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Pro-inflammatory cytokines mediate the epithelial-
to-mesenchymal-like transition of pediatric
posterior fossa ependymoma
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Maclean P. Nasrallah 4, Mariarita Santi4,5 & Pablo G. Camara 1✉

Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack

of effective chemotherapies. This shortage of treatments is due to limited knowledge about

ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility

and gene expression profiling of posterior fossa primary tumors and distal metastases, we

reveal key transcription factors and enhancers associated with the differentiation of epen-

dymoma tumor cells into tumor-derived cell lineages and their transition into a

mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition,

and show that the gene expression profiles of tumor cells and infiltrating microglia are

consistent with abundant pro-inflammatory signaling between these populations. In line with

these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a

patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data

suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies

the mesenchymal phenotype of posterior fossa ependymoma.
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Pediatric ependymoma is a significant therapeutic challenge
despite the general improvement of adjuvant che-
motherapies in the treatment of pediatric brain tumors

during the past decades1–4. A roadblock to expanding treatment
options is the current limited knowledge about the molecular
mechanisms that underlie ependymoma tumorigenesis, progres-
sion, and metastasis. Genome-wide DNA-methylation profiling of
ependymal tumors has led to their classification into nine groups
associated with distinct anatomical location, age of diagnosis,
prognosis, and ability to metastasize5–7. In young children, the
most common group is posterior fossa ependymoma group A
(PFA), representing ~70% of cases5. Based on their methylation
profile, PFA tumors can be further divided into two subgroups,
PFA-1 and PFA-28. These subgroups express genes that are
respectively active in the brainstem and the isthmic organizer
during embryogenesis8,9, indicating a possible origin in radial glia
from these locations10,11. However, little is known about the gene-
regulatory circuits associated with ependymoma tumor cells and
their metastasis into other regions of the central nervous system.

Single-cell transcriptomic profiling of primary and recurrent
pediatric ependymomas has uncovered the presence of cellular
hierarchies within these tumors. Tumor-derived cell lineages
originate from undifferentiated tumor cells and resemble devel-
opmental radial glia-derived populations of ependymal, neuronal
progenitor, and glial progenitor cells12,13. These studies have also
identified the presence of a cell population characterized by a
mesenchymal-like gene expression signature that is enriched
for NFκB target genes and is consistent with a response to
hypoxia and cellular stress12,13. The mesenchymal gene expres-
sion signature of ependymoma has been associated with
poor prognosis12,14, similar to what has been observed in
glioblastoma15–17. Although gliomas are not epithelial cancers,
the activation of an epithelial-to-mesenchymal-transition-like
(EMT-like) process in glioblastoma has been associated with
tumor cell proliferation and migration18–20. Highly motile
mesenchymal-like glioblastoma cells are typically associated with
abundant microglia infiltration, suggesting the importance of cues
from the tumor microenvironment for the EMT-like process21.
Consistent with the presence of a similar mechanism in epen-
dymoma, NFκB activation in PFA ependymoma tumor cells has
been linked to their inflammatory microenvironment22,23, and
hypoxia has been shown to be essential for the growth and pro-
pagation of PFA tumor cells in culture24.

Here, we investigate the specific gene-regulatory circuits that
control the EMT-like process of posterior fossa ependymoma,
and their relation to inflammation. For that purpose, we examine
the chromatin accessibility and gene expression profiles of pri-
mary and metastatic posterior fossa ependymal tumors at single-
cell resolution, and we identify key transcription factors and distal
regulatory elements associated with the transition of ependy-
moma tumor cells into a mesenchymal-like state. We then study
the effect of specific pro-inflammatory cues on ependymoma
tumor cells using a patient-derived cell model. Our results suggest
that the concerted action of TGF-β and NFκB signaling induced
by the pro-inflammatory and oxidative tumor microenvironment
mediates the EMT-like process of pediatric posterior fossa
ependymoma. Based on these findings, we argue that prospective
effective therapies for pediatric ependymoma will need to
simultaneously target both proliferative neuroepithelial- and
mesenchymal-like tumor cell populations.

Results
A single-nucleus transcriptomic atlas of primary and meta-
static posterior fossa ependymoma. To characterize the cell
ecosystem of posterior fossa ependymoma, we considered a

cohort of 46 pediatric tumors collected by the Children’s Brain
Tumor Network (CBTN). This cohort consisted of 41 primary
tumors and recurrences in the posterior fossa and 5 spinal or
cortical metastases derived from primary posterior fossa tumors
(Supplementary Data 1). All patients with metastatic tumors had
been treated with radiotherapy. We developed a classifier to
disaggregate the cohort into known molecular groups based on
the gene expression profile of the tumors and applied it to 44
tumors for which RNA-seq data was available from the CBTN25

(“Methods”). The remaining two tumors were classified based on
quantitative reverse transcription PCR (RT-qPCR) data. Con-
sistent with other studies5,8, most tumors in this cohort (42 out of
46) were classified as PFA, out of which 67% (n ¼ 28) were
identified as PFA-1 (Supplementary Data 1). We selected 5 pri-
mary, 1 progressive, and 3 metastatic grade 2/3 tumors from the
cohort and performed massively parallel single-nucleus RNA
sequencing26 using archived flash-frozen tissue. Overall, we
profiled the transcriptome of 25,349 nuclei (with an average of
2660 nuclei per sample and 544 detected genes per nucleus) and
used these data to create a transcriptomic atlas of primary and
metastatic posterior fossa ependymoma (Fig. 1). Since we were
interested in cellular programs that are shared across the tumors,
we consolidated the gene expression data of the nine tumors into
a single latent space using the algorithm Harmony27 and per-
formed an integrative analysis (Fig. 1a and Supplementary Fig. 1).
Upon clustering and differential expression analysis, we identified
ten cell populations which we annotated according to the
expression of known marker genes. These populations were
consistent with those identified in previous single-cell RNA-seq
studies of posterior fossa ependymoma9,12,13, and included
undifferentiated tumor cells, five tumor-derived cell populations
(ependymal cells, astrocytes, neural progenitor cells (NPCs),
intermediate progenitor cells (IPCs), and mesenchymal-like
tumor cells (MLCs)), endothelial cells, mural cells, oligoden-
drocyte progenitor cells (OPCs), and microglia (Fig. 1a–c and
Supplementary Data 2). To ensure that the results of our study
were consistent across samples, we performed differential gene
expression analysis individually in each sample and combined the
p values across the samples using Fisher’s method. Tumor-
derived ependymal cells were annotated based on the upregula-
tion of cilium genes (gene ontology enrichment (GOE) adjusted p
value ¼ 5´ 10�24), such as DNAAF1, DNAH3, and CFAP157
(Fig. 1b, c). In contrast, tumor-derived NPCs were characterized
by the upregulation of genes related to chemical synaptic trans-
mission (GOE adjusted p value ¼ 1:4 ´ 10�4) and neurogenesis
(GOE adjusted p value ¼ 1:5 ´ 10�6), such as NRXN3, DGKG,
and DAAM2 (Fig. 1b, c). The population of tumor-derived
astrocytes was identified by the upregulation of canonical astro-
cytic markers, including GFAP, AQP4, GJA1, and S100B (Fig. 1b).
Tumor-derived MLCs expressed mesenchymal glioma markers,
such as CD44, VEGFA, CHI3L1, HIF1A, and CA9 (Fig. 1b, c),
whereas tumor-derived IPCs upregulated cell cycle genes (GOE
adjusted p value ¼ 2 ´ 10�97), such as TOP2A,MKI67, and ASPM
(Fig. 1b). We were unable to assign a specific identity to the
population of undifferentiated tumor cells since all the genes
expressed by this population were also expressed by other tumor
cells (Supplementary Data 2).

Each cell population was similarly represented across the nine
tumors, except for the MLCs which were largely associated with
two distal metastases (Fig. 1d, e and Supplementary Fig. 1).
However, ependymal tumors present a substantial degree of
spatial heterogeneity, and MLCs are localized in perivascular and
perinecrotic regions12. Therefore, the observed cell population
abundances in the single-nucleus data might not be fully
representative of the overall abundances in the whole tumor.
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Tumor-derived cell populations were located adjacent to the
cluster of undifferentiated tumor cells in the UMAP representa-
tion and had high expression of genes that were also expressed by
the undifferentiated tumor cells (Fig. 1a and Supplementary
Data 2). OPCs also appeared adjacent to the cluster of
undifferentiated cells in this representation. However, it did not
present CAs in subsequent single-nucleus ATAC-seq analyses
(Supplementary Fig. 7), consistent with this cell population being
mostly composed of non-transformed cells. We used scVelo28 to
infer RNA velocity trajectories based on the ratio of spliced and
unspliced transcripts. The resulting trajectories were consistent
with the presence of cell differentiation lineages from the
undifferentiated tumor cells into the tumor-derived cell

populations (Fig. 1f), supporting the hypothesis that tumor-
derived cell populations represent tumor cells that have under-
gone partial cell differentiation9,12,13,29. In agreement with
previous results from bulk transcriptomics30, numerous genes
coding for components of the WNT signaling pathway were
upregulated in the non-mesenchymal tumor cell populations,
including LGR5, LGR6, FZD3, RSPO2, WNT5A, WNT3, and
DAAM2 (Fig. 1b, c and Supplementary Data 2). We collectively
denoted these tumor cell populations (tumor-derived astrocytes,
ependymal cells, and NPCs, and undifferentiated tumor cells) as
neuroepithelial tumor cells. A gene-set enrichment analysis
(GSEA) confirmed a significant enrichment for genes involved
in the positive regulation of WNT signaling in this cell population

Fig. 1 Single-nucleus RNA-seq uncovers the gene expression programs of primary and metastatic posterior fossa ependymoma. a Single-nucleus RNA-
seq data of 25,349 cells from nine tumors. The UMAP representation of the data is colored and annotated by the 10 cell populations identified. The four
tumor-derived cell lineages are indicated by arrows. b Selected differentially expressed genes for tumor-derived and non-tumor cell populations, including
marker genes (bold) that were used to annotate the cell populations, as well as differentially expressed genes discussed in the main text. Neuroepithelial-
like tumor cell populations (undifferentiated cells, astrocytes, NPCs, and ependymal cells) express multiple genes coding for components of the WNT
signaling pathway, whereas MLCs express high levels of hypoxia- and angiogenesis-related genes, and microglia express pro-inflammatory cytokines. c The
UMAP representation is colored by the expression level of several differentially expressed genes that are associated with individual tumor-derived cell
populations. d UMAP representation showing the origin (primary/metastasis) of each cell. The mesenchymal-like cell population is mostly associated with
metastatic tumors. e Stacked bar chart depicting the proportions of each cell type in each tumor. f RNA velocity stream plot. The inferred cell differentiation
trajectories originate in the undifferentiated tumor cell population and are consistent with the four lineages of tumor-derived cells indicated in a. g IL1 (top)
and TNF-α (bottom) cell-to-cell signaling networks inferred by CellChat based on differentially expressed genes that code for ligands and receptor/co-
receptors. The two networks show abundant pro-inflammatory signaling from microglia onto the tumor cells. h The UMAP representation of the single-
nucleus RNA-seq data is colored by the expression level of some of the differentially expressed genes between neuroepithelial- and mesenchymal-like
tumor cell populations. The UMAPs depict the expression of SOX2 and CD44 (top), and HIF3A and HIF1A (bottom). i Cell-to-cell WNT and hedgehog
signaling networks inferred by CellChat indicating a switch between WNT signaling in neuroepithelial-like tumor cell populations and hedgehog signaling in
MLCs. IPCs intermediate progenitor tumor cells, MLCs mesenchymal-like tumor cells, NPCs neural progenitor tumor cells, OPCs oligodendrocyte
progenitor cells.
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(normalized enrichment score= 3.05, p value= 0.04), suggesting
the importance of WNT signaling in the proliferation and
differentiation of ependymoma tumor cells.

Posterior fossa ependymoma tumor cells and infiltrating
microglia express pro-inflammatory cues. We used the single-
nucleus transcriptomic atlas to characterize the gene expression
programs associated with the tumor microenvironment of pos-
terior fossa ependymoma. Tumor-infiltrating microglia expressed
MHC class II-related molecules characteristic of glioma-
associated microglia31, including CD4, CD74, and MHC-II α/β
chains (Fig. 1b), reflecting a pro-inflammatory tumor micro-
environment similar to what has been noted in spinal
ependymoma32. We observed high expression levels of resident
microglia marker genes and low expression of bone-marrow-
derived macrophage markers33 (Supplementary Fig. 2), although
we cannot rule out the possibility that a substantial fraction of this
cell population consists of bone-marrow-derived macrophages
that have changed their gene expression profile upon recruitment
to the tumor microenvironment34.

In high-grade glioma, microglia are actively recruited to the
tumor microenvironment through paracrine communication and
chemotaxis with the tumor cells34. To investigate if a similar
mechanism could take place in ependymoma, we systematically
searched for differentially expressed genes that code for ligand
and receptor/co-receptor pairs using the algorithm CellChat35.
CellChat infers paracrine interactions using network analysis and
categorizes them into signaling pathways based on existing
databases. We focused our study on cytokine- and chemokine-
mediated interactions between the tumor cells and the micro-
environment. This analysis found the expression of several potent
NFκB activating cytokines in microglia, including interleukin-1β
(IL-1β), TNF-α, and TNFSF8, with the corresponding receptors
being expressed in tumor cells (Fig. 1b, g, Supplementary Fig. 3,
and Supplementary Data 3). Tumor cells also expressed high
levels of genes coding for agonists of chemotactic receptors
expressed in microglia. These chemotactic factors included IL-16,
CD44, IL-6, and several colony-stimulating factor (CSF) and C-C
motif ligand genes (Fig. 1b, Supplementary Fig. 3, and
Supplementary Data 3). These molecules have been previously
implicated in the chemotaxis and activation of microglia in high-
grade glioma. Specifically, the hyaluronic acid receptor CD44 can
interact with microglial osteopontin (SPP1) and is related to
glioma tumor growth36; IL-6 has been associated with myeloid
cell polarization in posterior fossa ependymoma22; and IL-16 is a
potent chemotactic cytokine that binds to the CD4 receptor37. In
addition, both microglia and tumor cells had high expression
levels of the polyfunctional cytokine TGF-β (Supplementary
Fig. 3 and Supplementary Data 3). Taken together, these results
are consistent with the promotion of a microglia-rich micro-
environment by posterior fossa ependymoma tumor cells and
extend previous bulk transcriptomics results22 by identifying
MLCs as the main source for tumor-derived IL-6, CSF1, and
CD44 (Supplementary Fig. 3).

Mesenchymal-like tumor cells are associated with abundant
vascularization and microglia infiltration, and have elevated
expression of NFκB target genes. The presence of a microglia-
rich microenvironment and the expression of inflammatory
cytokines has been related to the mesenchymal transformation of
high-grade glioma tumor stem cells under reduced oxygen levels
and other cellular stresses21,38. To assess if a similar mechanism
could underlie the generation of MLCs in ependymoma, we
performed differential gene expression analysis between this
population and the other tumor cells and characterized the gene

expression programs associated with the MLCs (Supplementary
Data 4). Our analysis identified 1128 differentially expressed
genes (false discovery rate (FDR) < 0.1), including a switch
between HIF3A and HIF1A expression and downregulation of the
neuroepithelial transcription factor gene SOX2 (Fig. 1h and
Supplementary Data 4). HIF3A is a negative regulator of the
transcription factor HIF-1α, which mediates glycolytic and other
major cellular responses to decreased oxygen levels39. The
observed change in the expression of these genes thus suggests a
possible role of HIF3A in maintaining the neuroepithelial phe-
notype of tumor cells. Consistent with these results, GSEA
revealed a strong enrichment in the MLCs for programs that are
characteristic of reactive gliosis during brain injury and
neuroinflammation40,41, including angiongenesis, hypoxia, gly-
colysis, NFκB, mTORC1, and sonic hedgehog signaling (Fig. 2a,
b). The mesenchymal gene expression signature of
glioblastoma17,42 was also enriched in the MLC population
(Fig. 2a), as previously reported12,13. The results from the ligand-
receptor gene expression analysis were consistent with the acti-
vation of these pathways in the MLCs (Fig. 1g, i, Supplementary
Fig. 3, and Supplementary Data 3). In addition, they showed the
presence of abundant autocrine TGF-β, fibroblast growth factor
(FGF), and hepatocyte growth factor signaling, as well as para-
crine TGF-β and TNF-like weak inducer of apoptosis (TWEAK)
signaling43 from tumor-derived astrocytes, in this cell population
(Supplementary Fig. 3 and Supplementary Data 3).

To further support these observations, we used the algorithm
CIBERSORTx44 to infer the abundance of the cell populations
identified in the single-nucleus RNA-seq in each of the tumors
from the large CBTN cohort profiled with bulk RNA-seq
(Supplementary Fig. 4). CIBERSORTx uses support vector
regression to estimate the relative proportion of each cell
population in the bulk tissue based on input reference gene
expression profiles. Consistent with the hypothesis that MLCs
promote and sustain an inflammatory microenvironment
through IL-6, CSF, and CD44 signaling, which results in the
accumulation of tumor-infiltrating microglia and the activation of
NFκB signaling in the tumor cells, the inferred abundance of
MLCs was strongly correlated with the expression of IL-6/STAT3,
TNF-α, TGF-β, mTORC1, and NFκB signaling gene sets in this
cohort, as well as with the abundance of microglia (Spearman’s
correlation between MLC and microglia abundance r= 0.70,
FDR < 0.001). The abundance of MLCs was also correlated with
the expression of hypoxia, angiogenesis, glycolysis, and reactive
oxygen species programs (Fig. 2c), and with the amount of
vasculature (Spearman’s correlation between MLC and mural cell
abundance r= 0.85, FDR < 0.001). Tumors with a high abun-
dance of MLCs were mostly classified as PFA-1 (Fig. 2c, PFA-1
enrichment score= 0.57, p value= 0.002). The GSEA score for
sonic hedgehog signaling was also correlated with the abundance
of MLCs (Fig. 2c, Spearman’s r= 0.47, FDR < 0.01). In contrast,
the abundance of MLCs presented an inverse relation with the
expression of neuroepithelial-like marker genes identified in the
single-nucleus RNA-seq analysis (Figs. 2c and 1b). These
correlations were confirmed in an independent cohort of 83
pediatric posterior fossa tumors5 (Supplementary Figs. 4 and 5).
Altogether, these results are consistent with the association of
MLCs with vascularization and microglia infiltration, and the
activation of NFκB in these cells by pro-inflammatory cytokines
from the microenvironment and the tumor.

Single-cell chromatin accessibility profiling enables the sys-
tematic study of primary and metastatic posterior fossa epen-
dymoma gene regulatory circuits. To characterize the regulatory
programs involved in the differentiation and EMT-like process of
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posterior fossa ependymoma tumor cells, we performed single-
nucleus ATAC-seq on 6 of the primary and metastatic tumors
profiled with single-nucleus RNA-seq. We generated a high-
resolution single-cell chromatin accessibility atlas consisting of
14,461 nuclei and 229,286 accessible peaks (2410 nuclei per
sample, 8122 fragments per nucleus, and 4.5 transcription start
site (TSS) enrichment score per nucleus on average) that passed
the quality control metrics (“Methods”). To identify programs
that are shared across the tumors, we built a consolidated
representation of the six tumors, and clustered the cells based on
their chromatin accessibility profile. We then computed the
activity of each gene based on the number of accessible peaks that
overlapped with the gene and used the marker genes identified in
the single-nucleus RNA-seq data (Fig. 1b) to identify and anno-
tate those cell populations (Supplementary Fig. 6). In total, we
identified 11 distinct cell populations, including the populations
identified in the single-nucleus RNA-seq data (except for the IPC
population) as well as T cells and mature oligodendrocytes
(Fig. 3a). The abundance of each cell population in each sample
was moderately correlated with the observed abundance of the
same population in the single-nucleus RNA-seq data of the same
tumor (Figs. 3b and 1e, Pearson’s r= 0.56, p value < 10−4), likely
due to the large degree of spatial heterogeneity of posterior fossa
ependymoma12. We used Copy-scAT45 to infer large-scale
chromosomal aberrations (CAs) from the single-nucleus

ATAC-seq data. Copy-scAT aggregates DNA fragments into
uniform bins along the genome to identify cell populations with
significant deviations in the abundance of fragments which might
be representative of CAs. This analysis identified CAs in two of
the tumors (I4 and M8), including a loss of chromosome 10 in
both samples (Fig. 3d and Supplementary Fig. 7). In each tumor,
MLCs had the same CAs as the other tumor cell populations,
suggesting a common origin. We did not detect CAs in the non-
tumor cell populations, consistent with our annotation of these
populations (Fig. 3d and Supplementary Fig. 7).

To uncover the transcriptional regulators associated with
tumor cells, we used the algorithm chromVAR46 to infer the
activity of transcription factors in each cell population based on
the genome-wide accessibility of the corresponding binding
motif. In total, we identified 554 transcription factors that were
differentially active in one or more cell populations (Fig. 3e, f and
Supplementary Data 5, Wilcoxon rank-sum test, FDR < 0.1). The
inferred activity of the transcription factors MEIS1/2 was
associated with both the mesenchymal- and the neuroepithelial-
like undifferentiated tumor cell populations (Fig. 3f), thus
representing a potential candidate for the development of
therapies that simultaneously target both populations47. In
addition, the activation of several transcription factors was
associated with the differentiation of ependymoma tumor cells
into tumor-derived cell populations. These transcription factors

Fig. 2 The mesenchymal-like tumor cell population of posterior fossa ependymoma is associated with hypoxia, angiogenesis, glycolysis, and NFκB
signaling gene expression programs. a GSEA in the MLC population showing enrichment for hypoxia, angiogenesis, glycolysis, NFκB, and other signaling
pathways in this population. Normalized enrichment scores larger or smaller than 1 indicate an enrichment or depletion of the gene set in the MLC
population, respectively. b Volcano plot showing differentially expressed genes between neuroepithelial- and mesenchymal-like tumor cells, where genes
belonging to glycolysis, NFκB signaling, TGF-β signaling, and hedgehog gene sets are indicated (Fisher’s method combined p value, adjusted for multiple
hypothesis testing using Benjamini-Hochberg procedure). c The single-nucleus gene expression data were used to infer cell population abundances in a
cohort of 42 pediatric posterior fossa ependymal tumors profiled with bulk RNA-seq by CBTN. Tumors are arranged from left to right by decreasing
inferred abundance of MLCs. From top to bottom, the molecular subgroup, age of diagnosis, inferred abundance of distinct cell populations, GSEA scores of
various representative signaling pathways, and expression of representative genes are shown. On the right side, the Spearman’s correlation coefficient of
each of these features with the inferred abundance of MLCs and its level of significance are indicated (two-sided test of association; *FDR � 0:05, **FDR
� 0:01, ***FDR � 0:001). Numeric q values are provided in the Source Data file. IPCs intermediate progenitor tumor cells, MLCs mesenchymal-like tumor
cells, NPCs neural progenitor tumor cells, NECs neuroepithelial-like tumor cells.
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included ZIC3/4/5 and the motile ciliogenesis regulators RFX1/2/
3/4/548, which were associated with ependymal tumor cell
differentiation, the glucocorticoid and mineralocorticoid recep-
tors NR3C1/2, which were associated with astrocytic tumor cell
differentiation, and the pro-neural transcription factors ASCL1
and NHLH149, which were associated with the differentiation
into tumor-derived NPCs (Fig. 3e, f and Supplementary Data 5).
Our results were also consistent with the histone 3 lysine 27
acetylation chromatin immunoprecipitation and sequencing
(H3K27ac ChIP-seq) marks of pediatric ependymoma50. In
particular, 41% (n= 229) of the differentially active transcription
factors identified in our analysis were identified as core
transcription factors based on bulk-level H3K27ac marks, of

which 82% (n= 187) were associated with tumor cell populations
whereas the rest were associated with the microenvironment.

To infer the regulatory logic associated with the gene
expression programs of the tumor cell populations, we identified
differentially accessible peaks in each cell population that
overlapped gene enhancers annotated in the GeneHancer
database51. In total, we identified 8252 differentially accessible
enhancers associated with at least one tumor cell population
(Supplementary Data 6, Fisher’s exact test FDR < 0.05). As
expected, the genes regulated by these enhancers significantly
overlapped with the differentially expressed genes found in the
single-nucleus RNA-seq analysis of the same cell populations
(Fig. 3g). Taken together, this multi-modal single-nucleus atlas

Fig. 3 Single-nucleus ATAC-seq of primary and metastatic ependymal tumors uncovers transcription factors and enhancers associated with the
differentiation and EMT of posterior fossa ependymoma. a Single-nucleus ATAC-seq data of 14,461 cells from six primary and metastatic posterior fossa
ependymal tumors. The UMAP representation of the data is colored and annotated by the 11 cell populations identified. b Stacked bar chart showing the
proportion of each cell type in each of the six tumors. The UMAP representation is labeled according to the origin (primary/metastasis) of each cell (c),
and the presence/absence of chromosomal aberrations as inferred from the single-nucleus ATAC-seq data (d). e Transcription factor (TF) binding motif
accessibility score for TFs with differentially accessible binding motifs (Wilcoxon rank-sum test; FDR < 0.01) in at least one of the tumor cell populations
and z-score fold-change Δz � 1. f The UMAP representation is colored by the TF binding motif accessibility score of five representative TFs that are
significantly associated with individual tumor cell populations and are discussed in the main text. The JASPER database ID for the corresponding motif is
indicated in parenthesis. g Venn diagrams showing the overlap between differentially accessible (DA) enhancers and enhancers associated with
differentially expressed genes (DEGs) in tumor-derived cell populations. The number of enhancers in each class and the level of significance for the
association are indicated (two-sided Fisher’s exact test; **p value � 0:01). Numeric p values for MLCs and ependymal cells are 0.0016 and 0.0075,
respectively. MLCs mesenchymal-like tumor cells, NPCs neural progenitor tumor cells, OPCs oligodendrocyte progenitor cells.
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provides a unique resource for the study of gene regulatory
circuits involved in the tumorigenesis and progression of
pediatric posterior fossa ependymoma.

Neuroepithelial transcription factors are inhibited, and NFκB
and AP-1 complexes are activated, during the EMT of posterior
fossa ependymoma. We used the single-nucleus atlas and bulk
gene expression data to identify key regulatory elements asso-
ciated with the EMT-like process of posterior fossa ependymoma.
For that purpose, we adopted a conservative approach and
focused on transcription factors whose expression is significantly
correlated or anti-correlated (Spearman’s correlation p value <
0.05) with the abundance of MLCs according to the bulk data
and have differentially accessible binding motifs (Wilcoxon rank-
sum test, FDR < 0.05) across the EMT-like transition according to
the single-nucleus data. This approach identified 42 and 19
transcription factors that were significantly associated with the
neuroepithelial- or mesenchymal-like tumor cell populations,
respectively (Fig. 4a and Supplementary Data 7). Transcription
factors that were active in the neuroepithelial-like tumor cells
included transcription factors expressed in the neuroepithelium
of the brainstem and isthmic organizer during mouse embry-
ogenesis according to RNA in situ hybridization data from the
Allen Developing Mouse Brain Atlas (Fig. 4a, b). These included
SOX2, the nuclear factors NFIB and NFIX, and the regulatory
factor X transcription factors RFX2/3, which play critical roles in
the maintenance and differentiation of neuroepithelial stem cells
during neurodevelopment52–54. Neuroepithelial transcription
factors were inactive in the MLCs. Instead, this cell population
was characterized by the activation of the NFκB and AP-1 tran-
scription factor complexes and MYC (Fig. 4a). These transcrip-
tion factors are activated by a variety of pro-inflammatory stimuli
and oxidative stresses and play essential pro-oncogenic roles in
multiple cancers55–57. In particular, both MYC and AP-1 mediate
the oncogenic functions of ERK and p38/JNK signaling
cascades58–60, and these signaling pathways, as well as NFκB, can
trigger and modulate the EMT in epithelial cancers56,61,62. Con-
sistent with the accessibility of NFκB binding motifs, the pro-
moter of LDOC1, a negative regulator of NFκB in ependymoma
and other cancers23,63,64, was only accessible in neuroepithelial-
like tumor cells (Fig. 4c). Members of the MAF/BACH and YAP/
TAZ complexes, which have been respectively implicated in the
metabolism and metastatic potential of cancer cells65 and the
mesenchymal differentiation of glioblastoma66, were also active in
the MLCs (Fig. 4a). To elucidate potential regulatory interactions
between the NFκB, AP-1, MYC, and MAF/BACH signaling
pathways during the EMT of posterior fossa ependymoma, we
identified differentially accessible binding motifs of these tran-
scription factor complexes in the loci of genes that code for ele-
ments of these complexes. This analysis identified a substantial
amount of crosstalk between transcription factors from these
pathways (Fig. 4d) and highlighted activating transcription factor
3 (ATF3) as a potential integrator of signals from the NFκB, AP-
1, and MAF/BACH signaling pathways during the EMT-like
process of ependymoma tumor cells (Fig. 4d, e).

Ependymoma mesenchymal-like tumor cells consist of multiple
cell subpopulations with distinct transcriptomic profile and
signaling activity. We next investigated cell variability within the
MLCs. We first used a spectral graph approach67 to characterize
the transcriptional heterogeneity within this cell population. This
approach identified 4714 genes with a significant pattern of
expression (FDR < 0.1) and revealed multiple subpopulations of
MLCs marked by the expression of SERPINE1, MET, CHI3L1,
ITGA10, GPC5, RGS2, and fibronectin 1 (FN1), among other

genes (Fig. 4f and Supplementary Data 8). An analysis of the
MLCs by clustering and differential gene expression analysis
identified 4 subpopulations with distinct gene expression profiles
(Supplementary Fig. 8 and Supplementary Data 9). These sub-
populations included a transitional population characterized by
the co-expression of neuroepithelial (e.g., RFX3) and mesenchy-
mal genes (e.g., VEGFA and CD44), a metabolic population
characterized by the expression of hypoxia (GOE adjusted p
value= 9´ 10�6), histone demethylation (GOE adjusted p
value= 4´ 10�4), and glycolysis genes (GOE adjusted p value=
8 ´ 10�4), a population expressing high levels of angiogenesis
genes (GOE adjusted p value= 3 ´ 10�5) as well as FN1, CHI3L1,
and SERPINE1, and a small population with expression of the
gene GPC5, which has been linked to cell proliferation via sonic
hedgehog signaling in mesenchyme-derived tumors68 (Fig. 4f).
These analyses also revealed the upregulation of several genes
associated with multi-drug and radiation therapy resistance. In
particular, ABCC3, which codes for Multi-drug Resistance-
Associated Protein 3 and is associated with chemotherapeutic
resistance in several cancers69,70, was expressed at high levels in
angiogenic MLCs (Supplementary Fig. 9a). The expression of
PDK1, which leads to HIF-1α-mediated radiation resistance71,
was upregulated in metabolic MLCs (Supplementary Fig. 9a). In
addition, MLCs expressed high levels of the NF-κB target gene
SOD2 (Supplementary Fig. 9a), which mediates radiation resis-
tance through oxidative stress modulation72,73. Consistent with
these results, the expression of all of these genes in the larger
CBTN and Heidelberg cohorts was strongly correlated with the
inferred abundance of MLCs in each patient (Supplementary
Fig. 9b, c).

We followed the same approach to investigate the hetero-
geneity of the MLC population in the single-nucleus ATAC-seq
data. This identified a substantial amount of heterogeneity in the
activity of several transcription factors within the MLC popula-
tion, including EGR1, ATF3, MYC, and TEAD3/4 (Fig. 4b, g and
Supplementary Data 10). The patterns of activity for these
transcription factors were consistent with their expression profile
in the single-nucleus RNA-seq data. For example, the gene
expression level of ATF3 and the accessibility of its binding motif
were downregulated in angiogenic MLCs, which had high gene
expression levels and binding motif accessibility of the transcrip-
tion factor EGR1 (Fig. 4g). On the other hand, MYC and ATF3
were upregulated in metabolic MLCs. Taken together, these
results indicate that the modulation of the AP-1, MYC, and NFκB
signaling pathways, possibly due to differences in the local tumor
microenvironment, is associated with substantial heterogeneity
within the MLC population.

TGF-β1 and TNF-α respectively induce and modulate the EMT
in a patient-derived PFA cell model. To directly investigate the
effect of pro-inflammatory cytokines in posterior fossa ependy-
moma tumor cells, we considered the cell model EPD-
210FHTC74. This early passage cell line was derived from a
M0 stage PFA ependymoma recurrence in a 10 year-old patient,
and it recapitulates the gene expression, DNA methylation, copy
number, and mutation profiles of the original tumor74. Since the
results of our single-nucleus data analysis indicated abundant
TNF-α/NFκB and TGF-β signaling in the MLC population and
expression of these two cytokines in tumor-infiltrating microglia
(Figs. 2 and 4 and Supplementary Fig. 3), we focused our analysis
on the effect of these cytokines. We cultured the cells for 5 days in
neural stem cell basal medium supplemented with recombinant
FGF (20 ng/ml) and epidermal growth factor (EGF) (20 ng/ml), in
the presence or absence of human TGF-β1 (4 ng/ml) and/or
TNF-α (10 ng/ml) (Fig. 5a). In absence of TGF-β1, cells formed
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Fig. 4 The transition of posterior fossa ependymoma tumor cells into a mesenchymal-like state involves the inhibition of neuroepithelial transcription
factors and the activation of the NFκB and AP-1 complexes. a Differentially expressed transcription factors in the neuroepithelial- or mesenchymal-like
tumor cell populations that have differentially accessible binding motifs across the EMT (FDR < 0.1). The heatmap shows the transcription factor binding
motif score in the neuroepithelial (zNECs) and mesenchymal-like (zMLCs) cell tumor cell populations according to the single-nucleus ATAC-seq data, and the
Spearman’s correlation coefficient between the inferred abundance of MLCs and the expression level of the transcription factor in the CBTN (rCBTN) and
Heidelberg (rHeidelberg) bulk RNA-seq cohorts. Transcription factors that are part of the NFκB and AP-1 complexes are indicated in orange and blue,
respectively. bWhole-mount RNA in situ hybridization of sagittal sections of E13.5 mouse embryos, showing the expression of neuroepithelial transcription
factors in the neuroepithelum of the brainstem and isthmic organizer (Image credit: Allen Institute). c Normalized chromatin accessibility profile at the
LDOC1 locus for neuroepithelial-like and MLC populations, showing the inaccessibility of the promoter in MLCs. d Inferred regulatory network between
some members of the MAF/BACH, NFκB, and AP-1 complexes. Arrows from one transcription factor into another indicate the presence of at least one
differentially accessible binding motif of the first transcription factor in the gene locus of the second transcription factor (Fisher’s exact test, FDR � 0:05).
This analysis indicates ATF3 integrates signals from the AP-1, ERK, MAF/BACH, and NFκB signaling pathways. e Normalized chromatin accessibility at the
ATF3 gene locus for neuroepithelial- and mesenchymal-like tumor cells, where the binding sites of EGR1, RELA, MAPK, and ATF3 are indicated.
Transcription factor binding sites are differentially accessible between the neurepithelial- and mesenchymal-like cell populations. (Two-sided Fisher’s exact
test; *FDR � 0:05, **FDR � 0:01, ***FDR � 0:001). Numeric q values are provided in the Source Data file. f The part of the UMAP representation
corresponding to the MLC population is colored by the expression level of several genes with significantly heterogeneous expression within that cluster
(Laplacian score, FDR < 0.01) based on a spectral graph method. g The part of the single-nucleus ATAC-seq and RNA-seq UMAPs that corresponds to the
MLC population is colored by the transcription factor binding motif accessibility score and the gene expression level of RELA, ATF3, EGR1, and MYC
transcription factors. In the figure, a substantial amount of heterogeneity is observed within the MLC population, and the relative patterns of expression
and motif accessibility are consistent between the single-nucleus RNA-seq and ATAC-seq representations. MLCs mesenchymal-like tumor cells, NECs
neuroepithelial-like tumor cells, TFBMs transcription factor binding motifs.
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cell-cell junctions and grew in colonies, consistent with a neu-
roepithelial phenotype (Fig. 5b). However, treatment with TGF-
β1 led to the disruption of cell-cell junctions, indicating a more
mesenchymal morphological phenotype (Fig. 5b). RT-qPCR
showed the upregulation of mesenchymal (FN1, CHI3L1, CD44,
VEGFA, SERPINE1) marker genes in the presence of TGF-β1
(Fig. 5c), consistent with the induction of the EMT-like process
by this cytokine. Treating the cells with TNF-α alone also induced
the upregulation of these marker genes, including a 53x increase
in CHI3L1 expression with respect to the treatment with TGF-β1
alone (Fig. 5c, two-sided t-test between log2(fold changes), p
value < 10−4). However, cells grew in 3D colonies and had a non-
mesenchymal morphological phenotype in the presence of TNF-α
alone (Fig. 5b), indicating that TGFβ signaling is required to
disrupt cell-cell junctions in this cell model. TNF-α in combi-
nation with TGF-β1 potentiated the mesenchymal gene expres-
sion signature induced by TGF-β1 (Fig. 5b) and led to a 193x
increase in FN1 (two-sided t-test p value < 10−3), a 31x increase
in CHI3L1 (two-sided t-test p value < 10−3), and 76x increase in
VEGFA (two-sided t-test p value < 10−3) expression with respect
to the treatment with TGF-β1 alone (Fig. 5c). To investigate if the

observed disruption of cell-cell junctions induced by TGF-β was
associated with a more invasive phenotype, we evaluated the
migratory capacity of the cells by means of a cell migration assay
(Fig. 5d, e). Consistent with the mesenchymal morphological
phenotype induced by this cytokine, the tumor cells significantly
increased their invasive capacity upon treatment with TGF-β1
(two-sided t-test p value < 0.01). To interrogate the proliferative
potential of the cells under each condition, we labeled them with
5-Ethynyl-2′-deoxyuridine (EdU) and treated them with TGF-β1
and/or TNF-α for 2 days. Treatment with TGF-β1 and/or TNF-α
led to a significant decrease in the rate of cell proliferation with
respect to the non-treatment control (Fig. 5f, two-sided t-test
between labeled cell proportions, p value < 0.01), consistent with
the lower proliferation rates of mesenchymal cells75. Taken
together, these results confirm that pro-inflammatory cytokines
can trigger a mesenchymal-like gene expression signature in
posterior fossa ependymoma cells. However, the phenotype of
cells expressing mesenchymal marker genes is diverse and
depends on the specific cytokines that act on them. In particular,
our study of this cell model suggests that TGF-β signaling is
required for MLCs to acquire an invasive phenotype, which is

Fig. 5 Pro-inflammatory cytokines induce the expression of mesenchymal-like genes and diverse cellular phenotypes in a patient-derived PFA cell
model. a Experimental design. The PFA primary cell line EPD-210FHTC was cultured in the presence or absence of TGF-β1 and/or TNF-α for 5 days. The
experiment was performed in three biological replicates. b Image of the EPD-210FHTC cells after the 5-day culture, for each of the treatments. TGF-β1 is
required for the cells to acquire a mesenchymal phenotype, whereas treatment with TNF-α potentiates the formation of 3D colonies. c Average change in
the gene expression level of MLC-specific markers with respect to the no-treatment control after 5 days of treatment. Gene expression levels were profiled
by RT-qPCR. Both TGF-β1 and TNF-α induce the upregulation of MLC markers, but the relative expression levels of FN1 and CHI3L1 strongly depend on the
particular treatment. Error bars indicate 90% confidence intervals. d Cell migration assay. An example of the same gap at day 0 and day 5 is shown for
each condition. Treatment with TGF-β1 leads to a substantial increase in the invasive potential of the cells. e Average fraction of the area invaded by the
cells after 5 days in the cell migration assay across four biological replicates (two-sided t-test; *p value � 0:05, **p value � 0:01). Error bars indicate 90%
confidence intervals. f Cell proliferation assay by EdU incorporation. The average proportion of EdU+ cells after 2 days of treatment is shown for each of the
experimental conditions. The cell proportions in each condition were compared to the cell proportion in the no-treatment control across three biological
replicates using a two-sided t-test. Treatment with TGF-β1 and/or TNF-α leads to a small reduction in cell proliferation (**p value � 0:01, ***p value
� 0:001). Error bars indicate 90% confidence intervals. Source data and numeric p values are provided in the Source Data file.
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characterized by particularly high expression levels of FN1,
CHI3L1, and SERPINE1.

Discussion
Tumor cell states are the result of multiple concurrent molecular
processes that are modulated by the genetic and epigenetic
alterations of the cells. Here, we have studied the gene regulatory
circuits that underlie cell-intrinsic differentiation programs and
responses to the local microenvironment in pediatric posterior
fossa ependymoma. Our study has particularly focused on the
transition of tumor cells into a mesenchymal-like cell state. For
that purpose, we have generated a single-nucleus chromatin
accessibility and gene expression atlas of primary and metastatic
posterior fossa tumors comprising ~40,000 cells. This atlas
represents a unique resource for the study of the molecular
programs associated with the cell ecosystem of this disease. Our
results provide a more detailed and mechanistic understanding of
the mesenchymal-like gene expression signature identified in
previous single-cell RNA-seq studies of posterior fossa
ependymoma12,13. The combined analysis of single-nucleus
chromatin accessibility and gene expression data, as well as our
experiments with a patient-derived cell model, provide evidence
of the involvement of specific cytokines from the tumor micro-
environment in the mesenchymal transformation of posterior
fossa ependymoma, and identify the main transcription factors
and regulatory elements involved in this process. These data show
that the transition of tumor cells into a mesenchymal-like state is
characterized by the inactivation of neuroepithelial transcription
factors, such as SOX2 and members of the Nuclear Factor I and
Regulatory Factor X families, and the activation of transcription
factors from the NFκB, AP-1, MAF/BACH, MYC, YAP/TAZ, and
sonic hedgehog signaling pathways. Given that the timeframe of
RNA velocity trajectories in our analyses is determined by the rate
of splicing and nuclear export76, we expect the transition between
neuroepithelial and mesenchymal-like cells to take place in hours.
This time scale is consistent with our experiments on a patient-
derived cell model and is comparable to the observed time scale
for the mesenchymal transformation of glioblastoma pro-neural
stem cells upon ionizing radiation77.

Ependymoma mesenchymal-like cells are characterized by the
expression of pro-inflammatory cytokines, hypoxia, angiogenesis,
and glycolysis programs, which are reminiscent of the reactive
gliosis programs that take place during brain injury and neu-
roinflammation. Although these programs are also expressed by
mesenchymal cells during the EMT of epithelial cancers, our
results also highlight important differences. Most notably, we find
that the mesenchymal-like cell population, as defined by the
expression of the mesenchymal-like gene signature, is a hetero-
geneous population of cells, and only a subset of it has the high-
motility phenotype that is characteristic of bona fide mesenchy-
mal cells. We therefore find that it may be more accurate to
collectively refer to the mesenchymal-like cell population as
“tumor-derived reactive glia”. Our experiments with a patient-
derived cell model suggest that TGF-β signaling is required to
induce the high-motility phenotype in tumor-derived reactive
glia, whereas other pro-inflammatory cytokines like TNF-α may
potentiate this phenotype by crosstalk with the NFκB pathway.
We have identified some of the molecular characteristics of the
high-motility mesenchymal-like phenotype in our patient-derived
cell model, most notably high gene expression levels of FN1,
CHI3L1, and SERPINE1 in relation to other tumor-derived
reactive glia. However, more extensive studies using orthotopic
mouse models are needed to fully characterize this population
under physiological conditions and in relation to the molecular
data from patients, and to clarify if the migratory phenotype

observed in vitro is actively involved in tumor invasion and
metastasis.

Our results also indicate a possible role of tumor-infiltrating
microglia in the mesenchymal transformation and progression of
ependymal tumors by acting as a source of TGF-β1 and other
EMT-like inducing cytokines. The implication of the micro-
environment in the mesenchymal transformation of glioma has
been also noted in the context of glioblastoma38,78. As occurs
with ependymoma, the mesenchymal gene expression signature
of glioblastoma has been associated with abundant microglia
infiltration, vascularization, and mesenchymal-like tumor stem
cells79,80. The transition of pro-neural into mesenchymal glio-
blastoma stem cells is promoted by NFκB and YAP/TAZ sig-
naling and can be triggered by hypoxia, reactive oxygen species,
ionizing radiation, and genetic alterations such as the loss of the
neurofibromin 1 (NF1) gene17,66,77,81–83. In the case of ependy-
mal tumors, however, further work is needed to identify the
specific triggers of mesenchymal transformation, which might
include cellular stresses that are unique to ependymoma, such as
inflammation and metabolic burden.

From a therapeutic perspective, our results suggest the
importance of targeting both proliferative neuroepithelial-like
tumor cells and tumor-derived reactive glia for prospective
therapies to be effective. This can prove to be challenging due to
the large differences that we observe in the gene regulatory cir-
cuits and pathways that control the maintenance and prolifera-
tion of these two stem cell populations. However, our results
identify several transcription factors, such as MEIS1/2, that are
active in both neuroepithelial-like tumor cells and tumor-derived
reactive glia, and which seem to be specific to tumor cells. These
are thus promising candidates to therapeutic targets, for which
small-molecule inhibitors already exist47, and which deserve to be
further studied. More broadly, we expect that the combination of
high-throughput molecular profiling techniques, such as those
used in this study, with perturbation experiments using ortho-
topic mouse models will enable the development of new ther-
apeutic approaches for pediatric ependymoma.

Methods
Ethical approval. All procedures in this study were performed according to the
institutional regulations of the University of Pennsylvania and the Children’s
Hospital of Philadelphia. The specimens and data were provided by the CBTN in a
deidentified form according to the U.S. Department of Health and Human Services
regulations and were not considered as Human Subjects Research by the Institu-
tional Review Board of the University of Pennsylvania.

Tumor samples. De-identified flash-frozen tumor specimens were provided by the
CBTN biorepository (Approved Biospecimen Project #29). The anatomic location
of the tumors and their diagnosis were obtained from the deidentified surgical,
radiology, and pathology reports. We considered samples for which the age at the
time of diagnosis was <16 years old, their location was in the posterior fossa (for
primary tumors and recurrences) or were derived from a primary tumor located in
the posterior fossa (for metastases), and their RNA was well preserved according to
bioanalyzer (see “Single-nucleus RNA-seq library preparation and sequencing”).
The molecular identity of the tumors was confirmed based on the expression of
gene markers in bulk RNA-seq data (see “Bulk RNA-seq data processing”). For
specimens with no available bulk RNA-seq data (I2 and M8), the molecular
identity was assessed by quantitative reverse transcription PCR. cDNA synthesis
was performed using Maxima H Minus Reverse Transcriptase (Thermo Scientific,
cat. # EP0753) according to the manufacturer’s protocol, with Oligo(dT)18 (Fisher
Scientific, cat. # SO131). cDNA concentration was measured with a Qubit 3
Fluorometer (Life Technologies). We used 10 ng of cDNA for each RT-qPCR
reaction and KiCqStart SYBR Green primer pairs for GAPDH, L1CAM, APLNR,
IFT46, CXorf67, and MECOM (Sigma-Aldrich). SYBR FAST Universal qPCR
Master Mix with low Rox (Roche Sequencing, cat. # KK4602) was used and the
reaction was performed with a QuantStudio 7 Flex (Applied Biosystems). Four
technical replicates of each sample-primer combination were performed and used
to determine the standard error.

Single-nucleus RNA-seq library preparation and sequencing. Approximately
8 mm3 of tissue was cut from each tumor. Samples were incubated at room
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temperature in 1 ml homogenization buffer for 3 min, then dissociated with
13 strokes of a tight pestle in a 2 ml glass homogenizer. Samples were then filtered
with a 40 μm mesh filter followed by a 30 μm mesh filter. After brief tabletop
centrifugation, the nuclei pellet was resuspended in 1 ml PBA-BSA 0.01% and
counted. Nuclei were defined by shape, size, and general appearance, and diluted to
100 nuclei/μl. Single-nucleus RNA-seq library preparation was performed as pre-
viously described26 using a Drop-seq microfluidic system. The quality of the cDNA
libraries was evaluated with a bioanalyzer and quantified using a KAPA Library
Preparation Kit (Roche Sequencing, cat. # KK4824). Libraries were sequenced
using an Illumina NextSeq 500 on high output mode with 20 bp (read 1) and 60 bp
(read 2) paired end reads.

Single-nucleus ATAC-seq library preparation and sequencing. Nuclei were
isolated from flash-frozen tumors following the 10x Genomics demonstrated
protocol for Mouse Brain Tissue, with the following modifications: the first incu-
bation in the lysis buffer was decreased to 45 s, and the second incubation, after
pipet mixing, was 90 s. A 40 μm nylon cell strainer and a 30 μm MACS Smart-
Strainer (Miltenyi Biotec, cat. #130-098-458) were used in place of the suggested
70 μm and 40 μm tip strainers. Single-nulcei ATAC-seq cDNA libraries were
prepared using the Chromium Single-Cell Platform (10x Genomics) by the Center
for Applied Genomics of the Children’s Hospital of Philadelphia and sequenced on
an Illumina NovaSeq 6000 sequencer using two 100-cycle SP flow cells.

Cell culture experiments. The EPD-210FHTC cell line was acquired from the
Brain Tumor Resource Lab at Fred Hutchinson. This early passage cell line has
been recently authenticated by the Brain Tumor Resource Lab using whole-genome
methylation and gene expression profiling74. We confirmed the expression of
posterior fossa ependymoma stem cell markers (SOX2, VIM, TKTL1, GRIA4) upon
receiving the cell line. The cell line was tested negative for mycoplasma con-
tamination using a PCR based method. Growth conditions were followed as sug-
gested by the Brain Tumor Resource Lab. Cell culture media had the following
components: NeuroCult NS-A Proliferation Kit (Human) (Stemcell Technologies,
cat. #L05751) supplemented with 20 ng/ml human FGF (Peprotech, cat. #100-18B),
20 ng/ml murine EGF (Peprotech, cat. #315-09), and 1% penicillin/streptomycin
(Gibco, cat. #15140122). Plates were coated with laminin (Sigma-Aldrich, cat.
#L2020) (10 μg/ml) for 6 to 24 h at 37 °C before use. Cells were cultured at 37 °C,
5% CO2. For TGF-β1 and TNF-α treatments, cells were treated with 4 ng/ml TGF-
β1 (Sigma-Aldrich, cat. #H8541-5UG), 10 ng/ml TNF-α (Sigma-Aldrich, cat. #
H8916-10UG), or both, for 5 days before RNA extraction. Media was replenished
every 48 h. Cells were plated at the same density and given 24 h after plating before
receiving treatment. After 5 days, cells were imaged and RNA extraction was
carried out using the RNAqueous 4PCR kit (Life Technologies, cat. #AM1914).
RNA was immediately stored at −80 °C until cDNA synthesis. cDNA was syn-
thesized using Maxima H Minus Reverse Transcriptase (Thermo Scientific, cat.
#EP0753) following the manufacturer’s instructions. KiCqStart SYBR Green primer
pairs for ACTB, FN1, VEGFA, CHI3L1, SERPINE1, and CD44 (Sigma-Aldrich)
were used for RT-qPCR. All experiments were done in at least three biological
replicates.

Proliferation assay. Cells were plated on culture slides (Falcon, cat. #354114)
treated with laminin (10 μg/ml) 24 h before receiving treatment with TGF-β1,
TNF-α, or both, as described in the paragraph “Cell culture experiments”, as well as
EdU (Click-It Edu Proliferation Kit for Imaging, Invitrogen, cat. #C10338) at a
concentration of 10 μM. After 48 h, slides were fixed and permeabilized, followed
by staining with AlexaFluor 555 provided by the Click-It kit per the manufacturer’s
protocol. Images were taken using a Leica TCS SP8 Multiphoton Confocal
Microscope. The proportion of EdU+ nuclei was quantified using ImageJ (version
2.35). We despeckled the images and used an adaptive local threshold based on
moments to delineate signal from background pixel intensity. We then removed
outlier pixels based on a local radius, used the binary open function of ImageJ to
remove background signal originating from the cell soma, and eliminated the
remaining noise by another round of despeckling and removing outlier signal. We
used the watershed algorithm to segment nuclei based on the nuclear stain and
filtered out regions with an area smaller than 15 or larger than 600 μm. Segmented
nuclei were added to the ImageJ ROI manager and used to count the proportion of
EdU+ nuclei. To identify EdU signal from background, we despeckled the images
from the corresponding channel and used an adaptive local threshold based on
moments. We used a t-test to determine whether the mean proportion of EdU+
nuclei within each of the three treatment conditions was equal to the control
condition. The assay was performed in three biological replicates.

Cell migration assay. Cells were plated on laminin-coated 6-well plates and
allowed to grow for 24 h. A P200 pipet tip was used to then generate a wound on
the cell monolayer. Cell media was immediately changed to fresh media containing
appropriate treatment (TGF-β1 at 4 ng/ml, TNF-α at 10 ng/ml, or both cytokines).
Wounds were imaged once every 24 h for 5 days. The assay was performed in four
biological replicates.

Bulk RNA-seq data processing. De-identified raw RNA-seq data of 44 out of 46
pediatric ependymal tumors located in the posterior fossa were provided by the
CBTN biorepository84 (CBTN Approved Data Project 19). Gene expression was
quantified using Kallisto (version 0.45.1)85 and aligned to the human reference
genome GRCh38. To assign each of the 44 tumors a molecular group, we devel-
oped a classification method based on gene set enrichment analysis (GSEA)
(https://zenodo.org/badge/latestdoi/264224369). This method determines whether
a gene signature s is significantly enriched among a ranked list of genes L ordered
by expression. Gene signatures s were constructed from an independent cohort of
ependymal tumors profiled for expression by microarrays5. For each of the eight
molecular groups in this cohort (supratentorial sub-ependymoma, supratentorial
ependymoma with YAP1-fusion, supratentorial ependymoma with RELA-fusion,
posterior fossa sub-ependymoma, posterior fossa ependymoma group A, posterior
fossa ependymoma group B, spinal myxopapillary ependymoma, and spinal ana-
plastic ependymoma), we used limma’s linear model (version 3.34.1)86 to identify
the top n ¼ 50 differentially expressed genes exclusively upregulated in each group
(p value < 0.01 and log2 fold change >2). Additionally, we utilized the gene sig-
natures for PFA-1 and PFA-2 tumors from the bulk transcriptomic data of ref. 8,
consisting of the top n ¼ 58 upregulated genes exclusive to each signature. To
determine the molecular subgroup of each tumor in the CBTN cohort, we per-
formed GSEA for each signature on the query bulk RNA-seq data. For that pur-
pose, we calculated a running-sum statistic for each signature s by walking down
the complete list L of genes in the query dataset in decreasing order of expression.
For gene j in L, the statistic increases by 1

n if Lj 2 s or decreases by 1
m�n if Lj=2s, where

m is the total number of genes in L. By randomizing the genes in s, we used a
permutation test to estimate the statistical significance of each score. If the p value
of all signatures was above 0.35, no molecular group was assigned. Due to apparent
limited power of the PFB gene expression signature, tumors were classified as PFB
if their PFB p value was less than 0.34. The training error of our classifier was 1.4%
(3/209). To further benchmark the performance of our classifier, we ran it on an
extended cohort of 94 pediatric ependymal tumors of mixed anatomical origin
from the CBTN biorepository for which bulk RNA-seq data were available. The
classifier correctly predicted the anatomic location of the tumors in 92.6% (87/94)
of the cases.

Single-nucleus RNA-seq data processing. The Drop-seq computational
pipeline87 was used to map to the human reference genome (GRCh38) via STAR
alignment (version 2.6.1a)88, correct the cellular and molecular barcodes for
sequencing errors, and build a count matrix. To account for poly-adenylated pre-
mRNAs in the nucleus, we included reads that aligned to intronic regions of the
genome (locus_function_list = intronic). We removed low-quality cells, debris,
and empty droplets based on the inflexion point in a plot of the number of UMIs in
each droplet ranked by decreasing order of magnitude. Additionally, we plotted the
number of UMIs (in log scale) against the proportion of mitochondrial genes for
each droplet. For most samples, the distribution of droplets in this scatter plot was
bimodal. We used a linear cut to segregate cells (high number of UMIs and low
percentage of mitochondrial genes) from debris (high percentage of mitochondrial
genes and low number of UMIs) in this plot. Gene expression was log-normalized
by library size in each cell and the most variable genes were selected for PCA using
Seurat (version 3.2.2)89. We then used Harmony (version 0.1.0)27 with default
parameters to build a consolidated representation of the nine samples based on the
top 5000 most variable genes and 30 principal components. We clustered the data
using Louvain community detection based on the top 30 dimensions of the con-
solidated space and used Uniform Manifold Approximation and Projection
(UMAP)90 to construct a two-dimensional visualization.

RNA velocity field. We used the Velocyto command line tool76 to select for
spliced and unspliced reads in each cell and generate loom files. We then used the
package scVelo28 to estimate the RNA velocity field using dynamical modeling
based on the top 15 principal components, 30 nearest-neighbors, and the top 2000
most variable genes with at least five counts in total. To apply this model to single-
nucleus RNA-seq data we reinterpreted the RNA degradation rate of the scVelo
model as the nuclear sport rate. Using the same set of parameters that we used for
clustering and UMAP visualization (cf. “Single-nucleus RNA-seq data processing”)
led to a comparable RNA velocity map, except for an overall directionality in the
IPC population.

Differential gene expression analysis. For each sample, we used edgeR’s general
linear model (version 3.20.1)91 to identify differentially expressed genes between
each cell population and the other cells in the sample. Cell population assignments
were based on the combined analyses of all samples. We only considered genes
expressed in at least 5% of the cells of the cluster and samples where at least 3% of
the cells belonged to the cluster of interest. We then used Fisher’s χ2 statistic to
combine the p value of each gene across samples for genes expressed in at least two
samples. We followed the same approach to perform differential expression
between the mesenchymal- and neuroepithelial-like tumor cell populations. We
used the package CellChat35 to identify differentially expressed genes based on an
un-truncated mean, assign genes to ligand-receptor/co-receptor pairs, and cate-
gorize them into signaling pathways. We used the R package RayleighSelection67 to
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compute the Laplacian score on the log-normalized expression matrix and identify
genes with a significant gradient of expression within the MLC population. We
used Pearson’s correlation distance as metric and took the radius parameter ɛ of
RayleighSelection to be the median pairwise distance among cells. We only con-
sidered genes expressed in 4–50% of the cells in this analysis. To reduce the
runtime, we used a random sample of 1000 cells and verified the consistency of the
results across different sets of randomly sampled cells.

Gene-set enrichment analysis. We used the R packages msigdbr92,93 and fgsea94

to download the hallmark, HINATA_NFKB_TARGETS_FIBROBLAST_UP, and
HINATA_NFKB_TARGETS_KERATINOCYTE_UP gene modules from the
MSigDB database. We defined a NFKB gene signature by taking the intersection
between the two HINATA gene modules. We computed GSEA normalized
enrichment scores and p values of these gene modules and the mesenchymal gene
module from ref. 42 in each dataset. When applied to single-nucleus RNA-seq data,
we first aggregated cells into a synthetic bulk RNA-seq dataset. GOE analyses were
performed with g:Profiler95, using the ordered list of differentially expressed genes
with FDR ≤ 0:01 in the cell population of interest as the query and adjusting the p
values for multiple hypotheses testing using the recommended g:SCS method.
Upper bounds on the FDR were estimated using the Benjamini-Hochberg
procedure.

Deconvolution of bulk RNA-seq data. We used CIBERTSORTx44 to infer cell
type abundances from bulk gene expression data. To do this, we used CIBER-
SORTX to build a gene expression signature matrix of the cell populations iden-
tified in the single-nucleus RNA-seq data (with min_expression= 0) and infer cell
type abundances in the TPM-normalized bulk transcriptomic data using the
S-mode batch correction. We subsampled large populations to 1000 cells and
checked that different samples did not significantly affect the results of the
deconvolution.

Single-nucleus ATAC-seq data processing. We used Cell Ranger ATAC (version
2.0) to map the FASTQ files to the human reference genome (GRCh38) and de-
multiplex by their cell barcode. We used Signac96 to call and quantify peaks. We
selected high-quality cells based on the number (>1500 and <35,000) and per-
centage (>20%) of fragments in peaks, the ratio of mono-nucleosomal to
nucleosome-free fragments (<3), and the TSS enrichment score (>2). In addition,
we filtered out cells based on the percentage of mitochondrial fragments (>10%)
and the percentage of fragments overlapping targeted sites (<20% or <25%,
depending on the sample). We removed peaks overlapping the ENCODE black-
listed regions.

To integrate the single-nucleus ATAC-seq. data into a consolidated
representation, we created a union peak set by merging intersecting peaks across
samples using the reduce function from the GenomicRanges package (version
1.38.0). We removed peaks whose width was more than 3 standard deviations
greater than the mean peak length and concatenated the union peak sets from each
sample. For normalization and dimensionality reduction, we used latent semantic
indexing97. To do this, we used peaks that were open in at least 90% of the cells for
term frequency-inverse document frequency normalization. The top 30 dimensions
were integrated with Harmony (with parameters lambda= 0.5 and theta= 1).
After removing the first dimension, the top 30 harmony dimensions were clustered
using Louvain community detection and visualized with UMAP. To infer the gene
expression associated with each cell, we built a gene activity score matrix by
summing fragments that overlapped with a gene body or promoter (defined as the
2 kb region upstream of the TSS). We merged two clusters that have high gene
activity scores of VEGFA, CD44, and MET into a single-cell population of MLCs.
The vascular cell population was sub-clustered to separate the clusters of
endothelial and mural cells.

Analysis of large-scale copy number alterations. We used Copy-scAT45 to infer
large-scale copy number alterations from the single-nucleus ATAC-seq data. We
used Copy-scAT’s semi-supervised approach to identify normal and neoplastic
cells in each sample. Copy number alterations were inferred in each cell using the
identifyCNVClusters function and the default parameters suggested in the doc-
umentation. We only considered alterations present in at least 50% of the cells in a
cluster.

Differentially accessible of cis-regulatory elements. After removing peaks
expressed in less than 30% of cells in a cluster, we used a Fisher exact test in each
sample to identify differentially accessible peaks between each cell population and
all the other cells in the sample. Cell population assignments were done based on
the combined analyses of all the samples. In the analysis of enhancers, we only kept
peaks that overlapped regions in the GeneHancer database51. We used Fisher’s χ2

statistic to combine p values associated with peaks across samples for peaks that
were accessible in at least two samples (except for mural cells which were only
composed on one sample). Samples with less than 4% of the cells belonging to the
population of interest were not included in the combination.

Motif enrichment analysis. We used chromVAR46 to infer the bias-corrected
transcription factor deviation score of each motif from the JASPAR2020 database98

in the union peak set. For each sample, we used a Wilcoxon rank-sum test to
identify transcription factor deviation scores upregulated in each population
compared to the rest of the cells in a sample. Cell population assignments were
done based on the combined analyses of all the samples. We then used Fisher’s χ2

statistic to combine the p values of each transcription factor across samples.
Samples with less than 4% of the cells belonging to the population of interest were
not included in the combination. For visualization, we removed the top and bottom
10% positive scores for each cell, as described in ref. 96. We computed the Laplacian
score of the transcription factor deviation score using a random sample of 1000
cells from the MLC population to identify transcription factors that have a sub-
stantial amount of variability in their activity within this population.

Regulatory network between transcription factors with differentially acces-
sible binding motifs across the EMT-like process. To reconstruct the regulatory
network between members of the MAF/BACH, NFκB, and AP-1 complexes with
differentially accessible binding motifs across the EMT-like process (Fig. 4d), we
downloaded the location of the binding sites of these transcription factors from the
JASPAR2020 database98 and overlaid the location of differentially accessible peaks
between neuroepithelial- and MLC populations (as described in “Differentially
accessible of cis-regulatory elements”). A network was then built by taking the
transcription as nodes and adding a directed edge from one transcription factor
into another if one or more significant (p value < 0.05) differentially accessible
binding sites of the first transcription factor were present in the gene locus ( ± 10
kbp upstream and downstream) of the second transcription factor.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and processed single-nuclei RNA and ATAC-seq data generated in this study
have been deposited in the Short Read Archive (SRA)/Gene Expression Omnibus (GEO)
databases with accession number GSE206580. The publicly available bulk RNA
sequencing data25 used in this study are available from the Kids First Data Resource
Portal (https://portal.kidsfirstdrc.org, project PBTA-CBTN). The publicly available gene
expression data of the Heidelberg ependymoma cohort5 used in this study are available
from the GEO database with accession code GSE64415. The JASPAR2020 database98

used in this study is publicly available at https://jaspar.genereg.net/downloads/. The
publicly available hallmark gene signatures92 used in this study are available from the
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H). The
mouse embryo RNA in situ hybridization data used in this study are available from the
Allen Developing Mouse Brain Atlas (https://developingmouse.brain-map.org/). The
GRCh38 human reference genome is available from Ensembl (http://ftp.ensembl.org/
pub/release-106/fasta/homo_sapiens/dna/). The remaining data are available within the
Article, Supplementary Information, or Source Data file. Source data are provided with
this paper.

Code availability
The code used for the classification of ependymal tumors based on their gene expression
is available at zenodo and the corresponding DOI is as follows: https://doi.org/10.5281/
zenodo.660742699.
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