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Model building of protein complexes from
intermediate-resolution cryo-EM maps with deep
learning-guided automatic assembly
Jiahua He 1, Peicong Lin1, Ji Chen1, Hong Cao1 & Sheng-You Huang 1✉

Advances in microscopy instruments and image processing algorithms have led to an

increasing number of cryo-electron microscopy (cryo-EM) maps. However, building accurate

models into intermediate-resolution EM maps remains challenging and labor-intensive. Here,

we propose an automatic model building method of multi-chain protein complexes from

intermediate-resolution cryo-EM maps, named EMBuild, by integrating AlphaFold structure

prediction, FFT-based global fitting, domain-based semi-flexible refinement, and graph-based

iterative assembling on the main-chain probability map predicted by a deep convolutional

network. EMBuild is extensively evaluated on diverse test sets of 47 single-particle EM maps

at 4.0–8.0 Å resolution and 16 subtomogram averaging maps of cryo-ET data at 3.7–9.3 Å

resolution, and compared with state-of-the-art approaches. We demonstrate that EMBuild is

able to build high-quality complex structures that are comparably accurate to the manually

built PDB structures from the cryo-EM maps. These results demonstrate the accuracy and

reliability of EMBuild in automatic model building.
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Advances in cryo-electron microscopy (cryo-EM) instru-
ments, data collection, and image reconstruction1–8 have
led to an increasing number of cryo-EM density maps of

previously intractable biological systems9,10. However, the goal of
cryo-EM is not to reconstruct density maps but to determine the
atomic structures. For high-resolution maps (<3 Å), high-quality
atomic structures can be built using the software conventionally
designed for X-ray crystallography11,12. For cryo-EM maps with
resolutions <4 Å, de novo model building13–16 also achieves a
satisfactory performance. However, for cryo-EM maps at inter-
mediate resolutions (4–8 Å), building accurate structure models
remains a challenging and labor-intensive process, which is
reflected in the giant gap between the numbers of reconstructed
density maps at intermediate resolutions and the deposited three-
dimensional (3D) structures in the protein data bank (PDB). As
of 1 January 2022, a total of 3746 cryo-EM maps with resolutions
ranging from 4.0 to 7.9 Å are deposited in EMDB17, but only 2218
of which have associated PDB18 structures, which means that
there is no available structure for >40% of intermediate-resolution
cryo-EM maps. Most of these uninterpreted maps are solved by
single-particle cryo-EM. However, with the rapid development of
cryo-electron tomography (cryo-ET), intermediate resolution
maps obtained by subtomogram averaging of cryo-ET data
become more widely available19–23. As such, methods for accu-
rate structural interpretation of intermediate resolution EM maps
are urgently in demand.

Although some efforts have been made to make up for the
gap24–27, building a model from scratch is challenged by massive
uncertainty for the cryo-EM maps at intermediate resolutions. Prior
knowledge is normally required for such types of model building,
which in most cases starts from given initial template structures.
Then, the atomic model of an EM map can be built by fitting and
refining the template structure against the map. The initial template
structures may be taken from previously solved high-resolution
structures, or predicted through structure prediction methods like
homology modeling, fragment threading, and deep learning. Rigid
fitting and flexible fitting are common techniques to place a tem-
plate structure into intermediate resolution cryo-EM maps. Rigid
fitting searches for possible relative orientations between a structure
and a density map. The fitness between the fitted structure and the
map is measured by a scoring function, e.g., cross-correlation,
mutual information, SCCC, SMOC28, etc. Until now, various
rigid fitting tools have been developed, including EMfit29,
UCSF Chimera30, gmfit31,32, multifit33,34, Situs35, PowerFit36,
TEMPy37–39, MOFIT40, VESPER41, and Phenix42. If the starting
template structure exhibits a certain degree of deviation from the
ground truth structure, flexible fitting43–50 is often required to
improve the rigidly fitted structure to conform to the density map.

Although many significant milestones have been reached,
existing algorithms still have limited accuracy in structure
determination from intermediate-resolution cryo-EM maps due
to several challenges. First, experimentally solved EM maps
usually contain heterogeneous density signals and random noises.
Therefore, scoring functions that measure the fitness between the
structure and experimental map may mislead the searching and
ranking procedures of the fitting. Current methods often have no
alternative but to pursue robustness at the sacrifice of scoring
accuracy. Second, human intervention is still necessary for the
majority of fitting algorithms, which makes fitting labor-intensive
and extremely unfriendly for non-expert users. The fitting results
are severely affected by specific parameters. Third, many methods
are designed for single-chain protein fitting and therefore require
map segmentation of individual subunits. Complex structures can
only be built by manually combining multiple fitting results of
individual chains. In such case, accurate map segmentation of
individual subunits is impossible because of the low quality of the

map, let alone reliable fitting of individual chains into the map.
Finally, proteins are flexible molecules and thus flexible fitting is
often required during model building, which is a painstaking
procedure. For molecular dynamics-based refinement approa-
ches, the initialization is complicated, the calculation is time-
consuming, the result is parameter-dependent, and the entire
procedure may suffer from errors. As such, lightweight refine-
ment protocols are more commonly used, but they cannot deal
with large conformational changes.

Addressing the challenges, we develop a deep learning-guided
method to automatically build the structure of multi-chain pro-
tein complexes from intermediate-resolution cryo-EM maps,
which is referred to as EMBuild. Through iteratively fitting,
refining, and assembling of protein structures of individual chains
predicted from sequences, EMBuild can build high-quality pro-
tein complex structures without human intervention. Instead of
directly fitting protein chains to the original density map,
EMBuild fits the chains to the main-chain probability map pre-
dicted by our deep learning model, where the density value on a
grid point stands for the probability of finding a main-chain atom
around the grid point. Compared with the density map, the main-
chain probability map includes more precise location information
of main-chain atoms, which can much help improve the accuracy
of fitting. Following rigid fitting, a semi-flexible domain refine-
ment strategy is implemented, which performs fast optimization
of domain orientations. The final protein complex structure is
assembled using a graph-based search of the top-scored combi-
nation of fitted protein chains. We evaluate the performance of
EMBuild on diverse test sets of 47 single-particle EM maps at
4.0–8.0 Å resolution and 16 subtomogram averaging maps at
3.7–9.3 Å resolution. Our results show that the model of the
protein complex structure, i.e., complex model, built by EMBuild
is of high quality with respect to not only the reference PDB
structure but also the EM density map in terms of various
metrics. In addition, we also demonstrate that EMBuild can also
reliably estimate the quality of the built models.

Results
Overview of EMBuild. For EMBuild, our goal is to automatically
build the protein complex structure from a given EM density map
starting from sequences. Figure 1 shows an overview of the
EMBuild workflow. The input of EMBuild is a density map and
the corresponding protein sequences of individual chains. From
the input density map, the main-chain probability map is pre-
dicted by EMBuild using a nested U-net (UNet++)51 that was
trained on a set of 209 pairs of experimental density maps and
main-chain probability maps calculated from deposited PDB
structures (Supplementary Data 1). Given the input protein
sequences of individual chains, their 3D structures are modeled
by a protein structure prediction program. Here, AlphaFold252

(AF2) is used to predict the protein structures from sequences,
though other programs like I-TASSER and Rosetta could also be
used. Then, each predicted protein structure is fitted to the main-
chain probability map using a fast Fourier transformation (FFT)-
based global alignment method. To consider a certain degree of
deviation between the input protein chain model and ground
truth structure, we adopt a semi-flexible domain refinement
strategy in EMBuild. Namely, the input protein chain model is
first optimally fitted as a rigid entirety. Then, each structure
domain of the fitted protein chain is locally refined, as illustrated
in Fig. 2a. For each fitted protein chain, we use a scoring function
to measure how well it matches the main-chain probability map,
referred to as the main-chain match score. With all the fitting
results of individual protein chains, the final protein complex
structure is selected from different combinations of fitted
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Fig. 1 Overview of the EMBuild workflow. a The training strategy of the deep learning module for main-chain probability prediction. The deep learning
module adopts a UNet++51 architecture. The training set consists of pairs of experimental EM maps and main-chain probability maps computed from
associated PDB structures. b The workflow of EMBuild. The input of EMBuild is the EM density map and its corresponding sequences of individual protein
chains. The main-chain probability map is predicted from the input density map using our trained deep learning model. The atomic models of individual
chains are predicted from their sequences by a structure prediction program. A set of predicted chain models are individually fitted to the main-chain
probability map through an FFT-based fitting and refinement. With all the fitting results of individual chains, the final protein complex structure is built
through a Bron-Kerbosch maximum clique algorithm. c Schematic of the Bron–Kerbosch maximum clique algorithm. The clash scores between two fitted
poses from different chains are calculated. Two poses are connected (green line) if the clash score is below a certain threshold, and are disconnected (red
break line) if the clash score is above the threshold. Then, a graph is generated where each vertex has the fitting score of its associated pose. The Bron-
Kerbosch search algorithm is used to find the top-scored combination of chains that are adjacent to each other, i.e., the top-scored clique.
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positions. Specifically, EMBuild applies a Bron–Kerbosch max-
imum clique algorithm to select the best combination of protein
chains with the highest total main-chain match score among
different combinations, in which severe atomic clash between
chains is not allowed. However, there will be a possibility that
some chains cannot be assembled to the complex through only a
single cycle of Bron–Kerbosch algorithm. Therefore, EMBuild
adopts an iterative assembling strategy to improve the integrality
of built protein complexes, as indicated in Fig. 2b. Finally, the
quality of the built model is estimated using the main-chain
match score calculated between the modeled structure and the
main-chain probability map.

Evaluating built models against the PDB structure. EMBuild
was first evaluated on the test set of 47 experimentally solved
single-particle cryo-EM maps of protein complexes, and com-
pared with phenix.dock_in_map42, DEMO-EM53, and gmfit31,32.
For all the methods, the input structures of protein chains are
predicted from sequences by AlphaFold252. It should be noted
that DEMO-EM was evaluated in two ways. One is using
sequences as the input. The other is using AlphaFold2-predicted
structures as the input. To evaluate the accuracy of the built
models, the built models were aligned to the deposited PDB
structures using MMalign54, which gave the values of two metrics,
TM-score and RMSD. Here, the TM-score is a measure of
similarity between two protein structures55, and the RMSD stands
for the root mean square deviation of the aligned residues
between the built complex model and the PDB structure. Figure 3
shows the TM scores and RMSDs of the built complex models
with respect to the PDB structures by different approaches. The
detailed results for each test case are listed in Supplementary
Data 2.

It can be seen from Fig. 3a that EMBuild significantly
outperformed the other methods. Specifically, the complex models
built by EMBuild achieved an average TM-score of 0.909, which is
significantly higher than 0.746 for phenix.dock_in_map, 0.532 for
DEMO-EM, 0.631 for DEMO-EM with AlphaFold2 structures, and
0.515 for gmfit. EMBuild also achieved a better performance than
the other methods on most of the test cases (Fig. 3b). Encouragingly,

EMBuild has succeeded in building accurate complex models with
TM-score > 0.5 for all of the 47 test cases. In addition to having a
better TM-score, the complex models built by EMBuild also
achieved an average RMSD of as low as 2.85 Å, which is significantly
better than 4.52 Å for phenix.dock_in_map, 5.11 Å for DEMO-EM,
4.37 Å for DEMO-EM with AlphaFold2 structures, and 6.64 Å for
gmfit (Fig. 3c). Compared with the other methods, EMBuild can
build better complex models on most of the test cases in terms of
RMSDs (Fig. 3d). Especially, EMBuild has succeeded in building
accurate complex models with RMSD < 6Å for all of the 47
test cases.

From Fig. 3, we can also observe two other notable features.
One feature is that DEMO-EM+AF2 performed better than
DEMO-EM in both TM-score (0.631 vs. 0.532) and RMSD
(4.37 Å vs. 5.11 Å). As the only difference between DEMO-
EM+AF2 and DEMO-EM lies in the input initial models for
assembling, the better performance of DEMO-EM+AF2 than
DEMO-EM will be attributed to the more accurate models built
by AlphaFold2 than by I-TASSER. The other feature is that
EMBuild performed much better than DEMO-EM+AF2 in both
TM-score (0.909 vs. 0.631) and RMSD (2.85 Å vs. 4.37 Å). As
EMBuild and DEMO-EM+AF2 adopted the same AlphaFold2
models as input but different assembling strategies, the much
better performance of EMBuild than DEMO-EM+AF2 would
come from the more advanced assembling strategy in EMBuild
than in DEMO-EM+AF2. These results suggest that the high
accuracy of EMBuild is not only because of the better input
models of protein chains but comes much more from the
advanced assembling strategy in EMBuild.

Figure 4 shows several examples of the complex models built
by EMBuild on single-particle EM maps. The first example is
EMD-3605, which is a 4.2 Å cryo-EM map for the full-length
structure of ZntB. Figure 4a shows a comparison between the
EMBuild model and the PDB structure on EMD-3605. It can be
seen from the figure that the EMBuild model reproduced the
conformation in the deposited structure of the pentamer complex
structure. The model built by EMBuild achieved the best quality
among different methods. Specifically, the EMBuild model
yielded a TM-score of 0.986 and an RMSD of 1.63 Å, compared
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Fig. 2 Detailed illustration of iterative flexible fitting. a Schematic of the domain refinement procedure applied in EMBuild. The main-chain probability
map is in transparent magenta, the reference PDB structure is in blue, and the fitted query model is colored from green to red according to the Cα
displacements between the query model and the PDB structure. Owing to the conformational deviation between the query model and the PDB structure,
the query chain matches poorly to the reference structure as a rigid entirety (bottom left). For better fitting, the query chain is then split into multiple
domains, as indicated by numbers 1–6 (top left). At last, all domains are iteratively optimized to achieve their best fitting into the main-chain probability
map (top right). As such, the final fitted model shows good consistency with the PDB structure (bottom right). b The iterative building strategy adopted by
EMBuild. After each cycle of building, the map regions with fitted structures are removed from further fitting. The remaining chains are iteratively
assembled to the complex under the guidance of the updated main-chain probability map.
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with 0.939 and 3.45 Å for phenix.dock_in_map, 0.642 and 6.52 Å
for DEMO-EM, 0.338 and 8.00 Å for DEMO-EM with
AlphaFold2 structures, and 0.289 and 6.99 Å for gmfit. In
addition, the EMBuild model gave low Cα displacements in the
entire model including the transmembrane domain and the
cytoplasm domain. Nevertheless, there is still room for improve-
ment on some flexible regions, such as the coils in the periplasm
domain, as well as some linkers between helices and strands.

EMbuild can also be applied to virus proteins. As illustrated in
Fig. 4b, EMBuild succeeded in building a high-quality model for
EMD-3856, which is the (foot and mouth disease virus) FMDV
A10 inside-out particle. The trimer model built by EMBuild
achieved a TM-score of 0.960 and an RMSD of 1.80 Å. In the
built model, EMBuild recovered almost all the residue positions
in the PDB structure except for some loop regions (indicated by
arrow). Another example of virus protein is EMD-6685 for the
Japanese encephalitis virus. The EMBuild model for this map also
showed a perfect agreement with the PDB structure, which can be
seen from Fig. 4c. The hexamer model for EMD-6685 built by
EMBuild achieved a TM-score of 0.985. This is a relatively easy
target since the protein chain models predicted by AlphaFold2 are
close to their PDB structures. As such, phenix.dock_in_map was
also capable to build a high-quality structure with a TM-score of
0.973. Nevertheless, EMBuild achieved a bigger advantage in the
RMSD of the build model, and gave an RMSD value of 1.64 Å,
which is significantly better than 2.28 Å for phenix.dock_in_map.

For other kinds of protein complexes, EMBuild also showed
consistently good performances. This is true for EMD-7453,
which is a complicated hetero-octamer involved in tetherin
downregulation, as illustrated in Fig. 4d. It should be noted that
two short chains (Chain T with 13 residues and Chain L with 10
residues) are ignored in the modeling and evaluating processes of
EMD-7453. EMD-7453 is an extremely hard target because there
exist large conformational changes between the predicted chain
structure by AlphaFold2 and the PDB structure. Nevertheless, the
EMBuild model still recovered the conformation of the deposited

structure with a TM-score of 0.992 and an RMSD of 1.21 Å,
which drastically exceeded 0.616 and 5.39 Å for phenix.dock_-
in_map, and 0.306 and 5.52 Å for gmfit, respectively. Another
good model was constructed by EMBuild for EMD-9317 with
eight chains, as shown in Fig. 4e. The EMBuild model achieved a
TM-score of 0.983 and an RMSD of 1.92 Å. It can be revealed
from the figure that the EMBuild model exhibited low Cα
displacements in the entire model except for those regions with
weaker density signals. In addition, EMBuild is also capable of
building protein complexes with more chains, taking EMD-22216
for instance. As displayed in Fig. 4f, ten protein chains were
correctly assembled by EMBuild, resulting in a high-quality
complex model with a TM-score of 0.970 and an RMSD of
2.04 Å.

Validating built models against cryo-EM maps. We have eval-
uated the performance of EMBuild using the PDB structure as the
reference. However, in real applications, the ground truth struc-
ture for a given map is commonly unknown. Therefore, as an
alternative, it is of vital importance to evaluate how the built
model represents the given map, i.e. fit-to-map of the built
models56. Correspondingly, we reported the CC_box and
CC_mask values calculated by phenix.map_model_cc, and map-
model FSC05 values calculated by phenix.mtriage between the
built model and the density map57 (Supplementary Data 2).

Figure 5a shows the average CC_box of the built complex
models by different methods. It can be seen from the figure that
the complex models built by EMBuild achieved a significantly
higher correlation coefficient with the EM map than the other
methods. Specifically, EMBuild achieved an average CC_box
value of 0.7152, compared with 0.5975 for phenix.dock_in_map,
0.5647 for DEMO-EM, 0.6077 for DEMO-EM with
AlphaFold2 structures, and 0.5332 for gmfit. In addition, the
average CC_box (0.7152) for the EMBuild models reaches near
95% of that (0.7545) for the PDB structures, which suggests that
the EMBuild models can to some extent rival the quality of the
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Fig. 3 Evaluation of the built models against the reference PDB structure for EMBuild, phenix.dock_in_map, DEMO-EM, DEMO-EM with
AlphaFold2 structures, and gmfit, on the test set of 47 single-particle EM maps. a, c Average TM-scores (a) and RMSDs (c) of the built models for
n= 47 individual test cases. Error bars indicate ±1.0 standard deviation. b, d Comparison of the TM-scores (b) and RMSDs (d) on each test case between
EMBuild and other methods. Source data are provided in the Source Data file.
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PDB models. As shown in Fig. 5b, the majority of models built by
EMBuild achieved a higher CC_box value than the other
methods. EMBuild succeeded in building models with a CC_box
of >0.5 for 46 out of the total of 47 cases. Similar trends can also
be found for the CC_mask values, as can be seen in Fig. 5c.
Specially, the complex models built by EMBuild achieved an
average CC_mask value of 0.6898, compared with 0.5323 for
phenix.dock_in_map, 0.5167 for DEMO-EM, 0.5573 for DEMO-
EM with AlphaFold2 structures, and 0.3939 for gmfit. The
average CC_mask (0.6898) for the EMBuild models is also as high
as 95% of that (0.7295) for the PDB structures, which
demonstrated the superiority of EMBuild. A detailed comparison
further showed the leading performance of EMBuild, as it
outperformed the other methods on most of the test cases
(Fig. 5d). Out of the 47 cases, 44 cases built by EMBuild achieved
a CC_mask of >0.5.

Similar improvement trends can be observed in the map-model
FSC05 values of built complex models. Specifically, the EMBuild
models obtained an average FSC05 value of 6.40 Å on the test set
of 47 cryo-EM maps, compared with 5.71 Å for the deposited
PDB structures. In contrast, the other methods either yielded a
significantly higher FSC05 value or failed to give a valid map-
model FSC on many more cases because their built models do not
conform to the map. Out of 47 test cases, the deposited PDB

structures and the EMBuild models only show one failed case in
the FSC05 calculation, compared with 17 failed cases for
phenix.dock_in_map, 7 failed cases for DEMO-EM, 6 failed
cases for DEMO-EM with AlphaFold2 structures, and 34 failed
cases for gmfit (Supplementary Data 2). These results demon-
strated the reliability of the built models by EMBuild.

Evaluations on subtomogram averaging maps of cryo-ET data.
EMBuild was further evaluated on the test set of 16 EM maps
obtained by subtomogram averaging of cryo-ET data, and com-
pared with phenix.dock_in_map42 and gmfit31,32. Figure 6a, b
shows the TM-scores and RMSDs of the built complex models
with respect to the PDB structures. The detailed evaluation results
for each of the 16 test cases are listed in Supplementary Data 3. As
illustrated in Fig. 6a, b, EMBuild has significantly outperformed
the other methods on most of the test cases in terms of TM-score
and RMSD values. On average, the complex models built by
EMBuild achieved an average TM-score of 0.863 and an average
RMSD of 2.74 Å, respectively, which are significantly better than
0.600 and 5.12 Å for phenix.dock_in_map and 0.386 and 7.96 Å
for gmfit. Figure 6c, d shows the CC_box and CC_mask values of
the complex models built by different methods. It can be seen
from the figure that the complex models built by EMBuild also
achieved a significantly higher average correlation coefficient than
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Fig. 4 Examples of the protein complex structures built by EMBuild on single-particle cryo-EM maps. The reference PDB structures are colored in blue
and the corresponding EM density maps are colored in transparent gray. The built structures by EMBuild are colored from green to red according to Cα
displacements with respect to the reference structure. a EMD-3605 at 4.2 Å resolution (PDB ID: 5N9Y). b EMD-3856 at 5.2 Å resolution (PDB ID: 5OWX).
A poorly modeled loop is indicated by an arrow. c EMD-6685 at 4.3 Å resolution (PDB ID: 5WSN). d EMD-7453 at 4.3 Å resolution (PDB ID: 6D83). The
enlarged view displays the EM density volume around a poorly modeled region (indicated by red arrow). e EMD-9317 at 5.2 Å resolution (PDB ID: 6N1Q).
f EMD-22216 at 4.6 Å resolution (PDB ID: 6XJX).
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the other methods on the test set of subtomogram averaging
maps. Specifically, EMBuild achieved an average CC_box of
0.6887 and an average CC_mask of 0.6654, compared with 0.5639
and 0.5369 for phenix.dock_in_map and 0.4535 and 0.3638 for
gmfit. Similar to the trends for the test set of single-particle EM
maps, the average CC values of the EMBuild models are close to
the average CC values of the deposited PDB structures (0.7628
and 0.6897 for CC_box and CC_mask, respectively).

Figure 6e, f shows two examples of the complex models built by
EMBuild on the subtomogram averaging maps. The first example
is EMD-10381, which is a 3.7 Å map for the EIAV CA-SP
hexamer with 18 protein chains. The comparison between the
EMBuild model and the PDB structure is displayed in Fig. 6e. It
can be seen from the figure that EMBuild succeeded in building a
high-quality model on this subtomogram averaging map. The
model built by EMBuild achieved the best quality among different
methods. Specifically, the EMBuild model yielded a TM-score of
0.996 and an RMSD of 1.09 Å, compared with 0.894 and 6.44 Å
for phenix.dock_in_map, and 0.307 and 12.51 Å for gmfit. In
terms of fit-to-map metrics, the EMBuild model achieved the
CC_box, CC_mask, and map-model FSC05 of 0.6724, 0.7547,
3.75 Å, respectively, which are close to 0.7156, 0.7696, and 3.79 Å
for the deposited PDB structure. The other example is EMD-3478
with 14 protein chains, as shown in Fig. 6f. Although the input
subtomogram averaging EM map is at a poor resolution of only
8.0 Å, the EMBuild model still reproduced the conformation of
the PDB structure with a TM-score of 0.991 and an RMSD of
1.19 Å, which drastically exceeded 0.175 and 3.38 Å for
phenix.dock_in_map, and 0.274 and 9.72 Å for gmfit. In addition,
the quality of EMBuild model is also comparable to that of the
deposited PDB structure. The CC_box, CC_mask, and map-
model FSC05 achieved by the EMBuild model are 0.8638, 0.7451,
and 8.00 Å, respectively, compared to 0.8273, 0.6399, and 8.05 Å
for the PDB structure.

Quality check of built models. Quality assessment is critical for
model building into cryo-EM maps, so that users would know
which parts are reliable and which parts need further check for
the built model. Here, we propose the main-chain match score as
a metric to indicate the quality of the built model, which mea-
sures the consistency between the main-chain atoms of the built
model and the main-chain probability map (Eqs. (10) and (11)).
We first investigated the relationship between the main-chain
match scores and alignment scores of continuous secondary
structure fragments with no less than 5 residues, which is shown
in Fig. 7a. The alignment score is measured using the formula of
Eq. (12) as a normalized distance between each pair of aligned
modeled fragment and fragment in the PDB structure. It can be
seen from the figure that the main-chain match score has a good
correlation with the alignment score. The fragments with main-
chain match scores of <−12.0 can normally achieve an average
alignment score of above 0.7. Similar correlation and threshold
can also be found at the residue level between the main-chain
match scores and the quality of the built model. It should be
noted that a poor main-chain match score does not necessarily
mean a poor model. It could mean a large deviation from the true
structure or a weak density in the region of the map, which just
needs further examination.

Figure 7b shows an example of EMD-8794, which is the
katanin hexamer in spiral conformation58. The EMBuild model
achieved a TM-score of 0.979, an RMSD of 2.01 Å, a CC_box of
0.8577, and a CC_mask of 0.7569. Despite its high quality, some
parts of the built model should be further checked, as indicated by
their lower main-chain match scores. For example, the helices in
the peripheral portion of the hexamer and the coils in the core
show relatively lower match scores compared with other parts of
the built model, which are consistent with the Cα displacements
between the built model and the PDB structure. In addition, the
regions around the opened interface of the first and last
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protomers (P1 and P6) also have lower match scores. Since P1
and P6 play the gating role in the cycling between the open spiral
and closed ring conformations of katanin, the interface regions of
P1 and P6 are dynamic and flexible, resulting in weak signals in
density map, as shown in the enlarged view. On one hand, the
helix bundle domain (HBD) of P1 (indicated by the top arrow)
was not accurately placed by EMBuild due to lack of effective
density and main-chain probability signal. On the other hand, in
spite of the fact that a short loop of P6 (indicated by the bottom
arrow) modeled by EMBuild has low Cα displacements with
respect to the PDB structure, it should be further carefully
validated in lack of clear density signal. These subtle details were
precisely captured by the main-chain match scores.

Similar trends can also be observed in other examples
displayed in Fig. 7c–e. For EMD-9631 in Fig. 7c, the poorly
modeled coils can be located according to their low match scores.
For EMD-20510 in Fig. 7d, detailed conformations for inter-
subunit interactions (in the box) should be further improved. For
EMD-20950 in Fig. 7e, the regions close to the C-terminal require
further optimization, as indicated by the arrow. Encouragingly,
the registration error of one inner helix can also be identified by
the main-chain match score (Fig. 7e). In these examples, the
main-chain match scores presented great consistency with the
deviation between the modeled structure and the reference PDB
model, and thus can be used as an indicator to guide further
refinement and verification.

Furthermore, we assessed the quality of EMBuild-built models
using coordinates-only metrics. Specifically, we examined the
Ramachandran scores and MolProbity score calculated by
MolProbity59. The detailed results are listed in Supplementary

Data 4. It can be seen from the table that EMBuild built high-
quality models and achieved a low average percentage of 0.21% in
terms of “Ramachandran outliers”, a high percentage of 93.89%
in terms of “Ramachandran favored”, and a low average value of
2.11 in terms of “MolProbity score” on the test set of 47 single-
particle EM maps (Supplementary Data 4a). Similar quality can
also be observed in the EMBuild models with an average value of
0.17% for “Ramachandran outliers”, 93.81% for “Ramachandran
favored”, and 2.27 for “MolProbity score” on the test set of
16 subtomogram averaging EM maps (Supplementary Data 4b).

Evaluating EMBuild models against higher resolution struc-
tures. We have evaluated the accuracy of built models using the
deposited PDB structure as the ground truth reference. However,
the PDB structure might contain errors due to the low resolution
of its associated EM map, even though the associated PDB models
are generally optimized into the deposited map by the depositors.
Thus, we added two extra test cases for EMBuild using the higher
resolution structures as the reference. Namely, the EMBuild
models were built on intermediate-resolution EM maps and then
evaluated against the higher resolution reference structures. The
first test case is EMD-2788 of horse spleen apoferritin at a
resolution of 4.7 Å. EMBuild built a perfect model on this
intermediate resolution map, and achieved a TM-score of 0.999
and an RMSD of 0.58 Å with respect to the 1.5 Å reference crystal
structure (Supplementary Fig. 1a). The other test case is EMD-
12661, which is a 2.1 Å cryo-EM map for respiratory complex I.
Given its high resolution, the accuracy of the associated PDB
model could be ensured. Then, an 8.0 Å map was low-pass filtered
from the half-maps of EMD-12661 using RELION post-
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processing60. As shown in Supplementary Fig. 1b the EMBuild
model recovered the conformation of the high-resolution refer-
ence structure on the 8.0 Å map, and yielded a TM-score of 0.986
and an RMSD of 1.69 Å.

Impact of anisotropy in EM maps. Intermediate-resolution
maps may suffer from preferred orientation and resulting ani-
sotropy in density signals. Therefore, we examine the impact of
anisotropy in EM maps on EMBuild. Our results revealed that
EMBuild maintained good performance in such scenario, which
is attributed to two aspects of our method. On one hand, by
converting the input density map to a main-chain probability
map through deep learning, the anisotropy in EM density map
can be to some extent mitigated by EMBuild. As shown in
Fig. 8a–c, the density map of EMD-20501 exhibits both angular
anisotropy and radial anisotropy61, which are absent in the cor-
responding main-chain probability map (Fig. 8d–f). On the other

hand, the impact of anisotropy can be alleviated by the structural
context of the AlphaFold2-predicted structure. As shown in
Fig. 8g, h, the untilted reconstruction for Influenza hemagglutinin
(HA) trimer suffers from severe anisotropy that causes missing
density in the map62. Nevertheless, with the accurate structures of
chains predicted by AlphaFold2, EMBuild built a rational com-
plex model on such an extremely low-quality map with a TM-
score of 0.954 and an RMSD of 2.78 Å. The EMBuild model
conforms the PDB structure well on regions with sufficient
density signals, while those regions that are not optimally mod-
eled due to missing density can also be identified by main-chain
match scores for further improvement.

Impact of protein symmetry. Although symmetry is ignored
during the evaluations for general applicability, protein symmetry
is valuable information in the model building of EM maps.
Therefore, we also evaluated whether symmetry information can
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help to improve the performance of EMBuild on a subset of 19
maps that have C or D symmetry out of the 47 single-particle EM
maps. For each map, symmetry matrices are calculated on the
density maps by phenix.map_symmetry. To ensure that each map
can find its symmetry center, the symmetry center and symmetry
type of the deposited PDB structure is provided to phe-
nix.map_symmetry. The comparison between the performance of

EMBuild with and without using symmetry information is shown
in Fig. 9a–c. The detailed evaluation results for each of the test
cases are listed in Supplementary Data 5. It can be seen from the
figure that the performance of EMBuild is not significantly
changed after applying symmetry information on most of the test
cases, which demonstrated the capability of EMBuild in reco-
vering the symmetry of protein complex without using symmetry

2.51

6.26

10.01 (Å) 0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16
MonoRes
Radial Resolution
Azimuthal Resolution
Highest Resolution
Lowest Resolution

R
es

ol
ut

io
n 

(Å
)

Radius (pixel)

0°

45°

90°

135°

180°

225°

270°

315°

80
60

40
20

0

2.51

6.26

10.01 (Å)

0°

45°

90°

135°

180°

225°

270°

315°

80
60

40
20

0

0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

18
MonoRes
Radial Resolution
Azimuthal Resolution
Highest Resolution
Lowest Resolution

R
es

ol
ut

io
n 

(Å
)

Radius (pixel)

TM-score: 0.954
RMSD: 2.78 Å

a

d

g

b c

e f

h

-15.0 -8.0 -1.01.0 4.5 8.0 (Å)

Fig. 8 Model building by EMBuild on an EM map with anisotropy. a–f Comparison of local anisotropy for the EM density map (a–c) and the main-chain
probability map (d–f) of EMD-20501, respectively. a, d Local resolution map. b, e Angular plot of local-directional resolution map. c, f Radial average of
local-directional resolution map. g, h The EMBuild model built on an untilted reconstruction of Influenza hemagglutinin (HA) trimer (EMPIAR-10096) that
has severe anisotropy in the map. g The reference PDB model (PDB ID: 7VDF) colored in blue superimposed onto the EM map colored in transparent gray.
Red arrows indicate the regions with missing density. h Comparison between Cα displacements and main-chain match scores of the EMBuild model. The
EMBuild model is colored by Cα displacements to the deposited PDB structure (left) and is colored by main-chain match scores (right). The reference
deposited PDB structure is colored in blue.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31748-9

10 NATURE COMMUNICATIONS |         (2022) 13:4066 | https://doi.org/10.1038/s41467-022-31748-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


information. Nevertheless, EMBuild can indeed benefit from
symmetry information in some cases. Taking EMD-20479 with
C4 symmetry as an example, a domain in one of the four protein
chains was poorly modeled without using the symmetry infor-
mation, resulting in a high RMSD value of 3.63 Å (Fig. 9d).
However, after applying the symmetry information to EMBuild,
the quality of EMBuild model can be improved and the RMSD
value was improved to 2.22 Å. Besides C symmetry, EMBuild is
capable of dealing with D symmetry. For example, EMBuild built
a good model of D2 symmetry on EMD-9317, as shown in Fig. 9e.
The build model achieved a TM-score of 0.984 and an RMSD of
1.83 Å.

Impact of input structure trimming. During the evaluations, we
trimmed the AlphaFold2-predicted structure according to the
PDB structure for ease of comparison. However, the starting and
ending residues in the structure may not be known in real
applications. Therefore, we also evaluated the performance of
EMBuild using a more objective trimming protocol, that is,
trimming the structure according to the pLDDT values predicted
by AlphaFold2. Specifically, continuous fragments of residues
with pLDDT value < 50 at the N- and C-terminals are removed
from the predicted structure. To avoid severe inconsistency
between the structure and the sequence, cases that have any chain
with <50% coverage of the full-length sequence are excluded,

yielding a subset of 34 cases out of 47 single-particle EM maps. A
comparison of EMBuild with PDB structure trimming and
pLDDT trimming is shown in Supplementary Fig. 2. The detailed
results are listed in Supplementary Data 6. It can be seen from the
figure that the performance of EMBuild with PDB structure
trimming shows no significant difference from the case of realistic
pLDDT trimming, in terms of TM-score and RMSD values. The
average TM-score and RMSD achieved by EMBuild with pLDDT
trimming are 0.904 and 2.96 Å, respectively, which are about the
same as 0.903 and 2.94 Å for PDB structure trimming.

Applying main-chain probability maps to other methods. One
important strategy in EMBuild is the use of the main-chain
probability maps. To investigate whether such main-chain
probability map can help model building of other approaches,
we also applied the main-chain probability maps to phe-
nix.dock_in_map and gmfit on the test set of 47 single-particle
EM maps. Specifically, for each input protein chain, only main-
chain atoms (N, C, and Cα) are kept during fitting into the main-
chain probability map, and the rest atoms are ignored until the
assembling is finished. The comparisons for model building on
the raw EM density map and main-chain probability map are
shown in Supplementary Fig. 3. The detailed results are listed in
Supplementary Data 2. It can be seen from the figure that the
performance of phenix.dock_in_map was significantly improved
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on the main-chain probability maps. The average TM-score,
RMSD, CC_box, and CC_mask values achieved by phe-
nix.dock_in_map on the main-chain probability map are 0.807,
4.03 Å, 0.6265, and 0.5686, compared to 0.746, 4.52 Å, 0.5975,
and 0.5323 on the original EM density map. The improvement of
phenix.dock_in_map on the main-chain probability maps
demonstrated the importance of the main-chain probability maps
in model building. However, gmfit did not benefit from main-
chain probability maps. This is understandable because gmfit
converts the input map into a Gaussian mixture model in the
fitting procedure, which may miss detailed structural information
in the main-chain probability maps.

Capability of EMBuild in identifying native components. In the
evaluations, we have built the complex model from its native
sequences. However, we may not know with certainty which
components are present in a given map in some situations63.
Therefore, we also evaluated the capability of EMBuild to identify
the native sequence for a given cryo-EM map from a pool of
candidate sequences. Here, we take EMD-0290 as an example,
which is a homotrimer solved by tomography averaging of cryo-
ET data at 7.2 Å resolution. The native sequence of one compo-
nent has 200 residues. To build a pool of decoy sequences, 298
diverse sequences of length 200 are cropped from all the unique
sequences in the two test sets. Then, the AlphaFold2 structures
for 298 decoy sequences plus one native sequence are fitted into
the map using EMBuild. The sequences that failed to form a
trimer structure in the map are excluded. The mean main-chain
match score of three chains is calculated. As shown in Supple-
mentary Fig. 4, EMBuild is able to distinguish the native sequence
from decoy sequences based on the main-chain match score. The
native sequence has the best main-chain match score of −11.06
among the pool of candidate sequences (Supplementary Data 7).
The success of EMBuild here can be partially attributed to the fact
that all of the decoy sequences have a low sequence identity of
<25% of the native sequence. To distinguish between homologous
sequences that have similar main-chain structures, additional
experiments would be needed to verify the native sequence.

Computational efficiency. The running time of EMBuild comes
from two parts. One is to predict the main-chain probability map
from the EM density map, and the other is to assemble the
complex structure using the main program. The detailed running
times on the test set of 47 single-particle EM maps are listed in
Supplementary Data 8. It can be seen from the table that the
prediction of the main-chain probability map can normally be
finished within 100 seconds on four NVIDIA A100 GPUs. As for
the main program of EMBuild, it consumes an average time of
3838.2 seconds on a single core of Intel(R) Xeon(R) Gold 6240 for
each test case, compared with 1585.7 seconds for phenix.dock_-
in_map. The longer computing time of EMBuild than phe-
nix.dock_in_map is understandable because EMBuild includes
more time-consuming semi-flexible domain refinement in addi-
tion to rigid fitting. Nevertheless, by parallel computing, the
running time of EMBuild can be drastically reduced. For example,
the running time is reduced to 291.4 seconds by parallelly run-
ning EMBuild on 36 cores using OpenMP. Compared to EMBuild
and phenix.dock_in_map, gmfit consumed much more time with
an average of 15514.3 seconds for each case because an extremely
large number of configurations are searched and refined in gmfit
(Supplementary Data 8).

Discussion
In this study, we have proposed EMBuild, an automatic model
building method for intermediate-resolution cryo-EM maps

through iterative fitting and refinement of protein fragments. Due
to its semi-flexible fitting capability, EMBuild is able to build
accurate protein complex models into EM maps as long as the
predicted protein structures of individual chains are reliable at
fragment or domain level. Compared with traditional rigid-fitting
methods, EMBuild is especially robust and achieves the most
improvement for those cases where the proteins experience global
conformational changes through the relative movement of rigid
domains/fragments. For those cases where the AlphaFol2-
predicted structure is not accurate, EMBuild tends to perform
less satisfactorily. However, such limitations can be much alle-
viated by removing those inaccurate or intrinsically disordered
parts based on their pLDDT values in the AlphaFold2-predicted
structure. In addition, the performance of EMBuild mainly
depends on the resolution of cryo-EM maps. As such, EMBuild
can perform equally well for those samples prepared by different
techniques like continuous carbon coating as long as their
reconstructed 3D maps have similar resolutions.

It should also be noted that since primary maps are used for
training our main-chain prediction model, sharpened maps are
recommended as the input of EMBuild for the best performance
of main-chain probability prediction. As shown in Supplementary
Fig. 5, the sharpened map by RELION60 with an automatically
determined B-factor can significantly improve the quality of the
predicted main-chain probability map, compared with the
unsharpened half-maps.

In summary, we have developed a deep learning-guided
method for automatic model building of protein complex struc-
tures from intermediate-resolution cryo-EM maps, which is
referred to as EMBuild. EMBuild was extensively evaluated on
diverse test sets of 47 single-particle maps and 16 subtomogram
averaging maps, and compared with existing approaches
including phenix.dock_in_map, DEMO-EM, and gmfit. It was
shown that EMBuild outperformed the other methods and was
able to build reliable atomic models with an average TM-score of
0.909 and an RMSD of 2.85 Å with respect to the PDB structures
on the test set of single-particle maps, and 0.863 and 2.74 Å on
the test set of subtomogram averaging maps, respectively. In
addition, the built models by EMBuild also showed a competi-
tively high quality to the manually built PDB structures in the
validation against the EM map density. Furthermore, EMBuild
also provides a reliable way to assess the quality of the built
model, enabling the accurate interpretation of the built model.
Combined with accurate protein structure prediction techniques,
EMBuild is able to automatically build high-quality protein
complex models for any intermediate-resolution cryo-EM maps.
The human-level accuracy of the built model by EMBuild would
make the model ready to be used after minor adjustments. It is
anticipated that EMBuild will serve as an indispensable tool for
streamlining the structure determination from intermediate-
resolution cryo-EM maps.

Methods
Data collection. We have collected a non-redundant dataset of cryo-EM maps
from the EMDB. The primary maps, which are normally sharpened maps, are used
in this study.All the single-particle EM entries at 4–8 Å resolution that have
associated PDB models were downloaded from the EMDB17 and PDB18. Specifi-
cally, the PDB structure for each entry was directly downloaded from the PDB at
https://www.rcsb.org/, and its corresponding density volume within 4.0 Å of the
PDB structure was segmented out from the whole map. The EM map and its
corresponding PDB structure that have any of the following features were removed:
(i) without side-chain atoms, (ii) including unknown residues (UNK), (iii)
including missing chain or non-protein chain, (iv) having nonorthogonal map axis,
(v) corresponding to multiple PDB or EMDB entries, and (vi) having severe misfits
between the PDB model and EM map. In order to ensure the feature (vi), we
calculated the cross-correlation between the deposited map and the map simulated
from the PDB model at the same resolution using the UCSF chimera30. Any map
and its associated PDB model that have a cross-correlation of less than 0.65 were
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excluded. Afterwards, all the remaining maps were manually checked. The
remaining cases were retained as the initial dataset. To remove redundancy, the
initial dataset of cases was clustered using greedy algorithm. Two models are
considered to be similar if any chain in the first model has >30% sequence identity
with any chain in the second model. The one with the largest number of similar
cases is chosen as the representative of the corresponding cluster, and then the rest
cases in the cluster are removed. This procedure is repeated until all the cases are
clustered. The resulted non-redundant training set consists of the representatives of
each cluster. A total of 262 pairs of EM maps and associated PDB structures were
retained. In order to train a deep learning model for predicting main-chain
probability map, 209 maps were randomly selected as the final training set (Sup-
plementary Data 1).

To build an independent test set with a sufficient number of valuable cases, all
the cases in the initial dataset that have >30% sequence identity with any case in the
training set are excluded. Then, any pair of EM map and its associated PDB
structure that meet the following criteria are removed: (i) having only one chain
and (ii) having >30% gap in the structure according to the gene sequence. For
saving time in evaluations, we have also removed those cases with more than 10
chains, though our method can work with any number of chains. The remaining
cases are clustered using a sequence identity cutoff of 70% by the similar greedy
algorithm described above. The final test set contains 47 single-particle cryo-EM
maps with resolutions ranging from 4.0 to 8.0 Å (Supplementary Data 2). In the
modeling and evaluating processes, short chains that have less than 20 residues are
ignored.

To evaluate the performance of EMBuild on the maps by subtomogram
averaging of cryo-ET data, we further constructed another independent test set of
subtomogram averaging maps. All the subtomogram averaging maps with
resolutions within 10.0 Å that have associated PDB models are filtered and
clustered using the same way as that for the test set of single-particle maps, except
for allowing more than 10 chains. The final test set contains 16 subtomogram
averaging maps with resolutions ranging from 3.7 to 9.3 Å (Supplementary Data 3).

Main-chain probability prediction by deep learning. We used a deep learning
model to predict the main-chain probability map from the input raw EM density
map through a nested U-net (UNet++)51. The network architecture consists of
three encoder sub-blocks and three decoder sub-blocks with dense skip connec-
tions, where 3D convolution layers with a kernel size of 3 × 3 × 3 are applied
(Fig. 1a). The 3D maxpooling layer with stride of 2 is adopted for down-sampling,
and the trilinear interpolation layer with zoom factor of 2 is adopted for up-
sampling. During the prediction, the raw EM map is rescaled to have a grid interval
of 1.0 Å by applying cubic interpolation and cut into overlapping chunks of size
40 × 40 × 40 with slide strides of 10 voxels, which are input into the deep learning
model. Then, the predicted main-chain probability chunks with the same size and
grid interval are re-assembled into the final main-chain probability map by aver-
aging overlapping parts.

A set of pairs of experimental EM density and main-chain probability maps
were used to train the deep learning model. For the EM maps, the grid interval is
rescaled to 1.0 Å by applying cubic interpolation. The density values are clipped to
be equal or greater than 0.0 and are normalized to the range 0.0–1.0 by the 99.999-
percentile density value of the map. For a given EM density map, its main-chain
probability map is generated from its associated PDB structure with 1.0 Å grid
interval, where the main-chain probability p for a grid point x is calculated as
follows

pðxÞ ¼ maxfe�λkx�ak2 ; 8a 2 Ag ð1Þ

where A stands for the set of position vectors of all main-chain atoms (N, C, and
Cα). The value of λ is defined as

λ ¼ ðπ=ð2:4þ 0:8RÞÞ2 ð2Þ

where R is the map resolution43. For training, the EM density maps and their
corresponding main-chain probability maps are cut into pairs of overlapping boxes
of size 60 × 60 × 60 with slide strides of 30 voxels, where non-positive boxes are
excluded for effective training.

During the training, 20% of the maps are randomly selected from the training
set as the validation set. The training data are augmented through random 90°
rotations and randomly cropping a 40 × 40 × 40 chunk from the input 60 × 60 × 60
box. The network is implemented in Python with Pytorch1.8.1+ cuda11.1. For
each model, the network is trained for at most 300 epochs with 160 boxes
employed in one batch. The Adam optimizer is adopted to minimize the loss of the
prediction, where the total loss is a sum of two different loss functions. One is the
smooth L1 loss, which calculates the numerical difference in the probability values
between the predicted chunk X and target chunk Y as follows.

SmoothL1LossðX;YÞ ¼ ∑
N

i¼1
∑
N

j¼1
∑
N

k¼1

Li;j;k
N3 ð3Þ

where N is the chunk size, and Li;j;k is the Smooth L1 distance between X and Y at
position (i, j, k). The other is the structural similarity (SSIM) loss which compares
the contrast and structure similarity between a predicted chunk X with its target

chunk Y according to the following formula

SSIMLoss X;Yð Þ ¼ 1� 2σXY þ ε

σ2X þ σ2Y þ ε
ð4Þ

where σX and σY are the standard deviations for the predicted chunk X and target
chunk Y, σXY is the covariance between X and Y, and ε is set to be a small constant
(ε ¼ 10�6 in this study) to prevent dividing by zero. The learning rate is initially set
to 10−3 and will be reduced to 1/2 of its current value if the average loss on the
training set does not decrease for 4 epochs. The training process continues until the
learning rate reaches a minimum value of 10−5. The network model with the least
validation loss is selected. As seen from the learning curves, the training and
validating losses converge well for our deep learning model (Supplementary Fig. 6).

Fitting protein chains into the main-chain probability map. The structure
models of individual chains can be predicted from their sequences by a protein
structure prediction program. In this study, AlphaFold2 was selected for this
purpose, given its excellent performance in protein structure prediction52. To
mimic real situations, the corresponding PDB structure and those newer structures
are excluded from the templates by setting the “max template data” to the day
before the released date of the corresponding PDB structure52, and full-length gene
sequences are used as the input. For consistency, the predicted model of each chain
is cropped to have identical starting and ending residues with the sequence in the
PDB structure. It should be noted that during the implementation of EMBuild
there is no structural gap and/or uninterpreted region in our predicted chain
models, while they may possibly present in the PDB structure. For each chain
model predicted by AlphaFold2, we use SWORD to assign its structural domains64.
SWORD will generate multiple assignments for one chain. The assignment with
the most domains with no less than 30 residues and a κ value of no less than 3.0 is
chosen as the final domain assignment.

For computational efficiency, instead of directly using the predicted main-chain
probability map, a reduced representation of main-chain probabilities is adopted by
EMBuild. Namely, a mean shift algorithm is applied to generate representative
points of main-chain probabilities. Specifically, starting from the positions of
positive grid points on the main-chain probability map, the seed points zti ði ¼
1; :::;N 0; t ¼ 0; 1; :::Þ is iteratively shifted to local maxima of probabilities as

ztþ1
i ¼ ∑N

n¼1Kðzti � xnÞpðxnÞxn
∑N

n0¼1Kðzti � xn0 Þpðxn0 Þ
ð5Þ

where xnðn ¼ 1; :::;NÞ are the position vectors of grid points, Kðzti � xnÞ is the
Gaussian kernel function, and pðxnÞ is the main-chain probability of grid point xn.

The Gaussian kernel function is described as Kðzti � xnÞ ¼ e�λkzti�xnk2 . The main-
chain probability of a shifted seed point Pðzti Þ is computed as Pðzti Þ ¼ 1

N ∑
N
n¼1

Kðzti � xnÞpðxnÞ. After the mean shift procedure is converged, the seed points that
are closer than a threshold distance are clustered and the one with the highest
probability value is chosen as the representative of each cluster. The resulted points
ziði ¼ 1; :::; LÞ 2 Z are referred to as the main-chain points.

We adopt a fast Fourier transform (FFT)-based matching strategy to globally
fitting the protein model for each chain to the main-chain probability map (main-
chain points)65. To perform an exhaustive FFT-based search, both the protein
model and main-chain points are first mapped onto a three-dimensional (3D) grid
of shape M ×M ×M with 1.5 Å grid interval. The main-chain probabilities are
assigned to the grid of the main-chain points (say grid A) and the grid of the main-
chain atoms in the protein model (say grid B), according to Eq. (1). With the above
main-chain probability mapped on grids, the match score S for a superimposition
between the protein model and main-chain probability map can be generally
expressed by the following formula

Sði; j; kÞ ¼ �θ ∑
M

l¼1
∑
M

m¼1
∑
M

n¼1
ðAl;m;n ´ Blþi;mþj;nþkÞ ð6Þ

where i, j, and k are the numbers of grid points by which the protein model is
shifted with respect to the main-chain points in three translational dimensions, and
θ is the resolution-dependent factor defined as θ ¼ ðλ=πÞ1:5. The match scores for
all the M3 translations can be computed through one round of FFT-based
calculation. The rotational search is conducted by exploring a large set of rotation
angles. That is, for each rotation of the protein structure, an FFT-based
translational search is carried out. For EMBuild, an angle interval of 15° is used to
evenly discretize the Euler space, which results in a total of 4392 evenly distributed
orientations. The fitting results of the exhaustive search are further optimized
through a SIMPLEX method. The match score s′ of main-chain atom yqðq ¼
1; :::;QÞ in protein pose Y can be calculated as

s0ðyq;ZÞ ¼ �maxfθPðzÞe�λkyq�zk2 ; 8z 2 Zg ð7Þ
where z 2 Z is the position of the main-chain point and PðzÞ is its main-chain
probability. The match score for pose Y is the summation of scores of included
atoms as S0ðY;ZÞ ¼ ∑Q

q s
0ðyq;ZÞ. Finally, the fitting results are ranked by the match

scores and those top-scored poses are retained.
After the protein model of a chain is rigidly fitted to the main-chain probability

map, we employed a semi-flexible domain refinement strategy to further improve
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the fitness between the protein models the map, as illustrated in Fig. 2a. For each
protein model, n short structure domains are assigned by SWORD64. A simple
graph is built based on the domain assignment, where two domains with
connecting residues are connected by an undirected edge. The domain refinement
is applied on each of the M top-scored poses from rigid fitting. Starting from a
selected domain as the seed domain, the positions of all domains are optimized one
after another. Specifically, starting from the seed domain, a SIMPLEX optimization
is conducted to find a locally best match of the current domain, and then the
optimization is carried out to the neighboring domain of current domain. This
procedure is repeated until all the domains are locally optimized. The order of the
refinement is determined by breadth-first search (BFS) on the domain graph.
Taking each domain as the seed domain, the domain refinement will output n
different models. The results of domain refinement for one protein chain areM × n
refined models plus M rigidly fitted models, which are ranked by their match
scores.

Assembling chains into protein complex. After fitting and refinement of indi-
vidual chains, the last step of EMBuild is to assemble individual chains into a
reliable complex structure. To prevent clash between different chains, we defined a
clash score c of one atom a of chain A with respect to all atoms b of another chain
B as follows

cða;BÞ ¼ maxfe�λðmaxfka�bk�dclash ;0:0gÞ2 ;8b 2 Bg ð8Þ
where dclash stands for the cutoff distance within which the clash score is set to 1.0.
The clash score C of chain A with respect to chain B is the average clash score of all
nA atoms with CðA;BÞ ¼ 1

nA
∑
a2A

cða; BÞ. According to the match scores of individual

chains and the clash scores between different chains, the problem of assembling
chains into a complex will become a Maximum Clique Problem. First, an undir-
ected graph is built by EMBuild, of which the vertices are the match scores of
individual chains, and the edges connecting two different chains are the corre-
sponding clash scores. The different fitting poses of one chain are not connected.
Then, the edges that have a clash score exceeding a given threshold Cthr are
removed from the graph. After the graph is built, the Bron-Kerbosch algorithm is
used to find the best combination of chains from the graph that has the highest
total match score. However, though only a single cycle of Bron–Kerbosch algo-
rithm, some chains may not be assembled into the protein complex. Therefore, we
adopt an iterative strategy in EMBuild, as illustrated in Fig. 2b. Namely, after each
round of the Bron-Kerbosch algorithm, the clash scores of main-chain points are
calculated according to the current assembled complex structure D, which are used
to update the probability P zi

� �ði ¼ 1; ¼ ; LÞ of main-chain points, according to
the following formula

P0 zi;D
� � ¼ P zi

� �
´ ð1:0� cðzi ;DÞÞ ð9Þ

By updating the probabilities of main-chain points, the regions with fitted
structures are removed from further assembling. The remaining chains are
iteratively assembled to the complex structure by fitting and refining in accordance
with the updated main-chain points. Finally, the resulted complex model is refined
in the EM density map using phenix.real_space_refine47.

Evaluation metrics. Three types of metrics are used to evaluate the quality of the
protein complex model built by EMBuild. The first type of metrics is one that
measure the closeness between the built model and the PDB structure. In this
respect, we adopt the TM-scores and RMSDs between the built complex model and
the corresponding PDB structure calculated by MM-align54,55. The second type of
metrics is those fit-to-map metrics of the built models56, which measure the
consistency between the built model and the EM density map. In this regard, we
report CC_box and CC_mask values calculated by phenix.map_model_cc and the
map-model FSC05 calculated by phenix.mtriage57. It is noted that phenix.mtriage
will fail to give a valid FSC05 value if the built model does not conform to the map,
where the maximum value of the map-model FSC is only around or even below 0.5
over the entire resolution range. Besides the above metrics, we also reported
coordinates-only metrics including the Ramachandran scores and MolProbity
score calculated by MolProbity59.

Quality assessment of built models. To assess the quality of the model built by
EMBuild, we propose a metric of the main-chain match score, which measures the
fitness between the built model and the main-chain probability map. The match
scores for individual main-chain atoms are calculated according to Eq. (7). Starting
from the match scores of main-chain atoms, it is easy to calculate the average score
of three main-chain atoms as the match score for each residue. By analogy, we
further calculate the match score of each continuous secondary structure fragment
as the average match score of its containing residues. The secondary structure is
assigned by STRIDE66. The final match score of a fragment is defined as a com-
bination of its initial score and the match score of its domain as

S0fragment ¼ 0:7 ´ Sfragment þ 0:3 ´ Sdomain ð10Þ
where Sdomain is the average match score of all residues in the domain that contains
the fragment. Similar to the fragment match score, the final match score of a

residue is defined as a combination of its initial score and the match score of its
fragment as

S0residue ¼ 0:7 ´ Sresidue þ 0:3 ´ Sfragment ð11Þ
The resulted residue scores are further smoothed along the chain with a sliding

window of weights 1:2:4:8:16:8:4:2:1 centered at each residue.
To measure the quality of modeled fragments with respect to the PDB structure,

we define an alignment score, which is described as

alignment� score ¼ 1
L
∑
L

i¼1

1

1þ d2i =d
2
0

ð12Þ

where L is the length of the fragment, di is the distance of the ith pair of the aligned
residues between the built model and the fragment in the PDB structure, and d0 is a
scale factor. Although our alignment score takes a similar expression to TM-
score55, two significant differences should be noticed. One is that no superposition
is applied before calculating the alignment score. The other is that d0 is set to a
fixed distance of 3.0 Å.

Comparison with related methods. EMBuild is compared with phenix.dock_-
in_map, DEMO-EM, and gmfit on the test sets of cryo-EM maps. For each test
case, the protein models of individual chains are predicted from sequences by
AlphaFold2, which are used as the input for different methods. To be general, the
symmetry information of test cases is ignored during the evaluation. phe-
nix.dock_in_map uses both the secondary structure matching and convolution-
based shape searches to find a part of a map that is similar to a protein model,
which can be used to place any number of copies of any number of unique
molecules42. gmfit is a program for fitting subunits into a density map using GMM
(Gaussian Mixture Model)31,32. To convert the density maps and protein chains
into a GMM used by gmfit, the number of Gaussian functions for a density map is
set to 20 multiplied by the number of chains in its associated protein complex. The
number of Gaussian functions for a query protein chain is set to 20. For gmfit, the
number of randomly generated initial configurations is set to 100000, the number
of configurations for search is set to 20000, and the number of configurations for
refinement is set to 4000. DEMO-EM is a hierarchical method to assemble multi-
domain protein structures from cryo-EM density maps53. We have tested DEMO-
EM on the test set of single-particle maps in two ways. One is inputting protein
sequences, where structure predictions are carried out by DEMO-EM itself. The
other is providing structures predicted by AlphaFold2 to DEMO-EM. It should be
noted that 22 cases with a total sequence length >2000 are not accepted by the
DEMO-EM server. Thus, the rest 25 cases were submitted to the DEMO-EM
online server, of which EMD-22216 failed using AlphaFold2 structures as the
input. For every model building method, the resulted complex model is refined in
the EM density map using phenix.real_space_refine47.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are available from the corresponding author
upon request. The Source Data underlying Figs. 3, 5, 6a–d, 7a, 8b, e, c, f, 9 and
Supplementary Figs. 3, 4, 6 are provided as a Source Data file. All published data sets
used in this paper were taken from the EMDB and PDB (accession codes specified in the
figure captions and the tables in Supplementary Data).

Code availability
The EMBuild package is freely available for academic or non-commercial users via http://
huanglab.phys.hust.edu.cn/EMBuild/.
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