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Identifying multicellular spatiotemporal
organization of cells with SpaceFlow
Honglei Ren1, Benjamin L. Walker 1,2, Zixuan Cang 3 & Qing Nie 1,2,4✉

One major challenge in analyzing spatial transcriptomic datasets is to simultaneously

incorporate the cell transcriptome similarity and their spatial locations. Here, we introduce

SpaceFlow, which generates spatially-consistent low-dimensional embeddings by incorpor-

ating both expression similarity and spatial information using spatially regularized deep graph

networks. Based on the embedding, we introduce a pseudo-Spatiotemporal Map that inte-

grates the pseudotime concept with spatial locations of the cells to unravel spatiotemporal

patterns of cells. By comparing with multiple existing methods on several spatial tran-

scriptomic datasets at both spot and single-cell resolutions, SpaceFlow is shown to produce a

robust domain segmentation and identify biologically meaningful spatiotemporal patterns.

Applications of SpaceFlow reveal evolving lineage in heart developmental data and tumor-

immune interactions in human breast cancer data. Our study provides a flexible deep learning

framework to incorporate spatiotemporal information in analyzing spatial transcriptomic data.
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The spatiotemporal pattern of gene expression is critical to
unraveling key biological mechanisms from embryonic
development to disease. Recent advances in spatially

resolved transcriptomics (ST) technologies provide new ways to
characterize the gene expression with spatial information that the
popular nonspatial single-cell RNA-sequencing (scRNA-seq)
method is unable to capture. The majority of current ST tech-
nologies may be categorized into in situ hybridization (ISH)-
based and spatial barcoding-based, varying in gene throughput
and resolution1–3. ISH-based methods can detect target tran-
scripts at the sub-cellular resolution, such as Multiplexed Error-
Robust Fluorescence ISH (MERFISH) and sequential fluorescence
ISH (seqFISH), for about 100–1000 and 10,000 genes
respectively4,5. Spatial barcoding-based methods can capture the
whole transcriptome with varying spatial spot resolutions, such as
Visium in 55 μm, the Slide-seq in 10 μm6, and the spatiotemporal
enhanced resolution ‘omics sequencing (Stereo-seq) in nanometer
(subcellular) resolution7.

Compared to non-spatial technologies such as scRNA-seq, the
presence of spatial information in ST data necessitates develop-
ment of methods that natively handle the high-dimensional fea-
tures in space. High-dimensional spatially aware analyses have
been previously explored largely in the context of image data8–11.
By considering each gene as one channel in an image, spatial
transcriptomic data may be abstracted as high-dimensional
images. However, uncovering the biological interactions
between genes in tissue requires new computational methods
tailored specifically to transcriptomic data.

Many methods developed for non-spatial transcriptomic data
such as scRNA-seq or bulk spatial transcriptomics data12,13 may
provide insights in designing approaches for ST data at single-cell
resolution through recasting the relevant tasks in a spatial man-
ner. For example, the identification of spatially variable genes in
ST data14,15 can be viewed as the spatial extension of the highly
variable genes in scRNA-seq data. Similarly, methods have been
developed to identify spatial domains in ST data16, the analog of
cell clustering in scRNA-seq data analysis, but using spatial
information to produce spatially coherent regions. Giotto17,
BayesSpace18, and SC-MEB19 use Markov random fields to model
the related gene expression in neighboring cells. stLearn utilizes
morphological information to perform spatial smoothing before
clustering20. MULTILAYER uses graph partitioning to segment
tissue domains21. MERINGUE performs graph-based clustering
using a weighted graph that combines spatial and transcriptional
similarity22. SpaGCN23, SEDR24, SCAN-IT25, stMVC26, and
STAGATE27 build deep auto-encoder networks to learn low-
dimensional embeddings of both gene expression and spatial
information, and segment domains through embedding cluster-
ing. RESEPT learns a three-dimensional embedding from ST data
by a spatial retained graph autoencoder and treats the embedding
as a 3D image, identifying domains through image segmentation
using a convolutional neural network28.

The domain segmentation methods reviewed above are the
ST counterpart of cell clustering in scRNA-seq data analysis.
Contrary to discrete clustering, another powerful analysis in
scRNA-seq is the concept of continuous pseudotime which can
represent developmental trajectories. The dynamics of many
developing systems such as regeneration and cancer progression
are often spatially organized29,30. The ST data thus provides an
opportunity to simultaneously reveal both spatial and temporal
structures of development. While pseudotime methods for
scRNA-seq can be directly applied to ST data, the resulting
trajectory may be discontinuous in space. stLearn combines non-
spatial pseudotime with spatial distance by simple average, as
well as filters connections between clusters inferred by scRNA-
seq trajectory inference methods using a spatial distance

cutoff, but the resulting connections are limited by the
initial pseudotime trajectories inferred without using spatial
information20. There is thus a demand for computational tools
for integrative reconstruction of fine-resolution spatiotemporal
trajectories from ST data which is continuous both in time
and space.

As pseudotime trajectories are traditionally computed from a
low-dimensional embedding of transcriptomic data31, the com-
putation of spatiotemporal trajectories can be viewed as a pro-
blem of constructing spatially aware embeddings of ST data.
Multiple strategies for computing spatially aware embeddings
may be used such as Hierarchical SNE32, Hierarchical UMAP33,
dual embedding34. Additionally, deep graph neural network-
based approaches, such as DeepWalk35, Variational Graph Auto-
Encoder (VGAE)36, Graph2Gauss37, and Deep Graph Infomax
(DGI)38, while computationally more expensive, have been uti-
lized for ST data due to their flexibility to model and learn non-
linear and complex salient spatial dependencies between genes
and cells.

In this work, we develop a framework to reveal continuous
temporal relationships with spatial context using ST data. By
combining a DGI framework with spatial regularization designed
to capture both local and global structural patterns, we extract a
spatially consistent low-dimensional embedding and construct a
pseudo-Spatiotemporal Map (pSM), representing a spatially
coherent pseudotime ordering of cells that encodes biological
relationships between cells, along with a region segmentation. We
compare SpaceFlow with five existing methods on six ST datasets,
demonstrating competitive performance on benchmarks, and use
SpaceFlow to reveal evolving cell lineage structures, spatio-
temporal patterns, cell-cell communications, tumor-immune
interfaces and spatial dynamics of cancer progression.

Results
Overview of SpaceFlow. SpaceFlow takes Spatial Transcriptomic
(ST) data as input (Fig. 1a) and outputs a spatially consistent low-
dimensional embedding, domain segmentation, and pseudo-
Spatiotemporal Map (pSM) of the tissue. The input ST data
consists of an expression count matrix and spatial coordinates of
cells or spots. The output embedding encodes the expression of
ST data so that nearby embeddings in the latent space reflect not
only the similarity in expression but also spatial proximity. The
domain segmentation characterizes the spatial patterns of tissue
without the need for histological or pathological knowledge. The
pSM is a map that represents the pseudo-spatiotemporal rela-
tionship of cells in ST data.

Before applying the deep graph network, a Spatial Expression
Graph (SEG) is constructed (Fig. 1b) with nodes in the graph
representing cells with expression profile attached, while edges
model the spatial adjacency relationship of cells (Fig. 1b). In
addition, an Expression Permuted Graph (EPG) is constructed by
randomly permuting the nodes in SEG and used as negative
inputs for the network. To encode the SEG into low-dimensional
embeddings, a graph convolutional encoder is built with
Parametric ReLU (PReLU) as activation (Fig. 1c). The graph
convolutional encoder applies a weighted aggregation to the
expression of a cell with its spatial neighborhood to capture local
expression patterns into embeddings. We utilize a Deep Graph
Infomax (DGI) framework to train the encoder38, which
optimizes a Discriminator Loss (Fig. 1d bottom) to learn to
distinguish the embeddings from SEG and EPG input. Compared
to other GCN architectures, this allows the encoder to learn
embeddings that emphasize specifically the spatial expression
patterns that corresponding to meaningful structure as opposed
to those due to non-spatial variation or noise.
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Distant cells of the same cell type may exhibit a high degree of
transcriptional similarity even when in very different parts of
tissue. Consequently, in order to produce embeddings that most
meaningfully represent spatial structure, one needs spatial
consistency in embeddings, meaning that the latent space
embeddings should be distant not only if their expression profile
is distinct, but also when the expression is similar but their spatial
locations are distant. We use embedding regularization to enforce
this structure in the latent space (Fig. 1d), which takes the spatial
distance matrix and the embedding distance matrix of cells or
spots as input. These two matrices are then input into linear
kernels (Spatial kernel and Embedding kernel) to calculate the
loss of each cell pair based on the spatial or embedding distance.
The spatial losses and embedding losses of cells from these
kernels are then combined to produce the final regularization loss
which is added to the discriminator loss used to train the encoder
(Methods). The learned low-dimensional embeddings (Fig. 1e)
for the ST data are then used in downstream analysis, including
the pseudo-Spatiotemporal Map (pSM), domain segmentation,
and low-dimensional visualization (Fig. 1f) to analyze spatio-
temporal patterns of tissues.

Comparison of SpaceFlow with five existing methods for ST
data at spot resolution. To evaluate the quality of the SpaceFlow
embeddings, we compared it with five existing methods for
unsupervised segmentation on ST data: one non-spatial method
Seurat v439, and four spatial methods Giotto17, stLearn20,
MERINGUE22, and BayesSpace18 on a 10x Visium human
Dorso-Lateral Pre-Frontal Cortex (DLPFC) dataset consisting of
twelve samples40. Spots are annotated as one of six layers (layer 1
through layer 6) or white matter, and these annotations are used
as the ground truth for benchmarking.

To compare the domain segmentation performance quantita-
tively, we used the adjusted Rand Index (ARI) to measure the
similarity between the inferred domains and the expert annota-
tions across all twelve sections (Fig. 2a). SpaceFlow shows a 0.427
median ARI score, the second-highest across the six methods,

slightly lower than the BayesSpace, which has 0.438 median ARI.
MERINGUE shows the lowest median ARI score (0.232),
followed by Seurat (0.300) and then Giotto (0.332), and stLearn
(0.369). Interestingly, the DGI method without the spatial
regularization used in SpaceFlow shows a significant decrease in
ARI, with a 0.332 median score, indicating that spatial
regularization does effectively improve the domain segmentation
of DGI.

Next, we performed a more detailed analysis on section 151671
(Fig. 2b–f). We first computed the domain segmentation for each
method and visualized the output compared to the expert
annotation (Fig. 2b). It is seen that all methods fail to capture the
subtle structure of Layer 4 (L4), suggesting that this ST data does
not have the necessary spatial resolution to capture the
L4 structure. Both SpaceFlow and BayesSpace can capture all
the remaining structures (L3, L5, L6, and WM) observed in the
annotation. Moreover, BayesSpace identified the outer ring of the
WM as an additional structure, whereas SpaceFlow found a
different structure at the top right part of Layer 3 (labeled as
domain 3 in orange). The structure found in SpaceFlow is
consistent with the domains from Giotto, stLearn, and MER-
INGUE. stLearn also identified L5, L6, and WM that are
consistent with the annotation but with noisy boundaries between
domains. Giotto and MERINGUE identified the L6 and WM
domain but are unable to identify the boundary of L5 along with
the same noisy boundary issues. Seurat showed an overall
disordered domain structure and can barely capture the white
matter (WM) structures. The DGI method (Fig. 2b), like
SpaceFlow but without spatial regularization, showed a layered
structure with inconsistent boundary shape and non-contiguous
domains, reinforcing the importance of spatial regularization.
Similar results can also be observed in samples 151507 and
151673 (Supplementary Fig. 1a, c).

We next compared the low-dimensional embeddings from
Seurat, stLearn, DGI, and SpaceFlow (the segmentation methods
Giotto, MERINGUE, and BayesSpace do not produce embed-
dings), applying UMAP to the embeddings to produce a two-
dimensional visualization of all spots colored by the layer
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Fig. 1 Overview of SpaceFlow. a The input ST dataset consist of an expression count matrix and spatial coordinates of spots/cells. b A spatial expression
graph (SEG) is constructed as the network input, with edges characterizing the spatial neighborhood, and nodes representing cells/spots with expression
profiles attached. By randomly permuting the nodes in SEG, Expression Permuted Graphs (EPG) are built as negative samples. c A two-layer GCN encodes
the SEG or EPG input into low-dimensional embeddings. d The embeddings are regularized for spatial consistency. With the Spatial Regularization loss and
the Discriminator loss, the encoder is iteratively trained until convergence. e The low-dimensional embedding is obtained from the trained encoder. f The
output consists of the pseudo-Spatiotemporal Map (pSM), domain segmentation, and the visualization of low-dimensional embeddings.
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annotation. We observe that SpaceFlow embeddings produce
embeddings that clearly separate the spots by layer when
compared to stLearn, DGI, and Seurat (Fig. 2c). As the separation
between low-dimensional embeddings of the regions provides an
upper limit on the ability of segmentation to separate the regions,
this shows that the incorporation of spatial regularization

produces more distinct embeddings between different layers
and thereby a greater ability to distinguish them in downstream
analysis.

To study how the low-dimensional embeddings from different
methods encode spatial information, we show the same UMAP
embeddings colored by the spatial distances between the spot and
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the origin (Fig. 2d), so that embeddings which preserve the spatial
structure will maintain this color gradient. Seurat embeddings
exhibit a high level of mixing in this color, indicating significant
deformities in both local and global structure, whereas DGI shows
local color gradients with a minor color mixture and shows no
global gradient structure. In contrast, SpaceFlow and stLearn both
exhibit a clear global gradient structure with a clear coloring trend
in each annotation layer. This indicates the learned embeddings
from SpaceFlow and stLearn encode transcriptional information
while also preserving the local and global spatial structure of
the data.

To check whether the identified domains from SpaceFlow are
biologically meaningful, we performed a domain-specific expres-
sion analysis. We found spatial specific expression patterns for
the identified domain-specific genes. For instance, the top
domain-specific gene for domain 3 (orange) in SpaceFlow is
SAA1. Within domain 3, it is expressed in 90% of cells with a
mean expression of 0.96 (scaled from 0 to 1), whereas outside this
domain it is expressed in less than 30% of cells with a mean
expression of approximately 0.13 (Fig. 2e). This spatial expression
specificity is also clear in the spatial expression heatmap showing
top-1 marker genes for each domain (Fig. 2f). Among these genes,
we found that PCP4 was previously reported as the marker for
layer 6 in prefrontal cortex41. The other genes have clear layer
correlations although not previously reported, suggesting new
experiments are needed for validating the potential new marker
genes. We carried out a Gene Ontology (GO) analysis for the
domain-specific genes whose p value is less than 0.01 in domain 3
(Fig. 2g). We observed GO terms associated with regulation of
cAMP-dependent protein kinase activity, ionotropic glutamate
receptor signaling pathway, regulation of long-term synaptic
potentiation regulation of synaptic plasticity, etc. This suggests
that the spatially specific expression in the identified domain 3
may be related to long-term synaptic activity, which is consistent
with the observation that several top domain-3 specific expression
patterns such as MALAT1 (p value < 5.5e−33)42, CAMK2A
(p value < 7.4e−23)43, PPP3CA (p value < 4e−16)44 are involved
in long-term synaptic potentiation. The fact that this gene
expression is clearly related to neural activity indicates a
meaningful subdivision of Layer 3 despite a lack of annotations
for this region. This suggests that the expert annotations, even if
accurately describing the layer structure, may not paint a
complete picture of the spatial structure within the data.

SpaceFlow uncovers pseudo-spatiotemporal relationships
among cells. Next, we study the pseudo-Spatiotemporal Map
(pSM) computed by SpaceFlow. Different from traditional
pseudotime as used in scRNA-seq analysis, which only considers
the similarity in expression between cells, the pSM considers both
spatial and transcriptional relationships among cells simulta-
neously (Methods). In spatial visualizations of the pseudotimes

produced from Seurat, Monocle, traditional single-cell pseudo-
time methods that do not incorporate spatial information, we
observed a lack of layered patterns as well as significant noise
(Fig. 3a). In contrast, both spatially aware methods tested, stLearn
and SpaceFlow present a layer-patterned pSM with a clear and
smooth color gradient (Fig. 3a), suggesting a pseudo-
spatiotemporal ordering from White Matter (WM) to Layer 3.
This ordering mirrors the correct inside-out developmental
sequence of cortical layers and reflects the layered spatial orga-
nization of the tissue. However, stLearn shows less consistency
with the annotation in the White Matter (WM) region when
compared to SpaceFlow. Similar patterns can also be observed in
samples 151507 and 151673 (Supplementary Fig. 1b, d). We also
run SpaceFlow on more 10x Visium ST datasets, the results can
be found in Supplementary Information (Supplementary Fig. 3).

To test the capability of SpaceFlow on single-cell resolution ST
data with a large number of cells, we evaluated SpaceFlow on a
Stereo-seq dataset from mouse olfactory bulb tissue, capturing
28243 genes across 18197 cells7, comparing with traditional
pseudotime methods Seurat, Monocle, and Slingshot. We
observed that Seurat shows little variation in pseudotime across
the tissue except for the outer rings, which show slightly higher
pseudotime values than in the inside. Monocle is much noisier
than Seurat and shows no clear patterns. Slingshot is similar to
Seurat and exhibits outer-ring patterns. By contrast, SpaceFlow
presents a clear layered pattern mirroring the annotated layers of
the olfactory bulb tissue (Fig. 3b). The pSM value (red) is lowest
in the external plexiform layer (EPL) and then increases when
moving away in both directions. This ordering in the pSM is
consistent with the developmental sequence of these layers, where
starting from the central EPL, development proceeds bilaterally
outwards, leading to the mitral cell layer (MCL) and glomerular
layer (GL), olfactory nerve layer (ONL), and the granule cell layer
(GCL) develops last45. The highest values are observed on the
inner side, with the peak in the granule cell layer (GCL) and the
rostral migratory stream (RMS). This shows that the pSM
computed by SpaceFlow is not only more clearly spatially
organized than non-spatial pseudotime, but that these results
also more accurately represent the temporal and developmental
relationships between cells.

We next identify marker genes from the pSM. By calculating
the top genes by correlation with the pSM values, we found genes
that are predominantly expressed in layers of the olfactory bulb
tissue (Fig. 3c). One of the top marker genes, NRGN, shows clear
expression patterns localized in the granule cell layer (GCL), and
previous experiments have shown that NRGN is usually
expressed in granule-like structures in pyramidal cells of the
hippocampus and cortex46. This shows how the pSM can be used
to facilitate biomarker identification for tissues.

Next, we compared the domain segmentation performance of
SpaceFlow against Seurat, running without incorporating spatial

Fig. 2 Comparison with five unsupervised methods shows that SpaceFlow can identify biologically meaningful spatial domains and generate spatially
consistent low-dimensional embeddings. a Boxplot of clustering accuracy in all sections of the LIBD human dorsolateral prefrontal cortex (DLPFC) ST
dataset41 (n= 12 sections) in terms of adjusted rand index (ARI) scores for seven methods. In the boxplot, the center line, box limits and whiskers denote
the median, upper and lower quartiles, and 1.5× interquartile range, respectively. b Domain segmentations of cortical layers and white matter by annotation
(top left panel) and by seven different methods (other panels) using section 151671 of DLPFC data. c UMAP visualizations for DLPFC data section 151671,
using low-dimensional embeddings from Seurat, stLearn, DGI, and SpaceFlow colored by the layer annotation of spots. d Cell spatial locations (left panel)
and UMAP visualizations (right four panels) colored by the Euclidean distance between spot/cell and origin (0,0), which is the left bottom corner of the
first panel. e Dot plot of the gene expression of domain-specific markers. The dot size represents the fraction of cells in a domain expressing the marker
and the color intensity represents the average expression of the marker in that domain. f Spatial expression for the top-1 markers of the identified domains.
g The Gene Ontology (GO) enrichment analysis of the domain-specific genes (161 genes) for the domain 3 in panel b, SpaceFlow. Both the color and the
length of bars represent the enrichment of GO terms using -log10(p-value) metric from topGO analysis. P values were obtained using the one-sided
Fisher’s exact test without multiple-testing correction. P values < 0.001 were considered significant.
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Fig. 3 SpaceFlow generates pseudo-Spatiotemporal Map for ST data and uncovers pseudo-spatiotemporal relationship between cells in both spots-
resolution and single-cell resolution ST data. a Spatial visualization of pseudotime calculated by Seurat, Monocle, stLearn, and the pSM generated by
SpaceFlow on DLPFC data (same dataset as in Fig. 2, spot resolution). b Spatial visualization of pseudotime calculated by Seurat, Monocle, Slingshot, and
the pSM generated by SpaceFlow on Stereo-seq data (single-cell resolution). c Spatial expression of genes exhibiting the highest correlation between
expression and the pSM value of corresponding spots/cells. The color represents the z-score of expression level. d Domain segmentations of Stereo-seq
ST data given by Seurat, MERINGUE, DGI, and SpaceFlow. Top row: full views of the domain segmentations from different methods, bottom row: zoomed
views of regions boxed in each panel.
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data, as well as the spatial methods MERINGUE and DGI on the
Stereo-seq data. We show a global and a zoomed view of the
identified domains for each method (Fig. 3d). The Seurat
segmentation is characterized by two large regions – all inner
layers except the olfactory nerve layer (ONL) are mainly
combined into one region (domain 0 in dark blue) and the
ONL is segmented as another (domain 1 in orange). However,
even in the inner layers, there are many cells classified as domain
1 (orange), lacking a clear separation between domains. To
control for the effect of the resolution parameter, we considered
values of 0.3 to 0.8, 1.0 and 2.0, resulting in 13, 15 and 30 clusters
respectively (Supplementary Fig. 2a). However, the spatial
consistency of clusters does not improve with a higher resolution
parameter. MERINGUE identified three major layers, with one
additional compared to Seurat, which corresponds to the external
plexiform layer (EPL) in the annotation in Fig. 3b; however, there
is significant spatial noise and it is difficult to see boundaries
between tissue layers even in the zoomed view. With the DGI
method, we observed a layered structure of domains, but
significant mixing of domains is still visible in the zoomed view.
In SpaceFlow, the eight-layer structure is much clearer, as nearly
no mixture between occurs the corresponding ONL (domain 2 in
green) and GL (domain 5 in silver gray) regions, whereas there
are clear mixtures of labels by the other methods across all
regions.

SpaceFlow reveals evolving cell lineage structures in chicken
heart development ST data. To study how the pSM may be used
to uncover spatial expression dynamics in embryonic develop-
ment, we retrieved and utilized an ST dataset on the chicken
heart29 at four key Hamburger-Hamilton ventricular develop-
mental stages. The dataset contains 12 tissue sections in total, and
is sequenced at day 4 (5 sections), day 7 (4 sections), day 10
(2 sections) and day 14 (1 section). To build a baseline for
comparison, we first visualized spot annotation from the original
study (Fig. 4a). Then, we computed the domain segmentation
from SpaceFlow for each time point (Fig. 4b) and labeled the
domains based on their top marker genes as compared with the
literature (Details in Supplementary Data 1).

We first found an evolving lineage structure, annotated as
Valve in Fig. 4b. This newly identified structure is evident from
Day 7 (D7) with a layered structure and consistent shape during
heart development. The identified structure is consistent with the
anatomical regions of the chicken heart at the sequenced
stages29,47. We also characterized the transition dynamics of the
myocardium from the immature to the mature state across the
period from D4 to D14 (immature myocardium annotated by
orange/yellow change into cardiomyocytes annotated in red/
pink). Moreover, we identified that the epicardium structure
(annotated in green) on the outer ring of immature myocardium
transformed into cardiomyocytes from D7 to D14.

To better understand the spatiotemporal organization of the
chicken heart during development, we computed the pSM for
each time point separately (Fig. 4c), considering that pseudo-time
across tissues with different time points may not be comparable.
Similar to the domain segmentation, the identified valve
structures are clear from D7 to D14 in the pSM. In addition,
the myocardium in the ventricles is more homogeneous in the
pSM (blue) than in the domain segmentation. This suggests the
difference in the myocardium of ventricles might be much more
subtle than regions showing different pSM values. We also found
the annotated myocardium in ventricles to consistently show
higher pSM values (blue) than other regions, which indicates the
pseudo-spatiotemporal ordering of the myocardium in the
ventricles is later than other regions in the same stage. By

contrast, the identified valve structures show yellow color in the
pSM from D7 to D14, suggesting the ordering is relatively late
compared with the regions colored in red or orange. By plotting
pSM values of spots against the first component of the UMAP
embedding (Fig. 4d), similar patterns can be observed, where the
cells with valve annotations colored in blue shows intermediate
pSM values (y-axis) and lies in the middle of the trajectories in
Fig. 4d. These spatiotemporal patterns revealed in the pSM are
consistent with previous observations in chicken cardiac
development47.

Through a hierarchical clustering for domains across all four
stages based on the expression of top domain-specific marker
genes, we found expression programs specific to evolving
structures (Fig. 4e). We observed the valves of D7 and D10 to
be similar to each other in expression, with genes that regulate
cell growth and proliferation such as S100A11, S100A6, and
CNMD, as well as genes associated with cell-collagen interaction
such as TGFBI, found as the top marker genes for these
populations. We also performed GO analysis to study the
function of identified valve structures (Fig. 4f) and found
enrichment of GO terms associated with negative regulation of
BMP signaling pathway and negative regulation of epithelial-
mesenchymal transformation (EMT). Previous studies found that
EMT mediated by BMP2 is required for signaling from the
myocardium to the underlying endothelium to form endocardial
cushion (EC), which ultimately gives rise to the mature heart
valves and septa48. We also observed enrichment of positive
regulation of canonical Wnt signaling pathway, previously shown
as a regulator of endocardial cushion maturation as well as valve
leaflet stratification, homeostasis, and pathogenesis49.

To investigate cell-cell communication between the identified
valve structures and other tissue regions, we performed space-
constrained CellChat analysis50 using the domain labels from
SpaceFlow as groupings. The top two identified pathways for the
valve structures are midkine (MK) and pleiotrophin (PTN),
which belong to the subfamily of heparin-binding growth factors.
We observed strong signaling in MDK-SDC2, MDK-NCL, PTN-
SDC2, and PTN-NCL ligand-receptor pairs from valve tissue to
nearby immature cardiomyocytes and atrium cardiomyocytes
(Fig. 4g). These interactions have various functions, such as
angiogenesis, oncogenesis, stem cell self-renewal, and play
important roles in the regeneration of tissues, such as the
myocardium, cartilage, neuron, muscle, and bone51. Studies have
shown that midkine impedes the calcification of aortic valve
interstitial cells through cell-cell communications52. In addition,
SDC2 is found required for migration of the bilateral heart fields
towards the mid-line in zebrafish model53. Pleiotrophin (PTN) is
usually considered a cytokine and growth factor that promotes
angiogenesis54. Together, the observed cell-cell communication
based on the structures identified by SpaceFlow suggests anti-
calcification and pro-angiogenesis processes are important during
the maturation of valve tissue.

SpaceFlow identifies tumor-immune microenvironment in
human breast cancer ST data. To study the cancer micro-
environment interaction and tumor progression, we applied
SpaceFlow to human breast cancer ST data55. We show here
results for sample G, consistent with the original paper. Results
for other samples can be found in the Supplementary Information
(Supplementary Fig. 6). First, we performed domain segmenta-
tion and compared it to the expert annotation (Fig. 5b). The
obtained domains were labeled based on their marker genes
(Details in Supplementary Data 2). The regions in-situ cancer-1/2,
APC, B,T-1/2, and invasive-1/2 identified in the SpaceFlow
segmentation agreed with the annotations Immune rich,
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Immune:B/plasma, and Cancer 1 respectively from the original
study. However, we also identified three tumor-immune interface
regions, labeled as Tu.Imm.Itfc-1/2/3, which were labeled as mix-
tures of other cell types in the original study.

To reveal the pseudo-spatiotemporal relationship between
spots in tissues, we generated the pSM and compared it with the

spatially visualized pseudotime calculated by two alternatives:
Monocle, which does not use spatial information, and applying
DPT to spatially aware embeddings from stLearn. In the Monocle
pseudotime, we observed regional patterns consistent with the
Cancer: immune rich and Cancer 1 annotations from the original
study (Fig. 5c). However, the spatial noise in the Monocle
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pseudotime makes visualizing the overall structure of cancer
development difficult. In the pseudotime from stLearn, we can
only observe two major types of regions, the Cancer: immune rich
regions with larger pseudotime values, and other regions that are
more homogeneous but noisy in pseudotime (Fig. 5d). In the
SpaceFlow pSM, we see a much clearer representation of the
spatiotemporal structure of the cancer cells and the patterns is
highly consistent with the expert annotation in Cancer: Immune
rich, Cancer 1, and Immune: B/plasma regions (Fig. 5e). The in-
situ cancer-1 regions show the lowest pSM values, whereas the
Invasive-1 and Invasive-2 regions present the highest pSM values,
which indicates the in-situ cancer-1 developmentally preceded
than invasive regions. This trajectory can be seen clearly when we
plot pSM values against the UMAP component 1 of the
embeddings (Fig. 5f). A smooth progression is shown starting
from the left bottom corner with the in-situ cancer-1 and
branching into APC,B,T-1/2, and in-situ-cancer-2, which then
merge into tumor-immune interface populations and end in the
invasive-1/2 population. This suggests that in-situ-cancer-2 may
be metastasized from in-situ cancer-1.

To study the characteristics of the tumor microenvironment,
we identified marker genes for each domain (Fig. 5g). We found
invasive-1, invasive-2, and Invasive-Connective (Inva-Conn)
share strong expressions of the genes MMP11 and MMP14.
Matrix metalloproteinase (MMP) family genes are involved in the
breakdown of the extracellular matrix in processes such as
metastasis56. In the in-situ cancer-1 population, we observed
region-specific Interferon-induced expressions, such as IFI27,
IFI6, which are associated with cancer growth inhibition and
apoptosis promotion57. The in-situ cancer-2 population shows a
strong and specific expression of TMEM59 and SOX4, which
both can promote apoptosis. In tumor-immune interfaces, we
found both pro-tumor and anti-tumor gene expressions. For
instance, In tumor-immune interface-3, pro-tumor expression
markers are TIMP1, a member of MMPs involved in the
degradation of the extracellular matrix, whereas IGFBP4, PFDN5,
CD63 repress tumor progression58,59. We visualized these dual
activities of pro-tumor and anti-tumor expression and annotated
with pro-tumor or anti-tumor labels to confirm our observations
(Fig. 5h). These dual activities are also confirmed in GO analysis
(Fig. 5i). The enrichment of the marker genes of tumor-immune
interface-1 show pro-tumor GO terms such as: negative
regulation of intrinsic apoptotic pathway in response to DNA
damage by p53 class mediator, negative regulation of plasmacy-
toid dendritic cell cytokine production (reduce type I interferon
production). Anti-tumor enrichment is also found, such as
positive regulation of T cell mediated cytotoxicity (promotes the
killing of cancer cells), antigen processing and presentation via
MHC class I B (enhances antigen presentation).

To study the cell-cell communication between the invasive (or
in-situ cancer) regions and the tumor-immune interfaces, we
inferred cell-cell communication through Space-constrained
CellChat analysis50. We found strong cell-cell communication
between the invasive tissue region and the nearby tumor
microenvironment through the collagen pathway, which facilities

EMT transition and multiple processes associated with cancer
progression and metastasis. Similar cell-cell communication is
observed in in-situ cancer, where MDK-SDC1 and APP-CD74
signaling are observed to promote the progression and metastasis
(Fig. 5j, k). The detailed function annotations for the commu-
nicating ligands and receptors can be found in Supplementary
Table 1.

Discussion
In this work, we presented SpaceFlow, which (1) encodes the ST
data into low-dimensional embeddings reflecting both expression
similarity and the spatial proximity of cells in ST data, (2)
incorporates spatiotemporal relationships of cells or spots
in ST data through a pseudo-Spatiotemporal Map (pSM) derived
from the embeddings, and (3) identifies spatial domains
with consistent expression patterns, clear boundaries, and
less noise.

SpaceFlow achieves competitive segmentation performance
with alternative methods when benchmarked against expert
annotations. Furthermore, the pSM utilizes the spatially con-
sistent embeddings to reveal pseudo-spatiotemporal patterns in
tissue. In DLPFC and Stereo-seq data, the pSM shows layered
patterns that are consistent with the developmental sequences of
the human cortex and mouse olfactory bulb respectively, which is
not visible from non-spatial pseudotime. Applied to chicken heart
developmental data, the pSM reveals evolving lineage structures
and uncovers the dynamics in the spatiotemporal relationships of
cells across different developmental stages, helping to understand
the changes of functional and structural organization in tissue
development. Studying human breast cancer ST data using
SpaceFlow, we demonstrate its potential to identify tumor-
immune interfaces and dynamics of cancer progression, provid-
ing tools to study tumor evolution and interactions between
tumor and the tumor microenvironment.

Though similarity in gene expression and spatial proximity are
related in many cases60, this relationship is not absolute. Pseu-
dotime methods developed for scRNA-seq data, such as
Monocle61 and Slingshot62 can produce developmental trajec-
tories that are not spatially organized. The pSM developed here
can generate spatially contiguous trajectories based on the inte-
grative usage of gene expression and spatial information. Speci-
fically, the spatial regularization in SpaceFlow constrains the low-
dimensional embedding spatially so that the embedding is con-
tinuous both in space and time. The low-dimensional spatial
constraint also reduces noise in the high-dimensional gene
expression data resulting in smoother domain segmentation
boundaries and spatiotemporal maps.

In practice, the training time of SpaceFlow on ST data with
fewer than 10,000 cells is usually less than 5 min on a GPU. The
computational cost of training largely depends on the calculation
of spatial regularization loss for model optimization, which is
quadratic to the number of cells or spots. To accelerate model
training, we compute this regularization loss over a random
subset of cell-cell pairs (Details in Methods). With a fixed number
of cell pairs in the subset, the training can scale linearly with the

Fig. 4 SpaceFlow reveals evolving cell lineage structures in chicken heart development ST data. a Annotation of ST spots from the original study30,
where cell types are predicted by mapping scRNA-seq data to ST data. b Annotations from SpaceFlow, with identified valve structures colored in blue.
c The pSM generated by SpaceFlow. d The pSM value versus UMAP component 1 from low-dimensional embeddings colored by annotations from
SpaceFlow. e Hierarchically clustered heatmap of top-3 domain-specific genes for spots in all time points. f Gene Ontology (GO) enrichment for
the top domain-specific genes (32 genes) in the identified valve structures. Both the color and the length of bars represent the enrichment of GO terms
using -log10(p-value) metric from topGO analysis. P values were obtained using the one-sided Fisher’s exact test without multiple-testing correction.
P values < 0.005 were considered significant. g Space-constrained CellChat inferred cell-cell communication of MDK (left) and PTN (right) pathways with
signals sent from spots in the valve regions.
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number of cells or spots, and it has been shown not affecting the
outcome (Supplementary Fig. 2b–e). In the current imple-
mentation, the training will automatically be switched to the
approximated regularization strategy when detecting a cell
population larger than 10,000. With this strategy, training time
varies from 30 s to 3 min for numbers of cells/spots ranging from

3000 to 50,000 on GeForce RTX 2080 Ti GPU. Future work could
explore possible alternatives to selecting random subsets such as
density-based subsampling32,33,63, which may be more accurate
for estimating the regularization loss.

The spatial regularization used in this work reflect the a priori
assumption that nearby cells with similar gene expression are
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more closely related than spatially distant cells with the same level
of transcriptional similarity. In connected tissues with low geo-
metric complexity examined in this work, the current spatial
regularization with Euclidean distance has good performance.
However, it may not cover the complexity of the spatial dis-
tribution patterns and dependencies that may vary among dif-
ferent locations of a tissue. Extension of regularization for
disjoint tissues like lymph nodes or tissues with high geometric
complexity can be developed by location adaptive spatial reg-
ularizations. The general framework proposed in SpaceFlow can
also be easily extended by combining the latent space regular-
ization with other choices of embedding algorithms, which may
offer various tradeoffs in terms of expressive ability and com-
putational efficiency. However, we expect that the general prin-
ciple that explicit regularization for spatial structure improves
performance on ST to hold for a variety of different embedding
architectures.

In addition to spatial regularization, SpaceFlow is a flexible
framework able to incorporate auxiliary features about con-
nectivity among cells in spatial or single-cell omics data. For
example, it can be directly applied to 3D ST data with spatial
graph input based on 3D coordinates. Future improvement could
be achieved by adapting the framework for spatially resolved
Epigenetic data with proper preprocessing steps, such as peak
calling on spatially resolved chromatin modification data64. Other
non-genomic data modalities, such as the local texture features
from histological images or expert domain annotation priors
could be used to improve the robustness of the SpaceFlow
embeddings. Under the SpaceFlow framework, different regular-
ization terms reflect different prior knowledge about the tissue
organization and their integration might enhance the perfor-
mance of the result. In addition, the directed connectivity matrix
inferred by RNA velocity65 could be used as a constraint to derive
low-dimensional embeddings consistent with RNA velocity which
may improve the representation of developmental trajectory.
Overall, SpaceFlow provides a robust framework and an effective
tool to incorporate prior knowledge or spatial constraints to ST
data analysis for inference of spatiotemporal patterns of cells in
tissues.

Methods
Data preprocessing. The raw count expression matrix of ST data is preprocessed
as the following. First, genes with expression in fewer than 3 cells and cells with
expression of fewer than 100 genes are removed. Next, normalization is performed,
where the expression of each gene is divided by total expression in that cell, so that
every cell has the same total count after normalization. Then, the normalized
expression is multiplied by a scale factor (10,000 by default) and log-transformed
with a pseudo-count one. The log-transformed expression matrix of the top 3000
highly variable genes (HVGs) is then selected as the input for constructing the
spatial expression graph. We adopt a dispersion-based method to select highly
expressed genes66. The genes are put into 20 bins based on their mean expression,
and then the normalized dispersion is computed as the absolute difference between
dispersion (variance/mean) and median dispersion of the expression mean, nor-
malized by the median absolute deviation of each bin. Genes with high dispersion
in each bin are then selected.

Construction of Spatial Expression Graph. We next convert the log-transformed
expression matrix of highly expressed genes into a Spatial Expression Graph (SEG)
as the input of our deep graph network. The Spatial Expression Graph is built
based on the spatial proximity of cells, with nodes representing cells with
expression profiles attached, while edges characterizing the spatial neighborhood of
cells. Similarly, in spot-resolution ST data, we use a node to represent a spot in the
graph. The SEG is characterized by two matrices, expression matrix X ¼
x1; x2; ::; xn

� �
and spatial adjacency matrix A 2 RN ´N. Here, xi represents the

expression features of the cell or spot i, while the element Ai;j in adjacency matrix is
equal to 1 if there is an edge between cell/spot i and j, otherwise, Ai;j ¼ 0.

We provide two methods for constructing the SEG, namely, alpha-complex-
based and k-nearest-neighbor-based. The alpha-complex-based method is used by
default, where a Voronoi cell is first created for each cell or spot located at r as:

VðrÞ ¼ fx 2 R2j x � rj jj j≤ x � r0
�� ���� ��;8r0 2 Cg ð1Þ

where C is the set of coordinates for all the cells or spots, and �j jj j is the Euclidean
distance. Next, the 1-skeleton of the alpha complex67 is used to determine the
neighborhood edges E of the spots, which can be formulated as follows:

E ¼ fði; jÞj\k2fi;jgðVðrkÞ \ Bðrk; δÞÞg ð2Þ
Where Bðx; δÞ is a circle area in R2 centered at x with a radius δ. The radius δ is
estimated by the mean distance of k nearest neighbors of the spot. In k-nearest-
neighbor-based method, the edges of SEG are built based on the top k nearest
neighbors of cells.

Spatially regularized Deep Graph Infomax. To encode the ST data into low-
dimensional embeddings of cells or spots, we use the Deep Graph Infomax
(DGI)38, an unsupervised graph network, as the framework of our model. DGI has
the advantage of capturing not only the cell expression patterns but also the cell
neighborhood microenvironment, as well as high-level patterns, such as global or
regional patterns. Specifically, a two-layer Graph Convolutional Network (GCN) is
used as the encoder of DGI with SEG as input. The GCN generates node
embeddings ε X;Að Þ ¼ H ¼ h1; h2; ::; hn

� �
for each cell or spot.

DGI adopts a contrastive learning strategy68 to learn the encoder, where
features are learned through teaching which data points from an unlabeled dataset
are similar or distinct. Similar data points are constructed by pairing cell
embedding hi with a global summary vector s, whereas the distinct data points are
represented by the pairs of the summary vector s and embeddings from a
constructed Expression Permuted Graph (EPG). The summary vector s reflects
global patterns of SEG, and it is implemented by a sigmoid of the mean of all cell
embeddings. EPG is a graph built by random permutating the node features X in
SEG, with the adjacency A keeping the same. Mathematically, this learning process
is achieved by maximizing the following objective function:

LossDGI ¼
1
2N

ð∑N
i¼1EðX;AÞ½logDðhi; sÞ� þ∑N

j¼1EðeX;eAÞ½logð1� Dðehj; sÞÞ�Þ ð3Þ

where hi is the embedding of node i from the SEG, ehj is the embedding of node j

from the EPG. eX and eA are the permuted node features and corresponding
adjacency matrix of EPG. The D is the discriminator, which is defined by
Dðhi; sÞ ¼ SigmoidðhTi ΘsÞ.

Where Θ 2 RNF ´NF is trainable weight. Through this contrastive learning
strategy, the encoder is forced to learn global patterns and neglect random spatial
expression patterns in the embeddings.

To enforce the spatial consistency in the embeddings, so that the closeness
between embeddings not only reflects the expression similarity but also their spatial
proximity, we add a spatial regularization to the objective function in DGI.
Mathematically, the revised objective function can be expressed as follows:

LossTotal ¼ LossDGI þ γ �∑N
i¼1∑

N
j¼1

DðsÞ
i;j � ð1� DðzÞ

i;j Þ
N � N

ð4Þ

where DðsÞ
i;j represents the spatial distance between cell/spot i to j in Euclidean space,

and DðzÞ
i;j is the embedding distance between cell/spot i to j in embedding space,

Fig. 5 SpaceFlow identifies tumor-immune cell-cell communication in human breast cancer ST data. a H&E image and annotation from the original study
for the spots of sample G in human breast cancer ST data56. b Domain segmentation from SpaceFlow. c Spatial visualization of pseudotime calculated by
Monocle. d Spatial visualization of pseudotime calculated by stLearn. e The pSM from SpaceFlow. f The pSM versus UMAP component 1 from low-
dimensional embeddings colored by annotations from SpaceFlow. g Dot plot of the gene expression of domain-specific markers. The dot size represents
the fraction of cells in a domain expressing the marker and the color intensity represents the average expression of the marker in that domain. h Spatial
expression of top domain marker genes with anti-cancer, pro-cancer, or dual function labels. i Gene Ontology (GO) enrichment for the top domain-specific
genes (48 genes) in the identified Tumor-Immune-Interface-1 (Tu.Imm.Itfc.1). Enriched GO terms are presented as -log10(p-value) using topGO analysis.
P values were obtained using the one-sided Fisher’s exact test without multiple-testing correction. P values < 0.005 were considered significant. Space-
constrained CellChat inferred cell-cell communications with cell-cell communications signaling sent from Invasive-1 in Collagen pathway (j) and from In-
situ cancer 1 in MK & APP pathways (k).
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N � N is the normalization term, where N is the number of cells or spots in ST
data. The spatial regularization penalizes the generation of close embeddings for
cells or spots that are spatially far from each other. In another word, so that, the
close embeddings caused by the expression similarity are pushed further from each
other if they are spatially distant. Strong spatial regularization may overemphasize
generation of spatially smooth embeddings which do not necessarily coincide with
more textured biological heterogeneity. To mitigate this issue, we added a
regularization strength parameter γ to control spatial regularization strength
relative to the reconstruction loss. The default regularization strength is set to 0.1 as
a loose prior for keeping more detailed texture (values ranging from 0 to 1).

Domain segmentation and pseudo-Spatiotemporal Map. The domain seg-
mentations are obtained by running Leiden clustering69 with the low-dimensional
embeddings from SpaceFlow as input. By default, the parameter for the local
neighborhood size is set to 50 for to produce a smoother segmentation. The
pseudo-Spatiotemporal Map (pSM) is calculated by running the diffusion pseu-
dotime (DPT)31 using the low-dimensional embeddings output from SpaceFlow.
The DPT is an algorithm using diffusion-like random walks to estimate the
ordering and transitions between cells. Using the embeddings from SpaceFlow that
encoded both spatial and expression information of cells as input, DPT can output
a spatiotemporal order which is consistent in both space and pseudotime. The root
cell for pSM can be specified with prior knowledge, otherwise, in default, the cell
that with the largest sum distance to others in embedding space is assigned as the
root cell in our strategy.

Parameters of the model. The deep graph network is built and trained based on
PyTorch. To construct SEG, the default number of nearest neighbors k of a cell or
spot for adding edges is set to 15; A larger k will lead to a bigger spatial neigh-
borhood. The DeepGraphInfomax model in PyTorch Geometric library is used for
implementing DGI. The default latent dimension size for low-dimensional
embeddings is set to 50. A two-layer Graph Convolutional Network (GCN) is
utilized as the encoder for SEG with Parametric ReLUs (PReLU) as the activation
functions. The number of neurons for both layers is set equal to the low-
dimensional embedding size.

Training procedure. The optimizer used for training DGI is Adam with a default
learning rate lr ¼ 0:001 applied70. The maximum number of epochs for training is
set to 1000, with an early stopping strategy applied to avoid overfitting. Specifically,
the minimum epoch for early stopping is set to 100, and the patience of epochs
with no loss decrease is set to 50. A GeForce RTX 2080 Ti GPU is used for training
the DGI model. The training time varies from 30 s to 3 min numbers of cells/spots
ranging from 3000 to 50,000, and the subsampling strategy stated below needed to
be applied when the number is greater than 10,000.

Accelerating the computation of spatial regularization loss. Because the
computational cost of training largely depends on the calculation of spatial reg-
ularization loss, which is quadratic to the number of cells or spots, we designed a
strategy as follows to accelerating the training. The spatial regularization loss is
used in model optimization, which involves calculating the weighted average of an
inner product of a spatial distance matrix and an embedding distance matrix. It has
OðM � N2Þ computational complexity and memory cost, where N2 is the number
of edges in a fully-connected spatial graph with N cells, M is the size of the latent
dimension. However, during each training step, we compute the spatial regular-
ization loss over a random fixed-size subset of edges, which reduces the compu-
tational complexity of regularization loss from quadratic to constant. When tested
on the slideseqv2 dataset with 41,876 cells, the computational and memory cost
dropped from over 5 h and 18 GB to less than 3 min and 4GB (Supplementary
Fig. 4). We additionally found significant improvements in performance applying
SpaceFlow to a seqFISH mouse embryogenesis dataset72 (Supplementary Fig. 5).

Benchmarking
Segmentation benchmarking. To benchmark domain segmentation performance,
we compare SpaceFlow against five methods, Seurat 439, Giotto17, stLearn20,
MERINGUE22, BayesSpace18 using the LIBD human dorsolateral prefrontal cortex
(DLPFC) ST data40. To make the domains comparable between benchmarking
methods, we set the target number of clusters equal to the number of clusters in
annotation for all benchmarking methods. The adjusted Rand index (ARI) is used
to quantify the similarity between the clustering result and the annotation.

With Seurat, the RNA transcript counts are used for the input, with genes
expressed in fewer than 3 cells filtered, and cells expressing fewer than 100 genes
removed. Then, the SCTransform function in Seurat R package is applied to
normalize the UMI count data using regularized negative binomial regression.
Next, the RunUMAP, FindNeighbors, FindClusters methods are performed on the
normalized count data sequentially with the latent dimension size of 50 and default
cluster resolution of 0.4.

When benchmarking with stLearn, the count matrix and the spot positions
were used as input, which is downloaded directly from the data sources (see Data
Availability). The count matrix input was read via Read10X function in the stLearn
package. Next, filter_genes, normalize_total, log1p, run_pca functions were applied

sequentially to preprocess data, with the minimal number of genes for filtering set
to 3. Next, the histological image of the tissue is preprocessed by using the tiling
and extract_features functions. Then, the SME_normalize function is used with
the parameter setting of use_data=“raw” and weights=”physical_distance”. Finally,
the scale and run_pca are performed on the normalized data with number of
principal components of 50. The principal components from normalized data will
then be used for segmentation or pseudotime analysis via Leiden and DPT,
respectively.

With Giotto, we input the count matrix and the spot positions, and then applied
the normalizeGiotto, addStatistics, calculateHVG to preprocess data and identify
highly variable genes (HVG). HVGs expressed in at least 3 cells and with a mean
normalized expression greater than 0.4 are then feed into runPCA function for the
principal components. The spatial network was then created through the
createSpatialNetwork function with the parameter for the kNN method set to k= 5
and a maximum distance of 400 in kNN. Finally, the doHMRF method is used for
clustering with the parameter beta set to 40.

For BayesSpace benchmarking, we input expression matrix and the spot
positions through the getRDS(“2020_maynard_prefrontal-cortex”) method. Next,
the modelGeneVar and getTopHVGs methods in scran method are used to model
the variance of log-expression profile of each gene and extract the top 2000 highly
variable genes. Then, the runPCA function in the scater package is used for
principal components. The BayesSpace clustering method spatialCluster is applied
with 15 principal components, with 50,000 MCMC iterations and gamma= 3 for
smoothing.

For MERINGUE benchmarking, we input the spatial locations and the top 50
principal components from the expression matrix of ST data. Next, the spatial
adjacency weight matrix is constructed using the getSpatialNeighbors function in
the R package of MERINGUE, with a setting of filterDist= 2. Then,
getSpatiallyInformedClusters is performed to get spatially informed clusters by
weighting graph-based clustering with spatial information, with a setting of k= 20,
alpha= 1, beta= 1.

Pseudo-spatiotemporal map benchmarking. The pSM is compared to the spatial
embedding method stLearn20, and three non-spatial pseudotime methods, Seurat
439, Monocle61, and Slingshot62. In stLearn, because the histological image of the
tissue is required for spatial-aware embedding, we only made comparisons when
the histological was available. We calculated pseudotime from stLearn by running
the diffusion pseudotime (DPT) (Haghverdi et al. 2016) using the stLearn
embedding. In Seurat 4, the DPT is run using the principal components of the
expression data, whereas in Monocle and Slingshot, the recommended workflows
with the default parameters are performed.

Downstream analysis
Marker genes identification. To identify marker genes that can best characterize
specific expressions for domains output from SpaceFlow, the rank_genes_groups
method in the Scanpy package (v1.8.2) is used. When performing this method, the
Wilcoxon rank-sum test with a Benjamini–Hochberg p value correction is applied.
The cutoff of the adjusted p value for domain-specific marker genes is set to 0.01.

Domain annotation. The domains identified by SpaceFlow are annotated based on
the literature report of the domain-specific marker genes. The details of the lit-
erature support and marker gene list can be found in Supplementary Data 1 and 2.

Gene Ontology enrichment analysis. The Gene Ontology (GO) Enrichment Analysis
in the GO Consortium website is carried out to identify the enriched GO terms for
domain-specific maker genes with adjusted p value < 0.01.

Space-constrained CellChat analysis. CellChat analysis is performed on ST data
using the domain labels from SpaceFlow as groupings. Inferred CellChat com-
munications between domains are further scrutinized such that the communication
links are only allowed between spatially adjacent domains. The CellChat v1.1.3 is
used under a R v4.1.2 environment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this paper can be downloaded in raw form from the original
publication. Specifically, the DLPFC data is available in the “spatialLIBD package [http://
spatial.libd.org/spatialLIBD]. The processed Stereo-seq data from mouse olfactory bulb
tissue is accessible at “SEDR analyses [https://github.com/JinmiaoChenLab/SEDR_
analyses]”. The chicken heart ST data is retrieved from GEO database under accession
code “GSE149457 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149457]”.
The human breast cancer ST data can be obtained from the Zenodo dataset “4751624”.
The sample we used is the same as the one demonstrated in the original paper (patient
G-sample 1). Both chicken heart ST data and breast cancer ST data were sequenced by
10x Visium platform. The Slide-seq V2 can be accessed in Squidpy package71 or
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downloaded from “Broad Institute database [https://singlecell.broadinstitute.org/single_
cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-
with-slide-seqv2]”. The seqFISH data can be accessed at the “Spatial Mouse Atlas [https://
marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/]”. The Gene Ontology Consortium
database can be accessed via “Gene Ontology Consortium [http://geneontology.org/]”. All
other relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding author upon
reasonable request.

Code availability
The SpaceFlow package is implemented in Python with a dependency of Pytorch and is
available on the GitHub repository “SpaceFlow [https://github.com/hongleir/
SpaceFlow]”. It is also deposited at Zenodo dataset “6668286”.
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