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Quantum computing crucially relies on the ability to efficiently characterize the quantum

states output by quantum hardware. Conventional methods which probe these states through

direct measurements and classically computed correlations become computationally

expensive when increasing the system size. Quantum neural networks tailored to recognize

specific features of quantum states by combining unitary operations, measurements and

feedforward promise to require fewer measurements and to tolerate errors. Here, we realize

a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum

processor to identify symmetry-protected topological (SPT) phases of a spin model char-

acterized by a non-zero string order parameter. We benchmark the performance of the

QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which

we prepare using a hardware-efficient, low-depth state preparation circuit. We find that,

despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological

phase with higher fidelity than direct measurements of the string order parameter for the

prepared states.

https://doi.org/10.1038/s41467-022-31679-5 OPEN

1 Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland. 2 Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU),
Erlangen, Germany. 3Quantum Center, ETH Zurich, CH-8093 Zurich, Switzerland. ✉email: johannes.herrmann@phys.ethz.ch; eichlerc@phys.ethz.ch

NATURE COMMUNICATIONS |         (2022) 13:4144 | https://doi.org/10.1038/s41467-022-31679-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31679-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31679-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31679-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31679-5&domain=pdf
http://orcid.org/0000-0003-3957-9585
http://orcid.org/0000-0003-3957-9585
http://orcid.org/0000-0003-3957-9585
http://orcid.org/0000-0003-3957-9585
http://orcid.org/0000-0003-3957-9585
http://orcid.org/0000-0003-3211-6334
http://orcid.org/0000-0003-3211-6334
http://orcid.org/0000-0003-3211-6334
http://orcid.org/0000-0003-3211-6334
http://orcid.org/0000-0003-3211-6334
http://orcid.org/0000-0003-2253-6239
http://orcid.org/0000-0003-2253-6239
http://orcid.org/0000-0003-2253-6239
http://orcid.org/0000-0003-2253-6239
http://orcid.org/0000-0003-2253-6239
http://orcid.org/0000-0002-9929-9684
http://orcid.org/0000-0002-9929-9684
http://orcid.org/0000-0002-9929-9684
http://orcid.org/0000-0002-9929-9684
http://orcid.org/0000-0002-9929-9684
http://orcid.org/0000-0003-2002-9495
http://orcid.org/0000-0003-2002-9495
http://orcid.org/0000-0003-2002-9495
http://orcid.org/0000-0003-2002-9495
http://orcid.org/0000-0003-2002-9495
http://orcid.org/0000-0002-8207-3806
http://orcid.org/0000-0002-8207-3806
http://orcid.org/0000-0002-8207-3806
http://orcid.org/0000-0002-8207-3806
http://orcid.org/0000-0002-8207-3806
http://orcid.org/0000-0002-3476-4485
http://orcid.org/0000-0002-3476-4485
http://orcid.org/0000-0002-3476-4485
http://orcid.org/0000-0002-3476-4485
http://orcid.org/0000-0002-3476-4485
http://orcid.org/0000-0002-5109-5009
http://orcid.org/0000-0002-5109-5009
http://orcid.org/0000-0002-5109-5009
http://orcid.org/0000-0002-5109-5009
http://orcid.org/0000-0002-5109-5009
mailto:johannes.herrmann@phys.ethz.ch
mailto:eichlerc@phys.ethz.ch
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Remarkable progress in building quantum hardware1–4 has
fueled the search for potential applications of both near-
term and future error-corrected quantum computers5,6,

particularly in the simulation of quantum many-body systems7,8

and in machine learning9–12. For example, the ability of quantum
computers to perform linear algebraic operations more efficiently
could provide potential speedups for classical machine learning
tasks, such as the ordinary matrix inversion in linear regression
models13. However, dedicated quantum algorithms for this pur-
pose, such as the Harrow, Hassidim and Lloyd algorithm14, rely
both on executing deep quantum circuits15 and on loading binary
data into a quantum register16 to offer practical advantages,
which is beyond the reach of currently available quantum hard-
ware. To load classical data into a quantum register in a more
resource-efficient manner and map their features into the high-
dimensional Hilbert space to ease classification, quantum circuits
parameterized by the input data have been devised and used in
quantum support vector machines17,18 and quantum neural
networks19. However, independent of the specific data embedding
scheme, it is still an open question whether tasks aiming at the
analysis of classical data can ever fully leverage a quantum
computer’s capability to process classically unrepresentable
amounts of data9.

Promising candidates to harness the capabilities of near-term
quantum computers are therefore algorithms which process
quantum data directly and for which there is no classical
analog9,20. Quantum computers are beginning to reach a level at
which their output states are too complex to be analyzed
by classical means1, suggesting that machine learning techniques
which directly process quantum data are expected
to become an increasingly important tool to efficiently
characterize and benchmark quantum hardware. Examples of
specific applications thereof include the principal component
analysis of density matrices21, quantum autoencoders22–24,
the certification of Hamiltonian dynamics25,26, and the detection
of entanglement correlations in quantum many-body
states10,11,27–29.

In this work, we experimentally demonstrate the classification
of quantum states with quantum neural networks11 by imple-
menting a quantum algorithm designed to recognize signatures
of topological quantum phases30–32. This challenging task is of
great relevance for the study of quantum many-body systems33

such as high-temperature superconductors34. Previous work in
this context has focused on recognizing topological quantum
phases from (simulated) measurement data using classical
machine learning techniques35–38. Furthermore, topological
states have recently been prepared on quantum hardware and
analyzed by measuring characteristic observables39–41 such as
string order parameters. Here, we experimentally demonstrate a
new paradigm to detect symmetry-protected topological states
on a 7-qubit quantum device by preparing quantum states
within and outside of the SPT phase and by further processing
these states with a quantum convolutional neural network to
perform quantum phase recognition. We have designed and
experimentally implemented a QCNN that, despite being
composed of finite-fidelity gates itself, outperforms the direct
measurement of the string order parameter in correctly iden-
tifying the topological phase. This enhanced capability is
achieved by constructing the QCNN to simultaneously measure
a weighted sum of Pauli strings, the number of which grows
exponentially with the system size N (see Supplementary
Note 5). The structure of this effectively measured observable
allows the QCNN to tolerate both X- and Z-type errors while
processing weakly perturbed input states. Using the QCNN to
measure this observable circumvents the need to measure its
constituent terms individually.

Results
Model. As a model system we consider a family of cluster-Ising
Hamiltonians42:

H ¼ � ∑
N

i¼1
Zi�1XiZiþ1 þ h1Xi þ h2XiXiþ1

� �
: ð1Þ

Ground states of (1) either belong to a topological quantum
phase, a paramagnetic (PM) phase, or an antiferromagnetic phase
depending on the model parameters {h1, h2}. h1 and h2
parametrize the strength of an external field and a nearest-
neighbor Ising-type coupling in the model. {Xi, Yi, Zi} are the
Pauli operators acting on the spin at site i. We define
Z0 � ZNþ1 � XNþ1 � 1, which models a spin chain with open
boundary conditions41.

In the thermodynamic limit, the bulk of the Hamiltonian H
commutes with both even Pe=∏iX2i and odd Po=∏iX2i+ 1 parity
operators, and thus exhibits a Z2 ´Z2 symmetry-protected
topological quantum phase43, which falls into the same symmetry
class as the S= 1 Haldane phase44. The SPT phase is distinguished
from the paramagnetic and antiferromagnetic phase by a non-zero
expectation value Sh i of the string order parameter32:

S ¼ Z1X2X4:::XN�3XN�1ZN ; ð2Þ
which is defined for an odd number of spins N. Corresponding to
the experimental situation in this work, we have computed Sh i,
shown in Fig. 1a, using exact diagonalization for a system of
N= 7 spins. Due to the finite system size, we obtain smooth
transitions across the phase boundaries (white dashed lines)
determined from the maxima in the second derivative of the energy
expectation value 〈H〉 with respect to h233.

Concept of the experiment. Conventionally, the phase to which
an unknown quantum state ρ belongs is determined by measuring
the expectation value of an order parameter S, a process referred
to as quantum phase recognition. However, when evaluating the
expectation value Sh i by simultaneously, but individually mea-
suring the qubits in their respective basis and by averaging the
outcomes over multiple repetitions of the experiment, the sam-
pling complexity increases close to the phase boundaries11. Fur-
thermore, under realistic conditions the state ρ, which we prepare
on the quantum hardware by executing a state-preparation cir-
cuit, might be subject to errors, reducing the value of hSi.

To overcome the aforementioned limitations, we perform
quantum phase recognition by processing the trial states ρ with a
QCNN. The structure of QCNNs, as recently proposed in Ref. 11, is
inspired by classical convolutional neural networks widely used e.g.,
in image or speech recognition. A generic QCNN consists of
alternating convolutional (C) and pooling (P) layers, followed by a
fully-connected (FC) layer, as schematically shown in Fig. 1b. The
combination of entangling gates applied between neighboring
qubits in the convolutional layer, and single-qubit gates conditioned
on the outcome of projective measurements in the pooling layer,
reduces the number of qubits while retaining characteristic features
of the input state vector. After repeating this procedure d times, a
unitary operation in the FC layer maps the feature of interest onto a
single output qubit. In general, QCNNs are parameterized and can
be trained to identify specific features of interest.

In our particular case, the QCNN is designed to recognize
string order and decide if the input state ρ belongs to the
symmetry-protected topological phase or not. Instead of
measuring the single string order parameters S as defined in
Eq. (2), the output of the QCNN corresponds to the weighted
sum of multiple string order parameters, the value of which is
robust against local X and Z-type errors. The specific structure of
the QCNN is inspired by the multiscale entanglement
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renormalization ansatz representation45 of the topological cluster
state, which is the ground state of H(h1= h2= 0)=−∑Zi−1XiZi
+1. In this case, each pair of convolutional and pooling layers
maps a (perturbed) cluster state onto a cluster state of reduced
system size, see Supplementary Note 5 for more details.
Compared to the originally proposed QCNN11, we modify the
FC layer to augment its tolerance to errors and use several gate
identities to implement operations in the P and FC layers in
classical processing wherever possible. We thereby drastically
reduce the quantum gate count and enhance the performance of
the QCNN under NISQ conditions.

For our experimental study carried out on a 7-qubit device, we
combine two complementary elements. First, we prepare approx-
imate ground states of the cluster-Ising Hamiltonian H by executing
variational state preparation circuits. Second, we use those states as
an input to the QCNN to demonstrate its capability to recognize the
SPT phase and compare it to directly measuring 〈S〉.

Variational state preparation. To prepare approximate ground
states of the gapped one-dimensional Hamiltonian H44 for the
entire parameter range {h1, h2} displayed in Fig. 1a, we use a low-
depth, variational state preparation circuit U(θ) composed of
three layers of single-qubit rotations Ry(θi) parametrized by 19
independent rotation angles θi and two layers of conditional-Z
(CZ) gates interleaved with the single-qubit gates, see Fig. 2a46.
We implement both types of gates directly on the quantum
hardware, see Supplementary Note 4 in which we also provide a
comparison to an alternative approach used in Ref. 39 to prepare
ground states via an exact matrix product state representation of
translationally invariant states.

To determine the variational parameters θ= {θ1, ..., θ19}
corresponding to an approximate ground state of a specific
H(h1, h2), we minimize the energy expectation value Hh i in a
conventional computer simulation with respect to the simulated
output state θj i ¼ UðθÞ 0j i by using a gradient based L-BFGS

Fig. 2 Variational ground state preparation. a Variational quantum circuit parametrized with 19 rotation angles θ used to prepare approximate ground
states of the cluster-Ising Hamiltonian H. b Rotation angles θi found by an optimization algorithm on a conventional computer for three example states
{h1, h2} in the paramagnetic (PM) {1.1, 1.4}, SPT {0.0,− 0.2}, and antiferromagnetic (AF) {0.8,− 1.4} phase. c Measured expectation values of the
indicated operators (solid bars) along the qubit array in comparison to the simulated values (wire frames) for the three states prepared using the rotation
angles in b. dMeasured string order parameters Sh i for all prepared variational states vs. Hamiltonian parameters h1 and h2. Open circles indicate the three
example states presented in b and c.

Fig. 1 Concept of the quantum phase recognition experiment. a Phase diagram displaying the numerically calculated expectation value of the string order
parameter Sh i ¼ Z1X2X4X6Z7

� �
for ground states ρ of a cluster-Ising Hamiltonian (Eq. (1)) in the parameter space spanned by h1 and h2 for N= 7. The

white dashed lines indicate the phase boundaries between the symmetry-protected topological (SPT) phase and the paramagnetic and antiferromagnetic
phases, respectively. b An unknown state ρ drawn from the phase diagram in a is processed by a QCNN to recognize the phase to which it belongs. The
QCNN consists of convolutional layers (C) decomposed into two-qubit gates (orange), of pooling layers (P) implemented as single-qubit operations
conditioned on intermediate measurement outcomes (purple), a fully-connected circuit layer (FC), and the measurement of a single output qubit yielding
outcome y.
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optimizer47. As an acceptance criterion for the convergence of the
optimization algorithm, we compute the fidelity F ¼ jhψ0jθoptij2
of the variational state jθopti with respect to the exact ground state

ψ0

�� �
, which, for N= 7, can be found using exact diagonalization.

We repeat the optimization procedure with different initial values
until F exceeds 81% solely being limited by the finite variational
circuit depth of m= 1, see Supplementary Note 4. To make the
state preparation circuit less susceptible to T1 errors, we then
compute an equivalent set of rotational angles ~θopt yielding the

same Uð~θoptÞ ¼ UðθoptÞ48, but keeping the individual qubits
preferentially in their respective ground state in the beginning of
the state preparation sequence, see Supplementary Note 4 for
details. This procedure avoids rotation angles close to π in the
first layer of single-qubit rotations, which becomes apparent in
the three examples shown in Fig. 2b by the absence of large
rotation angles in the first column. The example state from the
PM phase features rotation angles summing to ~ ±π/2 for each
qubit individually. For the example state from the SPT phase, all
qubits are initially rotated by an angle close to ±π/2, which,
together with the subsequent layers of entangling CZ gates, results
in an approximate cluster state41.

For the rotation angles ~θopt found in computer simulation, we
execute the corresponding state preparation circuits on a 7-qubit
superconducting quantum device featuring individual control and
readout of all qubits, see Supplementary Note 1 for details. We
realize single-qubit rotations by applying microwave pulses of
controlled amplitude and phase and implement two-qubit CZ gates
with flux pulses bringing the state 11j i into resonance with the
non-computational state 20j i49,50, where jni; nji denote the states
of the involved qubits in the Fock basis. To assure that all qubits
are in their respective ground state at the beginning of each
sequence, we perform a preselection readout and reject those
measurement runs in which we found at least one of the qubits to
be in the excited state, resulting in an overall acceptance probability
of ~91%. We perform measurements in the X basis by prepending
an Ry(π/2) rotation to the respective qubits before performing
standard dispersive readout in the Z basis. To mitigate the effect of
readout infidelities on the order of 1.6% per qubit in averaged
measurement observables, we multiply the vector of probabilities pi
of sampling the bitstring xi by the inverse of the assignment
probability matrixM to obtain ~p ¼ M�1p, from which we evaluate
expectation values, see Supplementary Note 2 for details.

To characterize our state preparation, we measure a set of local
expectation values and compare the results with those obtained
from Kraus operator simulations, which take qubit dissipation
and dephasing, as well as measured CZ gate errors and nearest-
neighbor residual ZZ coupling into account, see Fig. 2c. For states
in the paramagnetic (antiferromagnetic) phase, we find, as
expected, a non-zero magnetization hXii along the entire spin
chain with equal (alternating) sign. The key signature of states in
the SPT phase is the non-zero expectation value of Pauli strings
Zi�1XiZiþ1

� �
. In all three cases, the average deviation between

measured and simulated expectation values is below 5.8% and can
likely be attributed to small additional coherent control errors,
which we do not account for in the Kraus operator simulation.

To map out the full quantum phase diagram shown in Fig. 2d, we
proceed with measuring the string order parameter Sh i for 10 × 10
combinations of {h1, h2} by directly sampling 32,768 times from the
output of the state preparation circuit as indicated in Fig. 3a. We
find the measured phase diagram to show all qualitative features of
the exactly calculated one shown in Fig. 1a. The reduction in the
overall contrast, which becomes apparent in the different amplitude
scaling of hSi, stems from errors due to decoherence and two-qubit
gate errors as confirmed by Kraus operator simulations, see

Supplementary Note 4 for details. Most importantly, some of those
errors can be tolerated when inferring the quantum phase of a prior
unknown state by applying a QCNN algorithm rather than
measuring Sh i directly, as we show in the following.

Quantum phase recognition. Instead of measuring the expecta-
tions Sh i directly after state preparation, we now employ the
QCNN to detect the SPT phase. For this purpose, we process the
prepared quantum states by the QCNN depicted in Fig. 3b and
evaluate the expectation value 2〈y〉− 1 of the single output bit y,
which corresponds to measuring the expectation value of a mul-
tiscale string order parameter SM consisting of a weighted sum of
Pauli strings, see Eq. (14) in Supplementary Note 5 for an explicit
expression. Measuring the QCNN output SM ¼ 2y � 1 instead of
S is advantageous because weakly perturbed cluster states still yield
SM ¼ þ1 while the same states have a finite probability to yield
S ¼ �1 which reduces the fidelity of the respective expectation
value. Due to this property, SM attains a step-like behavior at phase
boundaries for large system sizes leading to a reduced sampling
complexity11. Using the QCNN allows us to measure all the indi-
vidual strings in SM simultaneously, thereby reducing the number
of measurement terms compared to a direct sampling of all Pauli
strings, by an amount which scales exponentially with the QCNN
system size N. For the system size N= 7 considered in our
experiment the number of individual strings in SM is 10, see
Supplementary Note 5 for details.

We construct the QCNN by making two modifications to the
quantum circuit proposed in Ref. 11. First, we perform the
pooling and fully-connected layers as a Boolean function f(x) after
having performed a projective measurement. This approach
requires only a constant depth quantum circuit irrespective of the
qubit number, which greatly reduces the total quantum gate
count in comparison to preceding QCNN circuits while yielding
the same output value. We explicitly show in Supplementary
Note 5 that the modified QCNN circuit is fully equivalent to the
original circuit in which all operations are implemented with
quantum gates. While this modification is applicable to the exact
QCNN circuit optimized for our particular model system, the
implementation of a generic parametrized QCNN may not allow
for a similar reduction of quantum gates. Second, we extend the

Fig. 3 Quantum phase recognition circuits. a Quantum circuit for the case
in which the qubits are measured in the indicated basis, directly after
executing the state preparation circuit U(θ), to evaluate S ¼ Z1X2X4X6Z7.
b QCNN circuit consisting of a convolutional layer (C) of CZ gates
(orange), and a pooling (P) and fully-connected (FC) layer implemented as
a measurement in the X basis with outcome x, followed by a Boolean
function f(x), here, represented by a logic circuit expressed in terms of AND
and XOR gates (purple). An example of an X (Z) error occurring on qubit
six (four) and its propagation through the QCNN is highlighted in red
(blue).
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fully-connected layer to map the measured bitstring x= (x1, x3,
x4, x5, x7) onto a single output bit y, such that it not only tolerates
X errors, but also Z errors, provided the errors are sufficiently
sparse. For example, an X error occurring on qubit six and a Z
error on qubit four prior to the convolutional layer invert bits
x5, x7 and x4, which is corrected by the function f(x), see the red
and blue colored paths in Fig. 3b. With this modification, the
number of measurements that would be needed to determine
hSMi without employing the QCNN is also much larger than in
previously proposed versions11, for which all the involved Pauli
strings can be obtained from measuring in only two different
bases, see Supplementary Note 5. The constant-depth quantum
circuit plays a crucial role in the QCNN as it allows us to
simultaneously sample all quasi-local observables Zi−1XiZi+1. The
samples contain information about the long-range correlations
between these quasi-local observables, which enables us to
efficiently determine hSMi using classical processing.

To investigate the QCNN’s tolerance to errors in more detail,
we sample x after having performed the convolutional layer for
two different ground states chosen from the SPT and PM phase,
respectively, and obtain the probability distributions shown in
Fig. 4a. For the state in the SPT phase (top panel), we find a high
probability of 0.47 to sample (00000), which is expected because
the ideal cluster state corresponding to the ground state of
H(h1= h2= 0) is mapped onto þþþþþj i by the disentangling
CZ gates of the quantum convolutional layer. However, due to the
non-zero value of h1= 0.2 and the presence of noise in the
quantum circuit, we also measure other bitstrings with non-zero
probability, most notably (10000). Most importantly, a large
fraction of those bitstrings is correctly mapped onto y= 1 by the
function f, thereby counteracting a quantum phase misclassifica-
tion in those cases. For the paramagnetic example (bottom panel),
we find the sampled bitstrings to be more uniformly distributed
and, correspondingly, y to result equally likely in 0 or 1. In both
examples, we find the measured probability distributions to be in
good agreement with the simulated ones, taking decoherence,
two-qubit gate imperfections and readout errors into account.

We finally quantify the performance of the QCNN in correctly
identifying the SPT phase by comparing the value 2〈y〉− 1
obtained from the QCNN to the value Sh i obtained from direct
sampling, see Fig. 4b, c. In particular, we determine both
quantities across the phase boundaries separating the SPT phase
(light gray) from the paramagnetic and antiferromagnetic phases,
respectively, by varying h2 for constant h1= 0.2. In both cases the

measured expectation values (dots), which we obtain from 32,768
individual samples, approach zero for the paramagnetic and
antiferromagnetic phases and take a non-zero value reaching 0.70
in the SPT phase. Compared to the ideal values (solid lines) and
as a result of error events, the overall fidelity is reduced - an effect
which is well-explained by Kraus operator simulations of the
respective quantum circuits (dashed lines), which also identify
two-qubit gate imperfections as the most prominent error
contributor, see Supplementary Note 4 for details on the
simulations. Most importantly, we find the average difference of
the measured QCNN output values 2〈y〉− 1 from the ideal curve
to be 0.23, while the average difference of the directly measured
values of Sh i is 0.34. This enhancement of performance provides
clear evidence for the robustness of the QCNN against errors.

Discussion
By implementing a QCNN on a superconducting quantum pro-
cessor, we have demonstrated its capability to efficiently recognize
quantum phases. With further advances in qubit number and
circuit depth, we expect QCNNs to become an important diag-
nostic tool to characterize output states of NISQ devices, which
are increasingly challenging to analyze with classical computing.
Such applications will benefit from the predicted increased
sampling complexity at phase boundaries11, at which the QCNN
enhances the distinguishing power for assigning states to different
quantum phases. While this enhancement is not yet accessible for
the system size considered here, larger systems will be able to
benefit from it, see Supplementary Note 5. Additionally, the
scaling advantage can be understood by expressing the output of a
QCNN by an equivalent weighted sum of string order parameters,
the number of which scales exponentially with N. The QCNN
thus allows one to simultaneously measure the sum of all those
terms. An interesting direction to be explored in future work
includes the trainability of parameterized QCNNs. This also
becomes relevant in the context of using QCNNs to learn optimal
strategies for quantum error correction.

Data availability
The authors declare that the data supporting the findings of this letter and
corresponding Supplementary Information file are available online at the ETH Zurich
repository for research data https://doi.org/10.3929/ethz-b-000530297.
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Fig. 4 Performance of the QCNN. a Probability to sample bitstrings x after having applied the convolutional layer (compare Fig. 3b) for the two indicated
Hamiltonian parameter sets {h1, h2}. Bitstrings mapped onto 1 (0) by the function f(x) are colored in orange (purple) and the expected probabilities from a Kraus
operator simulation in the corresponding light color, whereas the ideal values are depicted as black wire frames. b Expectation value Sh i ¼ Z1X2X4X6Z7

� �

measured directly after variational state preparation (compare Fig. 3a) vs. h2 for fixed h1=0.2, in comparison to the ideal values (solid line) and simulated values
taking decoherence into account (dashed line). The SPT phase is indicated in light gray. c Expectation value 2 yh i � 1 measured after applying the QCNN for the
same parameters as in b compared to values extracted from a Kraus operator simulation of the QCNN circuit (dashed line) and the ideal value (solid line).
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