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Enhancing fibre-optic distributed acoustic sensing
capabilities with blind near-field array signal
processing
Felipe Muñoz1 & Marcelo A. Soto 1✉

Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands

independent locations using an optical fibre. The measured acoustic waveform highly varies

along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions

originated during mechanical wave propagation. Here, we propose a fully blind method based

on near-field acoustic array processing that considers the nonuniform response of DAS

channels and can be used with any optical fibre positioning geometry having angular

diversity. With no source and fibre location information, the method can reduce signal dis-

tortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming

spatial filtering. The method also allows the localisation of the two-dimensional spatial

coordinates of acoustic sources, requiring no specific fibre installation design. The method

offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre,

enabling DAS systems to characterise vibration sources placed in areas far from the

optical fibre.
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D istributed optical fibre sensors1 have taken a great deal of
attention in several application fields, due to their unique
capability to perform spatially resolved monitoring of

environmental quantities such as temperature, strain, pressure,
humidity and so on. Exploiting the natural scattering processes
originated in optical fibres2,3, different types of distributed fibre
sensors have been developed based on Raman4–6, Brillouin7–10 or
Rayleigh scattering11–14. Among all these technologies, the high
sensitivity of the optical phase of coherent Rayleigh scattering to
external perturbations, such as vibrations, allows for the devel-
opment of distributed acoustic sensors (DAS)1,14, which are
capable of monitoring vibrating mechanical waves (acoustic
waves) along an optical fibre. Note however that DAS sensors
only measure longitudinal strain along the sensing fibre, resulting
in a directional strain response. The fast dynamic response of
DAS systems, enabling wide acoustic bandwidth, and their cap-
ability to monitor the magnitude, frequency and phase of
mechanical perturbations have found a wide range of
applications1,14.

High-performance DAS systems can monitor thousands of
independent spatial points (so-called acoustic channels) over the
sensing fibre, trading off parameters like acoustic bandwidth, fibre
length, spatial resolution (commonly called gauge length) and
strain resolution1,14. It is important to notice that the DAS
acoustic response is not uniform along the sensing fibre due to
the combination of different possible reasons15–17: (i) the acoustic
signal can arrive to local fibre sections with different relative
angles, inducing different or even null levels of local longitudinal
strain depending on the optical fibre orientation, (ii) the strain
coupling efficiency from the propagation media could vary along
the optical fibre, inducing deficient local strain transfer to some
acoustic channels, or (iii) the Rayleigh intensity fading affecting
most of DAS systems lead to measurements with blind fibre
positions, where no reliable acoustic signal can be retrieved. In
addition to these intrinsic limitations, the propagating media in
some scenarios can induce multiple reflections and reverberations
of the mechanical wave, distorting the waveforms measured by
DAS systems18,19. For many applications, obtaining an undis-
torted representation of the emitted acoustic waveform is of
crucial relevance. To improve the measured signal quality,
reverberations and interferences could be mitigated using dedi-
cated acoustic processing19–21. In particular, the distributed fea-
ture of DAS measurements makes possible the use of array signal
processing22–24 to enhance the performance and capabilities of
DAS systems. Adjusting the delay of each DAS channel along the
fibre, beamforming techniques can be exploited to enhance the
acoustic signal quality through spatial filtering and to localise the
acoustic source.

The use of sub-array signal processing applied to DAS mea-
surements was first demonstrated by Ku et al.25. In that early
work, the localisation of human footsteps at 10 m distance from
the sensing fibre was performed using small linear fibre sections,
whilst no further details on the processing method and approach
are provided. On the other hand, some works in the field of DAS-
based seismology have reported the use of seismic array proces-
sing assuming a plane mechanical wave propagation26–29, limit-
ing processing methods to detect only the direction of arrival of
seismic waves using far-field narrowband approaches. Some of
these techniques make use of acoustic wave information28 or
hybrid systems based on a combination of DAS and traditional
seismometers29. In this context, multiple signal characterisation
(MUSIC)30,31 is one of the most used array processing methods
to detect the direction of arrival of acoustic waves28, being
especially suitable for narrowband signals31. Using specific
acoustic sensing arrangements, like two or more parallel straight
arrays, MUSIC can be employed to estimate different relative

angles of arrival and localise the source position by intersecting
the different estimations. Unfortunately, this requires a specific
design of the optical fibre installation, which must follow iden-
tified straight lines separated by a well-defined distance, which
depends on the spatial sampling and target acoustic frequency32.
The localisation and tracking of moving single-tone acoustic
sources have also been demonstrated based on Doppler effect by
using lumped Rayleigh reflectors interrogated by an optical
frequency-domain reflectometer33. The capabilities of acoustic
array processing22–24 to estimate the spatial coordinates (i.e., not
only the angle of arrival) of more general broadband acoustic
sources, and to implement a spatial filter that enhances the
measured waveform quality, while dealing with the distinct local
orientations of an installed optical fibre, have not been yet
explored in the literature. These tasks indeed become very chal-
lenging in real-field DAS scenarios, where besides the uneven
sensitivity of DAS acoustic channels and directivity of the dis-
tributed sensor, the presence of multiple reflections and rever-
berations can significantly impair the performance of classical
array processing22–24.

In this work, we propose a technique to enhance the cap-
abilities of DAS systems for general broadband acoustic signals
based on near-field array signal processing, which can deal with
the uneven longitudinal response of DAS acoustic channels and
the different local orientations of the sensing optical fibre. The
method is based on a fully blind approach that evaluates and
ranks the measurement reliability of each DAS channel according
to the peak-to-root-mean-square ratio of the phase cross-
correlation function between channels, enabling the use of non-
uniform (sparse) acoustic array processing approaches. This is the
first demonstration of this kind of beamforming spatial filtering
approach applied to DAS technology to improve the measured
acoustic waveform quality by reducing acoustic interferences
caused by reflections and reverberations originated during mul-
tipath mechanical wave propagation, while also providing a
relevant signal-to-noise ratio enhancement. In addition, the
proposed near-field approach allows the fully blind estimation of
the two-dimensional (2D) spatial coordinates of broadband
acoustic sources, considering the uneven longitudinal response of
DAS sensors and using no specific designs in the geometry of the
optical fibre positioning, provided there is good angular diversity
of the installed fibre. Since the nonuniform response of the
acoustic channels partially depends on multipath mechanical
wave propagation features, the performance of the proposed
techniques is evaluated through a statistical analysis using several
acoustic source positions. Results demonstrate that more than
50% of the analysed cases show an acoustic signal-to-noise (SNR)
enhancement between 4.36 dB and 18.54 dB, while the acoustic
source position can be estimated with very low relative error
when compared to the actual distance between the source and
optical fibre.

Results
Data and experimental conditions. The DAS measurements
utilised in this work correspond to a seismic survey conducted
during the Poroelastic Tomography (PoroTomo) project at a
geothermal site near Brady Hot Springs, Nevada, USA34,35. The
sensing optical fibre is 8.63 km long and is installed horizontally
in zigzag on the ground surface, as shown in Fig. 1a. DAS mea-
surements are obtained with a sampling rate of 1 kHz, a gauge
length of 10 m, and a spatial sampling interval of 1 m, resulting in
8630 acoustic channels along the sensing fibre.

Each dataset corresponds to DAS measurements of the 20 s
chirped acoustic signal shown in Fig. 1b, emitted by a vibroseis
truck and propagating from 50 different independent locations
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(orange circles in Fig. 1a) toward the sensing optical fibre. The
source location T180 is here used throughout this manuscript to
demonstrate the proposed blind array strategies, which is then
followed by a statistical analysis based on the 50 source positions.
To analyse longitudinally independent acoustic measurements,
only channels separated by 10 m (equal to the gauge length) are
here considered. To give homogeneity to the different datasets,
margins of 5 s are left before and after the vibration waveform. In
this way, each dataset comprises 863 independent acoustic
channels with measurements of 30 s. Note that besides the
chirped acoustic signal, some DAS channels are affected by a low-
frequency interference originated by external neighbouring
sources, as shown in Supplementary Fig. 2.

Blind pilot trace selection. An essential step required for acoustic
beamforming22,23 consists in the synchronisation of measure-
ments obtained by all DAS acoustic channels, which are time
shifted to align the signal components coming from a given
analysed position. This corresponds to a spatial filtering process
that requires the estimation of the time difference of arrival
(TDOA)36 among different acoustic channels, allowing the
reconstruction of the acoustic waveform emitted at a specific
location, which can be outside the area covered by the sensing
optical fibre. Note that, even in an anisotropic propagation sce-
nario, the estimated TDOAs can allow for the proper synchro-
nisation of different phase-shifted DAS channels for signal
enhancement, leading to a better representation of the emitted
acoustic wave with a given reference phase condition. In addition,
TDOA estimations can also be used in geometric positioning to
convert them into distance estimations and triangulate the source
position22,23. However, this TDOA-based source localisation
method would only be effective in isotropic propagation condi-
tions. This TDOA estimation could be quite trivial if we know the
acoustic source location, the sensing fibre position, and the pro-
pagation velocity of the mechanical wave. If part of this infor-
mation is not available, but we know the emitted acoustic
waveform, TDOAs could still be estimated by cross correlating
this reference waveform with each acoustic channel measurement
and analysing the time lag of the main correlation peak36.
Unfortunately, in the most general case of DAS monitoring, the
acoustic source position, the precise distributed location of the
optical fibre, the acoustic waveform, and wave propagation
information are unknown, making necessary a fully blind pro-
cedure to estimate the TDOAs for each DAS channel. Here a
blind TDOA estimation procedure is proposed based on the

selection of a pilot trace that is used as a reference to obtain the
relative time delays of all DAS acoustic channels.

A fully blind approach for DAS array processing must consider
the nonuniform sensitivity of DAS channels (illustrated in
Supplementary Fig. 1) and the fact that the acoustic wave
arriving at each optical fibre position might propagate in an
anisotropic and inhomogeneous media14–17. This means that the
measured distributed acoustic data might contain channels that
capture the acoustic signal with no major distortions, while others
receive versions altered by reverberation and echoes. Therefore,
compared to classical TDOA estimation36 and array processing
methods22–24, where all acoustic measurements have similar
sensitivity and are all used in the process, in DAS scenarios only
some acoustic channels are useful to obtain reliable TDOA
estimations. This leads to a sparse array with DAS channels
nonuniformly distributed in space. This is because channels with
poor acoustic sensitivity and/or containing distorted signals will
mostly impair TDOA estimations instead of helping in increasing
their reliability, and therefore the beamforming spatial filtering
and the source location estimation will be impaired. It is then
expected that, for a given number of acoustic channels and due to
DAS measurement impairments, array signal processing applied
to real-field DAS systems would have a lower performance
compared to classical approaches using uniform sensor responses.

The method here proposed considers the selection of a pilot
trace with the lowest possible level of distortion among all the
measured DAS acoustic signals. To blindly find this pilot trace, we
use the procedure illustrated in Fig. 2a, based on the calculation of
the root-mean-square (RMS) reliability indicator β of each DAS
channel, as described in the “Methods”, and selecting the one
with the highest indicator. Note that this indicator is based on the
calculation of the sharpness of the phase cross-correlation
function (PCCF)37 among different channels, thus being an
amplitude-unbiased method to measure the similarity and phase
coherence between two waveforms37–39. This helps us to find the
TDOA that maximises the coherence between the channels,
instead of considering only the more energetic components of the
signal. Supplementary Fig. 4 compares the use of amplitude and
phase cross-correlation functions for TDOA estimation, illustrat-
ing the advantages of phase correlation in this context. Figure 2b
shows the value of the indicator βi as a function of the candidate
channel i, highlighting the value of the selected pilot trace ip
(channel 670 in this case). The figure clearly illustrates the
variability of the indicator β due to the uneven response of the
DAS system, indicating that the measurements of some channels
are more reliable as pilot traces.

a b

Fig. 1 Distributed acoustic sensor setup and emitted signal. a Sensing optical fibre (blue line) and all the acoustic source locations analysed in this work
(orange circles). The sensing fibre covers an area of 0:5 ´ 1:5 km and is buried in a trench of 100 cm deep. The location denoted as T180 corresponds to an
example position used to explain the blind techniques applied through this document. All the rest of source locations are used to perform a statistical
analysis and obtain general conclusions. Some channels (e.g., Ch.1 and Ch. 863) are labelled for visual reference. b Spectrogram of the 20 s emitted
acoustic signal, represented by a linear frequency sweep in the range from 5 to 80 Hz, with a temporal amplitude taper at the beginning and at the end of
the signal. Some spectral harmonics are observed at locations near the emission point.
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To check the effectiveness of the proposed method for blind
pilot trace selection, a non-blind validation is performed
calculating the PCCFij between the known emitted acoustic
waveform (shown in Fig. 1b), used as a reference signal r, and
each acoustic channel j, and evaluating the similarity indicator κrj
(see “Methods” for details). Figure 2c shows this indicator κrj for
all DAS channels, verifying that the blindly chosen pilot trace
corresponds to the one with the highest similarity. For
comparison purposes, the figure also shows the channel having
the highest acoustic SNR measurement (iSNR), which according to
the literature can also be used as a pilot trace40. The result
however points out that selecting the pilot trace based on the SNR
is not always a good choice due to the low phase coherence that
this signal may have with respect to the reference trace. This can
be explained by the presence of multiple reflections originated in
the analysed complex acoustic propagation scenario, which
increase the SNR of a given acoustic channel by increasing the
signal strength at the cost of distorting the measured waveform
and reducing its similarity with the reference. Note that the same
phenomenon can also occur if there exist more than one acoustic
source in the analysed area. To assess the performance of the
proposed method, a ranking is created by ordering κrj from the
highest to the lowest value, as shown in Fig. 2d. In this way, it is

possible to directly visualise the position of the chosen pilot
channel in the ranking. The figure verifies that, for the dataset
used as an example, the proposed method blindly selects the
channel with the highest similarity with respect to the reference,
while selecting the channel based on the SNR is not a good
approach due to its low similarity have with respect the emitted
waveform.

Blind TDOA estimation. The TDOA τip;j of each channel j with
respect to the selected pilot trace ip is obtained by finding the lag
at which the absolute maximum of the jPCCFipjj occurs37,38 (see
“Methods”). We define τ ¼ ½τip ;1; ¼ ; τip;N � as a 1xN vector

containing all the estimated TDOAs. Each element of τ is asso-
ciated with its respective element of the vector κip , which indicates

the reliability of each TDOA estimation. By sorting the values of
κip from the highest to the lowest, we obtain a blind reliability

ranking for the estimated TDOAs. Figure 3 shows the blind
TDOA estimation obtained for each channel j together with the
blind reliability ranking shown in colour scale.

A non-blind comparison is also performed in Fig. 3 by showing
the distance between the known acoustic source and the jth DAS
acoustic channel. A qualitative comparison between distance and

c
#1

#421

d

b

Evaluate RMS

reliability

Ch 1

Ch i

Ch N

Argmax(·)

a

Fig. 2 Blind pilot trace selection from data. a The scheme shows the procedure utilised to find the most reliable channel as a pilot trace. In the process,
each acoustic channel i is considered as a pilot trace candidate and is compared with all the other DAS channels j, with j= 1,…,N, where N is the total
number of longitudinal acoustic channels. The comparison is made by calculating the phase cross-correlation function PCCFij between the pair of channels
ði; jÞ and characterising the sharpness of the correlation peak using the indicator κij defined in the “Methods”. In this way, a 1xN vector defined as
κi ¼ ½κi;1; κi;2; :::; κi;N� is obtained for the ith candidate. To blindly estimate the reliability of each candidate pilot trace i, the root-mean-square (RMS) value of
the κi vector is calculated and defined as βi . Repeating this process for i= 1,…,N, we obtain a 1xN vector β ¼ ½β1; β2; ¼ ; βN�, which contains the indicators
for all the pilot trace candidates. The pilot trace channel ip is then chosen based on the channel having the highest βi value, since it represents the acoustic
channel with the highest RMS reliability. b Blind evaluation of the RMS reliability indicator βi for all channels. c Non-blind validation of the method, showing
the reliability indicator κrj for all channels j compared to the known emitted acoustic signal r (reference waveform). The reliability obtained by the proposed
method (green circle) is compared to the one based on the use of the channel with the best signal-to-noise ratio (SNR) (red circle). d Reliability ranking
obtained by sorting the indicator κrj. The 1st position in the ranking represents the channel with the highest κrj , and therefore, it is the channel with the
highest similarity and phase coherence with respect to the reference signal r, while the channel at the 863rd position corresponds to the channel with the
worst κrj.
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TDOAs can be performed if we assume a constant propagation
velocity v. Results point out that channels with better reliability
ranking (dark blue dots) present a very good blind TDOA
estimation, closely following the shape of the relative distance
curve with high precision. Channels with worse reliability ranking
are however scattered around the expected value (dots changing
colour towards dark red), indicating a higher estimation
uncertainty. This confirms that the reliability ranking is a good
method to blindly rank TDOA estimations. Note that some of the
lower-quality channels are all located in neighbouring areas (see
the position of channels 280–400 and 800–863 in the upper-right
corner of Fig. 1a) and they are presumably affected by the
mechanical properties of the soil in these areas, which may have
led to poor strain coupling to the optical fibre. Since unreliable
DAS channels must be discarded, the actual number of channels
to be used by a beamformer must be blindly identified, as
described hereafter.

Acoustic signal enhancement through spatial filtering. Iterative
delay-and-sum beamforming23,41 (see “Methods”) is here used to
implement a spatial filter that enhances the measured acoustic
waveform quality, when compared to the most reliable DAS
channel measurement. Given the poor coherence between some
acoustic channels, due to distortions and different sensitivities,
only a fraction of DAS channels must be used, resulting in a
sparse sensor array for beamforming. Adding channels having
distorted waveforms due to echoes and reverberations might
impair the acoustic signal quality and therefore only traces with
low distortion must be used by the beamformer. For this, a
strategy must be defined to blindly find which DAS channels are
useful for beamforming-based signal enhancement. As described
in Fig. 4, the proposed method addresses this problem by gen-
erating different beamforming signals based on diverse numbers
of input acoustic signals, followed by a blind evaluation of the β
indicator. The signal with the best β indicator is then selected as
the beamformer output. Since DAS channels are ordered
according to their blind similarity indicator κip , each group of 4m

DAS channels added to the process (being 4m ¼ 20 in this case)
is less reliable than the previous one. Although adding new
channels to the beamformer normally results in a noise reduction,
the signal enhancement turns out to be limited by potential dis-
tortions introduced when adding less reliable channels.

By using the same process to evaluate the best pilot trace, the
RMS reliability indicator βm of each BFm signal can be blindly
estimated. Figure 5a shows the obtained βm indicator as a

function of the number of channels m used by the sparse
beamformer. Results point out that the maximum indicator
occurs with m� ¼ 41 channels, decaying after adding more
channels. These 41 most reliable DAS channels are nonuniformly
distributed in space, as depicted in Supplementary Fig. 11a. This
approach allows us to blindly estimate the number of channels at
which the indicator β begins to deteriorate. Figure 5a also shows
the SNR of each beamforming signal BFm. This SNR is calculated
in the frequency domain, where the signal noise is estimated by
integrating the spectrum of a temporal window along the first 5 s,
when there is no acoustic wave. Note that the behaviour observed
for the SNR might wrongly lead to the conclusion that using all
acoustic channels would result in a better signal enhancement.
This is however incorrect since the SNR increases only due to the
large background noise reduction, thanks to conventional trace
averaging, whilst the signal might be highly distorted due to the
combination of poor (incoherent) and good (somehow coherent)
quality channels. This way, the SNR improvement is only
meaningful if the resulting signal maintains or improves its
similarity with respect to the reference. Figure 5b presents a non-
blind validation of the selection method based on the calculation
of a normalised κrm indicator. Thus, it is possible to determine the
similarity between each BFm and the reference acoustic signal r,
helping us to assess the signal quality obtained with the blind
proposed method. Results indicate that the beamforming signal
blindly selected does not necessarily correspond to the one with
the highest similarity, but it is among one of the best. Results also
confirm a relative improvement of about 15% in the similitude of
the most reliable DAS waveform (i.e., pilot trace) with respect to
the emitted acoustic signal by reducing the impact of reflections
and reverberations. Note that reaching a similarity of 100% would
lead to a perfect representation of the reference acoustic wave;
however, reaching this level is practically impossible due to the
dispersion and ground attenuation of high-frequency mechanical
wave components42. The figure also demonstrates that when the
number of channels used by the beamformer increases too much,
adding channels with poor-quality measurements (i.e., less
coherent), the resulting beamforming signal losses its similarity
with the emitted acoustic signal. Supplementary Fig. 5 verifies the
benefits of using delay-and-sum spatial filtering compared to
simple acoustic trace averaging using no alignment, demonstrat-
ing a 2.7-fold improvement in the similitude obtained after
beamforming. Figure 5b also shows the SNR for each BFm signal,
verifying that the chosen number of channels used for
beamforming leads to an SNR improvement of 5.5 dB with
respect to the pilot trace.

Fig. 3 Blind TDOA estimation. The blindly estimated time difference of arrivals (TDOAs) using the selected pilot trace and all the DAS data channels are
compared with the non-blind differential distances calculated from the actual positions of the acoustic source and sensing fibre. The distance to the
selected pilot trace channel is subtracted to visually compare the relative distances and TDOAs with respect to the pilot channel. Since the wave
propagation velocity v is unknown, TDOAs and distances cannot be compared with the same time or distance unit. The colour scale represents the blind
reliability ranking. This ranking is composed so that the most reliable TDOA is ranked in the 1st place and the least reliable one in the 863rd position.
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Figure 5 also shows the spectrograms of the beamforming signals
obtained for three values of m, wherem= 1 corresponds to the pilot
trace (Fig. 5c). Results reveal that for m� ¼ 41 (Fig. 5d), the
measured chirped acoustic signal is reinforced, while the background
noise is reduced. As the number of channels increases up to
m ¼ 863, the noise is greatly reduced at the cost of two undesirable
effects (see Fig. 5e): (i) The use of several low-quality (incoherent)
channels worsens the resulting beamforming signal, reducing the
useful signal contrast with respect to the noise level, and (ii) the low-
frequency interference that is present in some DAS channels is
reinforced, as depicted in Supplementary Fig. 2.

Acoustic source location estimation. A modified hyperbolic
triangulation36 approach (see “Methods”) is used to blindly find

the actual spatial coordinates of the acoustic source based on the
estimated TDOAs. Similar to signal enhancement, the different
acoustic sensitivities and distortions affecting each DAS channel
along the sensing fibre15–19 make the acoustic source location
estimation a non-trivial problem. Using channels with unreliable
TDOA estimations can significantly worsen the source location
estimations. Figure 6 illustrates the process here proposed to
identify the most often source location estimation using the most
reliable channels in a fully blind and general manner, including
the case when the acoustic velocity in the propagation media is
unknown (assuming the speed is constant and the same for all
DAS channels).

Based on the procedure described in Fig. 6, the spatial
coordinates of the acoustic source and propagation velocity x� ¼

Ch. 1

Ch. 10

Ch. m

Ch. N

...

Iterative

Beamforming

...
. ..

...
...

Equalised and

sorted channels

Evaluate

RMS

reliability

...
... Argmax(·)

Fig. 4 Signal enhancement procedure based on beamforming spatial filtering. The first step of the process requires an amplitude equalisation (see
“Methods”) of the DAS channels to eliminate the effect of geometric spreading and propagation losses, so that they result with similar amplitude levels.
After this, the DAS channels (ch.) are sorted based on their reliability indicator κip . Then, the beamforming signal BFm is formed using the m channels with
the best κip . In this case m 2 1; 861½ �, being selected with increments 4m of 20 channels. This way delay-and-sum beamforming is applied to the most
reliable channels, generating beamforming signals BF1; BF21; BF41; and so on. The RMS reliability indicator βm is blindly calculated for each BFm signal. The
beamforming signal with the best β indicator is selected. The proposed method allows us to assess the impact of adding new 4m channels in the
beamforming signal because the quality of a BFmþ4m signal can be readily compared to a BFm signal, since the first m DAS channels used in the processing
are the same.

ba

dc e

Fig. 5 Blind and non-blind evaluation of the signal enhancement method. a Blind RMS reliability indicator and SNR versus the number of channels used in
the beamforming spatial filtering process. b Non-blind evaluation of the normalised indicator κrm and SNR versus the number of channels used in the
beamforming spatial filtering process. The normalised indicator κrm is calculated between the reference acoustic signal r and each beamforming signal BFm,
normalised by the indicator κrr based on the autocorrelation of the reference acoustic waveform. Spectrogram of beamforming signals generated for
c m ¼ 1, d m� ¼ 41, and e m ¼ 863 channels.
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ðx�; y�; v�Þ are estimated by choosing the mode of the respective
histogram Hx, Hy and Hv (i.e., the most repeated x, y and v
estimations). Figure 7a–c shows the estimated values of x̂h; ŷh and
v̂h, respectively, as a function of the used number of channels h.
Results reveal that in all three cases, the estimated values remain
relatively constant in the range of approximately 30 < h < 400.
The use of less than 30 channels seems to be insufficient to
achieve a reliable estimation, while the use of more than 400
channels affects the estimation due to the inclusion of low-
reliability channels. Figure 7d–f shows the respective histograms
of the three estimated variables. Note that, for the sake of
illustrative purposes, these histograms include all the performed
estimation, i.e., including the participation of up to 860 (i.e.,
almost all) DAS channels.

To validate the blind process, Fig. 7 also includes the real
acoustic source coordinates, as red dashed lines. We can observe
that the peaks of the histograms Hx and Hy (at x

� ¼ 243:5 m and
y� ¼ 952:5 m, respectively) are closely located to the actual
acoustic source position xs; ys

� � ¼ ð240:6m; 953:6mÞ, validating
the good precision of the method. This verification cannot be
easily performed for the estimated velocity (v� ¼ 342:5 m s−1)
since there is no single reference value for this parameter;
however, the estimated value is within the range of velocities
reported in a prior study of the here analysed Brady Hot Springs
area42.

The performance of the blind near-field method is assessed by
quantifying the absolute error ehist;s between the estimated

location x�; y�
� �

and the known position of the acoustic source
xs ¼ xs; ys

� �
, according to

ehist;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� � xs
� �2 þ y� � ys

� �2q
ð1Þ

To verify the impact of including different numbers of
channels in the processing, the absolute error eh;s of the estimated
location x̂h; ŷh

� �
obtained with the h most reliable channels (see

Supplementary Fig. 6) is also calculated by an expression similar
to Eq. (1) and shown in Fig. 8a. This figure also shows the actual
estimation error ehist;s obtained from histograms (red dashed
line), indicating that the estimation error stabilises around the
error obtained by the histogram when using 30–400 channels,
being consistent with results in Fig. 7. This result validates the
proposed blind procedure based on the histograms, allowing us to
identify the most recurrent estimation, which remains among the
lowest obtained errors. Note that the achieved estimation error is
3.06 m, corresponding to a very small relative error of 0.83%,
when compared to the distance dRMS;s ¼ 367 m between the
acoustic source and the sensing fibre. Figure 8b shows the
acoustic source position xs (red square) and the estimated
location x� (black circle), verifying that the proposed blind
method identifies with high precision the source spatial
coordinates in the x; y

� �
plane. As an example, Supplementary

Fig. 11b, c shows the best 100 and 200 channels used for
estimating the source location. Note that channels are randomly
distributed along the sensor, highlighting the nonuniform spacing
between DAS channels used in different processing steps. This
emphasises the need for a method to rank the channel quality
such as the one proposed here, before applying the source
location method.

Generalisation and statistical analysis. We must consider that
the results in acoustic signal enhancement and source location
highly depend on the features of the acoustic wave propagation,
which could differ depending on the acoustic source position with
respect to the sensing optical fibre15,16,19. For this reason, the
results obtained by the blind beamforming-based processing are
statistically analysed using 50 different acoustic source positions
(see Fig. 1a) and the non-blind verification procedure described
before.

Figure 9a shows the statistical distribution of the ranking
position associated to the pilot traces blindly selected for all
datasets. Results reveal that 50% of pilot traces are ranked within
the 9 channels with the highest similarity with respect to the
acoustic reference signal, out of the 863 channels, while 25% of
pilot traces are statistically ranked below the position 2.25. The
figure also verifies that when the best SNR measurements are used
as pilot traces, these are ranked in much worse positions,
demonstrating that high SNR measurements are not necessarily
similar to the reference acoustic signal. It is worth noticing that all
pilot traces obtained using the blind reliability indicator are
ranked below the 50th position, while only 25% of pilot traces
selected based on their SNR show comparable levels of similarity.
The better results obtained by the proposed method can be
justified by the use of reliability indicators based on similarity and
phase correlations rather than on signal amplitudes.

Additionally, the spatial filtering performance is assessed by
evaluating the simultaneous enhancement of both SNR and
similarity indicator κ compared to the best channels (i.e., the
respective pilot traces). Figure 9b shows the improvement
obtained in both SNR and similarity indicator, where each point
represents the result obtained for each of the 50 analysed datasets.
Boxplots of each of these variables are also shown. The red dotted
lines indicate the zero-value point on each axis, thus separating

...
...

Hyperbolic

triangulation

...

Histogram

Channels location

Sorted TDOAs

Fig. 6 Blind source location strategy. First, the TDOAs are ordered
according to their reliability indicator κip , and a hyperbolic triangulation
process is applied. We define the vector xh ¼ x̂h; ŷh; v̂h

� �
to contain the

two-dimensional estimation of the source location x̂h; ŷh
� �

and the
estimation of the average propagation velocity v̂h, using h TDOA
estimations, with h 2 5;860½ � and increments of 4h ¼ 5 channels. This
way, for instance x5 corresponds to the estimation obtained with the 5
most reliable channels, x10 uses the same initial 5 channels adding the next
5 most reliable ones, and so on. With this procedure, we can analyse the
effect of adding 4h channels and blindly detect when the estimation starts
to worsen. Although the number of channels to be considered in the
processing is expected to be much lower than 860, this large number of
DAS channels is here used for illustrative purposes. In the process, we
define X ¼ x5; xh; ¼ ; x860

� �
as a vector that includes all the estimations of

the acoustic source position and propagation velocity obtained for different
number of channels h. Once the vector X is obtained, the histogram of X is
calculated for each component, i.e., for x̂h; ŷh and v̂h, defining the
histograms Hx, Hy and Hv, respectively. By using several values of h reliable
channels, similar location estimations xh can be obtained until more
unreliable channels are included in the processing. This way, using a large
enough number of reliable channels, the most common estimations xh will
be highly reliable, while adding unreliable channels will lead to different
estimations. Therefore, we find a trustworthy source location by choosing
the most repeated estimation.
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areas with impairment and improvement. More than 75% of the
datasets show improvements of both indicators (red circles),
implying that their SNR and similarity with the reference signal
increase simultaneously. Note that more than 50% of the datasets
have an SNR improvement between 4.36 dB and 18.54 dB while
maintaining or increasing the similarity with the reference signal.
In addition, based on the similarity improvement shown in
Supplementary Fig. 10, more than 50% of the cases show a
relevant similarity improvement over 18.05%.

Finally, a non-blind statistical analysis of the error in
estimating the acoustic source position is also carried out by
comparing the estimations with the actual source coordinates.
Figure 9c shows a boxplot with the statistical results of the relative
errors obtained for all datasets. Note that, using the proposed
blind estimation method, 75% of the analysed datasets have a
relative error below 23.8%, while 25% of the datasets resulted with
relative errors below 4.1%. Supplementary Fig. 12 shows a source
location error map for all analysed datasets. The original source

positions are shown together with the position estimated by the
proposed algorithm. Note that for most of the datasets, the
estimated position is very close to the reference position. The
figure allows us to dimension that even large estimation errors
(e.g., over 200 m) are not so far away from the real position of the
acoustic source given the dimensions of the survey area,
demonstrating the high precision of the proposed method.

Discussion
Note that the approach here demonstrated as a proof of concept
is based on one of the simplest array signal processing
techniques22–24,41 applied to DAS recordings, and therefore there
is margin for further improvements, especially for complex
acoustic wave propagation scenarios, like the present one. Indeed,
simpler propagation conditions would naturally lead to better
processing performance compared to the one reported here, due
to the eventual higher coherence among DAS channels. In
addition, the methods for signal enhancement and source

a b c

d e f

Fig. 7 Source location estimation using different number of sensors h. Estimated a x̂h coordinate, b ŷh coordinate, and c average propagation velocity v̂h,
as a function of the number of channels h used in the process. The histogram of each estimated parameter uses a bin width of 1 m for the histogram d Hx

and e Hy , and a bin of 5 m s−1 for the histogram f Hv. Dashed red lines correspond to the actual source coordinates xs and ys. The red stars indicate the
blindly selected coordinates and velocity based on the mode of the histograms.

a b

Fig. 8 Error in the blind source position estimation. a Non-blind error estimation based on Eq. (1) as a function of the number of sensors h used in the
process. Supplementary Fig. 6 shows location estimation for different channels h, comparing the absolute error with respect to the sensing optical fibre and
actual source position. b Illustration of the estimated x�(black circle) and actual xs (red square) source location, compared to the sensing optical fibre
location (using the DAS channel with the highest RMS value xRMS as a reference point). The Inset shows a zoom-in of the relevant area of interest, showing
a very small error of 3 m in the estimation compared to the 367m separating the acoustic source from the sensing fibre.
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position estimation can be iteratively implemented to improve
TDOA estimations and potentially achieve better results. Sup-
plementary Fig. 7 shows that, despite the existing errors in the
source location estimation, the TDOAs calculated using the
estimated source position are quite close to those non-blindly
calculated based on the actual source location, indicating that
potential further improvements could be achieved by an iterative
process.

It is worth mentioning that in the present proof of concept,
sparse beamforming spatial filtering has been exploited to
improve the waveform representation emitted by a single point
seismic acoustic source, reducing distortions caused by reflections
and reverberations arriving to the sensing fibre with different
angles. However, the spatial filtering capabilities of the method
can be further explored in many applications to clearly dis-
criminate the acoustic waveforms emitted simultaneously by
several acoustic sources, which combined with hyperbolic trian-
gulation can allow us to identify their actual 2D or even 3D
coordinates with no specially designed optical fibre installation
geometries, provided there exist good angular diversity of the
optical fibre orientation. Indeed, it must be noted that in linear
(straight) fibre installations, some ambiguities will arise due to the
geometric symmetry of the fibre, impeding the array signal pro-
cessing to identify the side of the optical fibre where the acoustic
source is located. However, the use of straight linear fibres may
also be inadequate for real-field DAS applications, due to the
directional response of a DAS sensor. In particular, if the acoustic
signal is broadside to the cable, no strain will be measured. This is
an issue affecting all DAS sensors and not only for the method
here proposed. Therefore, robust DAS measurements might
require the use of an optical fibre installation with different
orientations, making the DAS monitoring robust against random
directions of the acoustic wave arrival (although some local
measurements will still have null or poor response). Incidentally,
the use of different fibre orientations also benefits the method
here proposed to better identify the actual source position with-
out triangulation ambiguity. Nevertheless, note that the perfor-
mance of the method highly depends on the acoustic properties of
the propagation medium and the positioning of the acoustic
sources and sensing optical fibre, which define the acoustic
attenuation and reflections, among other phenomena occurring
during propagation. In addition, instead of the blind TDOA
estimation approach here applied to localise the position of the

source, TDOAs can be exhaustively scanned using simple geo-
metry on an entire 2D or 3D region, allowing for the mapping of
the total acoustic field existing in a large area or volume and
emitted by several sources. This way, the spatial filtering cap-
abilities here demonstrated based on a sparse DAS array config-
uration can be potentially exploited to implement, for instance,
acoustic cameras based on DAS technology, with an optical fibre
that does not need to be installed over the analysed zone.

Regarding execution time of this first demonstration, the most
demanding part is the blind pilot trace selection since phase
cross-correlations among all channels are calculated. Using an
Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz, this calculation
takes about 5.6 min in Matlab, followed by 3.5 min required for
spatial filtering. All other processing times, including the source
position estimation, remained below 1 s. Note however that cross-
correlations can be very efficiently computed using Fast Fourier
transforms in graphical processing units (GPUs) using parallel
processing based on compute unified device architecture
(CUDA)39, potentially providing a significant reduction of the
overall computation time. Determining how many times the
current calculation needs to be accelerated for real-time proces-
sing highly depends on the target response time required for a
specific application. For instance, if the execution time is reduced
to equal the acoustic signal length (30 s in this case), an accel-
eration factor of 18 would be required. On the other hand,
improving the current processing time in a factor 500, for
example, would lead to an execution time of about 1 s. Note that
these levels of acceleration, compared to our CPU-based Matlab
implementation, can be easily achieved with a proper CUDA
programming using GPUs43. It is also worth pointing out that
here all DAS channels are cross correlated and included in the
processing for illustrative purposes and to verify the detrimental
impact of adding channels with low-quality (low coherence)
measurements. Therefore, the mentioned execution times are
only for the worst-case scenario when all DAS channels are
considered in the array signal processing. In practice, the com-
putational time can be reduced by preselecting and discarding
those channels that are clearly not reliable, as well as by setting a
stopping criterion based on the identification of the optimal
number of channels before reliability indicators reduce. In addi-
tion, it should be noted that, in this case, the cross-correlation
window to evaluate channels is 30 s, corresponding to 30k data
points. In a general context, this window size could be still further

a b c

Fig. 9 Statistical results. a Ranking of the pilot traces selected over 50 datasets with different source locations using the proposed blind RMS reliability
indicator β and the channel with the best SNR. The boxplots in the figure indicate the 25th, 50th and 75th percentile of the ranking position distribution. For
the sake of visualisation, the inset shows a zoom-in of the results based on the blind RMS reliability indicator β. b SNR enhancement and improvement of
the similarity indicator κ for the 50 analysed cases. c Relative error of the proposed blind source position estimation.
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optimised depending on the length and spectral content of the
signals to be processed. This would secure that the window
captures the main features of the measured signal to provide
reliable estimations of the TDOAs and channel quality.

It is important to note that in this proof of concept the beam
characteristics of the spatial filter are not designed nor steered to a
predefined position, and therefore no spatial information about
the sensing fibre is required in this approach. Here only the
estimated TDOAs are used to enhance the best measured acoustic
signal, represented by the pilot trace. Considering the large
number of sophisticated array processing techniques existing in
the literature22–24,44,45, we are confident that novel approaches
will soon emerge to improve the directivity and performance of
near- and far-field beamforming techniques for DAS applications.
For instance, making use of the optical fibre positioning and local
fibre orientations, complex weights can be designed for advanced
beamformers to control the directivity pattern and increase the
selectivity of the spatial filtering results. Note however that the
uneven response and low coherence of DAS acoustic channels
would affect any standard beamforming method, which normally
assumes identical sensor responses; and therefore, the here
demonstrated blind ranking strategy based on the reliability of
DAS channels can be used to adapt standard beamforming
techniques for DAS applications. In addition, further improve-
ments could be obtained in some scenarios by pre-processing
DAS measurements using deconvolution and dereverberation
techniques to remove acoustic reflections19–21. We believe that
the proposed technique is a starting point opening new class of
acoustic processing strategies to enhance the capabilities of dis-
tributed acoustic sensors, but also other technologies like arrays
of fibre Bragg gratings46,47 and multiplexed interferometric fibre
sensors48,49, to measure the acoustic field existing outside the
optical fibre.

Methods
Evaluation of channel reliability. Due to the nonuniform sensitivity of DAS
acoustic channels and the detrimental impact of reflections and reverberations,
some channels result in distorted measurements15–19. Although this is a fixed
feature of some channels (e.g., due to poor coupling between the ground and
optical fibre or Rayleigh intensity fading), low-quality measurements could ran-
domly occur along the sensing fibre depending on the acoustic wave position and
the presence of reflections and reverberant effects during wave propagation. High-
quality channels (i.e., with low distortions) are here considered more reliable to
estimate TDOAs. Searching the most reliable channels may be trivial if we know
the emitted acoustic signal, since this can be directly compared with the waveform
under evaluation. However, in a general DAS scenario, this search must be per-
formed in a completely blind manner following the strategy described in Fig. 10a.
This is here performed by estimating the level of mutual similarity between the
input channel i and all other channels j, with j ¼ 1; ¼ ;N , being N the total
number of channels by calculating the phase cross-correlation function PCCFij.
Note that the use of phase cross-correlation is much more suitable than amplitude

cross-correlation to assess the similarity and phase coherence between two
broadband waveforms38,39.

For each PCCFij, two parameters are obtained: (i) the lag τij of the main
correlation peak (highest absolute amplitude), corresponding to the relative time
delay between waveforms, and (ii) the ratio between the maximum absolute value
and the RMS value of a window W surrounding the main correlation peak. This
ratio is here defined as an indicator κij and corresponds to the peak-to-root-mean-
square ratio (PRMSR)50, defined as:

κij ¼
maxðjPCCFijjÞ

RMSðWÞ ð2Þ

with RMSðWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2L∑PCCF2

ijðaÞ
q

, where the sum is performed between a 2
½τij � L; τij � δt�∪ ½τij þ δt; τij þ L� (with δt being the sampling period), i.e.,
through a window of length 2L centred in τij and discarding the main correlation
peak value at τij, as described in Fig. 10b. Note that the PRMSR is similar to the
SNR concept, but applied to the PCCF50.

A high value of κij represents a high-amplitude PCCFij peak with low
correlation sidelobes, indicating a high level of certainty in the relative delay
estimation τij between channels i and j (see Supplementary Fig. 3a). A low value of
κij indicates that the PCCF does not have a dominant main correlation peak, which
could occur due to the following three reasons:

● There is not good correlation between both channels, so there is no peak
that stands out in the PCCFij (see Supplementary Fig. 3b).

● There is good correlation, but there are other peaks of considerable
amplitude within the window W in the PCCFij , which increase the RMS
value of the window. This might happen in highly reverberant scenarios
and multipath propagation conditions due to multiple reflections (see
Supplementary Fig. 3c).

● Both channels contain narrowband signals within the same frequency
range, so their PCCFij has a periodic behaviour without a single main
correlation peak that stands out with respect the surrounding area (see
Supplementary Fig. 3d).

This way, the indicator κij allows us to find channels with predominant and
isolated correlation peaks, representing a pair of broadband signals similar to each
other with low reverberation and distortions.

In the TDOA estimations, the similarity indicator κij is calculated between a
given pilot trace candidate i and all other channels j, resulting in a 1xN vector
defined as κi ¼ ½κi;1; κi;2; :::; κi;N �, which contains all the individual reliability
indicators for the candidate pilot trace channel i. Obtaining the RMS value of the
vector κi , the information is summarised in a single indicator defined as βi , which
represents the RMS reliability of the TDOA estimations of all DAS channels with
respect to the candidate channel i: The βi indicator is obtained as:

βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

j¼1
κ2ij

s
ð3Þ

where j ≠ i, to discard the value κii corresponding to the PRMSR of the
autocorrelation of the channel i: The channel with the highest βi indicator is
selected as the most reliable one.

It is important to note that the reliability indicator κ is calculated between two
channels, whereas the indicator β evaluates the reliability comparing one channel
with all other channels or waveforms. Both are used to measure the reliability with
respect to a reference signal or channel, but κ corresponds to the individual
reliability between channels and β to the RMS reliability between a reference signal
and all other channels. In this way, when performing non-blind validations in
Fig. 5b, the value of κrj is calculated to assess the individual reliability of each

ba

Phase cross-

correlation

Input channel i

RMS(·)

... ... PRMSR

...

Ch 1 

Ch j

Ch N

Fig. 10 Evaluating the reliability of an input channel. a Procedure to blindly evaluate the RMS reliability of a given channel i, based on the calculation of the
phase cross-correlation with respect all other DAS channels j. The individual reliability indicator κij is calculated as the peak-to-mean square ratio (PRMSR)
of the phase cross-correlation function PCCFij. By obtaining κ for a given channel i with respect to all other j channels, the vector κi is generated. Then, the
indicator βi is obtained as the RMS value of the vector κi. b Example PCCF, indicating the relative time delay τ ij, correlation peak amplitude ρij and windowW.
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channel j with respect to the reference signal r, corresponding to the known
emitted acoustic signal. In that case, the values obtained are normalised with
respect to the PRMSR value (κrr) of the autocorrelation of the signal r.

Amplitude equalisation. To eliminate the differences in the amplitude response of
DAS channels, as shown in Supplementary Fig. 1, a multiplicative constant Cj must
be applied to each channel for equalisation. The constant Cj can be obtained by
minimising the mean square error (MSE) of the spectrum amplitude among
channels through least squares. Using the first channel as a reference, Cj is obtained
by minimising the following expression:

MSE ¼ ∑
ω

A1 ωð Þ � CjAj ωð Þ
n o2

ð4Þ

with j ¼ 2; ¼ ;N , where N is the total number of DAS channels and Aj ωð Þ is the
spectrum amplitude of the channel j. The solution Cj that minimises the error is
given by51:

Cj ¼
∑ω A1 ωð ÞAj ωð Þ

∑ω A
2
j ωð Þ ð5Þ

Once the multiplicative constant is obtained for each channel, the amplitude
spectra is equalised as A0

j ωð Þ ¼ Aj ωð ÞCj .

Near-field delay-and-sum beamforming. Near-field beamforming considers that
the acoustic source is located at a distance d < 2L2=λ from the sensor array22–24

(considering a given sensor as a reference), where L is the largest dimension of the
sensor array (in this case, the largest dimension of the region covered by the sensing
optical fibre) and λ is the acoustic wavelength. Under these conditions the wavefront is
assumed to be spherical, instead of a plane wave as in far-field approaches. Therefore,
the acoustic signal arriving at each DAS channel has different amplitudes and angles of
arrival. Thus, each DAS channel measures a signal ym tð Þ given by:

ym tð Þ ¼ f dm
� �

s t � tm
� � ð6Þ

where sðtÞ is the emitted acoustic signal, f dm
� �

is a function describing the amplitude
attenuation as a function of the distance dm between the source and each sensor m,
and tm ¼ dm=v is the time delay between the source and sensor m resulting from the
propagation of the acoustic signal at a velocity v.

Delay-and-sum23,41 is one of the best known and simplest beamforming techniques
and is used here as a proof of concept of the proposed method. The beamforming
signal BF tð Þ generated by the delay-and-sum method is described as23,41:

BF tð Þ ¼ 1
M

∑
M�1

m¼0
wm ym t þ τm

� � ¼ 1
M

∑
M�1

m¼0
wm f dm

� �
s t � tm þ τm
� � ð7Þ

where M is the number of reliable DAS channels used in the processing, τm
corresponds to a time delay applied to synchronise the signals, and wm is a weight
added to each channel.

From Eq. (7) it is clear that by choosing τm ¼ tm and wm ¼ f�1 dm
� �

the
emitted acoustic signal sðtÞ can be perfectly recovered. Therefore, when using near-
field delay-and-sum, we must first synchronise each DAS channel, then remove the
effect of attenuation, and finally combine all DAS channels to obtain the
beamforming output signal BF tð Þ � s tð Þ. Note that in the approach of this work,
the value of τm is blindly estimated by calculating phase cross-correlations, and wm

corresponds to sign max PCCF τm
� �� �� � � Cm , where Cm corresponds to the

equalisation multiplicative constant for the mth channel, as defined in Eq. (5).

Iterative delay-and-sum beamforming. Based on the estimated TDOAs, we can
use delay-and-sum beamforming23,41 to align and combine DAS channels to
generate an improved version of the pilot trace. TDOA estimations are actually
affected by the different DAS channel sensitivities and distortions cause by
reflections and reverberances. Therefore, delay-and-sum beamforming can be used
to as a spatial filtering method to improve the quality of the pilot trace, which can
then be used to obtain more precise TDOA estimations40. This procedure can be
repeated iteratively using only a few reliable DAS channels to run the algorithm a
given maximum number of times or to iterate until the variation in TDOAs
estimation goes below a threshold, which can be defined, as for instance, based on
the lag discretisation of the PCCF. In this case, we have set a maximum of 10
iterations. Supplementary Fig. 8 shows an example BF signal obtained through
different iterations of the algorithm for a fixed number of channels, verifying that
the RMS error of the estimated TDOAs tends and reaches zero before 10 iterations.

Modified hyperbolic triangulation. The hyperbolic triangulation method corre-
sponds to one of the standard techniques to estimate the position of a source from
the TDOAs between different sensors36. The method considers that the propaga-
tion velocity v is known and uniform along the sensors. As for many DAS
applications, this situation is not fulfilled by the DAS data used in this work, so the
method is modified to include the velocity v as one more variable to optimise.
Considering the common uncertainties resulting in the TDOA estimations, the

method is performed by minimising the following cost function:

JTDOAðx; y; vÞ ¼ ∑
h

i¼2
vτri � di x; y

� �þ dr x; y
� ��� �� ¼ ∑

h

i¼2
vτri � Δdri x; y

� ��� �� ð8Þ

where h is the number of estimated TDOAs being used, v is the propagation velocity,
τri is the TDOA estimated between a reference sensor r and the sensor i, di x; y

� �
and

dr x; y
� �

are the distances between the source and the respective i and r DAS channels,
and Δdri x; y

� � ¼ dr x; y
� �� di x; y

� �
. The channel 1 is here chosen as the reference

channel. Compared to the traditional hyperbolic triangulation36, our cost function
JTDOA in Eq. (8) depends on three variables instead of only the two spatial coordinates.

The objective of the algorithm is to estimate the source spatial coordinates
x�; y�
� �

and velocity v that minimise the cost function JTDOA: It is important to
note that τri corresponds to the blind TDOA estimation, using no information
about the acoustic source and optical fibre position, while Δdri x; y

� �
is obtained by

using a possible guessed source position (x, y) and the optical fibre spatial
distribution to compute the distances.

The cost function in Eq. (8) can be considered as a data fitting process, for which
we want to estimate ðx̂; ŷ; v̂Þ to make the parametric function Δdri x; y

� �
=v to fit the

noisy data. Note that outliers may appear in channels containing poor-quality
measurements, due to distortions caused by reflections and reverberances. For this
reason, we have also modified the standard hyperbolic triangulation method to use the
L1 norm for the cost function, instead of the L2 norm employed by the standard
approach. This is because the L2 norm squares each term, giving too much relevance
to outliers, while the L1 norm results in outliers having lower impact.

A nonlinear optimisation algorithm known as trust region52,53 is here used to
minimise the cost function. The algorithm depends on an initial position to start
the search. Supplementary Fig. 8 verifies that the actual position of the starting
point has practically no effect on the performed estimation, this means that despite
positioning the initial point at different spatial coordinates, the result in
minimising the cost function is practically the same. Therefore, as a sake of
simplicity, the starting location for the minimisation algorithm is here selected as
the DAS channel having the highest RMS value, since this channel could eventually
be closer to the acoustic source or presumably have direct line of sight.

Data availability
The source data files containing the DAS measurements used in this work have been
obtained from the online database “PoroTomo Natural Laboratory Horizontal and
Vertical Distributed Acoustic Sensing Data” University of Wisconsin (2017). Retrieved
from https://doi.org/10.15121/1778858.

Code availability
The codes generated during the current study are available from the corresponding
author on reasonable request.
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