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Proteomic analysis reveals key differences between
squamous cell carcinomas and adenocarcinomas
across multiple tissues
Qi Song 1,5, Ye Yang 1,5, Dongxian Jiang 1,5, Zhaoyu Qin 1,5, Chen Xu1, Haixing Wang1, Jie Huang1,

Lingli Chen1, Rongkui Luo 1, Xiaolei Zhang1, Yufeng Huang1, Lei Xu1, Zixiang Yu 1, Subei Tan 1,

Minying Deng1, Ruqun Xue1, Jingbo Qie1, Kai Li 1, Yanan Yin 1, Xuetong Yue 1, Xiaogang Sun 2,

Jieakesu Su1, Fuchu He3✉, Chen Ding 1,2,4✉ & Yingyong Hou 1✉

Squamous cell carcinoma (SCC) and adenocarcinoma (AC) are two main histological sub-

types of solid cancer; however, SCCs are derived from different organs with similar

morphologies, and it is challenging to distinguish the origin of metastatic SCCs. Here we

report a deep proteomic analysis of 333 SCCs of 17 organs and 69 ACs of 7 organs. Pro-

teomic comparison between SCCs and ACs identifies distinguishable pivotal pathways and

molecules in those pathways play consistent adverse or opposite prognostic roles in ACs and

SCCs. A comparison between common and rare SCCs highlights lipid metabolism may

reinforce the malignancy of rare SCCs. Proteomic clusters reveal anatomical features, and

kinase-transcription factor networks indicate differential SCC characteristics, while immune

subtyping reveals diverse tumor microenvironments across and within diagnoses and iden-

tified potential druggable targets. Furthermore, tumor-specific proteins provide candidates

with differentially diagnostic values. This proteomics architecture represents a public

resource for researchers seeking a better understanding of SCCs and ACs.
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Solid cancers in humans comprise two main histological
subtypes, squamous cell carcinomas (SCCs) and adeno-
carcinomas (ACs), representing a major morbidity and

mortality worldwide1,2. Options for the diagnosis and treatment
of ACs have emerged through a better understanding of the
molecular mechanisms of tumor formation and progression3–6;
however, the indicators for diagnosis of metastatic SCCs and
treatment of advanced SCCs remain largely unknown.

SCC is an aggressive malignancy arising within the stratified
epithelium of skin, lung, esophagus, aerodigestive or genitourinary
tracts, owing to increased exposure to certain risk factors, such as
Human Papilloma Virus (HPV) infection, Epstein–Barr Virus
(EBV) infection, smoking or sun exposure7–10. SCC can also be
found in atypical tissues, such as pancreas11,12, thyroid13,14,
breast15–17, and anus18,19. Clinically, these rare SCCs (usually called
metaplastic SCC) are more metastatic and aggressive than common
SCCs12,14,16. However, SCCs share histological features, such as
the presence of squamous differentiation visible by the formatting
of keratin peals or intracellular keratinization, which are of limited
value for predicting site of origin when metastasis happens. P63
is a master regulator of the development and maintenance of
epithelium, working as the recommended pan-SCC diagnostic
marker20–25, but suffers from low specificity due to its reactivity
in a substantial proportion of other tumor types, particularly
lymphomas26,27. Traditionally, the treatment for SCCs commonly
follows the anatomical divisions; for example, head and neck SCCs
(HNSCCs) are treated separately from reproductive regions10,28. In
addition to autonomous tumor features, patterns of infiltrating
immune cell types involved in the tumor microenvironment (TME)
have been associated with tumor progression and patient prognosis.
However, the global immune landscape is still unknown29.

The Cancer Genome Atlas (TCGA) studies have generated
comprehensive molecular profiles including somatic mutations,
copy-number alterations, DNA methylation, RNA/micro-RNA,
and a panel of protein expression for SCCs from 5 individual
sites, including lung30, head and neck31, esophagus32, cervix33,
and bladder34. Those studies identified recurrent mutations in
genes associated with cell cycle and apoptosis (TP53, CDKN2A,
CCND1, and RB1), RTK signaling (EGFR, FGFR1, and PIK3CA),
squamous differentiation (TP63, SOX2, and NOTCH1), and
chromatin remodeling (KMT2C and KMT2D). Moreover, RNA
profiling identified subgroups and highlighted pathways thought
to be active in these groups35, but targeting these pathways has
largely been unsuccessful. A potential explanation is that these
mechanisms could not reflect the functional effects, as they reside
many regulatory layers away from the protein. Thus, the pro-
teome, shaped by these genomic and transcriptomic alterations,
representing tumor progression and infiltration of immune cells,
has potential vulnerabilities that can be therapeutically exploited.
Although valuable, in-depth coverage of functional proteome
information for SCCs is still lacking.

In this work, systemic proteomics analysis uncovered the dif-
ferences between SCCs and ACs, common and rare SCCs, HPV-
positive, and negative SCCs. Proteomic clustering of SCC entities
and TME elucidated the tumor initiation mechanism and ther-
apeutic strategies, respectively. Further analysis of the proteomics
data constructed a diagnostic classifier containing 19 proteins, and
the diagnostic value of PRKCE, SLC27A1, and CPXM2 were vali-
dated. We seek to demonstrate that the systematic proteomic study
leads to functional insights that will help drive translational efforts.

Results
Proteomic analyses of 17 SCCs. The present study assembled a
cohort of 333 primary tumor samples from treatment naïve SCC
patients, including ten common SCC sites (Fig.1a, Supplementary

Data 1, Supplementary Fig. 1a): nasopharynx (20), oral cavity
(22), throat (20), skin (20), esophagus (20), lung (20), cervix (21),
penis (22), vagina (21), perineum (20); and seven rare SCC sites:
thyroid (13), thymus (21), breast (20), pancreas (21), gallbladder
(20), bladder (22), anus (10). A mass spectrometry (MS)-based
label-free quantification strategy was adopted in the proteomics
study, and a tissue microarray (TMAs) based immunohis-
tochemistry (IHC) strategy was carried out on samples in the
validation study. All samples were sourced from Zhongshan
Hospital, Fudan University. A schematic of the experiment design
is shown in Fig. 1a. Our study, therefore, provides a systemic
proteomic characterization of SCCs.

The clinical and pathological characteristics, including gender,
age, tumor differentiation, keratinization, cell nest size, cell size,
mitotic figures, stroma ratio, stromal inflammation, and cancer
inflammation, were evaluated and summarized for all cases
(Fig. 1b and Supplementary Fig. 1b–r, Supplementary Data 1).
Estimate score, immune score, and stromal score were calculated
by ESTIMATE36. The average length of follow-up is 32 months
(3–160 months). For SCCs with a low incidence, 68 patients with
no outcome information. These patients were also included in
this work but not included in survival analysis. The overall
survival (OS) and disease-free survival (DFS) of pan-SCC cohort
showed significant differences across organs (OS: log-rank test,
p < 0.0001; DFS: log-rank test, p < 0.0001; Supplementary Fig. 1s).
Upon multivariate analysis, both OS and DFS were associated
with age (OS, p < 0.0001; DFS, p < 0.0001) and stage (OS,
p= 0.0083; DFS, p= 0.01). SCC origin is not significant
concerning to OS and DFS (Supplementary Data 1). The level
of differentiation and keratinization varied across 17 SCCs
(p < 0.0001). SCCs located in the thyroid, pancreas, and
gallbladder had smaller cell nest size than other organs
(p < 0.0001). The stromal score by ESTIMATE analysis showed
a consistent trend with the stromal ratio by pathological
evaluation (Spearman correlation, R= 0.31, p < 0.001; Supple-
mentary Fig. 1t). The diverse spectrum of immune score and
estimate score motivated us to explore the immune microenvir-
onment across SCCs (Fig. 1b).

For proteomic analysis, we dissected SCC regions with >80%
tumor cells and followed with high-resolution LC-MS/MS
analysis on the timsTOF Pro mass spectrometers (Fig. 1a). A
spearman’s correlation coefficient was calculated for all quality-
control runs of 293T cell and repeated samples (Supplementary
Fig. 2a, b). The average correlation coefficients were 0.90 and 0.92
for the quality-control samples and repeated samples respectively,
demonstrating the consistent stability of the MS platform. The
Spearman’s correlation for all 333 samples were between 0.56 and
0.99 (median= 0.74) (Supplementary Fig. 2c), showing a high
correlation within cancer types. Processed data tables are
available in Supplementary Data 1, raw data are available via
the (“Methods”). Overall, 14,840 protein groups were quantified
(with 1% false discovery rate (FDR) on the peptide and protein
levels, intensity higher than 500) (Supplementary Fig. 2d–f). On
average, the SCC proteome had 8120 protein groups per sample,
ranging from a minimum of 6261 in thyroid to a maximum of
9296 in thymus and showing coverage differences among 17
SCCs (Kruskal–Wallis test, p < 0.0001; Fig. 1c), and 5648 proteins
were present in all 17 SCCs (Supplementary Fig. 2g). All
downstream statistical analyses were performed upon further
data filtration to retain only proteins identified in at least 1/3 of
the samples (Supplementary Fig. 2h; Supplementary Data 1).
These lists, of 14,598 proteins (Pro 2, Supplementary Fig. 2h) in
total, included 229 phosphatases, 318 kinases, 1723 membrane
proteins, 489 oncogenes, 520 tumor suppresser genes, 918
transcription factors, and 1605 drug targets, indicating sufficient
coverage for analysis of intracellular processes.
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We listed the proteomic data of key molecules in Fig. 1d, which
were highlighted in previous genomics researches or served as
diagnostic markers37. KRT5 (CV of 333 samples: 0.083) and TP63
(CV of 333 samples: 0.069), as known SCC diagnostic markers25,
showed a high and ubiquitous expression level among all SCCs.
EGFR and CD274 (PDL1), serve as limited therapeutic targets for

SCCs38–42, presented similar expression level across all SCCs.
Frequently copy-number gain gene AKT1 expressed ubiquitously
(CV of 333 samples: 0.060) in all cases, whereas YAP1, AKT3, and
SOX2 exhibited different extent loss of expression on protein level
(AKT1, YAP1, AKT3, and SOX2), indicating differentially
activated signaling in 17 SCCs. Similarly, frequently mutated
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tumor genes, including TP53, PTEN, and FGFR3, showed
differential loss of expression on protein level (p53, PTEN, and
FGFR3) across 17 SCCs. We also observed the expression of
tissue-specific proteins were globally lost by exploring and
referring the human protein atlas (https://www.proteinatlas.org/
humanproteome/tissue/tissue+specific, Supplementary Fig. 3),
indicating high tumor purity of the pan-SCC cohort. These
results affirmed the high quality of our proteomic data and our
study has so far established a systematic proteomic landscape of
Chinese SCCs.

Proteomic characteristics of SCCs compared with ACs. SCC
and AC are the most common histological cancer subtypes. The
initial bioinformatic analysis examined the functional differences
between SCCs and ACs by comparing 333 SCCs to an indepen-
dent AC cohort, consisting of 69 AC patients of 7 sites: breast (8),
thyroid (10), lung (11), gastric (12), pancreas (8), gallbladder (12),
and colorectum (8) (Fig. 2a). To explore the proteomic coverage
of SCCs and ACs, we firstly performed a pairwise comparison of
identified protein groups between SCCs and ACs of colorectum
(anus in SCC cohort), breast, gallbladder, lung, pancreas, and
thyroid after batch effect removal (Supplementary Fig. 4, 5). Venn
diagrams showed that overlap of quantified proteins in each
comparison accounted for the majority of the total, indicating the
comparability of each group (Supplementary Fig. 5a). Further-
more, the principal-component analysis (PCA) (Supplementary
Fig. 5b) and correlation analysis (Supplementary Fig. 5c) of these
six pairs of SCCs and ACs showed various correlation features of
the proteome of SCCs and ACs from different tissues.

Among the 14,598 proteins identified in SCCs, 5130 proteins
were commonly expressed in all 17 SCCs (Pro 3, Supplementary
Fig. 2h). Meanwhile, 4845 proteins were commonly expressed in
all 7 ACs among 10,414 proteins identified in ACs (Supplemen-
tary Data 2). With the purpose of comparing the differences
between ACs and SCCs, we combined these two protein lists into
one dataset based on Uniprot IDs, and batch effects were
removed (Fig. 2a and Supplementary Fig. 4). In total, 1538
proteins showed significant differential expression (Wilcoxon
rank-sum test, BH-adjusted p < 0.05, fold change > 2; Supple-
mentary Data 2), with 643 proteins overexpressed in ACs and 895
proteins overexpressed in SCCs (Fig. 2b, c). Gene set enrichment
analysis (GSEA) demonstrated that AC-enriched proteins were
significantly enriched in pathways (one-side Fisher’s exact test,
BH-adjusted p < 0.05), including the ribosome (such as RPS27A,
RPL4, and RPL6), humoral immune response (such as C3, FGB,
and C1R), extracellular matrix (ECM) (such as ANXA2, FN1, and
S100A10), oxidative phosphorylation (such as SDHA, HADHB,
and NDUFS2), and gluconeogenesis (such as ALDOC, ENO1,
and GAPDH), whereas proteins enriched in SCCs were mainly
involved in pathways related to keratinization (such as KRT13,
DSC3, and TGM1), ubiquitin-like protein ligase activity (such as
ANAPC5, MED21, and PPP1R11), transcription factor complex
(such as AJUBA, RUNX3, and GTF2H1), p53 downstream
pathway (such as TP63, BAK1, and SERPINE1), and defense

response to virus (such as APOBEC3F, CGAS, and EIF2AK4) to
be dominant in SCCs (Fig. 2d; Supplementary Data 2). These
observations revealed that the significant difference between SCCs
and ACs was in line with the property of originating epithelial
tissues.

To investigate how these significantly differentially expressed
proteins (DEPs) affected prognosis, we then tested the prognostic
power (multivariate Cox proportional hazard model for pan-SCC
cohort, Kaplan–Meier survival curve with log-rank test for nine
TCGA cancer cohorts; BH-adjusted p < 0.05; Supplementary
Fig. 6a; Supplementary Data 2) of DEPs in these pathways in
our dataset and nine TCGA datasets, including 4 SCCs (head and
neck, esophagus, lung, and cervix) and 5 ACs (breast, lung,
pancreas, colon, and cervix). Under this strict analysis,
RPL12 served as a good prognostic marker (p= 0.036), and
SERPINE1 as an adverse prognostic marker (p= 0.0135) in pan-
SCC cohort (Supplementary Fig. 6b). Strikingly, DEPs in ECM
(such as COL4A1, FN1, and PKM) and glucose metabolism (such
as SDHA, LDHA, and ENO1) of AC-enriched pathways showed
consistently poor prognostic values in both ACs and SCCs,
indicating the tumor metabolic status and microenvironment
may promote tumorigenesis and progression regardless of tumor
histological types (Fig. 2e). By contrast, DEPs in keratinization
(such as KRT13, DSC3, and PKP1) showed opposite roles,
displaying favorable prognostic values in SCCs, while unfavorable
in ACs (Fig. 2e). Additionally, the prognosis of lung and
pancreatic adenocarcinomas, which were two cancers with poor
prognosis43–45, were significantly affected by these DEPs in ECM,
glucose metabolism, and keratinization (Fig. 2e).

To further elucidate the underlying mechanism of differences
between ACs and SCCs, we constructed a computational model
for the pathways shown in Fig. 2e using the GENEMINIA46 to
predict kinases and transcriptional factors (TFs) interactions that
may target these DEPs. As shown in Fig. 2f, DEPs enriched in
ACs involved in ECM and glucose metabolism were mediated by
an 8 kinases-8 TFs network, representatively mediated by
PRKAA2/PKM-ENO1 and PKM-HNRNPD/YBX1 axes. Kerati-
nization was mediated by an 11 kinases-5 TFs network,
predominantly mediated by CHUK-TP63/IRF6 axis. We also
tested the prognosis of these kinases-TFs in ACs and SCCs.
Consistently with the findings in these DEPs, we found that
PKM-ENO1 showed a consistent poor prognosis value (p < 0.05)
in pancreatic adenocarcinoma and HNSC/ESCC, whereas VRK2-
TP63 showed a poor prognostic value (p < 0.05) in pancreatic
adenocarcinoma and a good prognostic value in ESCC/LUSC
(Supplementary Fig. 6c). Collectively, these pathways, DEPs, and
kinase-TF networks over-represented in SCCs or ACs represented
the unique or shared biological and clinicopathological features,
further highlighting their clinical implications.

Proteomic features in rare SCCs compared with common
SCCs. To investigate how pathological parameters (common versus
rare, differentiation, keratinization, and cell nest size) affect the
proteome and signal transduction, we examined DEPs (Wilcoxon

Fig. 1 Proteomics of pan-squamous cell carcinoma (SCC) cohort. a Overview of the proteomics workflow involving pan-SCC cohort, preprocessing, and
analyses. In the preprocessing step, Haematoxylin and eosin (H&E) stained slides were examined and evaluated, a mass spectrometry (MS)-based label-
free quantification strategy was adopted in the proteomics study, and a tissue microarray (TMAs) was constructed. b The study cohort included 333 SCC
patients of 17 organs. Clinicopathological parameters were included in the heatmap. See also Supplementary Fig. 1a–1s and Supplementary Data 1.
c Number of proteins quantified in each SCC patients (Kruskal–Wallis test, p < 0.0001). nanus= 10, nbladder= 22, nbreast= 20, ncervix= 21, nesophagus= 20,
ngallbladder= 20, nlung= 20, nnasopharynx= 20, noral= 22, npancreas= 21, npenis= 22, nperineum= 20, nskin= 20, nthroat= 20, nthymus= 21, nthyroid= 13, and
nvagina= 21 biologically independent samples examined. Data are expressed as mean values ± SEM. The boxes indicate the interquartile ranges, and no
outliers are shown. d The protein abundance of SCC diagnostic markers and highly variant genes, the corresponding coefficient of variation (CV) for each
marker among 333 SCCs was labeled on the left side. Source data are provided as a Source Data file.
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rank-sum test, BH-adjusted p < 0.05, fold change > 2) in patients
between common versus rare, low differentiation versus medium/
high differentiation, medium/low keratinization versus high kerati-
nization, and small tumor nest versus medium/large tumor nest
(Fig. 3 and Supplementary Fig. 7). High differentiation level and
high keratinization showed very similar over-represented pathways
(one-side Fisher’s exact test, BH-adjusted p < 0.05), including

keratinization, matrisome, and intermediate filament cytoskeleton
(Supplementary Fig. 7a, b). Patients with low keratinization were
elevated in pathways such as mitochondrion, cellular amino acid
metabolic process, and mRNA processing (Supplementary Fig. 7b).
RNA processing was recently reported to be related to head and neck
SCC oncogenesis because copy-number drivers were involved in this
pathway47, indicating that this event may occur more frequently in
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low keratinization samples. Cell nest size was engaged in a novel
histopathological grading system for lung, oral, and esophageal SCCs,
being recognized as a prognostic morphological parameter that small
nests associated with unfavorable prognosis48. Large cell nests pro-
teome over-represented in chromatin organization, depho-
sphorylation, catalytic complex, sequence-specific DNA binding, and

phosphorus containing groups transferase activity transferring,
whereas small cell nests proteome over-represented in cell surface,
peptide metabolic process, endoplasmic reticulum, peptidase activity,
and matrisome (Supplementary Fig. 7c). Small cell nests over-
represented with a higher metabolic and protein synthesis phenotype,
which was similar to low keratinization.
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To obtain a general insight into the distinction between
common SCCs and rare SCCs, we compared the proteomic
profiles of these two groups. PCA analysis revealed a clear
difference between the common and rare SCCs, indicating a
significant proteomic difference during the development and
progression of SCCs (Fig. 3a). A total of 6213 proteins (Pro 4,
Supplementary Fig. 2h) were used to do a comparison, and a total
of 938 proteins were differentially expressed between common
and rare SCCs (Wilcoxon rank-sum test, BH-adjusted p < 0.05,
fold change > 2; Supplementary Data 3). Among them, 500
proteins were upregulated in common SCCs, and 438 proteins in
rare SCCs.

Associations between SCC types and clinicopathological
characteristics (Fisher’s exact test was used for categorical
variables and Wilcoxon rank-sum test was used for continuous
variables) for the 333 patients were shown in Fig. 3b. Common/
rare SCC types correlated with gender (p= 0.029), differentiation
(p= 8.63e−4), keratinization (p= 2.76e−5), tumor nest size
(p= 4.13e−6), pathological mitotic figures (p= 7.39e−4), stro-
mal inflammation (p= 1.41e−4), and immune score (p= 2.86e
−9). Rare SCCs are positively correlated with worse pathological
characteristics, including poor differentiation, lower keratiniza-
tion, smaller cell nest size, lower stromal inflammation, and lower
immune score. However, less mitotic figures were unexpectedly
found in rare SCCs (Fig. 3b).

Pathway enrichment analysis by Reactome (https://reactome.org/)
demonstrated that common SCCs were significantly enriched in
pathways including keratinization (such as KRT5, KRT6B, and
CSTA), cell adhesion (such as CELSR2, GNA15, and IL1RN), skin
development (such as HPSE, SCEL, and GRHL2), and apoptosis
signaling (such as SNCA and TNFSF10). Proteins enriched in rare
SCCs were mainly involved in pathways related to lipid metabolism
(such as PLIN1, PLIN2, and TM7SF2), ECM organization (such as
ITGA7, POSTN, and COL5A2), elastic fiber formation (such as
FBN1 and LOX), insulin signaling (such as GRB10 and IGFBP7),
and vitamin B5 metabolism (such as ENPP1 and ENPP2) (Fig. 3c, d,
Supplementary Data 3). Particularly, PLIN1 was highly expressed in
rare SCCs and was not detected in the most of common SCCs (188/
288) (Fig. 3e). Then, we tested the PLIN1 copy number in ten cases
for each SCC. Interestingly, we detected gene amplification in 3 anal
SCCs by fluorescence in situ hybridization analysis (3/10, Fig. 3f,
Supplementary Data 3), indicating a potential mechanism for PLIN1
high expression in rare SCCs.

Considering that TFs play essential roles in carcinogenesis and
aggressiveness, we focused on the differentially expressed TFs
between the common and rare SCCs (Wilcoxon rank-sum test,
BH-adjusted p < 0.05, fold change > 2). Among them, 10 TFs were
overexpressed in rare SCCs (such as AEBP1, FOXO1, RUNX2,
TBL1X, and FOXK2) and 33 in common SCCs (such as TP73,

BCL11B, HDAC3, RTF1, and KDM2A) (Fig. 3g). By TF-TG
enrichment analysis, two TFs (RUNX2 and FOXO1) were
overexpressed in rare SCCs, regulating the majority of TGs,
indicating the dominant biological function in rare SCCs (Fig. 3h).
RUNX2 regulating skeletal morphogenesis and FOXO1 regulat-
ing the cellular response to oxygen levels participated in lipid
metabolism. Interestingly, it is reported49 that FOXO1 could
suppress the transcriptional activity of RUNX2. We also found a
negative correlation between the protein abundance of RUNX2
and FOXO1 in rare SCCs (Spearman correlation, R=−0.262,
p= 0.003; Fig. 3i). Anti-RUNX2, FOXO1, and PLIN1 IHC
validated evidence of negative correlated RUNX2 and FOX-
O1(only RUNX2 positive in thyroid_11, and only FOXO1
positive in pancreas_23), and both two cases showed positive
staining of PLIN1(Fig. 3j). Together, these data indicated that
lipid metabolism was possibly more active and played critical
roles in squamous cell differentiation in rare SCCs (Fig. 3k). This
insight reveals an opportunity by staining RUNX2, FOXO1, and
PLIN1 to diagnose rare SCCs.

Proteome-based hierarchical clustering of 17 SCCs. Genomic
and transcriptomic information has been used to cluster SCCs
into subgroups35; however, in-depth coverage of proteome-based
clustering is still lacking. As expected, the t-SNE analysis showed
that samples from the same organ tended to cluster together,
indicating more similarity in SCC-originated tissue types
(Fig. 4a). To identify a proteome signature-based classification,
we conducted a hierarchical clustering of 333 tumor samples of
17 SCCs. Consequently, we identified four proteomic subtypes
based on 1500 most variable proteins (Pro 5, Supplementary
Fig. 2h) that were significantly associated with anatomical sites
and revealed distinguished patterns of protein expression and
signal transduction (Fig. 4b and Supplementary Fig. 8a, Supple-
mentary Data 4).

Cluster 1 (EOST, named by initials of each organ and ordered
alphabetically), included esophagus, skin, oral, and throat, was
associated with cytoskeleton function and immune, such as
cytoskeletal protein binding, KRAS signaling down, complement,
and innate immune system (Fig. 4b, c). Cluster 2 (LNT) included
thymus, lung, and nasopharynx, was characterized by the highest
level of aerobic oxidation, including mitochondrion, phospholipid
metabolism, oxidative phosphorylation, and TCF-dependent
signaling. Cluster 3 (BBGPT) consisted breast, thyroid, bladder,
gallbladder, and pancreas, which were all rare SCCs. It was
enriched in pathways of ECM glycoproteins, fatty acid metabo-
lism, and inflammatory response thus had a very similar
characteristic with ACs (Figs. 2d and 4d). BBGPT showed the
worst prognosis among these 4 clusters (Supplementary Fig. 8b,
c). Cluster 4 (ACPPV) were all anogenital SCCs, including penis,

Fig. 3 Proteomic differences of common SCCs and rare SCCs. a Principal-component analysis (PCA) of common SCCs and rare SCCs. b The association
of common and rare SCCs with 9 variables (two-sided Fisher’s exact test was used for categorical variables and two-sided Wilcoxon rank-sum test was
used for continuous variables), and the heatmap of significantly DEPs (Wilcoxon rank-sum test, BH-adjusted p < 0.05, fold change > 2) in common SCCs
and rare SCCs. c Enriched pathways of significantly DEPs (two-sided Wilcoxon rank-sum test, BH-adjusted p < 0.05, fold change > 2) in common SCCs and
rare SCCs. d Proteins in pathways that were differentially expressed in common SCCs and rare SCCs, and representative DEPs. e The PLIN1 protein
expression in 17 SCCs. f Representative PLIN1 fluorescence in situ hybridization signal patterns (red signals = PLIN1, green signals = CEP15), left, this case
(Anus_3) was scored negative for PLIN1 amplification. PLIN1/nucleus ratio = 2.52; right, this case (Anus_10) was scored as positive for PLIN1 amplification.
PLIN1/nucleus ratio = 6.2. The boxes indicate the interquartile ranges, and no outliers are shown. g Differential expressed TFs (two-sided Wilcoxon rank-
sum test, BH-adjusted p < 0.05, fold change > 2) in common SCCs and rare SCCs. The two TFs, RUNX2 and FOXO1, were labeled in blue. h The expression
heatmap of downstream transcriptional targeted genes (TGs) regulated by RUNX2 and FOXO1 (in bold). The expression level was scaled by row. i A
scatterplot showed the association between the protein abundance of RUNX2 (x-axis) and FOXO1 (y-axis). Pairwise Spearman correlation.
j Immunohistochemistry staining for RUNX2, FOXO1, and PLIN1 expression in rare SCCs (one case of thyroid SCC and one case of pancreatic SCC) was
concordant with the mass spectrometry findings. Scale bar, 100 μm. k Diagram depicted our hypothesis of lipid metabolism upregulation contributing to
rare SCC aggressiveness and metastasis. Source data are provided as a Source Data file.
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perineum, anus, cervix, and vagina, with the best prognosis
(Supplementary Fig. 8b, c). Notably, ACPPV with a high HPV
infection frequency was enriched for cell cycle checkpoints, E2F
targets, and programmed cell death. Furthermore, we calculated
the prognostic values of all DEPs of the 4 clusters (multivariate
Cox proportional hazard model), and two proteins were

found with prognostic values among these DEPs. The protein
ATM (p= 0.049) was associated with a favorable prognosis, and
MMP19 (p < 0.0001) was associated with an unfavorable prog-
nosis (Fig. 4e).

To elucidate the underlying differential SCCs initiation
mechanism, we matched the kinases from all DEPs of these 4
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clusters and mapped them to the KinMap50 (http://www.kinhub.
org/kinmap/index.html; Fig. 4f, Supplementary Fig. 8d). Specific
kinases of Cluster 1 mainly belonged to CAMK and AGC, such as
HUNK, SIK1, and MAST1, participating in the immune response.
kinases of Cluster 2 were widely distributed in all kinase
categories, mainly participating in oxidative phosphorylation
(such as LRRK2, RAF1, and BRAF). Specific kinases of Cluster 3
were distributed in TK, CAMK, and CMGC, mainly involved in
lipid metabolism (such as NEK10, DAPK1, and SIK2). Specific
kinases of Cluster 4 mainly belonged to AGC, CAMK, and
CMGC, participating in cell cycle (such as CDK4, PLK1, and
AURKB; Fig. 4f, g). We further conducted four Kinase-TF
networks using the GENEMINIA for each cluster, and multiple
TFs may be regulated by those kinases participating in dominant
pathways of each cluster (Fig. 4g and Supplementary Fig. 8e). In
summary, these four proteomic clusters revealed anatomical
features and potentially indicated differential SCC initiation.

Immune landscape of SCCs and their potential druggable
insights. To gain insight into immune features in SCCs, we next
analyzed the TME composition of all 333 tumors using xCell51,
including gene signatures of deconvoluted immune, stroma, and
64 different microenvironment cell types. Consensus clustering
based on inferred cell proportion identified 6 SCC subtypes with
distinct TME characteristics and prognosis, were discriminated
by the dominant presence of specific cell types and pathways
(Fig. 5a, b, and Supplementary Fig. 9; Supplementary Data 5). We
defined six subtypes in this Pan-SCC cohort: (1) Classical squa-
mous (ClSq), (2) Fatty acid metabolic (FaSq), (3) Basophils
inflamed (BaSq), (4) Neutrophils inflamed (NeSq), (5) Eosino-
phils inflamed (EoSq), and (6) Immune hot (IhSq), characterized
by unique TME signatures and discriminating signaling pathways
(Fig. 5a). These molecularly based cell-type classifications were
supported by histopathological assessment (Fig. 5c, d). PLIN1
positive immunobiological staining was detected in the FaSq
subtype (Fig. 5d).

The ClSq subgroup, containing a mixture of bladder (21),
esophageal (13), skin (13), oral (11), anus (10), pancreas (4),
breast (2), gallbladder (1), and perineum (1) SCCs. Not only with
enrichment of cluster EOST, anus and the majority of the bladder
SCCs fell into ClSq. The possible reason is that bladder (such as
chronic S hematobium infection) and anus [such as human
papilloma virus (HPV) infection] are affected by external
stimulus, which are similar as aerodigestive SCCs52,53. ClSq was
characterized by a high degree enrichment of epithelial cells,
sebocytes, keratinocytes, and fibroblasts. Notably, ClSq tumors
also revealed the presence of immune inhibitory cells such as
regulatory T cells. Proteomic analysis showed upregulated
pathways involved in signaling by FGFR3, leukocyte transen-
dothelial migration, and complement (Fig. 5b). In addition, ClSq
tumors showed upregulation of cell–cell tight junction that
provide barrier functions for epithelium, suggesting a mechanical
barrier against immune cell infiltration54,55.

The FaSq tumors uniquely and mainly contained thymus (21)
and thyroid (13) SCCs, and a small number of breast (4), vaginal

(3), skin (3), and pancreatic (2) SCCs, were characterized by
upregulation of multiple fatty acid-related pathways, including
metabolism of water-soluble vitamins, mitochondrial protein
import, mitochondrial fatty acid beta oxidation, and fatty acid
metabolism. As a subset of rare SCCs, FaSq tumors may rely
more on fatty acid as cellular building blocks for membrane
formation, energy storage, and the production of signaling
molecules, and targeting fatty acid metabolism might be more
selective for this subtype of SCCs (Fig. 5b).

Granulocyte infiltration reflects a state of host inflammation56.
Three subgroups of SCCs were characterized by basophils,
neutrophils, and eosinophils inflamed individually. The BaSq
tumors, containing penis (18), gallbladder (18), pancreatic (15),
lung (6), perineum (4), skin (4), oral (4), bladder (1), and breast
(1) SCCs, were characterized by a high degree enrichment of
basophils, and upregulated pathways involved in KRAS signaling
up, insulin processing, signaling by PDGF, and hypoxia. The
NeSq tumors, containing gynecological (18 vaginal and 21
cervical cases), breast (13), lung (13), esophageal (7), oral (7),
penis (4), and gallbladder (1) SCCs, were in a high degree
enrichment of mv endothelial cells, ly endothelial cells, and
neutrophils. Proteomic analysis showed upregulated pathways
involved in DNA double-strand break repair, NOTCH signaling
pathway, cell cycle, and apoptosis. The EoSq tumors, containing
perineum (14) and throat (20) SCCs, enriching in eosinophils,
MSC, and NKT cells, involving in HSP90 chaperone cycle,
estrogen response late, regulation of autophagy, and UV response
up (Fig. 5b). Multiple studies have shown an improved prognosis
with tumor-associated tissue eosinophilia in various types of
SCCs, including oral SCCs57,58, esophageal SCCs59, nasophar-
yngeal SCCs60, and penile cancer61.

The IhSq tumors, containing 20 nasopharyngeal SCCs and one
perineum SCC, were distinguished from other 5 subtypes by their
stronger signatures for a high degree of B cells, CD4+ T cells, and
M1 macrophages. The proteome was characterized by upregula-
tion of multiple oncogenic, immune-related, and signaling
pathways including regulation of KIT signaling, B cell receptor
signaling, interferon gamma response, and oxidative phosphor-
ylation, and thus may benefit from immunotherapy (Fig. 5b).

The TME not only plays an important role in tumor
progression, but it is also a potential treasury for finding
therapeutic options by targeting non-tumor stromal cells or the
interaction between tumor cells and stromal cells. To examine the
utility of these subtypes in guiding treatment selection, we
considered druggability (drugbank version 5.1.5) and expression
advantage in each subgroup and found considerable drug targets
for each subgroup (Fig. 5e, Supplementary Data 5). Furthermore,
as the microenvironment-targeted strategies mainly include
inhibition of the extracellular interactions, we summarized
membrane proteins on tumor cells that can be targeted (Fig. 5e,
genes in bold). Ion channels comprise an attractive tool for
targeted therapy for cancer62, we found ion channel drug targets
in 5 subtypes, including sodium channel (SCN4B in ClSq and
SCN5A in IhSq), potassium voltage-gated channel (KCNQ4 in
BaSq, KCNA5 in NeSq, and KCND2 in IhSq), and voltage-

Fig. 4 Proteomic clusters of pan-SCCs and associations with SCC initiation. a T-SNE plot of 17 SCC samples, color coded for SCC originating organs.
b Hierarchical clustering analysis of proteomics for 333 SCC samples. Color differences in the dendrogram indicated 4 clusters that were resolved by
multiscale bootstrapping. c GSEA revealed the pathways that were significantly enriched in the four proteomic clusters respectively. d Representative
pathways and corresponding significant DEPs (Kruskal–Wallis test, BH-adjusted p < 0.05, fold change > 2) in the four proteomic clusters, cluster names
were named by initials of each organ and ordered alphabetically. e Kaplan–Meier survival curves for ATM and MMP19 with p value from multivariate Cox
proportional hazard model (including protein expression, age, gender, histology, organ, and stage) labeled. f Kinmap (http://www.kinhub.org/kinmap/
index.html) of differentially expressed kinases with different colors for the four proteomic clusters. Illustration reproduced courtesy of Cell Signaling
Technology, Inc. (www.cellsignal.com). g The regulation networks of kinases and TFs in the four proteomic clusters.
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dependent calcium channel (CACNA2D2 in FaSq and CAC1E in
IhSq). Solute carrier (SLC) family transporters utilize an
electrochemical potential difference or an ion gradient for
transporting their substrates across biological membranes, can
be therapeutically targeted63. We found SLC16A7 (BaSq),
SLC6A9 (NeSq), SLC7A2 (EoSq), and SLC12A1 (IhSq) were
specifically expressed in four subtypes and could serve as
treatment targets for certain subtypes. PDE3B, involved in fatty
acid metabolism64, can be a drug target in FaSq (Fig. 5e). Based
on these observations, an approach that assesses the TME
properties for treatment selection seems to be warranted.

Characterization of HPV-related SCCs. In order to better
characterize the influence of HPV as a contributor to part of the
SCCs, we tested 15 high-risk HPV types, including 16, 18, 31, 33,
35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 82 for all cases. Of the

333 core-set tumors, only anogenital SCCs had HPV-positive
patients, including anus (infection rate 100%), penis (50%),
perineum (70%), cervix (95%), and vagina (95%) (Fig. 6a, Sup-
plementary Data 6).

HPV16, as the prominent type for anogenital SCC patients, is
with a positive rate above 54% (Fig. 6b), whereas HPV18 (6.67%)
was not as popular as in western countries (~25%)33,65. It was
reported33 that HPV18 was enriched in the low keratinization
SCCs and adenocarcinomas, which is the possible reason that our
cohort had a low infection rate. Cervix and vagina were generally
infected by more than one HPV clade, probably due to their
anatomic location with high infection affinity. However, multiple
HPV infections may affect the protection of effective HPV
vaccines66. As reported, some persist HPV infections and viral
oncogene E6- and E7- expression inactivate TP53 and RB67. We
found that p53 completely lost expression in the anus, cervix, and
vagina SCCs (Supplementary Data 6). Compared to non-
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Fig. 5 Immune-based subtyping of pan-SCCs. a Coxcomb diagrams showing the distribution of 17 SCCs in 6 subtypes, including (1) Classical squamous
(ClSq), (2) Fatty acid metabolic (FaSq), (3) Basophils inflamed (BaSq), (4) Neutrophils inflamed (NeSq), (5) Eosinophils inflamed (EoSq), and (6) Immune
hot (IhSq). b Proteome-based microenvironmental cell signatures and over-represented pathways in 6 subtypes. c Represented morphologies of SCCs with
specific tumor microenvironment cell infiltrating in 4 subtypes (subtype 1, 4–6). Arrows depict the specific cell types. Basophils were not shown because
they cannot be recognized by HE staining. Scale bar, 100 μm. d Haematoxylin and eosin (H&E) stained and PLIN1 immunohistochemistry (IHC) images
showing one example of subtype 2 samples with suspected lipid droplets. e Drug targets in 6 subtypes (drug targets discussed in the text were in bold).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31719-0

10 NATURE COMMUNICATIONS |         (2022) 13:4167 | https://doi.org/10.1038/s41467-022-31719-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


anogenital SCCs, anogenital SCCs showed a lower expression of
RB level (Wilcoxon rank-sum test, p < 0.0001; Supplementary
Fig. 10a). RB showed expression differences among these five
anogenital SCCs, and cervical SCC showed the lowest expression
among five anogenital SCCs (Kruskal–Wallis test, p < 0.001;

Supplementary Fig. 10b). Interestingly, a negative correlation trend
was found in cervical SCC (Spearman correlation; R=−0.255,
p= 0.265; Supplementary Fig. 10c). CDKN2A expression was
higher in HPV-positive perineum SCC than HPV negative
perineum SCC (Fig. 6b and Supplementary Fig. 10d).
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To further elucidate the molecular pathways differentially
activated or inactivated in HPV16 infected SCCs compared with
other types or negative SCCs, we grouped these anogenital SCCs
according to the HPV infection patterns (Fig. 6c, Supplementary
Data 6). Group 1, HPV16 infection only; Group 2, multiple
infection and HPV16 is the main type; Group 3, multiple infection
and HPV16 is not the main type; Group 4, HPV infection and not
HPV16; Group 5, negative (HPVneg). We identified 8 patterns of
differential pathway regulation between these 5 groups (Fig. 6d).
Pathways including synthesis of IP2, IP and INS, interconversion of
nucleotide di and triphosphates, proteasome, and DNA double-
strand break response were higher in HPV-positive SCCs,
indicating the high metabolic circumstance. Notably, HPVneg SCCs
had a considerable overlap with Basophil subtype, was prominently
characterized by KRAS signaling elevation (Fig. 6d). HPV16
positive SCCs, covering Group1-3, showed higher levels of inositol
phosphate catabolic process and positive regulation by host of viral
transcription, meaning that HPV16 infected cells was more
dependent on inositol phosphate metabolism. Meanwhile, HPV16
positive SCCs had negative regulation of both antigen receptor-
mediated signaling pathway and T cell receptor signaling pathway,
revealing the immunosuppression by HPV16 infection. Contra-
riwise, interleukin 6 mediated signaling pathway was lower in
HPV16 positive tumors, together with PTK6 regulates RHO
GTPase RAS GTPase and MAP kinases, positive regulation of
ERBB signaling pathway, and ion channel activity (Fig. 6d). Next,
we focused on how multiple HPV infection (including HPV16,
Group2-3) affected on cell signaling. Similar as HPV-positive SCCs
(Group1-3), some metabolic pathways were higher than the other 3
groups. Furthermore, we found that insulin-like growth factor
receptor signaling pathway, negative regulation of anoikis and
inflammatory response to antigenic stimulus were higher in
multiple HPV-infected SCCs. Ion gated channel activity was higher
in the other three groups, which was similar as non-HPV16 infected
tumors (Fig. 6d). Finally, pathways including the viral latency,
fibroblast growth factor binding, TGFb pathway were higher in
HPV16 infection as the main type SCCs, where positive regulation
of interleukin 1 secretion, positive regulation of morphogenesis of
an epithelium, and atrbrca pathway were lower (Fig. 6d).

Proteins in negative regulation of T cell receptor signaling
pathway, LGALS3, EZR, PHPT1, and PAWR were elevated in
Group1-4, DUSP3 elevated only in Group2-3 (Kruskal–Wallis
test, BH-adjusted p < 0.05; Fig. 6e). INPP1 was elevated in
Group1-4, and NUDT3 was elevated in Group1-3 involving in
inositol phosphate catabolic process (Kruskal–Wallis test, BH-
adjusted p < 0.05; Fig. 6e). The protein abundances of molecules
in inositol phosphate catabolic process for the non-anogenital
SCCs were compared to anogenital SCCs in Supplementary
Fig. 10e, INPP1 and IMPA2 showed a lower expression in non-
anogenital SCCs compared to Group 1-3 of anogenital SCCs
(Wilcoxon rank-sum test, p < 0.0001 for both; Supplementary
Fig. 10e). NUDT3 showed an opposite expression pattern as
it mediates phosphate degradation68, expressing higher in
non-anogenital SCCs (Wilcoxon rank-sum test, p < 0.0001;

Supplementary Fig. 10e). INPP1 showed a high expression level
in Group 1 of anal, penis SCCs (Supplementary Fig. 10f). Thus,
these analyses indicating that HPV16 infection may lead to active
inositol phosphate catabolic process and immune evasion (Fig. 6f),
participating in HPV16+ SCC carcinogenesis.

Performance of tumor type classifier. Effective management of
SCC should include reliable biomarkers for detection and
rationally designed drugs for its prevention and treatment. We
hypothesized that the information content from deep proteomic
profiling would be sufficiently rich to predict the tumor site of
origin with high accuracy. We developed a machine learning-
based classifier to determine the ability of proteomic expression
to inform the diagnosis in patients with SCCs (Fig. 7a). In our
training set of 249 patients, the diagnostic SCC type was accu-
rately predicted (both sensitivity and specificity were 100%) in all
patients based on 10-fold cross-validation (Supplementary
Fig. 11a). When applied to the validation set of 84 samples, the
model achieved 100% for both sensitivity and specificity (Fig. 7b).

Given that these proteomic markers might have averaged
signals from different cell populations, we examined the spatial
expression of 3 markers, PRKCE, SL27A1, and CPXM2, on the
tissue level by immunohistochemistry of consecutive slides using
patients in the pan-SCC cohort (Fig. 7c, d; same tissue from one
patient in a row). In addition, we stained for P63 as a classical
pan-SCC marker, P16 as a marker associated with HPV infection,
and did EBER in situ hybridization (ISH) to mark the EB virus
infected cells. Staining of P63 showed an overall positive in these
SCC tissues. EBER was only positive in the nasopharyngeal SCC.
P16 expression was strong positive in the cases of cervical and
vagina SCCs with positive HPV infection, whereas it was positive
in the HPV negative ESCC and thymus SCCs shown in Fig. 7d,
limiting its diagnostic value for HPV-positive SCCs.

PRKCE plays essential roles in the regulation multiple cellular
processes linked to cytoskeletal proteins, functions in ion channel
regulation, and is involved in cancer cell invasion and regulation
of apoptosis69. Immunostaining of PRKCE was significantly
different among 17 SCCs, and showed an overall high expression
in cervical and vagina SCCs (Kruskal–Wallis test, p < 0.0001,
Fig. 7d and Supplementary Fig. 11b). SLC27A1, mediates the
ATP-dependent import of long-chain fatty acids into the cell by
mediating their translocation at the plasma membrane and serves
as an acyl-CoA ligase activity for long-chain and very-long-chain
fatty acids70. From the proteomic data, SLC27A1 was highly
expressed in nasopharyngeal, gallbladder, and pancreatic SCCs.
In agreement, we noted a high proportion of tumor-specific
positive SLC27A1 staining in gallbladder and pancreatic SCCs
(Kruskal–Wallis test, p < 0.0001, Fig. 7d and Supplementary
Fig. 11c). Immunostaining of SLC27A1 identified that normal
epithelial cells of nasopharynx and lung showed positive staining
other than SCC cells. CPXM2 has been associated with
developmental diseases and are reported as an unfavorable
prognostic marker involving in gastric cancer71, osteosarcoma
progression72, and hepatocellular carcinoma73. In this study, we

Fig. 6 Characterization of HPV-related SCCs. a HPV infection rate of 5 anogenital SCCs. b Details of HPV infection and protein abundance of known
molecules related to HPV infection of 5 anogenital SCCs. c Grouping of 5 anogenital SCCs according to HPV16 infection status and 5 groups were obtained.
d Impact of HPV status on pathways in 5 anogenital SCCs. The heatmaps showed protein-expression derived, differentially regulated pathways associated
with differential HPV infection. Pathway groups were defined according to the patterns of differential HPV infection. See also “Methods” and Table S6B.
e Boxplots showing log2 protein abundance of differentially expressed molecules in two pathways that were over-represented in HPVT16 infected SCCs
(Kruskal–Wallis test, BH-adjusted p < 0.05). n1= 32, n2= 16, n3= 16, n4= 11, and n5= 19 biologically independent samples examined. Data are expressed
as mean values ± SEM. The boxes indicate the interquartile ranges, and no outliers are shown. f Diagram depicted our hypothesis of inositol phosphate
catabolic process upregulation and negative regulation of T cell receptor signaling contributing to HPV16-related SCC tumorigenesis. Source data are
provided as a Source Data file.
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found CPXM2 IHC staining, in agreement with the proteomics
data, was highly expressed in thymus SCCs (Spearman correla-
tion, p= 0.015; Fig. 7d and Supplementary Fig. 11d, e). These
results highlight the power of incorporating proteomics and
pathology to explore cancer-type-specific biomarkers.

Discussion
Comprehensive genomic and transcriptomic analysis of pan-
SCCs has broadened our knowledge of the molecular events
relevant to this malignancy35,74. Herein, we report that the sys-
tematic proteome analysis would unravel insights of SCCs shared
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and specific features into the clinical, biological, and therapeutic
understanding of SCCs. The proteomic landscape of pan-SCC
samples and pan-AC samples revealed the differentially activated
key signaling pathways, rare SCC-specific metabolic character-
istics, clinically and therapeutically relevant subgroups, HPV16-
specific features in anogenital SCCs, and differentially diagnostic
markers for specific SCC. Primarily, our dataset might serve the
scientific community as a resource of clinical proteomic data,
which is still sparse in some rare SCCs.

The inclusion of deep-scale proteomic of 17 SCCs and 7 ACs
allowed us to compare these two main histological cancer types
and identified pivotal distinguishable pathways, including kera-
tinization, glucose metabolism, and ECM. The glandular epithe-
lium is characterized by particular exocrine and endocrine
functions that have resulted in AC as characterized by the ribo-
some and metabolic phenotypes75. We revealed that most of
DEPs in glucose metabolic alterations and ECM are essential
factors that are associated with the poor clinical outcome both in
SCCs and ACs using the TCGA database, indicating metabolism
reprogramming and TME may participate in tumorigenesis and
progression. Keratinization as the major property of squamous
epithelium was enriched in SCCs. Keratinization as a good dif-
ferentiation indicator of SCCs led to good prognosis for SCCs, but
poor prognosis for ACs. Epithelial tumors maintain specific
keratin expression patterns of the respective originating cell type,
and ACs are characterized by the predominance of simple-
epithelial keratins, notably KRT7, KRT8, KRT17, KRT18, KRT19,
and KRT2076–78. Those keratins were also frequently found to be
associated with adverse prognosis for adenocarcinomas, such as
KRT17 in endometrial cancer79 and KRT18 in colorectal
cancer80. Moreover, SCCs were characterized by increased p53
downstream pathway, consistent with the TP53 mutation was
much higher in SCCs compared to ACs, especially in lung
cancer30,43, indicating cancer type-specific effects of DNA repair.
While the overall number of the pan-SCC and pan-AC cohort is
substantial, the numbers of samples available per anatomic site
ranged from 10–22 for SCC and 8–12 for AC. Therefore, the
relatively small sample size may limit our findings for specific
tumor types. As the survival analysis was mainly explored using
RNA-seq datasets, further proteomic studies will be needed to
validate the prognostic values of these proteins.

Dysregulation in lipid metabolism is among the most promi-
nent metabolic alterations in cancer81. We identified that rare
SCCs showed a high level of lipid metabolism, indicating that
metabolic reprogramming was associated with rare SCC aggres-
siveness. Notably, two TFs, RUNX2 and FOXO1, were identified
as vital transcriptional regulators involved in rare SCC. It has
been reported that RUNX2 is upregulated in various cancer types
and may drive breast cancer cell growth and metastasis82,83. A
previous study also revealed that loss of RUNX2 could sensitize
osteosarcoma to chemotherapy84. FOXO1 affects adipocyte dif-
ferentiation by regulating lipogenesis and cell cycle85. However,
FOXO1 may inhibit RUNX2 transcriptional activity in prostate
cancer49, and we also revealed a negative correlation between
these two proteins. Thus, upregulation of RUNX2 or FOXO1 may
alternatively favor fatty acid metabolic pathways to promote

cancer proliferation. Of note, PLIN1, as a lipid droplet associated
protein, showed a high expression in rare SCCs that may be
regulated by FOXO1 and RUNX2. Three anal SCCs showed a
PLIN1 amplification, which is needed to be further studied.

Based on pan-SCC proteome, hierarchical clustering stratified
patients into four distinct subgroups, revealing anatomical fea-
tures. Emerging evidence showed that how tumor cells respond to
therapy is not solely dependent on the tumor entity but also is
regulated by the TME86. Furthermore, a consensus clustering
based on multiple cell-type signatures was performed to gain an
overview of pan-SCC TME. Also, we advocated the importance of
characterizing TME subtypes that cross SCC organ boundaries
and unite SCCs of disparate organs. Thus, such insights will lead
to extensions of treatments shown to be effective in one type of
tumor to other tumors sharing the same TME features. Ion
channels contribute to most of the fundamental biological pro-
cesses including cell proliferation, secretion of hormones, as well
as immune response87,88. We found distinguishing ion channel
drug targets in 5 TME subtypes, including sodium channel
(SCN4B in ClSq and SCN5A in IhSq), potassium voltage-gated
channel (KCNQ4 in BaSq, KCNA5 in NeSq, and KCND2 in
IhSq), and voltage-dependent calcium channel (CACNA2D2 in
FaSq and CAC1E in IhSq). Solute carrier (SLC) transporters
facilitate the transport of a wide array of substrates across bio-
logical membranes89, human proteogenomic studies have pro-
vided powerful insight into the therapeutic roles of SLC
transporters in variety cancer types90–93. Moreover, we found
SLC16A7 (BaSq), SLC6A9 (NeSq), SLC7A2 (EoSq), and SLC12A1
(IhSq) were specifically expressed in four subtypes and could
serve as treatment targets for certain subtypes. Although targeting
TME compartments proves to be successful in the preclinical
phase, an enormous challenge still lies ahead for translating these
strategies to clinical practice.

HPV16 infection as the main type for Chinese anogenital
SCCs, over-representing with the high metabolic characteristics
especially in inositol phosphate catabolic process. Interestingly,
Inositol phosphates were reported promoting HIV-1 assembly
and maturation to facilitate viral spread in human
CD4+ T cells94. Multiple isomers of inositol phosphate were
found in Epstein-Barr-virus- transformed (T5-1) B-lymphocytes
and may be related to cell transformation or proliferation95. So,
we think the Inositol phosphate catabolic process participates in
HPV-related tumorigenesis. However, due to the small sample
size, a large-scale study will be needed to explore this further.

Tissue enriched proteins provided insights into differentially
diagnostic values. We observed the diagnostic values that PRKCE
for vaginal and cervical SCCs, CPXM2 for thymus SCCs, and
SLC27A1 for pancreatic and gallbladder SCCs. Our results
highlighted the power of incorporating proteomics and pathology
to explore cancer-type-specific biomarkers. There are limitations
to the validation study. Firstly, only three markers were validated,
as no specific antibodies were available for the other 16 markers.
We will validate the other markers in future research when
antibodies are available. Secondly, the number of samples for
validation is relatively small. Most importantly, how these mar-
kers perform in telling the origin of metastatic SCCs remain

Fig. 7 Performance of tumor type classifier and validation for diagnostic markers. a Schematic of random-forest classifier. Seventy five percent patients
of pan-SCC cohort were used to train the classifier. b Performance of the classifier across 17 SCCs in validation set. True (established) cancer types are
displayed horizontally and predicted cancer types are displayed vertically. The number of tumors of each cancer type in the cohort is shown at the top, and
sensitivity and specificity of the predictions are indicated at the top and right. c The heatmap of 19 proteins used in the classifier and annotation of cellular
component, TF, kinase, phosphatase, and drug target are provided. d Haematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) staining of P63,
P16, PRKCE, SLC27A1, and CPXM2, and in situ hybridization (ISH) of EBER in representative samples of partial SCC types (originating organ includes:
esophagus, nasopharynx, thymus, lung, pancreas, gallbladder, cervix, and vagina). Scale bar, 100 μm.
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unknown. Large-scale validation analyses, including metastatic
SCCs, are urgently needed.

Taken together, our current work provides a systematic and
comprehensive analysis of pan-SCCs using proteomic platform.
These results add an additional layer to the complex, which might
have important implication for better understanding SCCs.

Methods
Patient samples of SCCs
Clinical sample acquisition. Archival formalin-fixed paraffin-embedded (FFPE)
tissues of 17 different organs from 333 SCC participants were randomly selected
from May 2001 to December 2019 with SCC who were undergoing surgical
resection. Most of the cases had squamous cell carcinoma histology, and a small
part of cases had adenosquamous carcinoma or urothelial carcinoma with squa-
mous differentiation belonging to pancreas, gallbladder, lung, or bladder
(Table S1A and S1B), but collected regardless of histologic grade or surgical stage.
Patients were categorized into common SCCs (SCCs originated from
nasopharynx96, oral cavity96, throat96, skin97, esophagus98, lung99, cervix100,
penis101, perineum102, and vagina103) and rare SCCs (SCCs originated from
thyroid104, thymus105, breast106, pancreas107, gallbladder108, bladder109, and
anus110), as evaluated by 4th WHO Classification of Tumors111–118. Patients were
excluded if they had other advanced disease, active second malignancy, or any
condition that may influence the outcome evaluation (68 rare SCC patients with no
outcome information), such as neoadjuvant treatment with chemotherapy, radio-
therapy, or targeted therapy. Clinical information of 333 patients including gender,
age, TNM staging (AJCC cancer staging system 8th edition), year of surgery, status
of cancer recurrence or relapse, and status of survival is listed in Supplementary
Data 1.

As comparison group of pan-SCC cohort, we randomly collected 69
adenocarcinomas, including pancreatic (8), colorectal (8), gallbladder (12), thyroid
(10), breast (8), gastric (12), and lung (11) adenocarcinomas, who underwent
surgery were collected at Zhongshan Hospital, Fudan University between July 2017
and August 2019. Patients were excluded if they have been treated with
preoperative radiotherapy, chemotherapy, targeted therapy, or suffering from other
cancers.

The samples used in this study were obtained from the Zhongshan Hospital,
Fudan University. The Research Ethics Committees of Zhongshan Hospital
approved the study and all patients provided written informed consent for sample
collection, analysis, and publishing basic and clinicopathological information.

Histological evaluation and immune cell infiltration. Haematoxylin and eosin
(H&E) stained slides were examined and evaluated independently by two expert
pathologists and information regarding tumor histological subtype, degree of dif-
ferentiation, degree of keratinization, size of cell nest, cell size, cancer inflamma-
tion, stromal ratio, stromal inflammation, tumor necrosis, pathological mitotic
figures, and tumor purity were provided. In addition, the non-tumor cell popu-
lations, including stroma ratio and immune cell infiltration were evaluated.
Acceptable SCC and AC tissue segments were determined by pathologists based on
the percent viable tumor nuclei (>80%), total cellularity (>50%), and necrosis
(<20%).

Sample preparation. FFPE specimens were prepared and provided by Zhongshan
hospital. One 4 μm thick slide sliced from FFPE blocks were used for H&E staining.
For proteomics sample preparation, 10 slides (10 μm thick) were sectioned,
deparaffinized with xylene and washed with gradient ethanol and water. Selected
specimens according to H&E staining were scraped, and materials were aliquoted
and placed in storage at −80°C until further processing. Each sample was assigned
a new research ID and the patient’s name or medical record number used during
hospitalization was de-identified.

DNA extraction and HPV infection status detection. DNA extraction was performed
using GenElute™ FFPE DNA Purification Kit (Sigma-Aldrich) according to the
manufacturer’s protocol. DNA was quantified by the NanoDrop 2000 (Thermo
Scientific). HPV infection status detection was performed using High-risk Human
Papilloma virus (HPV) Genotyping Real Time PCR Kit (Life River) according to
the manufacturer’s protocol. A total of 15 high risk HPV types, including 16, 18,
31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 82 for all cases were tested.

Proteomic workflow
Protein extraction and tryptic digestion. For SCC sample preparation, slides (10 μm
thick) from FFPE blocks were dissected according to HE staining (adjacent non-
tissue was discarded), deparaffinized with xylene and washed with gradient ethanol.
Approximately one milligram of human SCC samples was homogenized in lysis
buffer at a ratio of about 200 μl lysis buffer for every 1 mg wet weight tissue. The
lysis buffer consisted of 0.1 M Tris-HCL (pH 8.0), 0.1 M DTT, and 1 mM PMSF.
The samples were grinded by grinding rods for 3 min and 50 μl of 20% SDS was
added to reach a maximum SDS concentration of 4%. Lysates were boiled at 99 °C,
1,500 g for 0.5, 1, and 1.5 h and then centrifuged at 12,000 g for 5 min at room

temperature. Lysate supernatant was transferred into acetone at a maximum ratio
of 1:3 and kept in −20 °C for at least 4 h. Precipitated proteins were washed by
cooled acetone for three times, redissolved by 8M Urea. Prior to digestion, samples
were loaded into an ultrafiltration filter column (10 kD, 500 μl) and centrifuged at
12000 g for 15 min. The reduction and alkylation progresses were then carried out,
100 μl of reduction buffer (10 mM DTT, 25 mM NH4HCO3) were loaded on
ultrafiltration filter column, incubated for 1 hour at 56°C, and centrifuged at
12000 g for 15 min. Then 100 μl of alkylation buffer (55 mM IAA, 25 mM
NH4HCO3) were loaded on ultrafiltration filter column, incubated for 45 min in
dark at room temperature. The filter was then washed three times by adding 100 μl
NH4HCO3 (50 mM) to the column, followed by centrifugation. The protein con-
centration of the solution was measured using spectrophotometer (NanoDrop,
Thermo, USA). The amounts of protein were adjusted to 400 μg. Digestion was
performed with ultrafiltration filter column with Sequencing Grade Modified
Trypsin (Promega V5111) in 50 μl NH4HCO3 (50 mM) for 16 h at a 1:50 enzyme-
to-protein ratio at 37 °C. Digested samples were acidified in 0.1% formic acid (FA)
solution buffer to stop digestion and were collected by centrifugation at 12,000 g for
15 min and followed by twice washing with 200 μl of LC-MS grade water. Samples
were desalted on C18 columns and dried down using centrifugation.

Nano-LC-MS/MS. Dried peptides were reconstituted in 0.1% FA and injected onto
a reverse phase C18 homemade 150 μm × 30 cm silica microcolumn (particle size,
1.9 μm; pore size, 120 Å; SunChrom, USA) using a nanoElute (Bruker Daltonics).
Target on-column load was 200 ng (measured by NanoDrop before loading) total
peptide per injection with a pressure of 280 bar. The flow rate was 600 μl/min.
Mobile phase A was 0.1% FA, 99.9% water; mobile phase B was 0.1% FA and 99.9%
acetonitrile. The gradient was linear from 2% B to 35% B over 110 min. A blank
wash run followed each sample run to ensure no cross contamination. The mass
spectrometer was a timsTOF Pro (Bruker Daltonics) set to acquire data in Parallel
Accumulation Serial Fragmentation (PASEF) mode119. The TIMS accumulation
time was set to 100 ms and precursor masses for 0.4 min where charge states of 2-4
were allowed. The resolution parameter was set to 50,000 for MS1 and MS2. Mass
spectra for MS1 and MS2 scans were recorded between 100 and 1700 m/z. Ion
mobility resolution was set to 0.60–1.60 V·s/cm over a ramp time of 100 ms. Data-
dependent acquisition (DDA) was performed using 10 PASEF MS/MS scans per
cycle with a near 100% duty cycle. An active exclusion time of 0.4 min was applied
to precursors that reached 20,000 intensity units.

Database searching of MS data. Proteins were identified by PEAKS Online (version
8.5; Bioinformatics Solution Inc., Waterloo, Canada) with searching the library of
Uniprot homo sapiens (version 2019_07, SwissProt, 20,431 sequences), from the
untargeted proteome data. ID transfer was applied. The enzyme was trypsin and
FDR cutoff on both the peptide and protein level was 1%. Proteins were identified
based on at least one unique peptide. Carbamidomethylation was set as the fixed
modification. Oxidation (M) and N-acetylation were set as the variable modifica-
tions. The precursor mass tolerance was set to 15 ppm and the fragment ion
tolerance at 0.05 Da. The retention time shift tolerance was 4.0 min. The retention
time range is 0.0000 ≤ Retention Time ≤ 10000.0000. Contaminants were regularly
searched, which is mainly containing keratin (Human, Mouse, Bovin), and lab-
derived contaminants (BSA, trypsin, etc.), as the mass spectrometry maintenance
routine.

Proteome data preprocess
Mass spectrometry platform QC and SCC proteome QA. The 293T cell (National
Infrastructure Cell Line Resource) lysate was measured every three days as the
quality-control standard for the quality control of the performance of mass spec-
trometry. The quality-control standard was digested and analyzed using the same
method and conditions as the SCC samples. A pairwise Spearman’s correlation
coefficient was calculated for all quality-control runs in the statistical analysis
environment R v3.6.3, the results are shown in Supplementary Fig. 2a. The average
correlation coefficient among the standards was 0.90, and the minimum and
maximum correlation coefficient were 0.85 and 0.96, respectively. In addition to
the 293T controls, seven pairs of SCC samples were performed in the middle and at
the end of the project. The average, minimum, and maximum correlation coeffi-
cient of replicate samples were 0.92, 0.86, and 0.97, respectively. These quality-
control samples demonstrating the consistent stability of the mass spectrometry
platform. The log2-transformed protein abundances for each SCC sample (Sup-
plementary Fig. 2b) were plotted to show good consistency of proteome quanti-
fication. Spearman correlation coefficients for all 333 MS runs were presented in
Supplementary Fig. 2c. The median correlation coefficient among these samples
was 0.74, and the maximum and minimum values were 0.99 and 0.56, respectively.

Data normalization and missing value imputation. Protein quantification used
precursor ions MS (MS1) signal intensities with total ion current (TIC) normal-
ization. For a peptide “i” from a sample “n,” its quantitative information was its
peak area (Pi) calibrated by the relative TIC of the sample: Pi * (TICa/TICn), where
“a” represents the sample that was randomly chosen as the benchmark. The
quantitative information of the top three peptides of a protein was averaged to get
the protein-level relative quantitative information. The normalized TIC intensities
of 333 samples were extracted from the PEAKS Online result files to represent the
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final expression of a particular protein across samples, resulting in a 14,840 × 333
protein-expression matrix. The expression matrix was then log2-transformed and
used in all quantitative analysis. The pan-SCC data was not a normal distribution
(Kolmogorov-Smirnov test, p < 0.05 for all 333 samples distribution). Missing
values were imputed with the one-tenth of the minimum across our proteome data.

Batch effect analysis. We used the hierarchical clustering function hclust and
principal-component analyses function prcomp in the R language to assess the
batch effects between SCC and AC samples. There was a clear separation between
the SCCs and ACs samples (Supplementary Fig. 4a) before correcting batch effects,
mostly due to their different batches. Then, we corrected their batch effects on a list
of proteins expressed in SCC and AC samples using ComBat120. The protein list
was identified as follows: (1) The commonly expressed proteins of SCC were
required to be identified in at least 50% of the samples of each SCC organ, which
contains 5130 proteins; (2) The commonly expressed proteins of ACs were
required to be identified in at least 50% the samples of each AC organ, 4845
proteins were identified; (3) The union set of commonly expressed proteins in SCC
(5130 proteins) and AC (4845 proteins) contained 5914 proteins, and the inter-
section contained 4061 proteins. A total of 1069 proteins were only commonly
expressed in SCCs, and 46 proteins were only detected in SCCs (not detected in
ACs). A total of 784 proteins were only commonly expressed in ACs, and 30
proteins were only detected in ACs (not detected in SCCs); (4) We removed a total
of 76 proteins only expressed in SCCs or ACs, and a total of 5838 proteins were
obtained. Hierarchical clustering of Combat corrected proteomic profiles showed
no significant batch effects, PCA analysis showed that SCC and AC has a clear
proteomic difference (Supplementary Fig. 4).

Dataset filtering. Pan-SCC protein-expression matrix from the raw PEAKS Online
result file (14,840 × 333) was filtered to 14,598 × 333, which is the union set of
proteins identified in at least 1/3 samples of each organ. Similarly, Pan-AC protein-
expression matrix from the raw PEAKS Online result file (10,501 × 69) was filtered
to 10,414 × 69. Some of the filtering steps were specified for different analyses in
the study. In the comparison between SCC and AC, at least half of samples of each
organ were required to have non-missing values, resulting 5130 common proteins
of SCC, 4845 common proteins of AC. These two datasets were combined and
unique proteins identified only in SCC or AC were removed, resulting in a 5838 ×
402 protein-expression matrix. For the comparison between Common SCCs and
Rare SCCs, 6,123 proteins were selected by combining the common proteins of
Common SCCs and Rare SCCs, the common proteins of Common SCCs and Rare
SCCs were defined as the intersection of proteins expressed in at least half samples
of each organ within Common or Rare SCCs, respectively. Alternate filtering has
been noted in descriptions of the relevant methods.

Tissue microarray (TMA) experiment
TMA construction. TMAs were constructed using 333 tumor tissues (the same
cohort as proteomics) and paired normal epithelial/non-tumor tissues (partially)
from the Fudan Pan-SCC cohort using the method as we previously described121.
In brief, all cases were histologically inspected by H&E staining and representative
areas were pre-marked on the paraffin blocks, away from necrotic and hemorrhagic
regions. Duplicates of 2 mm side length square from two different areas, tumor
center and normal epithelium/non-tumor tissue, were included, along with a series
of different controls, to ensure reproducibility and homogeneous staining of the
slides.

Immunohistochemistry staining. FFPE tumor tissues were sliced into 4 μm slides for
immunohistochemistry (IHC) staining. Slides were stained with TP63 antibody
(1:100, Thermo, catalog No. 703809), P16 antibody (1:100, Sigma-Aldrich, cata-
logue No. MAB4133), PLIN1 antibody (1:100, Cell signaling technology, catalogue
No. 9349), RUNX2 antibody (1:100, R&D Systems, catalogue No. MAB2006),
FOXO1 antibody (1:100, Cell signaling technology, catalogue No. 2880), PRKCE
antibody (1:50, Absin, catalogue No. abs136354), SLC27A1 antibody (1:50,
Thermo, catalogue No. PA5-50574), and CPXM2 antibody (1:100, Absin, catalogue
No. abs138862) was performed on the Leica Automated Quantitative Pathology
System. TMA slides were first deparaffinized and rehydrated followed by micro-
wave antigen retrieval. After blocking endogenous peroxidase and nonspecific
binding sites, primary antibodies and second HRP-conjugated antibody (Bond
Polymer Refine Detection, Leica Biosystems, Catalogue No. DS9800) were applied.
Immunoreactivity was evaluated independently by two investigators who were
blinded to clinical data according to the intensity and extent of staining. Staining
intensity was scored as: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong). The
staining extent was scored as 0 (0%), 1 (<10%), 2 (10-50%), and 3 (>50%), on the
basis of the percentage of positively stained cells. The product of the intensity and
extent scores was used as the final staining score.

PLIN1 fluorescence in situ hybridization. Fluorescence in situ hybridization (FISH)
assay was performed on the tissue microarrays using PLIN1 probe that hybridizes
to the band 15q26 with Spectrum Orange and CEP 15 with Spectrum Green
(Empire Genomics Corp, PLIN1-20-OR) following routine methods. Two experi-
enced evaluators blinded to the clinical data interpreted FISH analyses. At least 50

nuclei per patient were evaluated. The threshold for assigning a sample to
amplification was an average number of PLIN1 signals/tumor cell nucleus ≥ 6.0,
and copy-number gain was an average number of PLIN1 signals/tumor cell nucleus
< 6 and ≥ 4.0. PLIN1 signals/ tumor cell nucleus < 4 was scored negative for PLIN1
amplification.

Differential expression analysis. The Wilcoxon rank-sum test (as implemented
in R software) was used to examine proteins that were differentially expressed
between SCCs and ACs, common SCC samples and rare SCC, followed by multiple
testing correction using the Benjamini–Hochberg (BH) Algorithm. Upregulated or
downregulated proteins in SCCs were defined as proteins differentially expressed in
SCCs compared with ACs (fold change (expressed as log2(ratio of average protein
abundance between SCCs and ACs)) ≥ 1 or ≤−1, Wilcoxon rank-sum test, BH-
adjusted p < 0.05). Upregulated or downregulated proteins in common SCCs were
defined as proteins differentially expressed in common SCCs compared with rare
SCCs (fold change (expressed as log2(ratio of average protein abundance between
common SCCs and rare SCCs)) ≥ 1 or ≤−1, Wilcoxon rank-sum test, BH-adjusted
p < 0.05). Kruskal–Wallis test (BH-adjusted p < 0.05) was used to identify proteins
that were differentially expressed between the four clusters. A simple linear model
and moderated t-statistics, implemented with the R/Bioconductor package limma
v.3.40.6, were used to identify differentially expressed proteins between the 6
immune subtypes, and the following cutoff criteria were used: (1) all BH-adjusted
P values should be less than 0.05 compared to the other subtypes; (2) fold change
(expressed as log2(ratio of average protein abundance between immune subtypes)
≥ 1.5 or ≤−1.5); and (3) at least 50% expression in one subtype. Because the
differentially proteins of subtype 6 are overly abundant, we adjusted the filter
criteria (fold change (expressed as log2(ratio of average protein abundance between
immune subtypes) ≥ 3 or ≤−3)). Proteins significantly regulated were visualized by
ggplot2 (version 3.2.1) and ComplexHeatmap (version 2.5.3).

Pathway enrichment analysis. Gene set enrichment analysis (GSEA) performed
by clusterProfiler (version 3.12.0) was used for pathway enrichment analysis of the
comparison between SCCs and ACs. An FDR value of 0.05 was used as a cutoff.
Pathway enrichment analysis by Reactome (https://reactome.org/) was used for the
comparison between common SCCs and rare SCCs. For further insight into bio-
logical implications according to the four clusters identified based on the proteomic
profiles of SCCs, single-sample gene set enrichment analysis (ssGSEA) was per-
formed using the GSVA algorithm (R/Bioconductor package GSVA, version 1.32.0)
to calculate the ssGSEA scores for each gene set with at least ten overlapping genes.
The gene sets used both in the GSEA and the ssGSEA analysis were downloaded
from the MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp,
version 7.2), which contains 1986 concepts (including 186 Kyoto Encyclopaedia of
Genes and Genomes gene sets, 196 PID gene sets, 1554 Reactome gene sets and 50
hallmark gene sets).

Correlation between SCC types and clinical features. In the measurements of
correlations between SCC types and clinical features, Fisher’s exact test was used on
categorical variables, including gender, differentiation, keratinization, tumor nest
size, and stromal inflammation. Wilcoxon rank-sum test was used on continuous
variables including pathological mitotic figures, cancer inflammation, immune
score and ESTIMATE score.

Hierarchical clustering. Hclust function implemented in the R language was used
to perform unsupervised clustering of Pan-SCC samples to identify proteomic
features of each cluster. Before clustering, we selected proteins as follows: (1)
Proteins were required to express in at least 1/3 samples in certain SCC type. (2)
The filtered proteins were sorted in descending order by mad (Median Absolute
Deviation). The 20% bottom mad proteins of each certain organ were selected as
the proteins with consistent and ubiquitous expression in each SCC. (3) A total of
17 protein sets were combined and duplicates were removed, resulting a protein set
of 10,259 proteins. Those 10,259 proteins were averaged in each organ, resulting in
a 10,259 × 17 protein-expression matrix, and sorted in descending order by mad.
Four clear clusters were found when using the Pearson algorithm based on the
1500 top MAD proteins.

Immune-based consensus clustering. The abundance of 64 different cell types of
Pan-SCC samples were computed via xCell51 using log2 (TIC normalized) protein
expression values. Table S5A contains the final score computed by xCell for dif-
ferent cell types for the 333 samples. Consensus clustering was performed using the
R packages ConsensusClusterPlus (version 1.48.0)122. Only cells that were detected
in at least 20 patients were utilized. Specifically, 80% of the original samples were
randomly subsampled without replacement and partitioned into 6 major clusters
using the Partitioning Around Medoids (PAM) algorithm, which was repeated
1000 times. In addition to xCell, ESTIMATE123 was used to estimate Tumor Purity,
Stromal and Immune Scores. ssGSEA124 was performed to obtain pathway scores
and identify the pathway alterations that underlie our Pan-SCC clusters, using the
R package GSVA125. The protein expression matrix was subjected to the GSVA
algorithm to calculate the ssGSEA scores for each gene set with at least 10 over-
lapping genes. Wilcoxon test was performed subsequently to find pathways
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differentially expressed between every cluster and all other clusters. The resulting p
values were adjusted via Benjamini–Hochberg procedure. Table S5B and S5C show
pathways and proteins altered of each cluster.

Potential diagnostic biomarkers. A random-forest classifier was developed to
predict tumor type based on proteomic profiles of our Pan-SCC cohort, using the R
package randomForest (version 4.6.14)126. Before analysis, we selected proteins as
follows:1) the most consistently expressed proteins were selected within each organ
as 1% bottom mad proteins identified in at least 75% cases in each organ. A total of
17 protein lists were then combined, and one protein list containing 1220 proteins
after removing repetitive proteins was obtained (a total of 1220 proteins were
obtained from 333 cases). 2) all 333 SCC cases were randomly divided into a
training set and a validation set, containing 75% and 25% cases, respectively. 3) the
RandomForest function was used on the training set to calculate the importance
(Indicated by “Mean Decrease Accuracy”) of each protein (top importance was
obtained only from training set). 10-fold cross-validation was used to select the
suitable number of top important proteins.

Kinase-TF network. We extracted pathway-specific TFs by filtering their GO
terms. The hierarchical network of kinases, TFs, and target genes were constructed
based on multiple layers. The protein interaction among kinases, TFs, and target
genes was annotated using information accessed from GeneMANIA (http://
genemania.org/). The network was visualized using Cytoscape v 3.8.1.

HPV-related SCCs analysis. In the set of anogenital SCCs (94 cases in total),
including anus (10/10 infected, HPV infection rate 100%), penis (11/22, 50%),
perineum (14/20, 70%), cervix (20/21, 95%), and vagina (20/21, 95%) (Fig. 6a,
Supplementary Data 6).

We used gene sets of molecular pathways from the MsigDB database version 7.2
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp), which contains 1,986
concepts (including 186 Kyoto Encyclopaedia of Genes and Genomes gene sets,
196 PID gene sets, 1,554 Reactome gene sets and 50 hallmark gene sets), to
compute single-sample gene set enrichment scores for each sample.

To elucidate the molecular pathways differentially activated or inactivated in
HPV16 infected SCCs compared with other types or negative SCCs, we grouped
these anogenital SCCs according to the HPV infection patterns (Fig. 6c). Group 1,
HPV16 infection only; Group 2, multiple infection and HPV16 is the main type
(minimum cycling threshold was used in PCR process); Group 3, multiple infection
and HPV16 is not the main type; Group 4, HPV infection and not HPV16; Group
5, negative (HPVneg). A simple linear model and moderated t-statistics,
implemented with the R/Bioconductor package limma (version 3.40.6), were used
to identify differentially pathways between the 4 Groups with HPV infection and
Group 5 (tissue of origin was adjusted).

To select the eight groups of pathways with different characteristics of HPV infection
status, we used BH-adjusted p value < 0.05 (between 4 Groups with HPV infection and
Group 5) for differential behavior, and fold change (expressed as log2(ratio of enrichment
score between Group1-4 and Group 5) > 0) for over-represented pathways in Group 1-4
and fold change (expressed as log2(ratio of enrichment score between Group1-4 and
Group 5) < 0) for over-represented pathways in Group 5. For specific pathway groups, this
amounted to the following conditions: pathway group 1: BH p < 0.05, log2 (FC) > 0 of
Group 1-4; pathway group 2: BH p < 0.05, log2 (FC) < 0 of Group 1-4; pathway group 3:
BH p < 0.05, log2 (FC) > 0 of Group 1-3; pathway group 4: BH p < 0.05, log2 (FC) < 0 of
Group 1-3; pathway group 5: BH p < 0.05, log2 (FC) > 0 of Group 2-3; pathway group 6:
BH p < 0.05, log2 (FC) < 0 of Group 2-3; pathway group 7: BH p < 0.05, log2 (FC) > 0 of
Group 1-2; pathway group 8: BH p < 0.05, log2 (FC) < 0 of Group 1-2. Pathways were
visualized by ggplot2 (version 3.2.1) and ComplexHeatmap (version 2.5.3).

Survival analysis. We constructed multivariate Cox proportional hazard model
using ‘age’, ‘gender’, ‘stage’, ‘histology’, ‘organ’, ‘protein expression’ as the fitting
variables, followed by multiple testing correction using the BH Algorithm for pan-
SCC cohort. The following 3 criteria were used to identify potential prognostic
biomarkers: (1) log-rank test p < 0.05; (2) the multivariate Cox proportional hazard
model p < 0.05; (3) all survival analysis has the consistent prognostic value. For the
TCGA datasets survival analysis, prior to the log-rank test of a given protein,
survminer (version 0.2.4) R package with maxstat127,128 (maximally selected rank
statistics) was used to determine the optimal cutoff value for the samples. OS
curves were then calculated (Kaplan–Meier analysis, log-rank test) based on the
optimal cutoff value, followed by multiple testing correction using BH Algorithm.

Kaplan–Meier survival curves (log-rank test) were used for overall survival (OS)
or disease-free survival (DFS) of the pan-SCC cohort, 4 hierarchical clusterings, 6
proteomic subtypes. Multivariate Cox proportional hazard model were also
conducted using ‘age’, ‘gender’, ‘stage’, ‘histology’, ‘organ’ (only for 17 SCCs,
Supplementary Data 1), ‘proteomic clusters’ (only for Supplementary Fig. 8),
‘microenvironment subgroups’ (only for Supplementary Fig. 9) as the fitting
variables.

Screening potential drug targets of SCCs. Drug targets either approved by FDA
or under clinical trials were retrieved from Drugbank database (version 5.1.5)

(http://www.drugbank.ca/). Target proteins that were unregulated in SCCs with
potential curative drugs were chosen.

Statistics and reproducibility. The statistical significance of differences between
two groups was calculated with the Wilcoxon rank-sum test; for three or more
groups comparison, Kruskal–Wallis test was used. Fisher’s exact test was used for
categorical variables and two-sided Wilcoxon rank-sum test was used for con-
tinuous variables, when testing association of different groups with clinical vari-
ables. For the correlation analysis between two variables, Spearman correlation was
used. Kaplan–Meier plots with log-rank test and Cox proportional hazard model
were used to describe OS and DFS. All statistical tests were two-sided except special
explanation, p-values were adjusted using the BH procedure. For validation
experiments, each was repeated at least three times independently, representative
photos were shown. All the analyses were performed in R (version 3.6.3) and
GraphPad Prism (Version 8).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org)via the iProX partner
repository (https://www.iprox.cn/, Project ID: IPX0002831000)129 with the dataset
identifier PXD033794. TCGA data used in this work were downloaded from (https://
portal.gdc.cancer.gov/). All relevant data are included in the manuscript and the
Supplementary Information. Source data are provided with this paper.

Code availability
No special code was used in this study. Code for specific figures (Figs. 4b, 7b) during the
study are available for research purposes from the corresponding authors on request.
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