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Emergency triage of brain computed tomography
via anomaly detection with a deep generative
model
Seungjun Lee 1,5, Boryeong Jeong 2,5, Minjee Kim 1, Ryoungwoo Jang1, Wooyul Paik 3, Jiseon Kang 2,

Won Jung Chung4, Gil-Sun Hong 2,6✉ & Namkug Kim 1,2,6✉

Triage is essential for the early diagnosis and reporting of neurologic emergencies. Herein, we

report the development of an anomaly detection algorithm (ADA) with a deep generative

model trained on brain computed tomography (CT) images of healthy individuals that rep-

rioritizes radiology worklists and provides lesion attention maps for brain CT images with

critical findings. In the internal and external validation datasets, the ADA achieved area under

the curve values (95% confidence interval) of 0.85 (0.81–0.89) and 0.87 (0.85–0.89),

respectively, for detecting emergency cases. In a clinical simulation test of an emergency

cohort, the median wait time was significantly shorter post-ADA triage than pre-ADA triage

by 294 s (422.5 s [interquartile range, IQR 299] to 70.5 s [IQR 168]), and the median

radiology report turnaround time was significantly faster post-ADA triage than pre-ADA

triage by 297.5 s (445.0 s [IQR 298] to 88.5 s [IQR 179]) (all p < 0.001).
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Neurological emergencies should be diagnosed and treated
as soon as possible to reduce mortality and morbidity
rates and to enhance functional outcomes1–3. For the

initial screening and diagnosis of neurological conditions, non-
contrast brain computed tomography (CT) is the current stan-
dard imaging modality. In this regard, radiology worklist repri-
oritization based on image findings is critical in the emergency
department (ED).

With the excellent achievements of deep learning in various
radiological tasks, several studies have demonstrated that deep
learning-based radiological triage can improve radiology work-
flow efficiency, accelerate radiology reporting, and enable timely
management of patients with critical findings (e.g., intracranial
hemorrhage or large vessel occlusion on brain images)4–7.
However, data-related problems have restricted the broad clinical
application of deep learning. The construction of large-scale
annotated training datasets across diverse populations, disease
entities from common to rare, medical centers, and acquisition
protocols has remained a significant obstacle to developing a deep
learning system in medicine. In addition, the clinical efficacy of
supervised deep learning models has been validated only in
selected patients with the risk of having a single disease or a few
specific diseases. Therefore, this approach cannot guarantee that
deep learning can cope with new or previously unseen conditions.
As a result, the clinical applicability of supervised deep learning
with a narrow clinical focus has been limited.

Recently, pilot studies have shown that deep generative models
trained on normal data can detect anomalies8–13. Deep generative
models learn to capture target data distribution; hence, they can
detect anomalous data that deviate from the target distribution
without prior knowledge of anomalies. Moreover, the anomaly
detection framework based on deep generative models can
visually highlight the model’s prediction using reconstruction
error. Although previous studies using this framework have
attracted considerable attention, they have two limitations: (1)
lack of external and clinical validation tests (hence, whether the
model can be generalized to real-world situations cannot be
guaranteed) and (2) no clinical utility test of them.

This study aimed to develop and validate an anomaly detection
algorithm (ADA) based on a deep generative model trained only
with normal brain CT images and investigate the clinical impact
of an ADA-based triage system on ED radiology workflow using a
randomized crossover clinical simulation test. Importantly, this
study aimed to assess the real-world performance of the ADA
using brain CT images in internal and external ED screening
cohorts.

Results
We developed an ADA based on a deep generative model called
the closest normal-style-based generative adversarial network
(CN-StyleGAN). Using brain CT images from healthy indivi-
duals, CN-StyleGAN was trained to reconstruct a scan into the
closest normal-style scan. The density error between the actual
scan and the reconstructed scan was used to determine the
anomaly score of the scan to identify emergency cases. Cases
identified as emergency cases were reprioritized based on their
anomaly scores in the radiology worklist as well as the visuali-
zation of the predicted lesions (Fig. 1).

Baseline characteristics of the training, tuning, and validation
datasets. Figure 2 and Supplementary Table 1 summarize the
data collection, baseline characteristics, and image acquisition
information for the datasets. Non-contrast brain CT scans from
34,085 healthy individuals (mean age ± standard deviation [SD]:
42.9 ± 19.6 years; female: 18,232 [53.5%]) were retrospectively

collected from a tertiary academic hospital for the training
dataset. Furthermore, brain CT scans were collected indepen-
dently and retrospectively from consecutive individuals who
underwent emergency screening for suspected neurological con-
ditions in the EDs of an internal and an external institution. The
internal dataset included brain CT scans from 544 individuals
(mean age ± SD: 58.6 ± 17.8 years; female: 280 [51.5%]) who had
visited the ED of the internal institution for one month. Fol-
lowing that, the internal dataset was randomly divided into two
parts: the tuning dataset and the internal validation dataset. The
external validation dataset included brain CT scans from 1795
consecutive individuals (mean age ± SD: 60.3 ± 19.3 years; female:
875 [48.7%]) who had visited the ED of an external institution for
five months. For the tuning and internal and external validation
datasets, each case was classified into one of the five emergency
categories: normal, benign, indeterminate, urgent, and immediate
(Supplementary Table 2). Subsequently, both urgent and
immediate cases were defined as emergency cases that required
emergency intervention, regardless of the neurological entity. The
emergency cases accounted for 15.0% (41 of 273) and 11.0% (197
of 1795) of the internal and external validation datasets, respec-
tively. Disease entities from the internal and external validation
datasets included brain mass-like lesions (39.0% [16 of 41] vs.
10.2% [20 of 197]), acute infarctions (7.3% [3 of 41] vs. 19.8% [39
of 197]), intracranial hemorrhage (43.9% [18 of 41] vs. 65.0%
[128 of 197]), hydrocephalus (4.9% [2 of 41] vs. 3.0% [6 of 197]),
and other diseases (4.9% [2 of 41] vs. 2.0% [4 of 197]).

Emergency case detection performance of the ADA. The
mean ± SD of the anomaly score was significantly different
between the non-emergency and emergency groups in the
internal and external validation tests (14.8 ± 36.9 vs. 98.6 ± 119.7,
p < 0.001, and 14.5 ± 47.3 vs. 118.5 ± 177.3, p < 0.001, respectively)
(Fig. 3a). The emergency case detection performance of the ADA
was analyzed by calculating the area under the receiver operating
characteristic (ROC) curve (AUC), sensitivity, specificity, and
accuracy with 95% confidence intervals (CIs). The maximum
value of Youden’s index for the ROC curve analysis using the
tuning dataset revealed the optimal anomaly score cutoff value. In
the internal and external validation datasets, no data were
excluded to reflect real data without sampling bias. Consequently,
the AUC, sensitivity, specificity, and accuracy with 95% CIs were
0.85 (0.81–0.89), 0.71 (0.60–0.82), 0.78 (0.74–0.82), and 0.77
(0.73–0.80), respectively, in the internal validation test and 0.87
(0.85–0.89), 0.78 (0.74–0.82), 0.81 (0.80–0.83), and 0.81
(0.80–0.82), respectively, in the external validation test (Fig. 3b,
Supplementary Fig. 1, and Supplementary Table 3). The false-
negative rates were 29.3% (12 of 41 in the internal validation
dataset) and 22.3% (44 of 197 in the external validation dataset).
The false-positive rates were 22.4% (52 of 232 in the internal
validation dataset) and 19.1% (305 of 1598 in the external vali-
dation dataset). For the detection of immediate cases, the ADA
achieved the AUC values of 0.96 (0.94–0.99) and 0.95 (0.93–0.96)
in the internal and external validation tests, respectively.
According to disease entity, the AUC values with 95% CIs in the
internal and external validation tests were as follows: brain mass-
like lesions, 0.92 (0.88–0.96) vs. 0.92 (0.88–0.96); acute infarc-
tions, 0.91 (0.86–0.95) vs. 0.87 (0.83–0.91); intracranial hemor-
rhages, 0.78 (0.70–0.85) vs. 0.86 (0.83–0.88); hydrocephalus, 0.82
(0.64–0.97) vs. 0.94 (0.92–0.97); and other diseases, 0.95
(0.91–0.99) vs. 0.80 (0.65–0.94) (Supplementary Fig. 2). Figure 4
shows representative cases of various diseases detected as emer-
gency cases by the ADA and lesion attention maps provided by
the ADA (see Supplementary Fig. 3 for representative false-
positive and false-negative cases).
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Furthermore, sensitivities and specificities (95% CIs) were
calculated, with the thresholds derived using the tuning dataset at
high sensitivity levels of 0.95 and 1.00. At a sensitivity level of 0.95
for the tuning dataset, the sensitivity and specificity were 0.90
(0.83–0.97) and 0.60 (0.56–0.65), respectively, in the internal
validation dataset and 0.89 (0.86–0.92) and 0.63 (0.62–0.65),
respectively, in the external validation dataset. At a sensitivity
level of 1.00 for the tuning dataset, the sensitivity and specificity
were 1.00 (1.00–1.00) and 0.42 (0.37–0.47), respectively, in the
internal validation dataset and 0.96 (0.95–0.98) and 0.47
(0.45–0.49), respectively, in the external validation dataset.

Clinical simulation test for emergency case prioritization. To
investigate the clinical efficacy of the ADA-based triage system
for radiology workflow, a randomized crossover study was per-
formed in two sessions using the external validation dataset by
referring to the existing study14 (Fig. 5a). Two radiology experts
on brain CT images independently participated in reviewing the
images and reporting the critical findings using an in-house web-
based user interface. A total of 1795 brain CT scans from the
external validation dataset were randomized to two groups
(groups A [898 brain CT scans] and B [897 brain CT scans]). In
each group, brain CT scans were randomly assigned to 39 blocks
(23 CT scans per block in group A, except for the last block,
which included 24 CT scans; and 23 CT scans per block in group
B). One block indicates the workload of a radiologist or emer-
gency physician at one time. In the first reading session, each

reader assessed group A without the ADA and assessed group B
with the ADA. In the second reading session, each reader assessed
group A with the ADA and assessed group B without the ADA.
The first and second sessions were separated by at least two
weeks, and the reading orders of blocks were randomized for each
reading session. The ADA-based triage system reprioritized
emergency cases in the radiology worklists in each block and
labeled them in red to alert readers.

The clinical efficacy of the ADA was analyzed according to
three radiological time metrics based on previous studies6,15,16:
wait time (WT; the time required to open a CT for image review
from the beginning of one block), radiology report turnaround
time (TAT; the time required to report a critical CT finding from
the beginning of one block), and reading time (RT; the time
between opening and closing a CT) for each case in each block.

Table 1 summarizes the outcomes before and after ADA
implementation and presents them as median values in seconds
(interquartile range [IQR]). In the emergency group, the median
WT was significantly shorter post-ADA triage by 294 s (70.5 s
[IQR 168]) than pre-ADA triage (422.5 s [IQR 299]) (p < 0.001).
The median TAT was significantly faster post-ADA triage by
297.5 s (88.5 s [IQR 179]) than pre-ADA triage (445.0 s [IQR
298]) (p < 0.001). There was no significant difference in RT
between pre-ADA and post-ADA triage (29.0 s [IQR 12.5] vs.
30.0 s [IQR 11.0], p= 0.38). As expected, in the non-emergency
group, there was a significant delay in the WT and TAT when the
ADA was implemented. However, the absolute difference in the
WT and TAT between pre-ADA and post-ADA triage was
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significantly smaller in the non-emergency group (79.3 s [IQR
197.9] and 72.8 s [IQR 202.3]) than in the emergency group
(294.0 s [IQR 352] and 297.5 s [IQR 347]) (p < 0.001). The RT was
significantly shorter post-ADA triage by 1.5 s (31.00 s [11.5]) than
pre-ADA triage (28.00 [11.5]) (p < 0.001). In the false negatives,
the median WT and TAT were significantly delayed by 71 s and
70.3 s, respectively, post-ADA triage compared with pre-ADA
triage (358.0 [IQR 291.5] to 449.8 s [IQR 199.3], p= 0.009 and
471.0 s [IQR 205] to 384.3 [IQR 300.9], respectively; p= 0.02)
(Table 2). Figure 5b shows the significant reduction in the WT and
TAT in the subgroups of emergency cases. Note that the WT and
TAT were significantly shorter in the immediate group (350 s
[260.3] and 355 s [266.6], respectively) than in the urgent group
(245.5 s [422.5] and 245.5 s [439.5], respectively) (all p= 0.002).

Discussion
Our study proposed an anomaly detection approach based on a
deep generative model trained only with normal brain CT images
from healthy individuals. Although the proposed model did not
reach the level of the supervised learning-based model perfor-
mance, our study showed that the ADA has a clear advantage in
terms of covering a diversity of diseases seen in the ED. In par-
ticular, our research demonstrated the potential clinical applic-
ability of the ADA as a triage system for patients with emergency
conditions.

Our research demonstrated the moderate but consistent per-
formance of the ADA based on a deep generative model for
internal and external validation datasets. Our external validation
dataset represents real-world data that were consecutively col-
lected from ED patients with neurologic symptoms and acquired
from diverse CT machines and scanning protocols. Our results
are supported by the findings of previous related studies in terms
of the acceptable performance by an anomaly detection model

and good generalizability. Han et al.17 reported on a GAN-based
anomaly detection model with an AUC of 0.727–0.894 for
detecting Alzheimer’s disease and an AUC of 0.921 for detecting
brain metastases from MRI. Choi et al.9 reported on a deep
learning model trained only using normal brain images to iden-
tify brain abnormalities (AUC of 0.74) in on brain positron
emission tomography-CT (PET-CT) images. Fujioka et al.10

proposed a GAN-based anomaly detection model with an AUC of
0.936 for distinguishing normal tissue from benign and malignant
masses based on breast ultrasound imaging. These prior studies
are valuable in that they demonstrated the capability of anomaly
detection models in various medical images. However, the pre-
vious studies lacked external clinical validation tests; thus, whe-
ther these models can be generalized to real-world situations
cannot be guaranteed. Therefore, further evidence with real-world
data is warranted. Our study serves this purpose.

The other critical point of our study is that our research
demonstrated the feasibility of our ADA as a triage system for
brain CT scans in the ED. Our study revealed that ADA imple-
mentation significantly reduced the WT and TAT in emergency
cases. Our results are comparable to those of previous studies
regarding the clinical feasibility of patient triage by supervised
anomaly detection models. Titano et al.18 reported that their
supervised model potentially raised the alarm 150 times faster
than humans for urgent cases in brain CT scans. Wood et al.19

demonstrated that the supervised anomaly detection model sig-
nificantly reduced the mean reporting time for abnormal MRI
examinations from 28 days to 14 days and from 9 days to 5 days
for two hospital networks. Notably, in the detailed subgroup
analysis of our study, ADA implementation led to a significant
reduction in the WT and TAT in immediate (more urgent) cases
than in urgent cases. This is because ADA-based classification is
based on anomaly scores. A higher anomaly score for a limited
intracranial space likely reflects a correspondent urgency on an

Fig. 2 Data flow diagram of the collection and curation process of the training, tuning, internal validation, and external validation datasets. The
training dataset was collected and curated to include brain CT scans from healthy individuals by reviewing and applying NLP algorithms to radiological
reports. In addition, consecutive brain CT scans from individuals who underwent emergency screening for suspected neurological conditions in the EDs of
the internal and external institutions were independently and retrospectively collected. The internal dataset was randomly divided into two parts: a tuning
dataset and an internal validation dataset. The external validation dataset included brain CT scans from 1795 consecutive individuals who had visited the
ED of the external institution for five months.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31808-0

4 NATURE COMMUNICATIONS |         (2022) 13:4251 | https://doi.org/10.1038/s41467-022-31808-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


emergency brain CT scan. Unexpectedly, the increase in the WT
and TAT in non-emergency cases was significantly smaller than
the decrease in the WT and TAT in emergency cases. This finding
is likely due to the small percentage of emergency cases and
shorter RT following ADA implementation in non-emergency
cases. Although the emergency cases led to a radiology workflow
delay in the non-emergency cases, the faster RT in the relatively
larger non-emergency cases seemed to offset these effects. Given
our study design with a clinical simulation test, the shorter RT in
the non-emergency cases may be due to the change in the radi-
ologists’ confidence or behavior for image interpretation in the
normal brain CT scans predicted by ADA rather than due to
recall bias or a learning effect. However, this issue needs
further study.

The unresolved problem for anomaly detection models is the
relatively high false-positive and false-negative rates. In the ran-
domized controlled study conducted by Titano et al.18, their
supervised model for the triage of urgent brain CT scans could
alert physicians in 50% of critical cases, with a 21% false-alarm
rate. Our model had a high false-negative rate (22.3%) and false-
positive rate (19.1%). In our clinical simulation test, the ADA
implementation caused a significant delay in the median WT and
TAT in the false negatives compared with the pre-ADA group.
Therefore, the triage system with the anomaly detection model
posed a risk of undermining the timely management of patients
with critical CT findings. For false positives, a false alarm can
reduce physicians’ faith in a model and negatively affect emer-
gency patients who need fast treatment. Although these problems
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Fig. 3 Detection performance of the ADA for brain CT triage. a In both the internal and external validation tests, the anomaly scores differed significantly
between non-emergency (n= 232 for internal validation; n= 1598 for external validation) and emergency cases (n= 41 for internal validation; n= 197 for
external validation) (all p < 0.001). Box plots show the median (center line), first and third quartiles (box edges), and whiskers 1.5 times the IQR. Data
points outside the whiskers are considered outliers. Two-sided p-value was calculated using independent t-tests. b ROC curve analysis for assessing the
performance of the ADA according to different target groups in the internal and external validation tests. Date are presented as mean AUC values with
95% CI. Source data including exact p-values are provided in the Source Data file.
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could be solved using technical advances, this will be an ongoing
issue unless the triage algorithm achieves perfect accuracy.
Therefore, it is important that interpreting radiologists under-
stand the optimization strategy and are prepared to deal with false
positives or negatives.

This study has several limitations. First, our current system
relies on a single brain CT scan and does not refer to prior
imaging examinations or clinical information. This could result in
mis-triage of some less urgent cases as high priority cases. For
example, even if a previously diagnosed infarction has already
been treated, it could be detected as an emergency case. Fur-
thermore, anomaly cases of benign conditions (e.g., an arachnoid
cyst or encephalomalacia with an old infarction) may also be
incorrectly classified as emergency conditions. In addition, brain
shrinkage is a normal part of the aging process but can indicate
early-onset neurodegenerative diseases in younger patients.

Therefore, generating brain images that are the closest to normal
without age information is challenging. Age information could be
a prerequisite for correct classification in our anomaly detection
model. These problems can be mitigated by training the model on
benign conditions and incorporating meta-information regarding
factors that affect clinical diagnosis. Third, we used clinical and
radiological diagnoses as reference standards. However, many
neurological ED cases (e.g., small traumatic intracranial hemor-
rhage, minor stroke, or transient ischemic attack) do not require
surgical treatment or aggressive intervention because of their low
risk of rapid exacerbation. Therefore, this may be an unavoidable
limitation in an emergency screening cohort study. Nevertheless,
further studies using the gold standard are warranted to deter-
mine the accurate performance of the model. Fourth, this study
did not reflect the complexity of clinical practice. Multiple factors
can influence the results of a clinical simulation test, including the
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Fig. 4 Localization of the predicted lesion on emergency brain CT images from patients with various diseases. The columns, from the left to right, of
each case represent input images, reconstructed images, and lesion attention. The attention maps localize anomalies related to secondary brain changes
such as midline shift or perilesional edema as well as space-occupying brain lesions. a brain mass-like lesions, b acute territory infarction, c acute basal
ganglionic infarction, d hydrocephalus, e hypoxic encephalopathy, f intracerebral hemorrhage (ICH), g subarachnoid hemorrhage (SAH), h subdural
hemorrhage (SDH), i intraventricular hemorrhage (IVH), and j unruptured aneurysm.
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case difficulty, queue size of the CT scan, readers’ expertize level,
image-processing time, patient acuity, and interruption by other
examinations. Therefore, our results may vary with these factors.
To address this issue, multicentered and prospective validation
studies are warranted.

In conclusion, we developed an ADA with a deep generative
network trained only on normal brain CT images from healthy

individuals. Our model achieved moderate but consistent
performance in detecting emergency brain CT scans using
internal and external ED screening cohorts. In the clinical
simulation test, our study also highlighted the feasibility
of the ADA as a triage system to reprioritize radiology
worklists and accelerate the diagnosis of various emergency
conditions.

Fig. 5 Clinical simulation test. a Randomized crossover study design. b Comparison of outcomes in subgroups pre- and post-ADA triage (immediate
[n= 80], urgent [n= 117], and non-emergency cases [n= 1598]). Data are reported as the median ± IQR. Box plots show the median (center line), first
and third quartiles (box edges), and whiskers 1.5 times the IQR. Data points outside the whiskers are considered outliers. Two-sided p-values were
calculated using the Wilcoxon signed-rank test for comparison between pre- and post-ADA triage, and the Wilcoxon rank-sum test was used for
comparison between immediate and urgent cases. Source data including exact p-values are provided in the Source Data file. ADA anomaly detection
algorithm, WT wait time, TAT radiology turnaround time, RT reading time.
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Methods
Ethics statement. This retrospective study was conducted in accordance with the
principles of the Declaration of Helsinki and current scientific guidelines. The
Institutional Review Boards (IRBs) of Asan Medical Center (2019-0795) and
Gangneung Asan Hospital (GNAH 2020-01-006) approved the study protocol.
They waived the requirement for informed patient consent, given the minimal risk
to subjects in the retrospective imaging study and the impracticality of obtaining
informed consent from large numbers of patients retrospectively.

Data collection, curation, and categorization. For the development of CN-Sty-
leGAN, a total of 197,038 non-contrast brain CT scans and paired radiology
reports were retrospectively collected from patients who visited an urban, tertiary,
academic hospital between January 1, 2000, and August 31, 2018. After iterations of
the data curation process, the training dataset comprised 34,085 normal brain CT
scans from healthy patients. In detail, the data curation process included three
steps. First, we reviewed the radiology reports from 10,000 randomly sampled CT

scans and selected keywords for anomalous CT findings such as positive patho-
logical findings, benign lesions, and postoperative changes. Second, a natural
language processing (NLP) algorithm (PyConTextNLP20) was used to exclude
anomalous brain CT scans based on these keywords. Finally, two radiologists (GS
Hong and B Jeong, with 14 years and four years of experience in reading brain CT
images, respectively) randomly selected 1,000 CT scans and reviewed their radi-
ology reports. If anomalous CT scans were found during this step, additional
keywords were added. This data curation cycle was repeated five times to obtain
completely normal CT scans. A total of 79,060 postoperative CT scans and 78,713
abnormal CT scans were excluded. Finally, the NLP-based data curation was
assessed by manually reviewing the radiology reports of 1000 randomly selected
cases. Of the 39,265 potentially eligible cases, CT scans from 5180 cases were not
available for automatic downloading using the in-house system. Finally, the brain
CT scans of 34,085 normal individuals were included in the training dataset.

Furthermore, the brain CT scans were collected independently and
retrospectively from consecutive individuals who underwent emergency screening

Table 1 Comparison of outcomes pre-ADA and post-ADA triage.

Pre-ADA Post-ADA Difference between pre- and post-
ADA

p-valuea p-valueb

Emergency
(n= 197)

WT Median (IQR) 422.5 (299.0) 70.5 (168.0) −294.0 (352.0) <0.001 <0.001
Mean (±SD) 436.6 (±192.2) 147.4 (±184.0)
Min–Max 1–997 1–803

RT Median (IQR) 29.0 (12.5) 30.0 (11.0) 0.0 (13.0) 0.38 0.006
Mean (±SD) 29.7 (±9.2) 30.3 (±7.7)
Min–Max 9–76 7–79

TAT Median (IQR) 445.0 (298.0) 88.5 (179.0) −297.5 (347.0) <0.001 <0.001
Mean (±SD) 457.9 (±195.4) 168.7 (±183.2)
Min–Max 63–1017 6–847

Non-emergency
(n= 1598)

WT Median (IQR) 327.0 (357.0) 364.8 (307.4) 79.3 (197.9) <0.001
Mean (±SD) 335.1 (±217.1) 366.0 (±192.9)
Min–Max 1–1053 1–1000

RT Median (IQR) 31.00 (11.5) 28.00 (11.5) −1.5 (14.0) <0.001
Mean (±SD) 31.2 (±8.9) 29.7 (±9.2)
Min–Max 9–79 8–79

TAT Median (IQR) 357.0 (352.0) 393.0 (303.4) 72.8 (202.3) <0.001
Mean (SD) 364.3 (218.0) 393.2 (192.1)
Min–Max 12–1095 9–1045

Data are expressed as the mean (SD, standard deviation) or median [interquartile range, IQR] (seconds). All statistical tests were two-sided, and statistical significance was set at p= 0.05.
aThe Wilcoxon signed-rank test was used for comparison between pre- and post-ADA triage.
bThe Wilcoxon rank-sum test was used for comparison between emergency and non-emergency cases.

Table 2 Comparison of outcomes pre- and post-ADA triage among false negatives and false positives.

Pre-ADA Post-ADA Difference between pre- and post-
ADA

p-valuea

False negatives
(n= 44)

WT Median (IQR) 358.0 (291.5) 449.8 (199.3) 71.0 (145.0) 0.009
Mean (±SD) 400.5 (±192.2) 445.0 (±150.4)
Min–max 72–922 146–803

RT Median (IQR) 28.8 (10.0) 28.8 (9.4) −0.3 (9.9) 0.68
Mean (±SD) 29.4 (±8.6) 29.6 (±7.8)
Min–max 9–76 12–62

TAT Median (IQR) 384.3 (300.9) 471.0 (205.0) 70.3 (143.6) 0.02
Mean (±SD) 421.7 (±196.2) 464.5 (±150.9)
Min–max 82–951 155–847

False positives
(n= 305)

WT Median (IQR) 357.0 (366.0) 101.0 (104.0) −220.5 (360.5) <0.001
Mean (±SD) 342.9 (±220.4) 111.1 (±76.8)
Min–max 1–957 1–449

RT Median (IQR) 32.5 (11.5) 35.5 (13.0) 2.5 (14.5) <0.001
Mean (±SD) 33.6 (±9.1) 36.6 (±9.6)
Min–max 9–79 9–79

TAT Median (IQR) 378.0 (357.5) 134.50 (111.5) −223.5 (361.5) <0.001
Mean (SD) 374.0 (±220.8) 143.7 (±78.1)
Min–max 12–1007 9–508

Data are expressed as the mean (SD, standard deviation) or median [interquartile range, IQR] (seconds). All statistical tests were two-sided, and statistical significance was set at p= 0.05. aThe
Wilcoxon signed-rank test was used for comparison between pre- and post-ADA triage.
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for suspected neurological conditions in the EDs of an internal and an external
institution. For the tuning and internal validation test, after six cases were excluded
due to download errors, 544 non-contrast brain CT scans of ED patients were
consecutively collected from Asan Medical Center in February 2019. The internal
dataset was subsequently randomly divided into two parts: a tuning dataset and an
internal validation dataset, and the ratio of each emergency severity group was
preserved. For the external validation test, 1795 non-contrast brain CT scans from
ED patients were consecutively collected from Gangneung Asan Hospital from
January 1, 2019, to May 31, 2019. A board-certified emergency radiologist (GS
Hong, with 14 years of experience reading brain CT images) reviewed all CT
images in the internal and external validation datasets and classified the cases
according to the category system for emergency severity21–23. This system
categorized the cases into the following categories based on the urgency of
treatment: normal, benign, indeterminate, urgent, and immediate. Subsequently,
both urgent and immediate cases were defined as emergency cases. Cases of a
critical, life-threatening condition that required immediate medical or surgical
treatment were defined as immediate cases. Cases that were not life-threatening
currently but required rapid treatment because they could deteriorate were defined
as urgent cases. The disease entities in the emergency cases were categorized as
brain mass-like lesions, acute infarctions, intracranial hemorrhages, hydrocephalus,
and other diseases. A brain mass-like lesion was defined as a volumetric space-
occupying lesion (e.g., brain tumor, brain abscess, tumefactive demyelinating
disease, or encephalitis) distinct from the brain parenchyma with a normal
appearance.

Development of CN-StyleGAN. We developed an architecture, termed CN-Sty-
leGAN, that was closely modeled after StyleGAN2. CN-StyleGAN comprised three
deep neural networks: a style-based generator (G), discriminator (D), and style-
based encoder (E). We used the same architecture as StyleGAN2 for G and D; E
followed the architecture of D, although the last fully connected layer was modified
to output an 8192-dimensional latent code, w 2 W+, followed by a leaky ReLU of
α= 0.224. Given a brain CT image as an input, E encodes the image into the closest
normal-style latent code, and G generates the closest normal-style brain CT image
from the latent code, trying to fool D by making the generated image indis-
tinguishable from the true image. Then, D tries to discriminate the generated image
from the true image.

Training. Supplementary Fig. 4 illustrates the training process of CN-StyleGAN.
We trained CN-StyleGAN using normal brain CT images and several training
processes for the model to encode the style of normal brain CT images. First, we
trained G and D for 160,000 iterations following the original training process of
StyleGAN2. Subsequently, we trained E and D but not G with loss functions
including VGG16-based learned perceptual image patch similarity (LPIPS)
loss25,26, domain-guided loss27, and adversarial loss functions from StyleGAN2.
LPIPS loss measured the discrepancy between real images (x) and reconstructed
images (G(E(x))) in the feature space of VGG16. To improve the performance and
increase the stability, we downsampled the images to a resolution of 256 × 256
pixels before computing the LPIPS distance. The domain-guided loss measured the
L1 distance between E(x) and E(G(E(x))) for the in-domain property, regularizing
the latent code to be inside the latent space of the normal brain CT data dis-
tribution. For adversarial loss, non-saturating loss28 was used with R1-
regularization29 at every 16th step to stabilize the training of D. After adversarial
training, the reconstructed images were indistinguishable from the normal brain
CT images. Furthermore, random erasing of brain CT images30 was used so that E
could learn the semantics of normal brain CT images by filling in the missing
region. We trained the model in PyTorch31 with the Adam optimizer32 for 200,000
iterations with hyper-parameters (β1= 0, β2= 0.99, ε= 10−8, and minibatch=
32). The learning rate was 10−5 for the E and 10−6 for the D.

Gaussianized latent space. Previous studies on StyleGAN have indicated that
data distribution can be explicitly modeled as a normal distribution in the inter-
mediate latent space of StyleGAN33,34. Similarly, we explicitly modeled the data
distribution of normal brain CT images in the intermediate latent space. We used E
to map each normal brain CT image, slice-by-slice, from the training data to the
latent space and used the latent codes to estimate the sample statistics for each slice
order. Thus, the empirical covariance matrices, ∑, and means, μ, were accumulated
for each layer of the intermediate latent space.

Inference. Supplementary Fig. 5 illustrates the inference method and anomaly
scoring system of CN-StyleGAN. A CT scan included up to 32 axial slices from the
bottom to the top. We initialized the latent code, winit, for each axial slice (x) of the
scan as E(x) and the noise maps (n) from a normal distribution. We Gaussianized
and optimized the latent code (w) with L1, LPIPS, and the in-domain loss functions
using the Adam optimizer for 100 epochs. Furthermore, the in-domain loss was
modified to regularize the latent vector in the Gaussianized latent space only when
the latent code deviated from the mean of the data distribution of normal brain CT
images in the latent space compared with the in-domain latent code, E(G(x)). After
the latent code was optimized as w*, we optimized the noise maps with the L1 loss
function for 100 iterations. Noise maps can be optimized to generate out-of-

domain images35; therefore, we proposed a masked noise optimization that forced
the model to reconstruct the normal region alone. At each optimization step, a
binary mask, M, was defined to predict the lesion area in the scan. To calculate M,
the residual difference between an image (x) and the reconstructed image (G(w*,
n)) was brain-extracted36, median-filtered with a window size of 17, and thre-
sholded by 5 Hounsfield units. Moreover, the number of false positives in M
decreased because of the intersections of binary masks at the previous optimization
steps. Consequently, M was used to set a target image for optimization:

xtarget ¼ M� G w�; ninit
� �þ 1�Mð Þ � x ð1Þ

where � denotes a pointwise multiplication. At the last optimization step, the
binary mask was used as the lesion attention map for prediction.

Anomaly score. The anomaly score was calculated as follows: first, reconstruction
error for a slice xi of a scan was defined as:

RðxiÞ ¼ kM� ðxi � Gðw; nÞÞk ð2Þ
which is the binary masked density error between the slice, xi, and the recon-
structed slice, G(w,n). Second, this reconstruction error was normalized, slice-by-
slice, based on the slice order, using the reconstruction error statistics of the mean,
Rμ, and SD, Rσ, of the normal brain CT images. A total of 1000 scans were
randomly selected from the training dataset for the normal brain reconstruction
error statistics. Finally, this normalized per-slice reconstruction error of 32 slices
for the scan was summed to obtain the anomaly score:

Anomaly score ¼ ∑
32

i¼1

R xi
� ��Rμi

Rσ i

ð3Þ

Clinical simulation test. To investigate the effect of CN-StyleGAN-aided radiology
workflow reprioritization, we retrospectively performed a clinical simulation test
using the external validation dataset of 1795 brain CT scans. Two radiologists (WJ
Jung and JH Lee, each with ≥14 years of experience in reading brain CT images)
independently and retrospectively performed a clinical simulation test using a
washout period and varying reading orders in a crossover design to assess brain CT
scans with and without the help of the triage system. Specifically, a total of 1795
brain CT scans from the external validation dataset were randomized to two groups
(group A [898 brain CT scans] and group B [897 radiographs]). Each block
enrolled 23 brain CT scans, except for one block in group A that enrolled 24 brain
CT scans, as the number of imaging studies (n= 878) in group A could not be
divided evenly by 23. In the first session, each reader assessed the brain CT scans in
group A without the help of the triage system and those in group B with the help of
the triage system. In the second session, each reader assessed the brain CT scans in
group A with the help of the triage system and those in group B without the help of
the triage system. The first and second sessions were separated by at least two
weeks, and the reading order of the blocks was randomized and different for each
reading session. Our triage system reprioritized emergency cases based on their
anomaly scores and labeled them in red in the worklist to attract the readers’
attention. The readers were able to overlay the segmentation mask (lesion atten-
tion) predicted by CN-StyleGAN on the brain CT image. The readers interpreted
the brain CT images and determined the presence of critical findings in the CT
scans using an in-house user interface that provided the radiology worklists of the
brain CT scans and their images (Supplementary Fig. 6). The readers were blinded
to the clinical information, imaging reports, and number of emergency cases
included in the study.

Three radiological time metrics, including WT, TAT, and RT, were selected
based on previous studies6,15,16. These time metrics were calculated based on the
timepoints in the CT interpretation process, which were automatically recorded by
the software. The metrics were calculated for each case in each block and were
defined as follows:

WTðiÞ ¼ ðTimestamp of opening CTiÞ � ðTimestamp of opening a blockÞ ð4Þ

TATðiÞ ¼ ðTimestamp of reporting image findings inCTiÞ � ðTimestamp of opening a blockÞ
ð5Þ

RTðiÞ ¼ ðTimestamp of closing CTiÞ � ðTimestamp of opening CTiÞ; ð6Þ
where CTi is the i th CT in a block.

Statistical analyses. The mean values of the anomaly scores between emergency
and non-emergency cases were compared using independent t-tests. The emer-
gency case detection performance of CN-StyleGAN was analyzed by calculating the
AUC, sensitivity, specificity, and accuracy using the internal and external validation
datasets. The optimal anomaly score cutoff value was determined from the max-
imum value of Youden’s index for the ROC curve analysis using the tuning dataset.
The bootstrap method (10,000 iterations) was used to calculate 95% CIs. The
median values of the time metrics in the clinical simulation test were compared
using the Wilcoxon signed-rank test and Wilcoxon rank-sum test. Analyses were
performed using Python version 3.8.5 (sklearn 0.23.2; Python Software
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Foundation), R version 4.1.0 (R Foundation for Statistical Computing), and ggplot2
version 3.6.3. All statistical tests were two-sided, and the statistical significance was
set at p= 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw experimental and clinical data are provided as Source Data, including the
diagnoses (ground truths), the model-prediction anomaly scores and detection
performance (Fig. 3), and the clinical simulation results for wait time, radiology
turnaround time, and reading time (Fig. 5, Tables 1 and 2). The brain CT images for the
development and validation of the model are not publicly available because they contain
private patient health information. For reasonable purposes including reproducing
results in this study, researchers can request the corresponding authors, G.-S.H. and
N.K., with approval of the Institutional Ethics Committee of Asan Medical Center. The
requests will be processed in 60 business days. Source data are provided with this paper.

Code availability
All code related to this project was written in Python. Custom code for image extraction,
the pre-processing pipeline, the deep learning model builder, the data provider, and the
experimenter driver is available at https://github.com/seungjunlee96/emergency-triage-
of-brain-computed-tomography-via-anomaly-detection-with-a-deep-generative-model.
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