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Topology mediates transport of nanoparticles
in macromolecular networks
Xiaobin Dai1, Xuanyu Zhang1, Lijuan Gao1, Ziyang Xu1 & Li-Tang Yan 1✉

Diffusion transport of nanoparticles in confined environments of macromolecular networks is

common in diverse physical systems and regulates many biological responses. Macromolecular

networks possess various topologies, featured by different numbers of degrees and genera.

Although the network topologies can be manipulated from a molecular level, how the topology

impacts the transport of nanoparticles in macromolecular networks remains unexplored.

Here, we develop theoretical approaches combined with simulations to study nanoparticle

transport in a model system consisting of network cells with defined topologies. We find that

the topology of network cells has a profound effect on the free energy landscape experienced

by a nanoparticle in the network cells, exhibiting various scaling laws dictated by the topology.

Furthermore, the examination of the impact of cell topology on the detailed behavior of

nanoparticle dynamics leads to different dynamical regimes that go beyond the particulars

regarding the local network loop. The results might alter the conventional picture of the physical

origin of transport in networks.
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Topology is one of the most important concepts in modern
physics1,2. It plays a critical role in dictating the properties
of many materials, e.g., topological electronic materials3,4,

mesoscopic photonic materials5,6, and macroscopic mechanical
lattices7,8, etc. Much of our knowledge about the topology-
mediated behaviors is based on the strong correlation materials
where the interaction energy dominates the kinetic energy in
controlling the particle transport9. However, the topological
effects on the particle transport in soft materials, where entropy
contribution can overwhelm the interaction energy, have been
scarcely understood.

On the other hand, macromolecular networks are among the
most universal structural bases of soft matter systems, ranging
from commodity materials10–12, such as elastomers, gels, and soft
actuators, to biological materials13–15, such as the extracellular
matrix, mucus, and tumor tissues. As a consequence, diffusion
transport of nanoparticles in confined environments of macro-
molecular networks is a fundamental problem underlying many
important physical processes and biological responses, for
example, from purification in porous materials16 to pathogen
infection10,17,18, drug release19,20, and human evacuation
behavior21. One critical factor dictating network properties is the
topological structure22–24, which can be characterized by degree
n, functionality k and genus g, as schematically shown in Fig. 1a.
The past decades have witnessed substantial progress in the
understanding and manipulation of topological structures of
macromolecular networks, resulting in well-controlled and even
programmable network topologies25–27. Although the topology of

networks and defects has been demonstrated to be important in
many phenomena and theories22,23, topological aspects of
nanoparticle transport dynamics remain unexplored.

The classical pictures of the dynamics of nanoparticles confined in
macromolecular networks have mostly been built on the free energy
barrier of the local network loop12,28,29. In contrast, elucidating the
physical origin of topological effects requires a full view of the free
energy landscape sculpted by the topology and thereby its impact on
the nanoparticle dynamics30,31, which, however, has thus far been
lacking. Experiments do not yet have the resolution to detect the free
energy landscape experienced by a nanoparticle in a macromolecular
network. Therefore, theoretical approaches that explicitly quantify
the free energy landscape around the particle and explore the con-
sequences for the dynamic behavior play a vital role.

To understand the nature of topological effects on particle trans-
port dynamics, here, we develop a theoretical framework to provide a
rigorous analysis of the relation of the free energy landscape and
diffusive dynamics to the topological structure for a particle in net-
work cells of permanently cross-linked macromolecular networks. In
combination with simulations, we demonstrate and explain the
profound effects of network topology on particle diffusion. The
theoretical models reveal distinct scaling regimes regarding the free
energy landscape and particle dynamics, dictated by the topology.

Results
Network topology and free energy landscape. We first develop a
theoretical model by coupling the particle effect into the theory of
macromolecular-network elasticity to determine the free energy
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Fig. 1 Detailed overview of network topology and the free energy landscape. a Schematic representation of a particle in a macromolecular network with
topological parameters: genus g, degree n, and functionality k. b Schematic diagram of the scaling parameters of a network cell at g= 4, where arrows
shown in yellow, green and red denote respectively inradius rin, midradius rmid, and circumradius rout of the cell from different views. c Schematic
representation of macromolecular network cells with different topologies. d Isosurfaces of the free energy change ΔF of a particle in networks with different
topologies marked at the right bottom, where the scaled diameter d/ax= 1.4. The color bar on the top right corner encodes the value of ΔF.
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landscape experienced by the nanoparticle. Full technical details
on the simulation model are described in the Methods and
Supplementary Information I. To establish clear quantitative
trends, we propose a way to examine the topological effects by
designing topology network cells that resemble a series of Platonic
or Archimedean polyhedra, in which the strands and cross-links
of the elementary network constitute the edges, with average
mesh size ax defined as the root-mean-square end-to-end distance
of the strands, and vertices of polyhedra (Fig. 1b, c). Given that
these polyhedral have regular geometries and are homeomorphic
to spheres, the topologies of corresponding network cells can be
simply determined by g. Figure 1c shows the representative net-
work cells with increasing g. Furthermore, as all Platonic or
Archimedean polyhedra have an inscribed sphere tangent to the
faces, a midsphere tangent to the edges, and a circumscribed
sphere through the vertices (Fig. 1b), the normalized radii of these
spheres, i.e., rin/ax, rmid/ax and rout/ax, allow scaling parameters to
characterize the cell topologies and can be given based on g and n,
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where θ represents the dihedral angle between any two faces.
Figure 1d and Supplementary Fig. S1 show constant free energy

isosurfaces for a nanoparticle, with diameter d/ax= 1.4, in some
representative network cells corresponding to Fig. 1c. Despite the
same sizes of both the nanoparticle and network mesh, the different
topologies of these cells dramatically change the free energy
landscape experienced by the nanoparticle. Depending on g, the free
energy landscape exhibits symmetry but is obviously anisotropic,
which suggests diverse free energy barriers for nanoparticle
diffusion across different cells, in stark contrast to the certain free
energy barrier of the local network loop12,28,29. Nevertheless,
disregarding the cell topology, the free energy is lowest in the core
region of each cell, and there is a local free energy minimum at the
center of each face; the connection of the two free energy minima
yields the minimum energy path (MEP)32 for the transition of a
nanoparticle from the cell to its neighbor (see Supplementary
Information II for more information).

Topology-dictated scaling regimes of free energy change. To
delineate the free energy experienced by a nanoparticle in a
network cell, we examine the MEP for nanoparticles with various
sizes at g= 6. For this purpose, one MEP is chosen as the z axis
with its origin positioned at the cell center (see the inset of
Fig. 2a). Figure 2a shows the profiles of the free energy change,
ΔF(z) = F(z) − F(0), with the zero-point free energy F(0), upon
increasing z from the origin to the face center for various d in the
log-log scale. To corroborate our theoretical results, we also
perform Monte Carlo (MC) simulations, and the MC results are
compared to the theoretical results for some representative par-
ticle sizes in Fig. 2b, where the standard error is estimated to be
within 0.3kBT, with the Boltzmann constant kB and the tem-
perature T. The good agreement between the simulated and
theoretical results indicates that the theoretical model faithfully
captures the free energy change experienced by the nanoparticle
entrapped in network cells.

A close examination of the profiles in Fig. 2a, b leads to an
intriguing observation: all the path dependences of ΔF(z) can be
classified into four regimes based on the particle size, as
approximately bounded by shaded sections. For a large nanopar-
ticle, ΔF(z) exhibits a power law dependence on z, ΔF∼ zη, where
η is the scaling exponent and η = 1 in this regime. Upon reducing
the nanoparticle size, in the following regime, η crosses over from 1

to 2. The crossover behavior becomes more evident for a larger d.
With a further reduction of d, the profiles become nonconsecutive,
in which ΔF(z) initially remains zero but then abruptly jumps to a
large value. Such an abrupt jump reminds us of the obstruction
effect of diffusion in a polymer gel network, as reported in
experiments33. When d is sufficiently small, the effect of the
network cell is trivial such that ΔF(z) remains zero throughout the
path in the last regime. For a legible presentation of the above four
scaling regimes, we systematically compute the ΔF(z)~z profiles for
the nanoparticles in network cells with various g (Fig. 3a and
Supplementary Fig. S2), consolidating the general nature of these
regimes. Previous studies focusing on elastic deformation of the
local network loop also indicate the presence of Regime I28,29; by
contrast, our theoretical approach allows detailed examination of
the MEP, revealing the existence of Regimes II and III. Strikingly,
by comparing the distributions of these regimes for different g,
one can find that a larger g gives rise to smaller areas of Regimes II
and III, underscoring the correlation between scaling regimes and
cell topologies.

Extending the analysis, we examine the free energy profiles at
certain values of rout, rmid and rin. As schematically shown in Figs. 1b
and 3b, rout can be considered the critical particle size causing
deformation of the vertices, i.e., cross-links, of the network cells.
Setting R= rout, we obtain the boundary between Regimes I and II,
as denoted by the magenta dashed curve. Likewise, rmid can be
regarded as the critical size inducing deformation of the edges, i.e.,
strands. With R= rmid, the boundary between Regimes II and III can
be characterized by the black dashed curve. Thus, the boundaries
dividing these different regimes can be determined based on rin, rmid,
and rout, as illustrated by the diagrams in Fig. 3b. As indicated by
Eq. 1, with the increase of g, the aspheric parameters rmid/rin, rout/rin
decrease and are gradually approximate to 1.0, corresponding to an
anisotropic-to-isotropic transition of the network cell34. Thus, the
boundaries between R= rout and rmid, and between R= rmid and rin
approach to each other, giving rise to a shrinkage of Regimes II and
III. In particular, for the network cell with very large g where rin, rmid

and rout are approximately equal, these boundaries can be anticipated
to superpose on each other, and then, Regimes II and III will
disappear, reverting to the previous results focusing on isotropic
deformation of a circular loop. This trend can also be identified from
the free energy barrier experienced by a nanoparticle migrating from
a cell to its neighboring cell, that is, Ub. In Fig. 3c, we show the plots
of Ub against d for various g, and fitting Ub at d= 2rout and 2rmid in
each plot leads to two boundaries (magenta and black dashed lines)
separating the diagram into three characteristic regions correspond-
ing to the scaling regimes in Fig. 2a, b. When d > 2rout, the hopping
energy barrier behaves quadratic dependence on d, consistent with
the studies of a circular loop28. However, such a scaling behavior
does not hold in other regimes. The dashed lines represent the
theoretical prediction to Ub(2rout) and Ub(2rmid) for various cell
topologies, giving the boundaries separating the characteristic
regimes. The two boundaries of the regimes tend to be asymptotic
with increasing g, in accordance with the above mentioned results.

Topology-mediated dynamical regimes. To further pinpoint the
physical origin of the impact of network cell topology, we turn to
the nanoparticle dynamics in these regimes as well as their
dependence on the cell topology (see Methods). Based on
the free energy landscape established above, we numerically
obtain the nanoparticle diffusion coefficient D in response to
various values of d and g (Fig. 4 and Supplementary Fig. S3). By
plotting the diffusion coefficient D normalized by its value at 2rin
versus d normalized by 2rin, the nanoparticle diffusivities at
different g collapse on a master curve and present a power-law
slope of −3 when d ≤ 2rin, demonstrating that the diffusivity is
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completely governed by the local Rouse dynamics35 of the strands
(Fig. 4a). However, the D of intermediate size nanoparticles
(2rin < d < 2rout) crosses over to an extreme decrease. When
d ≥ 2rout, the large nanoparticle causes radial dilation of the cell
vertices (Fig. 3b, Regime I), resulting in an almost isotropic
deformation of the cell that resembles the deformation of a cir-
cular loop; consequently, the diffusivity reverts to the exponential
dependence, which can be corroborated by the circular scatters in
Fig. 4a, b as well as the collapsed curves of D/D(2rout) ~ d/(2rout)
in Fig. 4b. Recall that the studies focusing on local deformation of
a circular loop showed that the diffusion of small and large
nanoparticles, divided by the size of ax, exhibits the dynamical

regimes of D � ðd=axÞ�3 and D � expð�d2=a2xÞ, respectively28,35.
In contrast, the emergence of the intermediate regime and the
change in the switching points from ax to rin and rout for different
regimes in Fig. 4 highlight the impact of cell topology on the
nanoparticle diffusion dynamics. For d > 2rin, the nanoparticle
starts to experience the free energy landscape on the faces of a
network cell (Fig. 3b, Regime II), triggering the cell topology
effect, which induces the deviation from the exponential depen-
dence denoted by the colored dashed curves in Fig. 4a.

To provide a refined picture of the mechanism
underpinning the topological effect on nanoparticle dynamics,
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Fig. 2 Distinct scaling regimes of free energy change. a Dependence of ΔF(z) on the position z for various d in the log-log scale, obtained from the
theoretical model of a network-particle system with g= 6. The upper left inset shows the axes of the system, where z axis is along the mean energy path
(MEP). The dashed lines represent the theoretical boundaries separating different regimes. b The comparison between MC (points) and theoretical results
(lines) for some representative particle sizes. The error bar indicates the standard deviation.

Regime II 

Regime III Regime IV

c 

a 

I

II 
III 

I 

II 
III 

I

II

III

b 

Regime I 

Fig. 3 Topology-dictated scaling regimes of free energy change. a Heat map of ΔF~z for various d in network cells at g= 4 (left), 20 (middle) and 32
(right). The color bar indicates the values of the particle diameter d. The boundaries of Regimes I and II and Regimes II and III are represented by purple and
black dashed lines, respectively. Specifically, the hidden Regime IV in each plot gives ΔF(z) = 0. b Schematic of spherical particles with various sizes in a
network cell for different regimes: Regime I: r > rout, Regime II: rmid < r < rout, Regime III: rin < r < rmid, Regime IV: r < rin. c Free energy barrier of the particle
between neighboring cells Ub against d for various cell topologies. MC results are also plotted for topologies of g= 6 (blue), and 20 (yellow). The error bar
indicates the standard deviation.
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we also develop theoretical models, complemented with simula-
tions, to dissect the microscopic dynamics described by various
parameters, such as the particle trajectory and mean square
displacement (MSD) (see Supplementary Information III for
more information). Figure 5a depicts three typical trajectories
of nanoparticles undergoing Brownian, hopping and trapped
dynamics, as confirmed by the MSD (Fig. 5b and Supplementary
Fig. S4) and the spatial probability distribution function

Gs(z, t) (Supplementary Figs. S5–S7), which resemble previous
experimental36,37 and theoretical38,39 results. From the measured
trajectories, we consider that the dynamical process of a
nanoparticle confined in a network can be coarse-grained and
decomposed into a series of consecutive jump and waiting
events40, i.e. zðtÞ ¼ ∑NðtÞ

i¼0 δziðtÞ, where δzi denotes the jump length
of event i, and N(t) is the counts of transition events. The number
of jumps grows linearly with time on average, hNðtÞi ¼ t=tw,
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Fig. 4 Dynamical regimes mediated by network topologies. a D/D(2rin) against d/2rin for various network cell topologies in the log-log scale. Inset:
schematic diagrams of the deformation based on a network cell (left) and the deformation based on a network loop (right). b D/D(2rout) against d/2rout for
various network cell topologies in the log-log and the log-linear (inset) scales. The scaling parameters rin (purple), rmid (green) and rout (blue) are presented
on each plot. Power law and exponential dependences on the ratio between d and 2rin (dashed line) or 2rout (circular scatter) are depicted.

Fig. 5 Topological effect on microscopic dynamics. a Representative trajectories of Brownian (top), hopping (left) and trapped (right) dynamics in the
macromolecular network at g= 6, where the diameter of particle d/ax= 1.00, 1.65, and 1.90, respectively. Time scale is color-coded at the top-left corner,
and length scales are shown on the right bottom of each plots. b 〈Δz2(t)〉 as a function of t for different d/ax at g= 6. The solid line denotes the theoretical
results predicted by Eqs. 3, 5–7, and the hollowed scatters mark the results obtained from numerical simulations. The color of lines and scatters indicates
the value of d and is coded in the upper right panel. c Schematics of theoretical predictions of 〈Δz2(t)〉 at Regimes I (red), II (green), III (orange) and
IV(blue), where the oscillating state of each regime is labeled on the right of the plot. Circles denote the characteristic waiting time tw, and a dashed line
connecting circles is used to guide to the eye, as also illustrated by the black dashed lines in Fig. 5b and its inset. d 〈Δz2(t)〉 as a function of t for different
topologies: g= 6 (purple), 12 (blue), 20 (yellow), 32 (red) at boundaries of Regimes II and III (upper, d= 2rmid) and Regimes I and II (bottom, d= 2rout),
which are approximately grouped by the shaded sections.
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where tw is the characteristic waiting time before escaping from a
network cell (see Supplementary Fig. S8). Thus, the total MSD of
the nanoparticle takes the forms,

hΔz2ðtÞi ¼
t
tw
hδz2ðtÞi t ≥ tw

hδz2ðtÞi t < tw

(
ð2Þ

which captures the trapped and hopping motions in the
intermediate time scale and recovers back to the normal diffusion
in a long-time limit (Fig. 5b).

Oscillation modes orchestrated by topologies. Strikingly, our
simulation reveal that before escaping from a network cell, par-
ticles can exhibit various oscillation modes in different regimes
(Fig. 5b). To elucidate the underlying relationship between ΔF
and the oscillation modes, we analytically obtain underdamped,
oscillated, and overdamped modes from Regime I to III, as
demonstrated in Fig. 5b and schematically shown in Fig. 5c. We
focus the dynamical process for the short time scale with t < tw,
where hopping events don’t happen and it is unnecessary to
distinguish between δz and z. In this case, the microscopic
dynamics of the nanoparticle in different regimes will sig-
nificantly depend on the form of the energy landscape, discussed
as follow (see Supplementary Information III for more details):

In Regime I, the potential ΔF(z) = ρ|z| and is “V-shaped”, with
ρ = Ub/rin being an arbitrary constant. The MSD in Laplace
domain gives

hΔz2ðsÞi ¼ 8D2
0

ρ2
1

s 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D0ð1=twþsÞ

ρ2

q� �2 ð3Þ

Given that the characteristic equation

sð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D0ð1=tw þ sÞ=ρ2

p
Þ2 ¼ 0 has a complex root

s1 ¼ ð�ρ2=4D0 � 1=twÞ þ ðρ2=4D0Þi, the Laplace transformation
of Eq. 3 has the form hΔz2ðtÞi � es1t at intermediate time scale
(t ! 1=js1j), following an underdamped mode of oscillation (see
Supplementary Information IV for more information). At long
time scale ðt ! 1Þ, the MSD in Regime I saturates to a constant,
given by

hΔz2ðtÞi � 2D0tw � ρ2t2wðΔ0 � 1Þ ð4Þ
where D0= kBT/6πγR is the diffusion constant of the nanopar-
ticle in solvents and Δ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D0=ðρ2twÞ

p
.

In Regime II with ΔF(z) =ω2z2/2, we proceed to apply
Langevin’s original strategy to study the problem of the harmonic
oscillator Brownian motion, where ω= (2Ub)1/2/rin is the
frequency of harmonic oscillator. It can be determined that for
γ>

ffiffiffi
8

p
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mω2

1� e�
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ð5Þ

where β1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ=mÞ2 � 8ω2

q
, the oscillation mode is overdamped.

For γ<
ffiffiffi
8

p
mω, the MSD reads
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where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � ðγ=mÞ2=8

q
, the oscillation mode becomes

underdamped.
In Regime III with ΔF ∼ o(z2), we can identify that the

diffusion dynamics as the random walk with double reflecting

boundaries at z= -rin and z= rin. The MSD has the form41:

hΔz2ðtÞi ¼ r2in
6

1� exp � t
τ0

� �	 

ð7Þ

which indicates the overdamped mode of oscillation. In the long-
time limit, it reduces to hΔzðtÞi � r2in=6. Furthermore, the
theoretical predictions (solid lines) are well approximated by
the numerical data (hollow circles). Given that the free energy
landscape remarkably depends on the network cell topology, the
oscillation modes of nanoparticles can be orchestrated by
tailoring the cell topology, which is supported by the reduced
oscillation in the MSD plots at the regime boundaries with
increasing g (Fig. 5d).

Oscillatory behavior in physical systems is a typical signature of
inertial effects, reflecting competition between the force of the
potential and the viscosity42. For a given system with a well-defined
relaxation time, oscillations occur only for a certain form of the
energy landscape (see Supplementary Information IV for more
details). Briefly, in Regime I where a nanoparticle is confined in an
entire cell, it is always subjected to negative response with a constant
force ρ, inducing the oscillatory behavior. In Regime II, affected by
partial chains of the cell, the nanoparticle turns to receiving negative
response with a linear restoring force ωz, which competes with the
frictional force. When the restoring force is large, this corresponds to
obvious oscillatory behavior. By contrast, when the restoring force
becomes small, nanoparticle dynamics is essentially diffusive. In
Regime III where the nanoparticle experiences the free energy at the
boundary of the cell, the response reduces to zero. Therefore, the
dynamics in Regime III is dominated only by the frictional force, and
the oscillation is overdamped. However, as only a local network loop
is considered in previous works12,28,29, the viscosity force of the
nanoparticle is far larger than the restoring force around z= 0; thus,
oscillatory behavior of the nanoparticle is suppressed and the
underdamped modes of oscillation cannot be observed.

Discussion
Taken together, we develop theoretical approaches to provide a
fundamental research of the free energy landscape and its depen-
dence on cell topology for the transport of nanoparticle entrapped in
macromolecular network. Our theoretical results, coupled with
simulations, push the envelope of the full view of the free energy
landscape sculpted by the network topology and thereby its impact
on the transport of nanoparticles, leading to distinct scaling regimes
regarding the free energy landscape and nanoparticle dynamics. The
findings isolate topology as a key feature governing the dynamic
behavior in networks, altering the conventional picture of the phy-
sical origin of nanoparticle transport in network environments.

In addition, the synthesis of macromolecular networks with
well-controlled architectures is coming within reach25–27, allow-
ing facile approaches to tailor the network topology. While here
we focus on the permanently cross-linked regular networks, we
speculate that the theory can be ready to extend to the nano-
particle diffusion in unentangled and entangled macromolecular
networks with irregular cells. The spherical nanoparticle can also
be readily replaced by diverse anisotropic nanoparticles through
coupling the shape factor into the theoretical approaches. Thus,
the formulated theoretical approaches can serve as a foundation
for further exploration of topological effects on the dynamic
behavior in various networks, synthetic or biological. We believe
that this work will certainly stimulate efforts into the above
promising topics of interest to physicists and materials scientists.

Methods
Development of analytical model for free energy landscape. To quantitatively
examine how cell topology affects the free energy landscape of particles, we develop a
new theoretical model to calculate the free energy experienced by a spherical particle in
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networks. Full details can be found in Supplementary Information I. Briefly, we consider
a hard spherical nanoparticle of radius R in a cross-linked polymer network of Gaussian
chains without dangling end. The network topology is specified by (i) the set of cross-
links k ¼ frigMi¼1,withM cross-links between the efficiently bridged Gaussian chains, (ii)
the collection of linker connections marked as the tuple and (iii) the continue curve path
of linked strands rij(s) with contour variable s 2 ½0; 1�. For a Gaussian chain of N bonds
of Kuhn length b, the contour length L=Nb, and the average mesh size, ax=N1/2b= 1,
is the unit length of the system. Considering the cross-linked chains in a dilute solution
of θ-solvent, where screened excluded-volume statistics can be assumed, the interaction
potential between monomers is ignored to recover the ideal statistics43. Hence, in the
canonical ensemble, the Helmholtz free energy of the particle-network system is
determined by FðrnpÞ ¼ �kBT lnZðrnpÞ, where the partition function Z(rnp) takes the
form44,45,

ZðrnpÞ ¼
Y
k

Z
drk

Y
ði;jÞ

Z
Drijδðrij � riÞδðrij � rjÞ ´ exp½�β ∑

ði;jÞ
Hðrij; rnpÞ� ð8Þ

rk is the position vector of the cross-linked point k, rij(s) is the path vector of the strand
with its start rij(0)= ri and end rij(1)= rj, rnp is the position vector of the particle, β= 1/
kBT, and δ is the delta function. Coupling the excluded volume effect of a hard sphere
with radius R, the modified Hamiltonian of the strand between cross-link pair (i, j) is
given by,

Hðrij; rnpÞ ¼
3kBT

2Nb2

Z 1

0
ds

∂rij
∂s

����
����
2

Φðjrij � rnpj � RÞ ð9Þ

where s ∈ [0, 1] is the contour variable, N is the number of bonds in a strand, b is the
Kuhn length, and Φ(x) is the unit step function.

Numerical simulation by nonlinear Langevin equation (NLE). Establishing the
free energy landscape for a nanoparticle in a network cell with defined topology
allows us to examine the nanoparticle dynamics through NLE which has been
successfully applied to study the diffusion dynamics of colloids or polymers35,46,47.
Considering the motion of a nanoparticle along the z axis, the NLE equation can be
written as

m
d2z
dt2

¼ �ΔF0ðzÞ � γ
dz
dt

þ ξðtÞ ð10Þ

where ΔF(z) is the free energy change experienced by the nanoparticle at
position z, m is the nanoparticle mass, γ is the friction coefficient, ξ(t) represents
the fluctuating force satisfying hξðtÞi ¼ 0, hξðtÞξðt0Þi ¼ 2γkBTδðt � t0Þ, and h:::i
stands for ensemble average. For the numerical simulations, the Euler-
Maruyama (EM) method48 is applied to solve the stochastic differential equation
(SDE) of Eq. 10, where the integrate time step Δt= 0.01τ, γ/m= 10.0τ−1 and τ is
the unit of the time. Diffusion coefficient D of a nanoparticle can thereby be
obtained through the correlation function, D ¼ R tc

0 hvðtÞ � vð0Þidt, where v(t) =
dz/dt represents the velocity of the nanoparticle, and tc= 107τ is the total
simulation time.

Monte Carlo (MC) simulation. In the MC simulations, we use the Wang-
Landau49,50 method to accelerate the extraction of free energy in respect to z, F(z).
The flat histogram or Wang-Landau sampling method, where an automatically
generated bias or penalty function, f(z), is applied to the system along z coordi-
nates, so that the configurational integral reads

ZðzÞ ¼ expð�βzÞ
Z

dfrg exp½�βHðfrg; zÞ� ð11Þ

where {r} denotes configurational space at a given state X. For every visit to a state
along the coordinate, a small penalty energy, f0= 0.5, is added to f(z) until Z is
equal for all X. Thus, during simulation the free energy landscape is flattened, while
the true free energy is simply the negative of the generated bias function

βFðzÞ ¼ � ln
Z

dfrg exp½�βHðfrg; zÞ� ð12Þ
In our simulations, at least fifty independent runs are performed for each

parameter set, so that the standard error is estimated within 0.3kBT. The detailed
derivation of the Hamiltonian H({r}, z) can be found in Supplementary
Information V.

Data availability
The data supporting the findings of this work are available within the paper and
the Supplementary Information files. Source data are provided with this paper.

Code availability
The code developed for this paper is made available at https://doi.org/10.5281/zenodo.
6794578.
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