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DNA methylation-based epigenetic signatures
predict somatic genomic alterations in gliomas
Jie Yang 1,2,3, Qianghu Wang 4, Ze-Yan Zhang 1,2, Lihong Long5, Ravesanker Ezhilarasan1,2,

Jerome M. Karp1,2, Aristotelis Tsirigos 6,7, Matija Snuderl6, Benedikt Wiestler8, Wolfgang Wick 9,

Yinsen Miao10, Jason T. Huse11,12 & Erik P. Sulman 1,2✉

Molecular classification has improved diagnosis and treatment for patients with malignant

gliomas. However, classification has relied on individual assays that are both costly and slow,

leading to frequent delays in treatment. Here, we propose the use of DNA methylation, as an

emerging clinical diagnostic platform, to classify gliomas based on major genomic alterations

and provide insight into subtype characteristics. We show that using machine learning

models, DNA methylation signatures can accurately predict somatic alterations and show

improvement over existing classifiers. The established Unified Diagnostic Pipeline (UniD) we

develop is rapid and cost-effective for genomic alterations and gene expression subtypes

diagnostic at early clinical phase and improves over individual assays currently in clinical use.

The significant relationship between genetic alteration and epigenetic signature indicates

broad applicability of our approach to other malignancies.
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Epigenetics play a crucial role in cancer1 and show extensive
reprogramming through DNA methylation, histone varia-
tion, and non-coding RNA. DNA methylation is a stable

feature and reflects both inter- and intra-tumor heterogeneity
which has been used to classify different types of tumors2–5. For
example, the recently published DNA methylation-based histo-
pathological classification of central nervous system (CNS)
tumors6 (Unsupervised CNS Classification) has challenged con-
ventional histologic classification and tumor grading. This
unsupervised CNS classification used the unsupervised learning
approach to identify CNS tumor classes with distinct DNA
methylation profiles. The established random forest-based clas-
sifier can classify CNS tumor into one of those histopathological
classes based on the tumor DNA methylation profile.

Infiltrating gliomas, including WHO grade II-IV gliomas, are
the most common and lethal primary brain tumors7. These
devastating tumors have been subjected to comprehensive,
molecular profiling, particularly by The Cancer Genome Atlas
(TCGA). Previous studies have identified some key molecular
features in gliomas which play critical roles in glioma initiation,
progression, diagnosis, and treatment. For example, isocitrate
dehydrogenase (IDH) mutation is positively associated with
younger age and longer survival time. Chromosome 1p/19q co-
deletion (chr1p19q codel) is prognostic for improved survival and
predictive of response to chemotherapy7,8. IDH mutation and
chr1p19q codel are part of the current WHO diagnosis criteria for
gliomas. Telomerase reverse transcriptase promoter (TERTp)
mutations and alpha thalassemia/mental retardation syndrome
X-linked (ATRX) mutations are mutually exclusive alterations in
gliomas and both are functionally correlated with telomere length
maintenance9. Telomerase inhibitory therapies, heterochromatin
silence-mechanism targeted therapies, and G4-destabilizing
therapies are promising therapeutic targets for gliomas with
ATRX or TERTp mutation10,11. The O6-methylguanine DNA
methyltransferase (MGMT) promoter methylation status12 is a
prognostic and alkylating chemotherapy-predictive biomarker. It
can be predicted using an established methylation array-based
algorithm MGMT-STP2713. At the transcriptional level, glio-
blastoma (GBM) has been classified into three subtypes based on
characteristic gene expression signatures called classical (CL),
proneural (PN), and mesenchymal (MES)14. CL GBMs are
characterized by epidermal growth factor receptor (EGFR)
amplification while MES GBMs are enriched for neurofibromin 1
(NF1) deletion and mutations14.

All somatic alterations described above are essential for diag-
nosis, treatment decision-making, and patient prognosis. How-
ever, individual assays are usually required to obtain each of these
somatic alterations. Detection of somatic mutations, such as IDH,
ATRX, and TERTp status, often rely on next generation
sequencing (NGS). Fluorescence in situ hybridization (FISH) or
loss of heterozygosity (LOH) analysis are usually applied to
obtain chr1p19q status. Methylation-specific PCR (MS-PCR) or
pyrosequencing assays are usually utilized15 to obtain MGMT
promoter status. No clinical assay currently exists to classify
tumors by gene expression. This is because the most commonly
available analyte following glioma resection is formalin-fixed and
paraffin-embedded (FFPE) tissue. FFPE-derived RNA is highly
degraded and chemically modified, therefore, its transcriptional
sequencing quality is low and can be biased by artifacts and
technical variance16. In summary, the cost, time, and tissue
requirements for these individual assays frequently result in
delayed or incomplete molecular diagnosis, leading to suboptimal
treatment and ineligibility for clinical trials. Indeed, there is an
urgent need to develop a rapid, cost-effective assay that requires
minimal amounts of FFPE tissue for patients with infiltrating
gliomas.

In our study, we develop a DNA-methylation-based classifier
for gliomas, which we validate using an independent cohort. The
developed models can be easily applied to all infiltrating gliomas,
including both low-grade gliomas and GBM. Exploration of DNA
methylation-based misclassified cases provides valuable ideas for
future research directions and demonstrates potential superiority
of the methylation approach over existing individual assays.

Results
We aimed to develop a DNA methylation-based classifier which
accurately determines IDH, TERTp, and ATRX mutation status,
chr1p19q codel status, and gene expression subtype of infiltrating
gliomas. The above molecular features can be separated into two
categories in terms of their status: binary class, including IDH,
TERTp, and ATRX mutation or wild type, and chr1p19q codel or
intact; and gene expression subtypes, including CL, PN, or MES.
Separate classifiers were developed for prediction of each of the
binary classes (IDH, TERTp, etc.) and for prediction of gene
expression subtype, using a rigorous machine learning approach.
The binary genomic alteration classifiers were trained and vali-
dated on a large cohort of both low-grade and high-grade glioma
samples from TCGA, while the gene expression subtype classifier
was trained on TCGA glioblastoma samples only, since these
subtypes were originally described using high-grade glioma
datasets. The performance of all classifiers was validated with an
independent cohort (NOA-04) from a multicenter phase III
randomized trial conducted by the German Neurooncology
Working Group (NOA) of the German Cancer Society, which
includes both low-grade and high-grade gliomas17.

Predictive Models. For binary genetic alterations, all predictive
models achieved high prediction accuracy as shown in Fig. 1A. In
the test set, models achieved a prediction accuracy of 100%,
98.31%, 90.48%, and 99.21% for IDH, TERTp, and ATRX
mutation, and chr1p19q codel status, respectively, with AUC of
1.0, 1.0, 0.9952 and 0.9974 respectively. For gene expression
subtype prediction, GBM samples with HM450K and HM27K
data were processed as described in Methods. The final random
forest model was refitted with training (n= 212) and develop-
ment (n= 72) sets and achieved a prediction accuracy of 72.2%
(52/72) in the test set.

Predictive signature analysis. For each binary genetic alteration,
we filtered out a subset of probes that are statistically different
between the binary classes, and then performed the clustering
analysis with all samples available (Fig. 1B). Samples were clus-
tered into two subgroups and showed high consistency with the
known genomic alteration. By comparing the signature probes of
IDH, TERTp, ATRX, and chr1p19q codel with the Glioblastoma-
CpG island Methylator Phenotype (G-CIMP) signature18, we
found no significant overlap among these five probe signatures
(Fig. 1C). The lack of overlap between ATRX and TERTp
mutation signatures was consistent with the mutually exclusive
nature of ATRX and TERTp in telomere maintenance19.

Signatures for binary genetic alterations and gene expression
subtypes were summarized for their genetic context enrichment.
By comparing the number of probes enriched for chromosomes
after normalization, we found that probes in the IDH mutation
prediction model were enriched in chromosome 22 (13.08%) and
chromosome 21 (8.8%) while probes in the ATRX mutation
prediction model were enriched in chromosome 9 (7.2%) and
chromosome 14 (7.2%). Interestingly, probes in the TERTp
mutation, chromosome 1p/19q co-deletion, and gene expression
subtype prediction models were all enriched in chromosome 18
(TERTp: 8.2%; co-deletion: 16.3%; gene expression subtype:
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12.6%) (Supplementary Data 1). Summarizing the dispersion of
probes in terms of CpG island relationship, we found that most of
the probes were enriched on CpG islands. Among the four
predictive models, the IDH predictive signature showed the
highest percentage of CpG islands (76%). For the other three
predictive signatures, about 32% of probes were located on CpG
islands (Supplementary Table 1).

Among the 100 probes in the IDH predictive signature, 45%
(45/100) were located on the promoter region (including TSS200,
TS1500, and 1st exon) (Supplementary Table 2). In total, 65 genes
were mapped by IDH signature probes. Among all genes, the
CASP8 and FADD like apoptosis regulator (CFLAR) gene had
four probes mapped and nuclear receptor subfamily 4, group A,
member 1 (NR4A1) had three probes mapped. Applying those 65
genes to the DAVID19 (version 6.7) for functional annotation, the
top GOs were regulation of apoptosis (p value= 0.0052),
regulation of programmed cell death (p value= 0.0056), and
regulation of cell death (p value= 0.0057) (Supplementary
Data 2). Genes related to those GOs were CFLAR, TNF receptor
superfamily member6 (FAS), potassium voltage-gated channel
interacting protein 3 (KCNIP3), death effector domain containing
2 (DEDD2), lectin, galactoside-binding, soluble, 1 (LGALS1),

NR4A1, proline dehydrogenase 1 (PRODH), retinoic acid
receptor, gamma (RARG), and erb-b2 receptor tyrosine kinase 2
(ERBB2). Those GOs were not significant after p value adjustment
due to the small gene set.

For the TERTp predictive, most of the probes were located at
the body (29.1%) (Supplementary Table 2). Probes mapped to
612 genes in total. The most frequently mapped gene was isthmin
1 (ISM1) with ten probes. The second most frequently mapped
gene was atlastin GTPase 3 (ATL3) with seven probes. For gene
functional annotation, the top significant GOs were all related to
regulation of transcription (Supplementary Data 2).

For the ATRX predictive signature, most of the probes were
located at the body (13.9%) (Supplementary Table 2). In total,
probes mapped to 333 genes. Gene F-box protein 6 (FBXO6) has
five probes mapped and cathepsin F (CTSF) gene was mapped
four times. Using the DAVID gene functional annotation, genes
were significantly enriched in development related GOs, includ-
ing embryonic development and neuron development (Supple-
mentary Data 2). We further compared the 70 probes overlapped
between ATRX predictive signature and TERTp predictive
signature; 52 genes were mapped. Most of the genes were
enriched in transcription regulation. The most frequently mapped
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gene was F-box protein 6 (FBXO6) and phosphodiesterase 7B
(PDE7B). The top GO enriched for those overlapped genes was
cell-cell signaling (Supplementary Data 2).

For the chromosome 1p/19q co-deletion prediction signature,
44% of probes mapped to the promoter region, including TSS200,
TSS1500, and 1st Exon (Supplementary Table 2). Four probes
mapped to gene ATL3 and fibroblast growth factor receptor 2
(FGFR2). The top two GOs were regulation of cellular protein
metabolic process (p value= 0.001) and BMP signaling pathway
(p value= 0.0098). However, no GOs were significant after
Benjamini p value adjustment (Supplementary Data 2).

For the gene expression subtype prediction signature, most of
the probes were mapped to the 1st Exon (39.95%) and 5ʹ-UTR
regions (25.8%) (Supplementary Table 3). Four probes mapped to
the gene SOCS2 and three probes mapped to ERBB2 and RBP1.
The top two significant GOs were correlated with neuron
development and differentiation (Supplementary Data 2).

Prediction results analyses. For ATRX mutation status, five
sample subsets (set 1–5) were formed based on the DNA-seq based
ATRX status, methyl-based ATRX status, and single nucleotide
variation (SNV) information (Fig. 2A). Twenty-five samples were
classified as wildtype by DNA-seq but mutant by the methyl-based
model (Supplementary Table 3). Among these 25 samples,
17 samples (set 2) showed at least one mutation call and eight
samples (set 3) had no mutation calls according to the SNVs
(Fig. 2B). For set 4, samples with TERTp mutation status, 3/8 were
TERTp mutant and ATRX wildtype. All samples misclassified as
ATRX mutant by methyl-based model harbored IDH mutations
while all samples misclassified as wildtype by methyl-based model
were IDH wildtype (Fig. 2B). Mutation type shift occurred between
set 2 (samples are ATRX DNA-seq wild type, methyl-based mutant,
and with SNV calls) and set 4 (samples are ATRX DNA-seq
mutant, methyl-based wild type, and with SNV calls): the enriched
mutations shifted from “frameshift indels, in frame indels, and
splice site” to “intron, missense and nonsense” which may not lead
to ATRX loss of function. More importantly, no significant differ-
ences in ATRX gene expression were observed among set2, set3,
and set5, which are all methyl-based ATRXmutant samples, and no
difference between set1 and set4, which are all methyl-based ATRX
wild type samples. Interestingly, when the methylation results were
discordant, even when the sequencing results were in an agreement,
a significant difference in expression was observed (Fig. 2C-D). The
DNA methylation level of probes located on ATRX did not show
significant differences among the three subsets (set2, set3, and set4)
except for one probe (Supplementary Fig. 1).

For chr1p19q codel status prediction, five samples were
misclassified when comparing methyl-based status to SNP6-
based status (Fig. 2E). The CNV profile of chr1 and chr19 were
derived from the HM450K methylation data using the R package
conumee20 (Fig. 2F). Four out of five samples were misclassified
as codel and one sample was misclassified as non-codel by
methylation model. We can clearly observe the deletion in the
TCGA-CS-5394 and TCGA-FG-7637 which matches with the
methyl-based model prediction. The CNV profile pattern of
the other three samples is not obvious; therefore, it is difficult to
determine their status.

For gene expression subtype prediction, samples in the test set
(n= 72) were categorized by methyl-based and transc-based gene
expression subtypes (Fig. 3A). Discordant samples between the
two methods showed significant difference in copy number
variation and gene expression level compared to samples with
concordant subtypes. We examined enriched alterations of
specific subtypes in discordant samples to determine which
classification approach showed the highest association with these

characteristic alterations (Wilcoxon rank sum test) (Fig. 3B-C).
This further favors the methyl-based classification among
discordant cases classified as CL by transcription and MES by
methylation or classified as MES by transcription and CL by
methylation.

Model validation. The prediction accuracy for each binary
genomic alteration in the NOA-04 cohort was: for IDH mutation,
89.9% (98/109) by PCR-seq and 99.10% (114/115) by unsu-
pervised clustering analysis of the HM450k DNA methylation
profile; for TERTp mutation, 82.8% (82/99) by PCR-seq; for ATRX
mutation, 92.7% (89/96) by immunohistochemistry (IHC); and for
chr1p19q status, 88.89% (88/99) by MLPA and 95.65% (110/115)
by HM450K-derived CNV profiles (Fig. 3D). In terms of the IDH
mutation status, 11 samples were misclassified by methyl-based
prediction: 9/11 were predicted as wildtype by PCR-seq but
mutant by the methyl-based model. MGMT methylation status
comparison is shown in Supplementary Table 4.

In TCGA LGG samples, gene expression subtypes predicted by
methyl-based and transc-based algorithms showed large differ-
ences in the classification results of the PN subtype (Fig. 3E): 422/
486 (86.8%) samples were classified as PN by methyl-based
subtype while only 228/486 (46.9%) were classified as PN by
transc-based subtype. The heatmap in Fig. 3F aligns methyl-based
subtype and transc-based subtype with other key features of
gliomas, including histology, 1p1q codel status, MGMT promoter
methylation status, and mutation and CNV status of critical
genes. It is clear that the almost all IDH1/IDH2 mutations and
most TP53 and ATRX mutations matched with the methyl-based
PN subtype. EGFR amplifications are hardly observed in PN
subtype. These observations follow the known characteristics of
the PN subtype and support the methyl-based classification.

UniD vs. Unsupervised CNS classification comparison. The key
difference between the UniD and Unsupervised CNS classifica-
tion is that UniD aims to predict each infiltrating glioma’s key
molecular features based on the DNA methylation values of
selected loci for each molecular feature, while the Unsupervised
CNS classification aims to classify each CNS tumor into one
histopathological class based on its overall DNA methylation
profile. Accordingly, the Unsupervised CNS classification is an
unsupervised learning-based model that has been developed to
include all CNS tumors, while UniD is a supervised learning-
based model which focuses only on gliomas. The objectives of
these two classifiers are different, but it is informative to compare
the results of these two classifiers.

Gliomas (n= 644) were classified into nine groups based on the
UniD predicted molecular features status. These groups and their
Unsupervised CNS classification-based classes are summarized. in
Fig. 4A. Most gliomas fall into five groups (Grp1, 2, 3, 7, and 8).
Gliomas in Grp8 show wild type status in both ATRX and TERTp,
suggesting that alternative mechanisms may exist to maintain their
telomere length. Discordant samples between the two classification
systems are described in Fig. 4B. First row: 40/644 gliomas were
classified as CONTR categories (classified-normal) which are normal
brain tissue according to Unsupervised CNS Classification, while the
remaining cases were classified into “tumor” categories (classified-
tumor). By comparing the ABSOLUTE tumor purity between the
classified-normal and classified-tumor samples (Fig. 4C), many
classified-normal samples show high tumor purity and 48 classified-
tumor samples show tumor purity equal to or lower than the
median tumor purity of classified-normal samples. Second row: all
CONTR, HEMI (methylation class control tissue, hemispheric
cortex) in subgroup 1 to 4 are expected to be IDH wildtype while all
have been detected with IDH mutation by DNA sequencing. Third
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row: Twelve samples in Grp2 (CONTR, HEMI; A IDH; and A IDH,
HG) were classified as either normal brain normal tissue or IDH
wildtype glioma without chr1p19q codel while their CNV profile
from SNP6 showed clear chr1p19q codel (Fig. 4D). Fourth row: SFT,
HMPC (methylation class solitary fibrous tumor / hemangioper-
icytoma) samples are expected to have a euploid genome while

TCGA-19-5951 in Grp7 showed significant chr10 loss and chr19p
and chr20 amplification (Fig. 4E). Fifth row: A IDH, HG in Grp8 are
expected to be IDH mutant by Unsupervised CNS Classification but,
in fact, were wild type by sequencing. Sixth row: Two samples from
adult patients (TCGA-06-5858 and TCGA-06-6698) were classified
as IHG (infantile hemispheric glioma) by Unsupervised CNS
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Classification which is typically limited to infants. Among the major
five groups (Grp 1, 2, 3, 7, 8), the Kaplan-Meier plot and the P values
of the log-rank test between any two groups are shown in Fig. 4F, G.
No significant differences were observed among Grp1, Grp2, and
Grp3. This indicates that all patients with IDH mutant tumors have
similar survival regardless of their tumors’ ATRX, TERTp, or
chr1p19q status and IDH wildtype glioma (Grp7 and Grp8) showed
significantly worse survival compared to IDH mutant gliomas.
Moreover, Grp7 demonstrated poorer survival compared with Grp8,
whose samples harbored TERTp mutations, indicating the negative
prognostic significance of TERTp mutation in the absence of IDH or
ATRX mutation. However, the lack of stratification based on
CDKN2A deletion status, a recently identified prognostic factor21,
may limit the interpretation of these results. Grp7 (75/176, 42.61%)
also included a significantly higher percentage (P < 0.01) of tumors
with MGMT promoter methylation compared to Grp8 (7/39,
17.95%).

Discussion
Our study demonstrates that the DNA methylation microarray-
based classifier UniD accurately predicts somatic genomic
alterations in infiltrating gliomas and shows improved enrich-
ment for characteristic genomic alterations. Moreover, it is sui-
table for FFPE samples and can be easily applied to the currently
available EPIC array, which contains >850,000 probes. This rapid,
low-cost platform outperforms multiple individual assays.

The methyl-based ATRX prediction model identified cases with
likely loss of function, even when reported as wildtype by
sequencing. The comparison between mutation status of ATRX,
IDH, and TERTp and ATRX expression level indicates that the
methyl-based prediction model can identify tumors with true
ATRX loss of function with higher accuracy. It is reasonable to
speculate that samples in set3 (DNA-seq wild type, methyl-based
mutant, and no SNV calls) may be deactivated by some other
mechanisms while ATRX mutations at the DNA sequencing level
in set4 (DNA-seq mutant, methyl-based wild type, and with SNV
calls) do not affect the function of the protein; however, this
conclusion may be limited due to the small number of cases in
each set. When we compared the overall classification based on
mutation status of IDH, ATRX, and TERTp, we found that the
methyl-based annotations provided more precise genetic char-
acterizations than DNA-seq annotations (Supplementary Fig. 2).

Circular binary segmentation (CBS) has been used to derive the
CNV profile from HM450K methylation data and was applied
with the R package conumee20. However, this method does not
specifically identify partial deletions in chromosome1p and 19q
and requires a manual, subjective threshold which is susceptible
to considerable inter- and intra-observer variability (Supple-
mentary Fig. 3). The methyl-based predictive model provides an
objective determination of CNV status, less subject to this
variability.

Currently, there is no clinical assay of transcription-based gene
expression subtype determination and as a result the clinical

significance of this component of molecular classification has been
largely ignored. For example, PN gliomas are more sensitive to
chemotherapy and radiation treatment and NF1-silenced gliomas
were shown to be more sensitive to radiation than temozolomide
treatment22. MES gliomas have been associated with poor survival
and with advanced patient age14. Several studies have demonstrated
that PN tumors will shift to MES subtype at recurrence and the
master regulators of the MES may serve as therapeutic targets23,24.
This study demonstrates that UniD provides gene expression sub-
type determination in a clinical setting and facilitates the use of this
classification for therapeutic development.

The Unsupervised CNS Classification6 has shown great value
in standardizing and clarifying brain tumor diagnosis by reducing
the inter-observer variance and classifying tumors previously
unclassified by histology. However, this classification focused on
comprehensive CNS tumor classification based on WHO entities
and not focused on genomic alterations of specific tumor types,
particularly gliomas. Our comparison of Unsupervised CNS
Classification and genomic alterations shows that it may not be
able to properly identify the specific genomic alteration subclasses
studied in this report.

Our classifier demonstrates that DNA methylation signatures
accurately predict somatic genomic alterations in human gliomas,
emphasizing the extensive and significant relationship between
cancer epigenetic signatures and somatic genomic alterations.
Given that all predictors are based on a single experimental
platform, the Infinium methylation BeadChip arrays, the classifier
lends itself to the clinical diagnostic setting. The array’s cost,
processing time, and tissue requirements are significantly less
than individual sequencing, IHC, and copy number assays (for
example, FISH) which are currently used clinically. Moreover, the
Infinium array is suitable for FFPE samples and can be used for
clinical diagnostic tissues.

Besides DNA methylation levels, many array-based bioinfor-
matics tools have been developed, such as MGMT-STP2713,
InfiniumPurify25 (which estimates tumor purity), and ChAMP-
CNV26, that allow for further unification of glioma biomarkers
into a single assay. Lastly, the successful development of this
DNA methylation-based, infiltrating glioma-specific classifier
highlights that methylation-based tumor classification systems
can be easily developed for other tumor types, not only for
genomic alteration-based classification, but further grading and
prognosis, such as for breast3 or lung cancer27.

Methods
This study was performed in accordance with the guidelines and policies and with
approval of the NYU Langone Institutional Review Board (IRB). Based on our insti-
tution’s policy, our research which uses only non-identifiable data is not considered as
research involving human subjects, therefore an IRB approval is not required.

Data processing. A total of 129 samples from the TCGA-GBM dataset and
516 samples from the TCGA-LGG dataset were used to train the classifier. Clinical
characteristics of the patients from whom the samples were derived are listed in
Supplementary Table 5.

Fig. 2 Investigation of misclassified samples for ATRX and chr1p19q codel. A All samples (n= 637) used to build methyl-based predictive model for
ATRX are classified into five subsets based on DNA-seq and methyl-based ATRX mutation status and on whether they had mutation calls by reviewing the
SNV information. B The misclassified 42 samples are shown with their tumor type, mutation status, mutation calling algorithms, and detailed mutation
type. C Boxplots showed the ATRX gene expression level for each subset. Box plot shows center line as median, box limits represent 25th and 75th
percentiles, whiskers as 1.5 interquartile ranges above and below box limits or maximum/minimum, whichever is closest to median. By applying the
Wilcoxon rank sum test, set 2 and set 3 samples show significantly lower ATRX expression levels than set 1 (set 2 versus set 1: P value= 3.97 × 10−7; set3
versus set 1: P value= 5.54 × 10−5) and set 4 showed significantly higher ATRX expression level compared to set 5 (P value= 1 × 10−4). All P values are
two-sided. D A two-sample t test was applied to compare ATRX gene expression level between every two subsets. The two-sided P value is provided for
each comparison in the table. E Genetic characterization of the five misclassified samples by comparing methyl-based chr1p19q status to SNP6-based
chr1p19q status. F CNV profiles of chr1 and chr19 of the five misclassified samples were derived from HM450K data using the R package conumee25.
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Probe selection. For genetic alterations within the binary classes, including IDH,
TERTp, and ATRX mutation, and chr1p19 codel, raw data (IDAT files) of infil-
trating gliomas profiled on Infinium HumanMethylation 450K BeadChip arrays
(HM450K, Illumina) were subjected to sample level and probe level quality control
(Fig. 5A). After quality control and probe filtering, one LGG sample did not pass
the sample quality control and was excluded from the data set. After probe filtering,
the final data set included 644 gliomas samples with 380010 probes. Among the

644 glioma samples, 637 of them had IDH and ATRX mutation status available,
298 samples had TERTp mutation status annotated, and 641 of them had chro-
mosome 1p/19q co-deletion status annotated.

For all binary genomic alterations, including IDH, ATRX, and TERTp
mutations, and chr1p19q codel, the following filters were applied to the probes
available in the Infinium HumanMethylation BeadChip 450 K (HM450K) array:
(1) remove probes not mapped to the autosomal chromosomes; (2) remove probes
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with single nucleotide polymorphisms (SNPs) within 10 bases of the targeted CpG
site (snp-hit)28; (3) remove probes whose sequences align non-specifically (i.e.
aligned to more than one location in the genome) (multi-hit)28; (4) remove probes
not available on the current Infinium MethylationEPIC BeadChip array (EPIC,
Illumina) in order to accommodate the application of this assay on the EPIC array.
Then in a sample-wise fashion, probes with beadcount less than or equal to 3 and
probes not significantly detected compared to the background (with a detection p
value > 0.05) were set as missing values. Probes with more than 10% missing values
across the samples were deleted. Samples with more than 5% missing values across
all probes were deleted due to bad quality. The remaining missing values were
imputed using the k-nearest neighbor (KNN) algorithm.

Ultimately, 1513, 2325, 2112, and 1279 probes were selected in the variable
selection step for prediction of IDH mutation, TERTp mutation, ATRX mutation
and 1p/19q co-deletion prediction, respectively.

For gene expression subtype, TCGA GBM samples with DNA methylation data
from the Infinium HumanMethylation 27 K BeadChip array (HM27K, Illumina) or
HM450K were included. GBM samples without gene expression data (Agilent
244 K) were excluded. TCGA level 3 data were directly used for samples with
HM27K data. Probes used in the HM450K array included both Infinium I and
Infinium II types, while probes used in the HM27K assay included only Infinium I
type. The β-value derived from Infinium II probes has a smaller dynamic range and
lower sensitivity compared to Infinium I probes29. Approximately 21,000 probes
overlapped between the HM450K and HM27K platforms based on probe ID.
However, the majority of overlapping probes from HM450K were Infinium II type
probes while those from HM27K were mostly Infinium I probes, resulting in a
likely batch effect when combining datasets. Batch adjustment was required to
ensure the data were comparable between platforms. Several adjustment methods
have been published, such as: BMIQ30 (R package: ChAMP), SWAN31 (R package:
lumi), and PBC32 (R package: wateRmelon). Acute myeloid leukemia (AML) DNA
methylation data from TCGA was used for evaluating adjustment methods. All 194
AML samples were available on both HM27K and HM450K platforms. There are
three steps to evaluate these methods, briefly described as below (Supplementary
Fig. 4).

Step 1: 194 AML samples were clustered independently using the data from
HM27K and HM450K. For each assay, probes were sorted by median absolute
deviation (MAD) and the top 1000 and top 2000 probes were clustered with
consensus non-negative matrix factorization33 (CNMF) method. These two cluster
results were compared and the concordance between these two platforms was high.
This initial classification was used as the “gold standard.”

Step 2: Three datasets that consisted of admixtures of data from the HM27K
and HM450K datasets were simulated. Dataset 1 consisted of 25% samples coming
from the HM27K dataset and 75% samples from the HM450K dataset. Dataset 2
consisted of 50% of samples from HM27K and 50% from HM450K. Dataset 3
consisted of 75% samples from HM27K and 25% from HM450K. CNMF clustering
methods were applied on each of the admixture datasets. The clustering results
from each admixture datasets were compared with the “gold standard.”

Step 3: For each adjustment method, the admixture process was repeated and a
fourth dataset containing only HM450K data was created. CNMF was applied to
each admixture dataset and the membership for each sample was obtained.
Membership indicated the subgroup which each sample belonged to, for example,
the first AML sample may belong to subgroup 1 while the second AML sample
belongs to subgroup 2. The membership of the classification was compared with
gold standard as was done for the unadjusted datasets.

After the sample membership comparison, BMIQ showed the best results and
was chosen as the final method for our data analysis. For more details and results,
please refer to https://digitalcommons.library.tmc.edu/dissertations/AAI1597033/.

Just as for the binary genomic alteration prediction, for the gene expression
subtype prediction, HM450K probes belonging to the following categories were
deleted: missing from the EPIC platform, multi-hit28, SNP-hit28, located on
chromosome X or Y, and with ≥5% missing values in the dataset. Then the retained
450K probes were intersected with 27K probes. Only probes existing in both
platforms were kept for the following analysis. Retained probes belonging to the
following categories were deleted: (1) with missing values in ≥ 5 samples; (2)
probes not located on a CpG island; (3) probes not mapped to a known gene.
For each probe, the Spearman correlation coefficient value was calculated
between the methylation level and the corresponding gene’s expression level among
all samples. Probes with an absolute correlation coefficient value ≥ 0.1 were
included (Fig. 5B).

After probe selection was completed, there remained 129 HM450K platform
samples with 407067 probes and 287 HM27K platform samples with 23578 probes.
After data integration, 416 samples with 20720 probes were available. After probe
filters, 9519 probes were kept for correlation evaluation. We only kept the samples
with gene expression information available, which led to 1263 probes and
356 samples as the final data set available. Of these, 212 samples in the training set
were evaluated for their probe importance, 985 probes were assigned zero
importance and then were excluded from the analysis, leaving 278 probes.

Model Building: binary response variables. For gene alterations within binary
classes, TCGA annotations were used as the reference34: whole genome or exome
sequencing (DNA-seq) for IDH and ATRX mutation; targeted sequencing or whole
genome sequencing (DNA-seq) for TERTp mutation; and Affymetrix SNP6 array
(SNP6) copy number variation (CNV) for chr1p19q codel. HM450K data were
used as the independent input variables and represented as M-values35. Using IDH
mutation as an example: samples were randomly apportioned into the training
(60%), the development (20%), and the test (20%) sets, stratified by IDH mutation
status. Variable selection and hyper-parameter tuning were applied within the
training set using Elastic Net Regularization36. There are two parameters we need
to specify: alpha (α) and lambda (λ).

1� α

2
β
�� ���� ��2

2
þ αjjβjj1ð0≤ α≤ 1Þ

If alpha = 1, this is the lasso penalty; and if alpha = 0, it is the ridge penalty.
For the training set, the parameter alpha (R package: glmnet36) was set from 0.1

to 1, using 0.1 as a step. For each alpha value, 200 lambda values were randomly
generated. Among the 200 lambda values, the best lambda value was picked out
based on prediction accuracy. For each alpha and lambda value combination,
5-fold cross-validation (CV) was applied in the training dataset. For each fold
among the cross validation, a set of probes was selected to build the regularized
linear model with non-zero coefficient. By summarizing the selection results among
5 folds per CV, the percentage for each probe was calculated. Therefore, for each
alpha value, we obtained a set of probes with their selection percentage. Then we
combined the selected probe sets among ten alpha values and calculate their overall
selection percentage. Probes were ranked by their selection percentage from
high to low.

Based on the probe ranking, different top probe sets, which included different
number of probes, were selected from high to low. For example, the top 100 probes,
200 probes, 500 probes, and so on were selected and form a probe set, respectively.
For each probe set, a logistic regression model was refit with the training set. The
alpha parameter was set from 0.1 to 1, with 0.1 as the step size, and for each alpha
value, lambda was set from 0 to 5, with 0.05 as the step size. For each probe set, the
best alpha and lambda value combination was picked out by prediction accuracy.

Fig. 3 Investigation of misclassified samples for gene expression subtype predictions analysis in test set and gene expression subtype model
validation with NOA-04 and TCGA LGG. A Confusion matrix of the test set (n= 72) based on gene expression subtype of transc-based prediction and
methyl-based prediction. (L: left; R: right). B “Transc-based CL and methyl-based CL” samples (light yellow) were compared with “transc-based CL and
methyl-based MES” samples (dark yellow) for gene expression level (EGFR, NF1) and copy number (CN) segmentation level (EGFR, CDKN2A). All “transc-
based CL and methyl-based MES” samples (dark yellow) show lower EGFR expression (P= 0.08, two-sided Wilcoxon rank sum test, the same for all
following P values), lower EGFR amplification (P= 0.0056), higher CDKN2A amplification (P= 0.015), and lower NF1 expression level (P= 0.029) than
“transc-based CL and methyl-based CL” samples (light yellow). Data is available for n= 20 values of methyl-based CL-subtype, for n= 5 values of methyl-
based MES-subtype in EGFR and NF1 expression panels, and for n= 4 values of methyl-based MES-subtype in CN seg value panels. Box plot center line
represents median value, lower and upper hinges represent 25th and 75th percentiles, and lower and upper whiskers represent 1.5 interquartile ranges
above and below box limits or maximum/minimum, whichever is closest to median. C “Transc-based MES and methyl-based CL” samples (light green)
were compared with “transc-based MES and methyl-based MES” samples (dark green) for gene expression level (EGFR) and CN segmentation level (EGFR,
CDKN2A). “Transc-based MES and methyl-based CL” samples (light green) show higher EGFR expression (P= 0.04), higher EGFR amplification
(P= 1.9 × 10−4), and lower CDKN2A amplification (P= 0.02) compared to “transc-MES and methyl-based MES” samples (dark green). Data is available for
n= 9 values of methyl-based CL-subtype in EGFR and NF1 expression panels, for n= 8 values of methyl-based CL-subtype in CN seg value panels, for
n= 10 values of methyl-based MES-subtype in EGFR and NF1 expression panels, and for n= 12 values of methyl-based MES-subtype in CN seg value
panels. Box plots are drawn as in (B). D Binary genetic alteration prediction results in the external validation set (NOA-04). E Confusion matrix of TCGA
LGG samples based on gene expression subtype of transc-based prediction and methyl-based prediction. F Heatmap of TCGA-LGG samples (n= 486)
with gene expression subtypes, histology, chr1p19q codel, MGMT promoter methylation, somatic mutations, and CNV. Statistical comparisons between
genomic alterations and methyl- and transc-based gene expression is presented in Supplementary Data 3.
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The final model was determined based on performance in the development set; the
number of probes used in the final models were 100, 1000, 500 and 100 for IDH
mutation prediction, TERTp mutation prediction, ATRXmutation prediction and 1p/
19q co-deletion prediction, respectively. The final alpha and lambda values were: for
IDH mutation, TERTp mutation and ATRX mutation prediction, alpha = 0, lambda
= 1; for 1p/19q co-deletion prediction, alpha = 0, lambda = 0.1. Performance of the
models with varying parameter values are shown in Supplementary Figs. 5–8.

For validation, the final model was applied to the test set and the external
validation set (NOA-04)17. This trial compared the efficacy and safety of
radiotherapy followed by chemotherapy at progression to chemotherapy followed
by radiotherapy at progression in patients with anaplastic gliomas (n= 115). DNA
methylation HM450K data were available for all tumor samples. Most of the
tumors were characterized for genomic alterations and these data served as the
reference standard for comparison: targeted resequencing of the amplified
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mutational hotspot (PCR-seq) for IDH (n= 108) and TERTp mutation (n= 99);
multiplex ligation-dependent probe amplification (MLPA) for 1p19q codel
(n= 99); and immunohistochemistry (IHC) for ATRX mutation (n= 96). In
addition, IDH mutation status was also determined by unsupervised clustering
with the HM450K data and chr1p19q codel status was also obtained by reviewing
the CNV profiles derived from HM450K data (n= 115) (R package conumee)20.
The methyl-based binary genetic alterations were predicted using build predicted
models for all samples and compared to reference standards. TheMGMT promoter
methylation status obtained by methylation-specific PCR (MSP)15 were compared
with MGMT-STP27 prediction13. Note that the genomic alteration reference in the
external validation set may be different from the training/development/test set. For
example, chr1p19q codel status in the external validation set was annotated using
either multiplex ligation-dependent probe amplification (MLPA) or direct CNV
determination using HM450k data, while chr1p19q code status in the training/
development/test set were determined using CNV derived from SNP6. Similar

model building strategies were applied to TERTp and ATRX mutation and
chr1p19q codel (Fig. 5C) and a predictive model was built for each alteration.
Accuracy was used as the major evaluation metric.

Model building: gene expression subtype. Samples were then randomly sampled
into training (60%), development (20%), and test (20%) sets, stratified by gene
expression subtype. For gene expression subtype prediction, the model building
reference of subtype and each subtype’s probability were calculated according to
published algorithms14. Because reference samples might be heterogeneous and
contain multiple subtypes, the probability of belonging to each subtype (Cl, PN,
and MES) was calculated for every single sample using the formula shown below.
For example, the probability that a given sample belongs to the CL subtype (Probc)

Fig. 4 Classification comparison between UniD and Unsupervised CNS Classification. A All samples with HM450K data available were classified into
nine subgroups according to their methyl-based genetic alterations. The number of samples for each subset is also provided. The Unsupervised CNS
Classification predicted categories are summarized for each subgroup in the rightmost column. B By comparing the predicted annotation between the UniD
and Unsupervised CNS Classification, all discordant samples were picked out with detailed information. The left column shows the discordant samples and
their subgroup belonging in (A). The right column shows the rationale for why they were discordant samples. C Boxplot shows the comparison of
ABSOLUTE tumor purity between the samples classified into CONTR categories (classified-normal) and samples classified as tumor categories (classified-
tumor) according to Unsupervised CNS Classification. Each point represents for one sample (classified-normal n= 39, classified-tumor n= 565). Boxplot
center line represents median value, lower and upper hinges represent 25th and 75th percentiles, and lower and upper whiskers represent 1.5 interquartile
ranges above and below box limits or maximum/minimum, whichever is closest to median. D SNP6-based CNV profile of the 12 samples in Grp2 (six
CONTR, HEMI samples; three A IDH samples; and three A IDH, HG samples) clearly showing chr1p19q codel. The upper and lower panels show the profile
of chr1 and chr19, respectively. E Whole genome CNV profile derived SNP6 array for the samples classified as SFT, HMPC in Grp7. F Kaplan–Meier plot
with overall survival time (months) for the five enriched subgroups in (A) (Grp1, 2, 3, 7, and 8). The risk table is provided below. G Log-rank test was used
to compare every two subgroups. P values are provided in the table.
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Step by step details are in Supplementary Methods section 1.1.1. B Data processing procedure for gene expression subtype prediction with GBM samples.
Step by step details are in “Methods”. C Model building procedure for binary genetic alteration prediction. Samples were randomly split into three sets:
training set, development set, and test set. The training set was used for variable selection and to build candidate models, then the candidate models were
applied to the development set. Based on the prediction accuracy of the development set, the final model was selected. The final model was applied to the
test set for model performance evaluation. D Model building procedures for gene expression subtype prediction. GBM samples with DNA methylation and
gene expression data available were included. DNA methylation probes were overlapped between the HM27K and HM450K platforms. Samples were split
into training, development, and test set. Machine learning algorithms were evaluated on the training set and candidate algorithms were picked out. The
development set was used to determine the final algorithm. The final model was built using the training and development sets and validated in the test set.
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was calculated as:

ProbC ¼ 1� P.valueC
1� P.valueC
� �þ 1� P.valueM

� �þ 1� P.valueP
� �

¼ 1� P.valueC
3� ðP.valueC þ P.valueM þ P.valuePÞ

The permutation-based empirical p value for each subtype was used. P valuec is
the empirical p value for the CL subtype, and similarly for other subtypes.

Probes were selected for model building based on entropy-based metrics,
including information gain, gain ratio, and symmetrical uncertainty22. The R
package Fselector (R package) built within the mlr package37 was utilized to
calculate those metrics. Probes were ranked by each evaluation metric from high to
low. Then the rank sum was added up for each probe. Probes were sorted by the
rank sum from high to low. The top probes were those which showed the most
importance in terms of their response variable.

With the selected probes, 21 machine learning algorithms (Supplementary
Table 6) were fitted and evaluated in the training set. With ranked probes, different
probe sets were selected (top 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and
10% quantile) according to importance ranking (Supplementary Fig. 9). For each
evaluated algorithm, a prediction model was fitted with a training set and a
different probe set 100 times using fivefold CV (seed was set from 1 to 100). Models
were evaluated using two metrics. First, the prediction accuracy was calculated by
comparing the methylation data predicted gene expression subtype (predicted
subtype) with the assigned subtypes obtained from gene expression data (“real”
subtype) and determining the misclassification rate. Second, the sum of probability
deviations was calculated by the sum of the square of probability deviations of each
subtype, as shown below.

prob.deviationC ¼ real.probabilityC � predicted.probabilityC
� �2

sum of probability deviations ¼ prob.deviationC þ prob.deviationM þ prob.deviationP

For each algorithm and each selected probe set, the prediction accuracy and
sum of probability deviations from 100 times of 5-fold CV were summarized. The
misclassification rate of each machine learning algorithm and each probe set were
summarized in Supplementary Fig. 10. The sum of probability deviations for each
machine learning algorithm and each probe set was summarized in Supplementary
Figs. 11 and 12. We can see that the prediction accuracy was not affected by the
number of probes involved but the averaged sum of probability
deviations decreased as the number of probes increased. Therefore, we use all 278
probes in order to maximize prediction accuracy.

Based on the evaluation, six top-performing candidate algorithms were applied
to the development set (Supplementary Table 7). The final algorithm was selected
based on the prediction accuracy in the development set (Fig. 5D). Random forest
outperformed the others and was selected as the final algorithm. With the final
algorithm determined, all samples from the training and development sets were
used to build the final model. The final model was applied to the test set and TCGA
LGG samples to evaluate its performance.

Tumor purity, derived by ABSOLUTE38, was compared between the training,
development, and test sets for each evaluated genomic alteration to avoid any
potential bias. All sample sets showed no significant difference in tumor purity
except for those used to develop the ATRXmutation predictor (P= 0.043, ANOVA
test) (Supplementary Fig. 13).

Statistical analysis. For each binary genetic alteration, predictive signature probes
were compared between the binary subgroups using the Wilcoxon rank sum test.
The most significantly different probes were selected and applied to unsupervised
clustering analysis. Predictive signatures of IDH, TERTp, and ATRX mutation, and
1p19q codel were further compared with the glioblastoma CpG island methylator
phenotype (G-CIMP) signature18.

Each signature probe set was mapped back to the reference genome and further
compared for following categories. (1) Chromosome enrichment. The number of
probes located on each chromosome was summarized and normalized by the total
number of probes available on the chromosome. The percentage for each
chromosome was calculated by the normalized percent. A proportional test (R
function, prop.test) was applied between the number of probes for each
chromosome and the total number of probes available for each chromosome. (2)
CpG island relationship enrichment. Probes were categorized into following six
classes based on their distance to CpG islands: CpG island, N_shlef (2–4 kb from
island), S_shlef, N_shore (1–2 kb from island), S_shore, and unknown. The first
class in order was used if probes were annotated with multiple categories. Then a
proportional test was applied between the number of probes for each category and
the total number of probes available for each category. (3) Gene structure
enrichment. Probes were categorized into one of the following seven classes based
on their relationship to functional gene structure: TSS200, TSS1500, Body, 3ʹ-UTR,
5ʹ-UTR, 1st Exon, and unknown. For probes that can be mapped to multiple gene
structures, only the first category was used. The number of probes in each category
was compared with the total available probes in each category. (4) Mapping genes.
Genes mapped by the probes were summarized for frequency by array annotation.

If one probe mapped to multiple genes, then the first gene was counted. (5) Gene
Ontology (GO) enrichment. Genes mapped by signature probes were used as input
for GO analysis. This analysis was carried out with the web-based DAVID19

(version 6.7).
Binary genetic alterations status was compared between methylation-based

model prediction and the reference standard. To investigate the misclassified
samples of ATRX mutation status, samples were regrouped by the DNA-seq and
methylation-based (methyl-based) status. For misclassified samples, the single
nucleotide variations (SNVs) called by MuTect239, VarScan40, MuSE41, and
Somaticsniper42 were collected (data obtained from Genomic Data Commons Data
Portal43) and compared with the ATRX mutation status. To compare ATRX
expression level between subgroups, the two-sample t test was applied. To clarify
the sample genetic characteristics, samples were regrouped by IDH, ATRX, and
TERTp mutation status obtained by DNA-seq and methyl-based prediction. The
methylation level (M-value) of HM450K probes located on ATRX were compared
between subgroups using the ANOVA test. For 1p19q codel misclassified samples,
sample CNV profiles were derived from HM450K data using the R package
conumee20.

For gene expression subtype prediction, misclassified samples in the test set
(n= 72) were re-grouped by their transcriptional subtypes and methylation
predicted subtypes. The correctly classified samples and misclassified samples were
compared in terms of CNVs and gene expression for each transcriptional subtype
using the Wilcoxon rank sum test.

For binary genetic alterations, the phase III clinical trial NOA-0417 was used as
an independent, external validation set. This trial compared the efficacy and safety
of radiotherapy followed by chemotherapy at progression to chemotherapy
followed by radiotherapy at progression in patients with anaplastic gliomas
(n= 115). DNA methylation HM450K data were available for all tumor samples.
Most of the tumors were characterized for genomic alterations and these data
served as the reference standard for comparison: targeted resequencing of the
amplified mutational hotspot (PCR-seq) for IDH (n= 108) and TERTp mutation
(n= 99); multiplex ligation-dependent probe amplification (MLPA) for 1p19q
codel (n= 99); and immunohistochemistry (IHC) for ATRX mutation (n= 96). In
addition, IDH mutation status was also determined by unsupervised clustering
with the HM450K data and chr1p19q codel status was also obtained by reviewing
the CNV profiles derived from HM450K data (n= 115) (R package conumee)20.
The methyl-based binary genetic alterations were predicted using build predicted
models for all samples and compared to reference standards. TheMGMT promoter
methylation status obtained by methylation-specific PCR (MSP)15 were compared
with MGMT-STP27 prediction.

To validate the gene expression subtype prediction, TCGA LGG gene
expression subtypes were compared between DNA methyl-based prediction and
gene expression profile determined (transc-based)14. Histopathological and
genomic characteristics were compared between methyl-based and transc-based
subtype determinations using χ-square or Fisher’s exact tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used for training the UniD algorithm include the TCGA glioblastoma data set,
which is available in Genomic Data Commons Data Portal with project name as TCGA-
GBM (https://portal.gdc.cancer.gov/projects/TCGA-GBM), and the TCGA low grade
glioma data set, with project name TCGA-LGG (https://portal.gdc.cancer.gov/projects/
TCGA-LGG). This data includes DNA methylation data, copy number variation data,
transcriptome profiling data, and clinical information. The processed data are available
within the Source Data file. The external validation data set from the NOA04 clinical trial
that supports the findings of this study are available on request from the corresponding
author of the paper “NOA-04 randomized phase III trial of sequential radiochemotherapy
of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide”17. This
data includes DNA methylation data, copy number variation data, transcriptome profiling
data, and clinical information. The remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are provided with this paper.

Code availability
Data analysis and custom code were applied with R package (version 3.3). R packages
utilized include conumee, ChAMP, lumi, wateRmelon, glmnet, Fselector, mlr, adabag,
C50, party, earth, evtree, gbm, Rweka, kknn, kernlab, MASS, e1071, randomForest,
randomForestSRC, ranger. All R packages are available from CRAN. To facilitate
widespread adoption of the UniD platform, we developed an R package for rapid
determination of biomarker status in gliomas (available on GitHub and the
corresponding DOI is as follows https://doi.org/10.5281/zenodo.6563993)44.
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