commons (GDC; https://portal.gdc.cancer.
gov65) portal upon dbGAP request (phs000178.v11.p8 dataset; https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8) for the
primary cohort (N= 8530) and from the Hartwig Medical Foundation (HMF;
https://www.hartwigmedicalfoundation.nl29) repository, upon request to HMF for
the metastatic cohort (N= 3785).

HMF gemline calling. The germline variant calls carried out using the
HaplotypeCaller66 for the metastasis cohort were obtained as part of the HMF
dataset29. All mutations, independently of the quality filters, were used to compare
the sensitivity of this germline calling with the reverse calling developed in the
paper (see below). This produces very conservative estimations.

Detecting somatic mutations in blood samples across the primary and
metastasis cohort (reverse calling). The variant calling was carried out using the
Google Cloud Platform (metastasis cohort) and our in-house computer cluster
(primary cohort). Briefly, the matched blood and tumoral BAM files–masked and
deduplicated using GATK66–of 3785 whole-genome samples (metastasis cohort)
and 8530 whole-exome sequenced samples (primary cohort) were obtained as
described above. The variant calling was carried out using Strelka231 (employing
default parameters) with the blood sample as the tumoral input and the tumor
sample as control (reverse calling). In the case of patients with more than one
tumor sample, one of them was randomly selected and included in the calling. All
variants with two or more supporting reads matching the caller PASS filter and
with VAF < 0.5 were kept. Mutations in lowly mappable regions as defined by the
DUST algorithm67 (k= 30) and UMAP68 (36-kmers) were excluded. Contiguous
variants were merged into double-base substitutions. Variants with greater fre-
quency across the cohorts than the DNMT3A R882H or JAK2 V617F hotspot in a
cohort-specific Panel of Normals, or PoN (obtained from GDC and HMF for the
primary and metastasis cohorts, respectively) and in gnomAD69 v2.1 were
removed. This was equivalent to discarding variants present in these datasets with a

minor allele frequency greater than 0.002 in PoN TCGA, 0.008 in PoN HMF and
0.0003 in gnomAD v2.1. Additionally, common SNPs defined by the
snp151Common UCSC track70 and dbSNP71 were excluded. Mutations within
segmental duplications, simple repeats and masked regions as defined in UCSC
tracks were also removed. Finally, samples with the mutation count above the 97.5
percentile of the mutation burden across the cohort were deemed unreliable and
excluded for further analyses. We call the set of variants obtained after the
application of these filters the full set.

Two more conservative subsets were generated from the full set in the primary
and metastasis cohorts. The first (mutect set) comprises only variants that were
also identified by Mutect232 (only for the metastasis cohort). Mutect2 was executed
with the following parameters:

gatk --java-options “-Xmx4g” Mutect2 -R {} -I {} -tumor {} -I {} -normal {}
--germline-resource {} --panel-of-normals {} -L {} -O {} --QUIET

The MergeMutectStats and FilterMutectCalls commands were then run
subsequently.

Second, we applied MosaicForecast (https://github.com/parklab/MosaicForecast
v.0.0.1)34, a software designed to phase mutations to polymorphisms with the aim
of identifying somatic mutations with very low VAF and also of predicting
mosaicism for the unphased ones with a random forest classifier. As a result, we
obtained a subset of mosaic-phased mutations, and a subset of mutations likely to
be somatic (mosaic set). In the primary cohort, only the mosaic set was obtained
through filtering of the full set.

Blood somatic mutations in targeted-sequenced samples. Somatic blood
mutations identified across 24,146 targeted-sequenced blood samples17 were
directly obtained from cBioportal (https://www.cbioportal.org/)72.

Detection of mutational signatures. To identify mutational signatures active in the
metastasis cohort, we employed the mosaic set and applied a non-negative matrix
factorization approach73, using the SigProfilerJulia (bitbucket.org/bbglab/sigprofi-
lerjulia) implementation prepared in our lab74 of the algorithm developed by Alex-
androv et al.73. Only samples with more than 100 mutations were included in the
analysis. The resulting signatures were then compared to the PCAWGCOSMICV336

catalog using the cosine similarity measure. No signature was extracted from the
mutations identified in the primary (exome-sequenced) cohort due to their low
numbers.

Whole-genome somatic variants of 23 blood samples from healthy donors of
different ages were obtained upon request to the authors of Osorio et al.35. The
Hematopoietic Stem Cell Signature (HSC signature35) was computed as the average
number of mutations observed across the 23 healthy blood samples in each of the
96 tri-nucleotide channels normalized by the total number of mutations observed.

Discovering the compendium of CH driver genes. The discovery of genes with
signals of positive selection was carried out using the IntOGen pipeline25. Briefly,
the IntOGen pipeline implements seven complementary methods to identify sig-
nals of positive selection in the mutational pattern of genes and integrates their
outputs. The pipeline first pre-processes the somatic mutations across samples to
filter out hypermutator samples, map all mutations to the GRCh38 assembly of the
human genome and retrieve information necessary for the operation of the seven
driver detection methods. Then, the methods are executed and their outputs
combined using a weighted voting approach with weights adjusted depending on
the credibility awarded to each method. Finally, in a post-processing step, spurious
genes that result from known artifacts are automatically filtered out (see Supp.
Note 1). The version of the pipeline used in this study is described at length at
www.intogen.org/faq and in Martinez-Jimenez et al.25.

The IntOGen pipeline was run on the full set, the mutect set (metastasis cohort)
and the mosaic set of mutations independently. Subsequently, genes that were
identified as having signals of positive selection only in the full set were required to
possess extra evidence (either identified by the pipeline run on a filtered set, or
included within the Cancer Gene Census50) to be included in the final list. To
compare CH-related genes according to this unbiased discovery to the prior
knowledge on the genetics of this process, we used i) a list of genes involved in CH
(ground truth of known CH genes34), ii) genes known to drive myeloid
malignancies17,21, and iii) all genes annotated in the Cancer Gene Census50.

Only a subset of the methods (capable of building a background mutations model
from the segment of the exome probed in the panel) were run on the set of somatic
mutations identified in the blood samples of the targeted cohort. OncodriveCLUSTL,
OncodriveFML, dNdScv (without genome-wide mutation rate covariates, as in
ref. 75), and HotMaps were run through the IntOGen pipeline, and their individual
outputs collected. Significant genes (with a FDR cutoff of 0.01) in the analysis of any
method (that is, a union of the lists) were considered CH drivers in this cohort.

The final snapshot of the compendium of CH driver genes was integrated by the
union of the lists of genes identified across the three cohorts.

Identification of blood samples with clonal hematopoiesis. To identify indivi-
dual donors in the metastasis cohort with clonal hematopoiesis, we considered all
mutations that putatively affected the protein sequence of any gene discovered as
CH-related across the cohort in the present study (separated in the different
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categories presented in Fig. 4g). We then computed the median rate of hemato-
poiesis mutations per year of age across the blood samples of these donors. All
donors with no mutation in a discovery CH gene but with a rate of hematopoiesis
mutations per year of age greater than this median value were also considered as
CH cases (the final group in Fig. 4g).

Logistic regressions. Inspired in a previous work17, we used multivariable logistic
regression to assess the association between clonal hematopoiesis and therapy, age
and gender. We also used it to compute the association between mutations in
specific genes (or groups thereof) and the exposure of donors to specific che-
motherapeutic drugs. Multiple test correction (Benjamini-Hochberg FDR) was
used for gene-specific analyses.

Identifying expressed CH-related genes. We computed the distribution of the
expression of each gene across bone marrow CD34+ cells obtained from The Gene
Expression Omnibus (GSE9681176). These cells are phenotypically the closest to
the HSCs. We deemed a gene expressed across the cells when the maximum value
of its distribution was above 15 fpkm.

Comparison of blood somatic mutations with tumor mutations. The distribu-
tion of mutations in CH driver genes observed across blood samples from the
primary and metastasis cohorts was compared to that observed across hemato-
poietic malignancies in IntOGen25. ClinVar pathogenic and likely pathogenic
variants were obtained from ref. 77.

Non-coding blood somatic variants in CH. Three state-of-the-art methods
designed to detect positive selection in the mutational patterns of non-coding genomic
elements (OncodriveFML42, DriverPower57, MutSigCV_NC55) were run with default
parameters. The non-coding genomic elements were obtained from the PanCancer
Analysis of Whole Genomes (PCAWG)26. A FDR cutoff of 0.2 was applied.

The set of transcription factor (TF) binding motifs was obtained from ref. 78.
Models with A,B and C qualities were kept. Only TF expressed in CD34+ cells
according to GSE96811 were allowed in the analysis. H3K27ac ChIP data for
CD34+ samples was obtained from ENCODE79. Enhancer element coordinates, as
well as their defined target genes, were retrieved from geneHancer59 via the UCSC
genome browser. Briefly, mutations intersecting with H3K27ac peaks and an
enhancer defined by geneHancer were expanded 15 bp upstream and downstream.
Then, using FIMO80 the binding affinity of these sequences was determined for
both the mutant and the reference allele. When the significance of the binding was
less than 0.0001 in the reference but not in the mutant, we labeled the instance as
disruption (and creation, if the case is the opposite). We retained only results for
which the gene closest to the disruption/creation of a TF is a CH driver.
Visualization of the genomic context of the mutations represented in
Supplementary Figure 6 was performed using pyGenomeTracks81.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data to carry out the reverse calling of blood somatic mutations (and
germline variants across donors) is available via dbGaP (TCGA; phs000178.v11.p8) and
HMF (https://hartwigmedical.github.io/documentation/data-access-request-application.
html, version DR110). Access to these protected data must be requested from TCGA and
HMF. The procedure and conditions to access these datasets are detailed in the sites
referenced above. Gene expression in bone marrow CD34+ cells are available at The
Gene Expression Omnibus (GSE96811). H3K27ac ChIP data for CD34+ samples are
available from ENCODE ([https://www.encodeproject.org/experiments/ENCSR891KSP/
]). Mutations in CH drivers across hematopoietic malignancies are available from
IntOGen [http://www.intogen.org/ch]. Disease-related variants are available from
ClinVar [https://ftp.ncbi.nlm.nih.gov/pub/clinvar/]. We have prepared flat files
containing the set of blood somatic mutations identified in both datasets and have made
them available through HMF and dbGaP following the same procedure to access the
original datasets. HMF blood somatic mutations are available as part of the data access
request to HMF (see above). TCGA blood somatic mutations are available through
dbGaP (phs002867) to researchers who have obtained permission to access protected
TCGA data. Panel-sequenced data from the IMPACT targeted cohort is available
through cBioPortal ([https://www.cbioportal.org/study/summary?id=msk_ch_2020]).
The compendium of CH drivers is available via www.intogen.org/ch. Other datasets
employed in specific analyses are described in prior sections of these Methods and in
README files within the code repository. Source data are provided with this paper.

Code availability
The programs required for the variant calling are all open source, as is the IntOGen
pipeline (available at www.intogen.org), and the programs used in the analysis of CH

non-coding mutations (listed in the previous section). All other analyses described in the
paper were implemented ad hoc in Python. A code repository has been prepared with
scripts employed in the reverse calling and jupyter notebooks required to reproduce all
downstream analyses and the figures of the paper. This repository is available at [https://
github.com/bbglab/ch-drivers]. A Zenodo repository pointing to this code repository has
also been set up82 (doi: 10.5281/zenodo.6521953).
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