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A calibratable sensory neuron based on epitaxial
VO2 for spike-based neuromorphic multisensory
system
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Neuromorphic perception systems inspired by biology have tremendous potential in effi-

ciently processing multi-sensory signals from the physical world, but a highly efficient

hardware element capable of sensing and encoding multiple physical signals is still lacking.

Here, we report a spike-based neuromorphic perception system consisting of calibratable

artificial sensory neurons based on epitaxial VO2, where the high crystalline quality of VO2

leads to significantly improved cycle-to-cycle uniformity. A calibration resistor is introduced

to optimize device-to-device consistency, and to adapt the VO2 neuron to different sensors

with varied resistance level, a scaling resistor is further incorporated, demonstrating cross-

sensory neuromorphic perception component that can encode illuminance, temperature,

pressure and curvature signals into spikes. These components are utilized to monitor the

curvatures of fingers, thereby achieving hand gesture classification. This study addresses the

fundamental cycle-to-cycle and device-to-device variation issues of sensory neurons,

therefore promoting the construction of neuromorphic perception systems for e-skin and

neurorobotics.
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As the development of wearable electronics and internet of
things (IoT), there is a dramatic upsurge in the type and
number of sensory nodes1, generating a great deal of

sensory data that must be processed efficiently and in real time. In
traditional architectures, the analog data collected by the sensors
are first converted into digital signals via analog to digital con-
verters (ADCs) and then stored in memory, before being for-
warded to the computing units2, hence causing high energy
consumption and low efficiency, which is dramatically different
from the highly efficient sensory processing of human. Human
could sense the real world and outperform current digital systems
in efficiency, robustness, flexibility, and fault tolerance3. The
sensory system of human combines a variety of senses that work
together and interact with the brain to allow people to explore
and capture information4–8. In the human perception system,
receptors receive physical stimuli from the outside world and
convert physical information into electrical spikes, which are then
delivered to the cerebral cortex of the brain for further
processing9. This structure forms the basis of comprehensive
perception, pre-processing, and coding capabilities of biological
systems. To enable a biologically inspired perception system, it is
necessary to combine sensors with artificial synapses and neu-
rons. Constructing synapses and neurons with traditional CMOS
technology requires complex circuits, which results in inefficiency
in the overall area and energy consumption10,11. Recently,
emerging devices, such as memristors, have been used to emulate
the functionalities of synapses and neurons due to their abundant
ion dynamics12–23. The neuromorphic perception computing
system that combines sensors and synapses/neurons has proven
to be capable of processing sensory information, such as
tactile24–31, visual32–36, nociception37,38 signals, etc. However,
these artificial neurons only handle single-mode physical signals,
and most of them suffer from significant cycle-to-cycle and
device-to-device variations, which are significant challenges
toward applications. A neuromorphic perception computing
system that can handle multi-mode physical signals and have
excellent uniformity is greatly desirable.

In this study, we report a calibratable artificial sensory neuron
(CASN) consisting of epitaxial VO2 memristor grown by pulsed
laser deposition and a variety of coupled sensors. The high crys-
talline quality of epitaxial VO2 gives rise to significantly improved
cycle-to-cycle uniformity of the artificial neuron, and a calibration
resistor is further introduced to optimize the device-to-device
consistency between different neurons. In addition, the artificial
spiking neuron is equipped with a scaling resistor to suit different
types of sensors with varied resistance levels. Based on this, we
demonstrate cross-sensory neuromorphic perception component
that is able to encode optical, thermal, pressure, and curvature
signals into spikes, showing capability in simulating biological
vision, temperature, haptic, and mechanical sensation capabilities.
The perception neurons are further incorporated as the input
neurons of a 3-layer spiking neural network by simulation,
achieving an accuracy of 90.33% on MNIST-based pressure image
classification. Finally, we have utilized these neuromorphic per-
ception components to monitor the curvatures of fingers and
thereby achieved classification of hand gestures. These results
demonstrate the great potential of our CASN-based neuromorphic
perception system in highly efficient multi-sensory neurorobotics.

Results
Calibratable spiking neuron based on epitaxial VO2. By uti-
lizing various senses, humans collect physical information of the
external world and encode it into spikes, which are then trans-
mitted to the cerebral cortex for perception and learning4,9,39. A
highly efficient neuromorphic sensory system in hardware that

can process a variety of physical signals is thus desirable. Figure 1
shows the comparison between the biological perception system
and our spike-based artificial neuromorphic perception system.
In the biological perception system, certain types of receptors
(photoreceptors, thermal receptors, mechanoreceptors, etc.) and
neurons convert external environmental signals into electrical
spikes (Fig. 1a). The cerebral cortex then receives these spikes and
responds to external stimuli. In our spike-based artificial neuro-
morphic perception system, we implement a calibratable artificial
sensory neuron based on epitaxial VO2 (Fig. 1b). The CASN is
able to encode different types of sensory signals into electrical
spikes, and these spikes can be further processed by spiking
neural network (SNN). Implementation of such sensory and
computing architecture is therefore important for building highly
efficient multi-sensory systems.

The VO2 film with a thickness of 20 nm was epitaxially grown
on c-Al2O3 substrates by pulsed-laser deposition (PLD) using
308 nm XeCl excimer laser operated at an energy density of ~1 J/
cm2 and a repetition rate of 3 Hz. The films were deposited at
530 °C in a flowing oxygen atmosphere at oxygen pressure of
2.0 Pa. The VO2 memristor used in this work is designed as a
planar device (Fig. 2a). Figure 2b shows scanning electron
microscopy (SEM) image of the device, and in Fig. 2c the channel
region is enlarged, where the channel length is 400 nm and the
electrode width is 1 µm (see “Methods” for the details of
fabrication processes). Figure 2d, e shows the transmission electron
microscopy (TEM) image of the device, while the cross-sectional
scanning transmission electron microscopy (STEM) image and
corresponding energy-dispersive X-ray spectroscopy (EDS) map-
ping of O, Au, Ti, V, Si, and Al can be seen in Supplementary
Fig. 1a, along with EDS elemental line profile in the same region
(Supplementary Fig. 1b). A zoomed-in view of the film shows well-
ordered lattice fringes of VO2 (Fig. 2f), and the corresponding fast
Fourier transformation (Fig. 2g) once again verifies the high
crystalline quality of the epitaxially grown VO2.

The excellent crystalline quality of the epitaxially grown VO2

plays a crucial role in achieving high uniformity in VO2

memristor. The VO2 memristor exhibits volatile resistive switch-
ing as can be found from its current-voltage (I–V) characteristics
(Fig. 2h), where the device can change from a high resistance state
(HRS) to a low resistance state (LRS) when the applied voltage
exceeds a threshold voltage (Vth) of around ±1.35 V and
immediately return to HRS once the applied voltage gets lower
than a holding voltage (Vhold) of around ±0.85 V. Such volatile
threshold switching (TS) characteristics and metal-insulator
transition in VO2 have attracted extensive attention40,41, which
has a complex mechanism involving both electronic and
structural phase transitions42. Supplementary Fig. 2 shows the
experimental results and simulated I–V curve based on the metal-
insulator transition (MIT) model, where the blue points are the
experimental data and the red curve is the simulation result, along
with spatial heat distribution in different stages of the phase
transition. As the applied voltage progressively increases (state (1)
to (2)), heat is generated in the VO2 memristor. Once the phase
transition is triggered, a filament is formed through the VO2 gap,
which switches the device from HRS to LRS. The filament is
expanded as the voltage increases (state (2) to state (3)). When
the applied voltage is reduced, the heat dissipates, and the
filament size decreases (state (3) to state (4)). When the applied
voltage is below Vhold, the filament breaks down and the device
eventually returns to HRS (state (4) to state (1)), as shown in
Supplementary Fig. 2. More details of the model used for
simulation are provided in “Methods”, Supplementary Table 1,
and Supplementary Note 1. The symmetrical hysteresis curve can
be seen under both positive and negative biases of a voltage
sweep. Transient electrical measurements show that the switching
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speed of VO2 memristor in this work is <200 ns from off-state to
on-state and <75 ns from on-state to off-state (Supplementary
Fig. 3 and Supplementary Note 2). Figure 2h depicts 1000 voltage
sweep cycles from 0 to 2 V and 0 to −2 V, demonstrating
extremely stable TS characteristics with low cycle-to-cycle (C2C)
variation. Since the resistance switching in VO2 is ascribed to
the intrinsic electronic and structural phase transitions42 in the
material itself without necessarily incorporating defects unlike
redox-based memristors, the low C2C variation can be attributed
to the high crystalline quality of the epitaxial VO2. The
distributions of high and low resistance states of the epitaxial
VO2 memristor and cumulative plots of positive and negative
threshold/holding voltages, including Vth_pos, Vhold_pos, Vth_neg,
Vhold_neg, in 1000 repeated cycles are shown in Fig. 2i–j. Following
the protocol introduced in previous studies43, we calculated the
coefficient of variation (CV) as the standard deviation (σ) divided
by the mean value (µ). The minimum cycle-to-cycle variability in
Vth_pos, Vth_neg, Vhold_pos, and Vhold_neg was 0.73%, 0.7%, 0.51%,
and 0.5%, respectively, demonstrating very low variability
(Supplementary Fig. 4). The device-to-device variability in
Vth_pos, Vth_neg, Vhold_pos, and Vhold_neg was 5.32%, 5.12%,
6.96%, and 7.16%, respectively (Supplementary Fig. 5). Notably,
Chen et al. have reported low C2C variability of 1.53% and low
D2D variability of 5.74% in hexagonal boron nitride-based
crossbar arrays43. Our present epitaxial VO2-based memristor
hence demonstrates extremely low C2C variability and reasonably
low D2D variability due to its high crystalline structure.

It should be noted that despite the high film quality, PLD is still
limited in preparing large-scale thin films. Many methods have
been adopted to synthesize high-quality VO2 films, however, the
growth of wafer-scale, high-quality VO2 films with excellent
phase transition property is still a challenge. To date, 2-inch
epitaxial VO2 film grown by molecular beam epitaxy was
reported44, and preparation of large-scale VO2 films by
electron-beam evaporation45, thermal oxidation46, sol-gel
method47, and sputtering48 has also been reported. Nevertheless,
the crystalline quality of the VO2 film might be compromised in
some preparation processes, and the growth method should be
selected based on the detailed requirements on sample scale and
crystalline quality in the applications.

Here, the threshold switching characteristics of epitaxial VO2

memristors are used to realize spiking neurons, and the circuit
configuration is shown in Fig. 3a. The epitaxial VO2 memristor is
connected in parallel with a capacitor and this structure is in turn
in series with a load resistor RL. The oscilloscope is used to
measure electrical waveforms across the VO2 memristor and that
coming from the power supply through channels 1 and 2,
respectively. The capacitor begins to charge when a voltage is
applied, and once the voltage on the capacitor exceeds Vth the
VO2 memristor will switch to LRS. As a result, the artificial
neuron generates a spike and the capacitor will be discharged
through the on-state memristor49. Subsequently, the voltage on
the capacitor will drop below Vhold, and thus the device will
return to HRS. Such charging and discharging process can be
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clearly observed in Supplementary Fig. 6. Once the spike
generation is stabilized, the charging period should occur from
Vhold to Vth, and the discharging period is from Vth to Vhold. The
spiking rate of the artificial neuron is hence affected by the series
resistance, applied voltage, and parallel capacitance. Figure 3e
exemplarily the spiking patterns of the artificial neuron when
adopting different RL (2.6 kΩ, 5 kΩ) under a constant input
voltage of 5 V without an external parallel capacitor. More results
with >10 varied RL values can be found in Supplementary Fig. 7,
and the spiking frequency (f) is summarized in Fig. 3b, showing
that the frequency gradually decreases as RL increases. This is
because a larger RL reduces the input current and thereby
decreases the rate of charge accumulation on the capacitor. On
the other hand, Fig. 3f shows the spiking waveforms with varied
input voltage (4.4 V, 6.4 V) when RL is fixed as 4 kΩ, and more
results can be found in Supplementary Fig. 8 and summarized in
Fig. 3c. It can be seen that the spiking frequency increases as the
input voltage increases, similar to biological neurons. Figure 3d
and Supplementary Fig. 9 further reveal the relationship between
the parallel capacitance and the spiking frequency, when the
applied voltage is fixed at 5 V and RL is fixed at 4 kΩ. The spiking
frequency gradually decreases as the parallel capacitance
increases, since a larger capacitance results in a slower integration

process. In all of the cases, the VO2 neuron displays excellent
uniformity, which once again is based upon the high crystalline
quality of epitaxial VO2.

The spiking neuron can be modulated to a relatively low
frequency (<150 Hz) when a 10 μF capacitor is adopted
(Supplementary Figs. 10 and 11), whose spiking rate is at a
similar level with the human nervous system, implying a great
potential in the field of human-machine interaction. The
COMSOL model of memristor we constructed showed excellent
consistency with experimental results (Supplementary Fig. 12).

The high crystalline quality of epitaxial VO2 has led to low C2C
variations, as demonstrated in Figs. 2, 3, and Supplementary
Figs. 7–11, whereas device-to-device (D2D) variations might still
exist, due to fabrication imperfections, etc. We have therefore
tested different artificial neurons, and their RL-, voltage- and
capacitance-modulation curves are shown in Fig. 3g–i. Despite
the similarity of the modulation trends among the neurons, there
is still considerable variation and shift among them, which still
poses significant challenges toward applications. In order to
further reduce the D2D variation, we have introduced a serial
calibration resistor into the neuron circuit (Fig. 3j). Figure 3k
demonstrates that the f-RL modulation curve can be well
controlled by the calibration resistance Rc (more experimental
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data are shown in Supplementary Fig. 13). This, therefore, offers a
valuable mechanism, based on which we can shift and align all the
modulation characteristics from different neurons. Indeed,
experimental results demonstrate that the D2D variation has
been effectively reduced (Fig. 3l) compared with Fig. 3g. The
combination of epitaxial VO2 and calibration resistance have
therefore addressed the C2C and D2D variations, respectively,
which dramatically enhanced the uniformity of the spiking
neurons. The power consumption of the spiking neuron is
displayed in Supplementary Fig. 14. The transient power is
calculated by multiplication of input voltage with output current,
and energy consumption is calculated by dividing the total energy

consumption by the spike number, which gives rise to ~2.9 nJ for
each spike. This value is still lower than the state of the art
reporting few pJ/spike (ref. 28). The relatively high energy
consumption originates from two main factors: the relatively low
resistance and the relatively high Vth. The resistance of the device
can be improved by optimizing the growth conditions of the VO2

film. On the other hand, it is expected that the threshold voltage
could be reduced by decreasing the channel length of the VO2

memristor. To demonstrate this, we have optimized the thin film
growth conditions of VO2 and one can see that the current is
reduced from mA level to 50–80 μA (see detailed results in
Supplementary Fig. 15a–c). The resistance of the device has

Cparallel

CH1

Vout
RL

VO2
Vin

CH2

Afferent Spikes

Time (μs)

Vth

Vhold

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
1

Time (μs)
0 20 40

2.6

3.4

3.8

4.2

4.6

5

4

3

Vin = 5 V, RL = 2.6 kΩ
     f = 1161.87 kHZ 

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
2

0 20 40
0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
1

Time (μs)

Vin = 5 V, RL = 5 kΩ
f = 441.32 kHZ 

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
2

0 20 40
0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
1

Time (μs)

Vin = 4.4 V, RL = 4 kΩ
     f = 537.87 kHZ 

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
2

0 20 40

4.4

4.8

5

5.2

5.6

6

6.4

6.8

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
1

Time (μs)

Vin = 6.4 V, RL= 4 kΩ
     f = 1085.87 kHZ

0
1
2
3
4
5
6
7

Vo
lta

ge
 (V

), 
C

H
2

Time (μs)

a d

e

b c

5 10 15 20 25

R
es

is
ta

nc
e 

(k
Ω

)

5 10 15 20 25

Vo
lta

ge
 (V

), 
C

H
2

Vth

Vhold

CH1

Rc

Afferent Spikes

VO2

RL

Vin

CH2

Vout

4.5 5 5.5 6 6.5 7

600

800

1000

1200

Fr
eq

ue
nc

y 
(k

H
Z)

Voltage (V)
2.5 3 3.5 4 4.5 5

400

600

800

1000

1200

Fr
eq

ue
nc

y 
(k

H
Z)

Resistance (kΩ)
0 500 1000 1500 2000

200

400

600

800

Fr
eq

ue
nc

y 
(k

H
Z)

Capacitance (pF)

4 5 6 7 8
400

600

800

1000

1200

1400

Fr
eq

ue
nc

y 
(k

H
Z)

Voltage, CH2 (V)

Neuron1
Neuron2
Neuron3
Neuron4
Neuron5
Neuron6
Neuron7
Neuron8

0 500 1000 1500 2000

200

400

600

800

1000

Fr
eq

ue
nc

y 
(k

H
Z)

Capacitance (pF)

Neuron1
Neuron2
Neuron3
Neuron4
Neuron5
Neuron6
Neuron7

2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

Fr
eq

ue
nc

y 
(k

H
Z)

Resistance (kΩ)

Rc = 0 kΩ
Rc = 0.4 kΩ
Rc = 0.8 kΩ

2.5 3 3.5 4 4.5 5 5.5
400

600

800

1000

1200

Fr
eq

ue
nc

y 
(k

H
Z)

Resistance (kΩ)

Neuron1
Neuron2
Neuron3
Neuron4
Neuron5
Neuron6

f

g

j k l

h i

3 4 5 6 7

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y 
(k

H
Z)

Resistance (kΩ)

Neuron1
Neuron2
Neuron3
Neuron4
Neuron5
Neuron6

Cparallel

Fig. 3 The artificial spiking neuron with its calibration design. a Illustration of circuit based on epitaxial VO2 device for implementation of a spiking
neuron. b The effect of series resistance RL on spiking frequency. The frequency of spiking decreases as the RL increases. c The effect of applied voltage on
spiking frequency. The firing frequency increases with the increase of the applied voltage. d The effect of the parallel capacitor on spiking frequency. As the
parallel capacitor increases, the firing frequency gradually decreases. e, f Artificial spiking neuron response under different series resistance RL and applied
voltage. g–i The effect of series resistance (RL), applied voltage (Vin), and parallel capacitors on spiking frequency (f) of different neurons, respectively.
Variation from neuron to neuron is easily observable. j The circuit structure of calibratable artificial spiking neuron. k The effect of series resistance RL on
spiking frequency under different calibration resistances (Rc). l The relationship between the spiking frequency of different neurons and the series
resistance RL after calibration. It is observed that the variation between neurons is effectively reduced compared with (g).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31747-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3973 | https://doi.org/10.1038/s41467-022-31747-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


increased by nearly two orders of magnitude as shown in
Supplementary Fig. 15d. Moreover, significant reduction in Vth

and Vhold could indeed be achieved by decreasing the channel
length of the VO2 memristor (Supplementary Fig. 15e). Future
work will focus on continued optimization of the growth
conditions for VO2 films and scaling the size of the devices to
further reduce the energy consumption.

Spike-based neuromorphic sensory system for multi-mode
perception. Human receives different types of sensory signals
from the environment through different receptors, and the signals
are encoded into spikes and sent to the cerebral cortex, allowing
them to learn and perceive. Based on the calibratable spiking
neuron depicted above, coupled with a variety of sensors, a
neuromorphic perception system for tactile, optical, and tem-
perature perception is realized.

We have first fabricated a pressure sensor based on graphene
aerogel (as shown in Supplementary Fig. 16a), which has gained
wide attention due to their low density, novel electrical properties,
high mechanical strength and chemical stability50–52, and
integrated it with the spiking neuron to realize tactile perception.
Pressure sensors based on graphene aerogel can be easily
fabricated by sandwiching a graphene aerogel layer between
two thin copper electrodes and wrapping the overall structure in
PVA protective film. Such sensor can have different stable
resistance values under different pressures, as shown in
Supplementary Fig. 16b, because in contact with the almost flat
surface of the copper electrode, the graphene aerogel has a rough
surface made up of many graphene flake ends. When external
pressure is applied, the graphene aerogel is deformed, causing a
larger number of the graphene flake ends to contact the electrodes
and therefore decreasing the resistance. Supplementary Fig. 16c
shows the dependence of resistance response on pressure.
Application of pressure from 0 to 0.98 N has resulted in a change
in the sensor resistance from 81 to 2.7 kΩ, revealing a wide range
of resistance output. The output resistance effectively replaces the
RL in the original neuron circuit, therefore mapping the sensory
signal to the spiking frequency of the neuron based on the f-RL
modulation (Fig. 3b, g, k, l). Indeed, Fig. 4b shows the spiking
frequency of the tactile perception neuron as a function of the
pressure where an external parallel capacitor (2000 pF) and a
constant bias voltage (5 V) were applied, showing that the spiking
frequency increases monotonously from 104.8 to 253.5 kHz when
the pressure is increased from 0 to 0.98 N. The spiking response
under different pressures can be observed in Fig. 4c, and more
detailed results can be found in Supplementary Fig. 17. Never-
theless, the functioning of the spiking neuron places a require-
ment on the amplitude of RL, but different types of sensors may
fall into different regions of output resistance. To accommodate
varied types of sensors, we have further incorporated a scaling
resistor Rscaling to adjust the resistance range to the desired range,
as shown in Fig. 4a, d, g. Based on this circuit configuration, a
spiking vision neuron has also been realized by introducing a
light sensor (Fig. 4d). Figure 4e shows the spiking frequency of
the vision perception neuron as a function of the illuminance, and
the spiking response under different illuminance can be observed
in Fig. 4f (more detailed results can be found in Supplementary
Fig. 18). As the illuminance increases from 0 to 1275 Lux, the
resistance of the light sensor decreases, resulting in a higher
spiking frequency from 111.2 to 282.69 kHz (Fig. 4e, f), therefore
encoding light into spike rates. Similarly, an artificial temperature
sensory neuron is constructed experimentally (Fig. 4g, h, i,
Supplementary Fig. 19). As the temperature increases, the
resistance of the temperature sensor decreases, leading to
increased spiking frequency (Fig. 4h, i). As a result, the

calibratable sensory neuron based on epitaxial VO2 can emulate
neuromorphic tactile, vision, and temperature perception sys-
tems, and is able to convert pressure, illuminance and
temperature into rate-encoded spikes, therefore providing a
potential as an interface between the external environment and
neuromorphic computing systems.

Figure 4j shows the schematic of a spike-based neuromorphic
sensory computing system for MNIST-based pressure image
classification. Here, 784 spiking tactile sensory neurons are used
to sense the pressure and encode it into pulses with different
frequencies. The value of each pixel in a handwritten digit image is
regarded as pressure. The encoded spike trains are then processed
by a spiking neural network with three layers, which consists of
784 input neurons, 196 hidden neurons, and 10 output neurons.
The pressure images can be divided into 10 different categories
after training the network, and Fig. 4k shows the detailed
simulation process. The training of SNN has been done online
using backpropagation based on the experimentally measured
electrical characteristics of VO2 devices and the dependence of the
spiking frequency of the artificial tactile neuron on the pressure
(Supplementary Fig. 20). Detailed procedure for the simulation can
be found in Supplementary Note 3. Figure 4l shows the evolution of
the test accuracy during training process, where the classification
accuracy on the test set can reach 90.33% after 50 training epochs.
The averaged spiking numbers of neurons in the output layer after
50 training epochs are shown in Fig. 4m. The columns represent
the labels of the input pressure images, while the rows describe the
index of 10 output neurons and the color bars represent the average
number of spikes. The input pressure image is correctly identified
in most cases after 50 training epochs. Figure 4n further shows a
confusion matrix of the classification results of the 10,000 test
dataset after 50 epochs. The columns here designate the category of
actual pressure image, while the rows show the classification results
and the color bars represent the number of instances. Most of the
pressure distribution pictures can be classified correctly after 50
epochs, once again showing that the spike-based neuromorphic
perception system in this work is capable of converting physical
signals into spikes and completing complex tasks.

To evaluate the sensing performance, the sensitivity of the
spiking sensory neurons is defined as S=Δf/Δx, where Δf and Δx
are the values of change in the neuronal frequency and input,
respectively. The spiking sensory neuron is able to achieve high
sensitivity of 151.74 kHz/N, 0.13 kHz/Lux, and 2.8 kHz/°C in
tactile, optical, and temperature perception, respectively. Given that
our pressure sensor is 2 cm in diameter, the calculated sensitivity to
pressure is 47.67 kHz/kPa, which is slightly lower than the
60.8 kHz/kPa reported in ref. 30. This can be improved by
increasing the sensitivity of the pressure sensor itself. As for the
sensitivity to temperature and light intensity, there seem to be no
prior works reporting such metrics that can serve as the
background for direct comparison, to the best of our knowledge.
The important point is that our spiking sensory neuron can be
matched with different kinds of sensors, which is a significant
advantage over existing studies. Furthermore, the signal-to-noise
ratio (SNR)53 of the spiking sensory neuron is defined for the first
time, which can be described as:

SNR ¼ 10 log
μ f
� �2

σ f
� �2 ð1Þ

where μ(f), σ(f) are the mean and standard deviations of spiking
frequency in every oscillation cycle, respectively. Statistical analysis
on the experimental results shows that the artificial spiking sensory
neurons can achieve SNRs of 33.66, 31.90, and 29.92 dB in the
tactile, optical, and temperature sensing using our approach. These
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SNR values can originate from the sensor, circuit as well as
fluctuations in Vth, Vhold, Roff, and Ron of the VO2 device.

Moreover, we established a model of the spiking sensory
neuron. The artificial spiking neuron circuit is essentially an RC
circuit. Using Kirchhoff’s Current Law, we have the following
differential equation:

Cm
dVm

dt
¼ V in � Vm

RL
� Vm

RVO2

ð2Þ

where Cm is the capacitance in parallel to the VO2 device or can
be parasitic capacitance. Vm is the output voltage across the VO2

device. The VO2 resistance is RVO2
¼ Roff in HRS and

RVO2
¼ R

on
in LRS. For simplicity, we assume that Roff and Ron

are constant in our analyses.
To obtain the rising time, tr, from Vhold to Vth during

oscillation, we analyze the circuit when RVO2
¼ Roff . By

integrating the equation and applying the initial condition
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Vm 0ð Þ ¼ Vhold, we obtain:

Vm tð Þ ¼ Roff

RL þ Roff
V in �

Roff

RL þ Roff
V in � Vhold

� �
exp � t

RL k Roff

� �
Cm

 !

ð3Þ
At t ¼ tr, Vm tr

� � ¼ V th. Inserting these values into the
equation and further rearranging, we arrive at the expression:

tr ¼ RL k Roff

� �
Cm � ln

Roff
RLþRoff

V in � Vhold

Roff
RLþRoff

V in � V th

 !
ð4Þ

For the falling time, tf, from Vth to Vhold during oscillation, we
let RVO2

¼ Ron. By integrating the differential equation at initial
condition Vm 0ð Þ ¼ V th, we arrive at the following equation:

Vm tð Þ ¼ Ron

RL þ Ron
V in �

Ron

RL þ Ron
V in � V th

� �
exp � t

RL k Ron

� �
Cm

 !

ð5Þ
At t ¼ tf , Vm tf

� � ¼ Vhold. Hence, we have:

tf ¼ RLkRon

� �
Cm � ln

V th � Ron
RLþRon

V in

Vhold � Ron
RLþRon

V in

 !
ð6Þ

Thus, the oscillating frequency is:

f ¼ 1
tr þ tf

ð7Þ

This model is similar to the one given in refs. 54–56, which are
essentially relaxation oscillators relying on volatile threshold
switching devices to enable self-sustained oscillations. However, it
is worthwhile noting that the detailed time constant and voltage
dividing terms across the capacitor are different due to their
different circuit designs, and more importantly, this model takes
into account the scaling resistance and the calibration resistance.
Extending the model to calibratable spiking sensory neuron, we
have:

RL ¼ RsensorjjRscaling þ Rc ð8Þ
where Rsensor, Rscaling, and Rc are resistance of sensor, scaling
resistance, and calibration resistance.

To evaluate potential device variation of VO2 memristors on
precise sensing, the SNR is calculated by our model considering
the factors related to the VO2 device, i.e., the distribution of Vth,
Vhold, Roff, and Ron (Fig. 2h–j), showing SNR of 36.38 dB (Vin, RL,
and Cm are set as 5 V, 2.6 kΩ, and 1000 pF, respectively).

It is worth noting that VO2 is a system that is very sensitive to
oxygen content, protons, and temperature in ambient environ-
ment. In order to examine these factors, we have first performed
control experiments to measure the characteristics of VO2 devices
under different atmospheric pressure, including air (Supplemen-
tary Fig. 21a), varied atmospheric pressure from 1.5 × 10−3 mbar
to 2 × 10−4 mbar (Supplementary Fig. 21b–h) and N2 environ-
ment (Supplementary Fig. 21i). Therefore, the concentration of
oxygen and moisture/proton is gradually reduced in this process,
where the VO2 device showed no significant change in its I–V
characteristics. To quantify the impact, the threshold and holding
voltages (Vth_pos, Vth_neg, Vhold_pos, and Vhold_neg) as well as Roff
and Ron of the devices at different atmospheric pressures are
extracted (Supplementary Fig. 21j–k). The highly stable threshold
and holding voltages as well as resistance states demonstrate that
the VO2 memristor can operate stably under varied oxygen and
moisture concentrations. To model and address the effect of
temperature, we tested the I–V characteristics of the device at
different temperatures. The I–V characteristics of VO2 memristor
at 283–305 K are displayed in Supplementary Fig. 22a–h.
Supplementary Fig. 22i shows Vth and Vhold at different
temperatures, where one can find that both Vth and Vhold

gradually decrease with increased temperature. Moreover, the
firing frequency of the VO2 spiking neuron at different
temperatures is further tested from 283 to 291 K with constant
RL of 4 kΩ and the same input voltage of 5 V (Supplementary
Fig. 22k), where the devices are placed directly on a temperature-
controlled probe station (Supplementary Fig. 22j). As the
temperature increases, one can find that the firing frequency of
VO2 neurons gradually increases (576.13–656.02 kHz). We have
systematically tested the dependence of the spiking frequency as a
function of load resistance (RL) and temperature, and the results
are displayed in Supplementary Fig. 22l, showing similar RL and T
dependence in all cases. This might be ascribed to the gradual
decrease in threshold voltages of VO2 memristors with increased
temperature, so that the neuronal circuit requires lower voltage
to fire.

It is worth noting that the relatively low phase transition
temperature (Tt) of VO2 could limit the operating temperature of
neuromorphic systems and poses a challenge in electronic
applications. Hence, appropriate material engineering to increase
Tt is highly desirable. A possible strategy to increase the Tt of VO2

is by doping. For example, doping by Cr3+, Ge4+, and Ti4+

cations57–60 have been reported to increase Tt of VO2 thin films,
with Cr-doped VO2 and Ge-doped VO2 showing Tt of ~100 °C
and ~95 °C, respectively. Besides, Tt may also be modulated via
strain engineering. In particular, tensile strain along the c-axis of

Fig. 4 Illustration of the spike-based neuromorphic perception system for tactile, optical, and temperature perception. a Schematic of artificial spiking
tactile sensory neuron. The graphene aerogel-based pressure sensor is combined with a calibratable artificial sensory neuron to replace RL in the original
neuron circuit. A scaling resistor (Rscaling) is used to adjust the range of the sensor resistance where Rscaling is set as 4 kΩ. b The effect of pressure on
spiking frequency. c Artificial spiking tactile sensory neuron response under different pressure. d Schematic of artificial spiking vision sensory neuron where
Rscaling is set as 3 kΩ. e The effect of illuminance on spiking frequency. f Artificial spiking vision sensory neuron response under light intensity. g Schematic
of the artificial spiking temperature sensory neuron where Rscaling is set as 4.5 kΩ. h The effect of temperature on spiking frequency. i Artificial spiking
temperature sensory neuron response under different temperatures. j Schematic of the spike-based neuromorphic perception computing system for
MNIST-based pressure image classification. The value of each pixel in a handwritten digital image is regarded as pressure. A pressure image is translated
into spikes by 784 artificial spiking tactile sensory neurons, which are input into a three-layer spikes neural network (SNN), and finally, we calculate the
firing rate of neurons in the output layer to get the classification result. k Flow chart of the simulation process. In the forward process (yellow arrow), first, a
pressure distribution image is encoded into spikes by the spiking sensory neurons, then sent to the linear layer for weighted, and integrated on the spiking
neurons. The spiking rate of the output layer is used to calculate the loss. In the error backpropagation stage (red arrow), the sigmoid type function is used
to calculate the gradient. The calculation module in the green box is simulated based on experimental data, and the calculation module in the blue box is
software simulation. l Evolution of the test accuracy with training epochs. After 50 epochs of training, the accuracy on the test set can reach 90.33%.
m The average spiking numbers of neurons in the output layer when different pressure images are input. n Confusion matrix of the classification results of
the test dataset after 50 epochs showing images of pressure can be well classified.
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the VO2 lattice results in a higher Tt. It has been demonstrated
that VO2 thin films deposited on TiO2(100)61 and TiO2(110)62

substrates have increased Tt due to substrate-induced strain, with
the latter reporting a Tt of ~95 °C. Such transition temperature
range, by means of doping or strain engineering, is more
favorable for practical applications.

After considering the effect of temperature, the threshold and
holding voltages are corrected and can be described as63:

V th Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Roff

Rth
T t � T
� �s

ð9Þ

Vhold Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ron

Rth
T t � T
� �s

ð10Þ

where Rth, Tt, and T are the effective thermal resistance, the
transition temperature of VO2, and the operating temperature,
respectively. Therefore, the impact of temperature on VO2

neuron spiking can be obtained by inserting Eqs. (9) and (10)
into Eqs. (2)–(8). The validity of this model has been verified in
Supplementary Fig. 23, where a set of f-RL curves under different
temperatures are calculated using this model (the values of the
parameters are shown in Supplementary Table 2). The calculated
results are well consistent with the experimentally measured data
(Supplementary Fig. 22l), hence demonstrating the reliability of
our model.

Spike-based neuromorphic perception system for gesture
recognition. Human gesture recognition is valuable in fields such
as healthcare64, human-machine interaction65,66, and cognitive
neuroscience research67. A highly efficient gesture-sensing system
that works like biological systems is therefore desirable. Here, a
spike-based neuromorphic perception system for gesture recog-
nition that can encode hand gestures into differentiable spikes has
been experimentally implemented (Fig. 5). First, we designed and
fabricated a spiking curvature sensory neuron that can convert
curvatures into spikes, which is composed of a curvature sensor
attached in series with the calibratable spiking neuron (Figs. 2 and
3), as shown in Fig. 5a. When the curvature is increased, the
resistance of the curvature sensor will be increased, which in turn
leads to reduced spiking frequency of the neuron. Afterward, the
curvature sensor is attached onto a human finger, so as to sensing
the bending of the finger. One can see that the spiking frequency
of the sensory neuron becomes lower when the finger is bent to a
larger extent, as shown in Fig. 5b.

To achieve hand gesture recognition, the thumb, index, middle,
ring, and little fingers are paired with 5 spiking curvature sensory
neurons, and we experimentally monitored and measured the
output spike trains of 8 different hand gestures. The correspond-
ing spike profiles of the hand gestures are shown in Fig. 5c.
Figure 5d statistically analzyed the spiking frequency of the
sensory neurons in each finger under the different gestures. It can
be seen that the spiking frequency encoded by each gesture can be
easily distinguished, hence demonstrating that the spike-based
neuromorphic perception system can be effectively used for
gesture recognition.

The calibratable artificial sensory neurons based on epitaxial
VO2 shown here demonstrate significant advantages compared
with traditional silicon circuits and other spiking sensory
neurons. Supplementary Fig. 24 schematically depicts the
comparison between neuromorphic perception system based on
silicon circuits and our approach. In traditional silicon-based
circuits, in order to sense physical signals a large number of
ADCs (analog-to-digital converters) are necessary besides the

sensors, which are very costly in area and energy consumption,
and when the subsequent information processing is in spike-
based neuromorphic computing systems, a large number of
additional VSCs (voltage-to-spike converters) will be required30

to realize spike conversion, which also consume a large amount of
area and energy, as shown in Supplementary Fig. 24a. In stark
contrast, our calibratable sensory neuron (Supplementary
Fig. 24b) can directly achieve both sensing and spike conversion
with the simple circuit consisting of the sensor, the VO2

memristor, and a few resistors and capacitors, which is much
more efficient in area and energy consumption compared to
silicon circuits. Supplementary Table 3 further benchmarks our
approach with other state-of-the-art spike-based sensory neurons.
Compared with existing works in the literature, our work
effectively addressed the impedance matching problem between
sensors and neurons by utilizing the scaling resistance and
calibration resistance to adapt the working resistance ranges of
different sensors. As a result, a variety of different perception
modalities including pressure, light, temperature, and curvature
have been achieved for the first time, which is a significant
advantage of our approach and not seen in existing studies. The
high crystalline quality of epitaxial VO2 has addressed the
fundamental cycle-to-cycle and device-to-device variation issues
in sensory neurons, and the resultant excellent uniformity of our
devices gives rise to excellent SNRs of 33.66, 31.90, and 29.92 dB
in tactile, optical and temperature sensing, respectively. Our
investigations have revealed that the present energy consumption,
sensitivity, and firing frequency of the sensory neurons could be
further improved by optimizing the growth conditions of the VO2

film (Supplementary Fig. 15a–d), the channel length (Supple-
mentary Fig. 15a–e), and circuit parameters such as parallel
capacitance (Fig. 3, Supplementary Figs. 7–11).

Discussion
A highly uniform, calibratable artificial sensory neuron based on
threshold switching in epitaxial VO2 memristor has been
experimentally implemented for the first time. The epitaxial VO2

memristor has excellent cycle-to-cycle and device-to-device uni-
formity, due to the high crystalline quality of epitaxially grown
VO2 and introduction of calibration resistor. A variety of spiking
sensory neurons can be constructed based on the CASN capable
of sensing and converting physical signals into spikes, and a
scaling resistor can be further used to accommodate varied types
of sensors by adjusting their various resistance ranges to the
desired regime. Based on this, a multi-sensory perception system
capable of encoding pressure, curvature, illuminance, and tem-
perature into electrical spikes is demonstrated experimentally by
combining CASN with pressure, curvature, light, and temperature
sensors. Simulation results show that combination of the spiking
tactile neurons with a 3-layer SNN can lead to successful pattern
classification on pressure images, showing classification accuracy
of >90.33%. A spike-based neuromorphic perception system with
spiking curvature sensory neurons has been utilized to achieve
hand gesture recognition experimentally. This study could extend
the currently limited sensing mode of sensory neurons and
address their fundamental cycle-to-cycle and device-to-device
variation issues, therefore significantly promoting the develop-
ment of neurorobotics, perception, and neuromorphic
computing.

Methods
Fabrication of epitaxial VO2 threshold switching devices. The 20 nm VO2 films
were epitaxially grown on c-Al2O3 substrates by pulsed-laser deposition (PLD)
technique using a 308-nm XeCl excimer laser operated at an energy density of
about 1 J/cm2 and a repetition rate of 3 Hz. The VO2 films were deposited at 530 °C
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Fig. 5 Illustration of the spike-based neuromorphic perception system for gesture recognition. a Schematic of artificial spiking curvature sensory neuron.
The curvature sensor is combined with a calibrated artificial spiking neuron, replacing the RL in the original spiking neuron circuit. b Artificial spiking
curvature sensory neuron response under different curvatures. With the curvature sensor attached to the finger, the spiking frequency of the curvature
sensory neuron depends on how much the finger bends. The greater the bend of the finger, the lower the frequency of spiking. c Artificial spiking curvature
sensory neurons response under different gestures. A person’s five fingers are attached with artificial curvature sensory neurons. The spiking frequencies
of the five neurons change with the gestures, which constitute a neuromorphic perception system for gesture recognition where the gestures can be
encoded into five spike trains. d Statistics of spiking frequency of spiking curvature sensory neurons in five fingers during different gestures showing each
gesture can be easily distinguished.
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in a flowing oxygen atmosphere at the oxygen pressure of 2.0 Pa. Then, the films
were cooled down to the room temperature at the speed of 20 °C/min. The
deposition rate of VO2 thin films was calibrated by X-ray Reflection (XRR).

The electrodes, which are composed of Au (40 nm) and Ti (5 nm) with a
distance of 400 nm, were patterned with electron-beam lithography (EBL) along
with electron-beam evaporation and lift-off.

Electrical measurements. Electrical measurements were performed using an
Agilent B1500A semiconductor parameter analyzer, Keithley 2450 SourceMeter,
and the RIGOL MSO8104 digital storage oscilloscope. We used an Agilent B1500A
semiconductor parameter analyzer to perform electrical measurements of a single
VO2 device in Fig. 2h–j and Supplementary Figs. 2–5. In Figs. 3–5 and Supple-
mentary note 4–5, Agilent B1500A is applied to create the pulse signal, and one
channel of the oscilloscope is used to measure the output of Agilent B1500A, while
the other channel measures the voltage of the output node in the spiking neuron
circuit. In Fig. 3b, the series resistance RL is changed to explore the relationship
between the spiking frequency and the series resistance RL where the voltage
applied is 5 V. In Fig. 3c, the series resistance RL is set at 4 kΩ, we change the input
voltage to see how it relates to the spiking frequency. In Fig. 3d, the voltage is set to
5 V and the series resistance RL is set to 4 kΩ, with the parallel capacitor changed to
investigate the relationship between the spiking frequency and the parallel capa-
citor. More experimental circuit parameters are shown in Supplementary Table 4.
In the spike-based neuromorphic perception system (Figs. 4 and 5), we used the
off-the-shelf light sensor (GL3537-1), temperature sensor (NTC10KB3950), and
curvature sensor (FLEX4.5).

Simulation of VO2 device in COMSOL. We simulated the operation of the VO2

device in COMSOL Multiphysics software based on the metal-insulator transition
(MIT) model described in ref. 68. In this model, the resistive switching process is
simply due to the temperature change in the switching region resulting from the
interplay of Joule-heating and the heat dissipation of the device. The thermally-
activated high resistivity of VO2 in the lower temperature range is given by Eq. (11):

ρm ¼ ρ0;m � exp Ea;m

kbT

� �
ð11Þ

where Ea,m is the activation energy. For the low resistivity (ρr) region in the higher
temperature range, we used the same equation with different values of ρ0;r and Ea;r .
As both high and low resistivity phases coexist during the transition, the switching
region can be regarded as a parallel circuit. Hence, the overall resistivity is given by
Eq. (12):

ρ ¼ ρrρm
f rρm þ 1� f r

� �
ρr

ð12Þ

where fr is the volume fraction of the low resistivity phase and is given by Eq. (13):

f r ¼
1

1þ A � exp W
kbT

� � ð13Þ

W is the energy scale of the MIT and is related to the steepness of the resistivity
change. A is a constant related to the temperature at which the MIT takes place.
The values of A during the heating process (Ah) and the cooling process (Ac) are
different. The parameters in the equations above were tuned so that the simulated
I–V curve fit the measured I–V curve of our device (more details are shown in
Supplementary Note 1).

Simulation of the spike-based neuromorphic perception system. A spike-based
neuromorphic perception computing system for pressure image recognition using
the artificial spiking tactile sensory neurons and spiking neural networks (SNN) is
implemented in simulation by the SpikingJelly69 based on experimental data. We
used Origin to fit the pressure and spiking frequency curve in Supplementary
Fig. 20a. The high resistance of the device, Vth and Vhold are set to 2.2 kΩ, 1.4 V,
and 0.85 V, respectively, which is extracted from Supplementary Fig. 20b–c. More
details are shown in Supplementary Note 3.

Data availability
All data supporting this study and its findings are available within the article, its
Supplementary Information and associated files. The source data underlying Figs. 2h–j,
3b–i, k–l, 4b, c, e, f, h, i, l–n and 5b–d have been deposited at https://zenodo.org/record/
6609313#.YplfNGhBxPY or are available from the corresponding author upon
reasonable request.

Code availability
The codes used for the simulations are described in https://github.com/billyuanpku96/
SNN-for-sensory-neuron or are available from the corresponding author upon
reasonable request.
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