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Trade off-free entanglement stabilization in a
superconducting qutrit-qubit system
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Quantum reservoir engineering is a powerful framework for autonomous quantum state

preparation and error correction. However, traditional approaches to reservoir engineering

are hindered by unavoidable coherent leakage out of the target state, which imposes an

inherent trade off between achievable steady-state state fidelity and stabilization rate. In this

work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-

qubit system realized on a circuit-QED platform. We accomplish this by creating a purely

dissipative channel for population transfer into the target state, mediated by strong para-

metric interactions coupling the second-excited state of a superconducting transmon and the

engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a

stabilization time constant of 339 ns, leading to a 54 ns error-time product in a solid-state

quantum information platform.
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Entanglement is a fundamental property of quantum systems
and is essential to achieve quantum advantage in almost any
application of quantum information processing, such as

sensing1, communication2 and computing3. Typically, entangle-
ment is created by applying a sequence of single and two-qubit
unitaries; however the resulting states are subject to decoherence
caused by coupling to the surrounding environment4. In the
absence of active error correction5–10, decoherence limits the
circuit depth and, consequently, the size of the entangled state
that can be produced. Moreover, this approach is sensitive to state
preparation and measurement errors which accumulate as the
complexity and size of the quantum system increases. An
attractive alternative for quantum state preparation is quantum
reservoir engineering, where a quantum system is steered to a
desired entangled state by coupling it to an auxiliary system
(“engineered reservoir”) that induces strong, non-local dissipa-
tion on the target system11–21. In addition to being immune to
initialization errors, the target state remains stabilized for times
much longer than the coherence time of the individual qubits,
ensuring the entangled state is always available on demand.

Though there have been several demonstrations of dissipative
stabilization in diverse quantum information platforms, such as
superconducting qubits14–16,22–25, trapped ions17,26–29, atomic
systems30, and NV centers31, almost all reported schemes have been
hindered by unavoidable coherent leakage out of the target state
that cannot be suppressed without also reducing the repumping rate
into the desired state. This issue leads to a trade off in reservoir
engineering: the product of minimum steady-state error (ε∞) and
stabilization time (τ) is a constant that is independent of the
engineered dissipation rate, implying that perfect entanglement
stabilization cannot be achieved at rates faster than the uncontrolled
dissipation rates32. This severely limits the prospects of reservoir
engineering both in terms of (1) usability with regard to imple-
mentation in systems with strong local (uncontrolled) decoherence,
which ironically stand to gain most from such stabilization tech-
niques, and (2) scalability with regard to state preparation in large
quantum networks, where it becomes increasingly harder for the
stabilization rate to beat the cumulative local decoherence, which
scales (at least) linearly with system size33–35.

Nonetheless, as shown by our recent work11 such a trade off is
not a fundamental limitation of autonomous state stabilization,
but is a consequence of driven-dissipative schemes that transfer
population into a target state at a rate limited by a drive strength
which needs to remains weak (or “perturbative”) as compared to
the dressed linewidth to maintain resonant pumping. As a result,
in the strong coupling regime the desired entangled state ceases to
be the dark state of the dynamics (i.e., an eigenstate of the drive
Hamiltonian that is simultaneously also a null state of the engi-
neered dissipation). The concurrent scaling of terminal fidelity
and stabilization rate can be achieved instead by engineering
entanglement stabilization protocols that do not cause increasing
coherent leakage under strong coupling, so that fast stabilization
can be achieved without sacrificing fidelity to a fixed entangled
state. Such protocols are limited only by incoherent error sources
that are much slower than the stabilization rate.

In this work, we implement a trade off-free Bell-state stabili-
zation protocol in a superconducting circuit-QED system com-
prising two transmons parametrically coupled to a common lossy
resonator that acts as an engineered reservoir. We engineer a
purely dissipative channel for population transfer into the target
Bell state via parametric coupling to the third level of the trans-
mon, and without any direct coherent coupling into or out of it,
making it an eigenstate of the drive Hamiltonian and also a dark
state of the engineered dissipation. Our scheme attains a steady-
state fidelity of 84% with a time-constant of 339 ns achieving the
error-time product ε∞τ≃ 54 ns. Furthermore we verify that the

steady state error and preparation time are linearly correlated.
Notably, the reported protocol is the minimal instance of trade
off-free stabilization physics that employs only continuous
unconditional driving and linear (engineered) dissipation.

Results
Figure 1a depicts the general scheme, in which a qutrit-qubit
system is coupled to a lossy resonator using bilinear parametric
interactions. Our circuit-QED implementation in Fig. 1b consists
of two transmon qubits coupled to a superconducting resonator.
To reduce the circuit size, we implemented the superconducting
resonator as a capacitor in series with a chain of Josephson
junctions, each having a critical current of 540 nA. The para-
metric interactions are realized by grounding the resonator and
the transmon junctions through a shared superconducting
quantum interference device (SQUID) loop, which acts as a flux-
tunable inductor. Through sinusoidal modulation of the flux
through the SQUID loop, ΦðtÞ ¼ Φext þ∑jΦj cosðωjt þ ϕjÞ,
pairwise couplings can be activated between any pair of elements
via the choice of the pump frequency ωj. We show the layout of
the experimental device in Fig. 1c, with detailed parameters listed
in Supplementary Table 1.

We simultaneously activate the parametric couplings depicted
in Fig. 1a by flux-pumping the SQUID at the sideband fre-
quencies ωa ±ω

n;nþ1
k , corresponding to the desired transition

frequencies of the transmon k= l, r. Specifically, we pump the
two red-sideband frequencies ωa � ω01

l and ωa � ω12
l corre-

sponding to the 0–1 and 1–2 transitions for transmon l, and the
red-sideband at ωa � ω01

r corresponding to the 0–1 transition of
transmon r. In conjunction with Rabi drives on the 0–1 transi-
tions of each qubit, this leads to an effective interaction Hamil-
tonian of the form (see Supplementary Note 1):

HI ¼ ay
g12l
2

eiϕ
12
l 1j il 2h j þ ∑

k2fl;rg

g01k
2

eiϕ
01
k 0j ik 1h j

� �

þ ∑
k2fl;rg

Ω01
k

2
eiθk 0j ik 1h j þ h:c:;

ð1Þ

where we have moved to a frame defined w.r.t. the free Hamil-
tonian and discarded off-resonant counter-rotating terms (see
Supplementary Note 2). Here we approximate the resonator as a
harmonic oscillator, since we estimate its anharmonicity to be
α ≈ 80−100 kHz. The parametric couplings shuttle excitations
between the transmon levels and the lossy resonator14,36,37,
leading to an engineered quasi-local dissipator D Leff

� �
acting on

the transmons with:

Leff ¼ c12l 1j il 2h j þ ∑
k2fl;rg

c01k 0j ik 1h j: ð2Þ

The coefficients cn;nþ1
k are functions of the resonator decay rate κ

and the corresponding parametric pump amplitudes (gn;nþ1
k ) and

phases (ϕn;nþ1
k ). In particular, the phases ϕn;nþ1

k are needed to
perform coherent control of the stabilized state, as explained later.
We choose our coupling rates so that the target Bell state ψ

�� �
is an

eigenstate of the Hamiltonian in Eq. (1) and satisfies
Leff ψ

�� � ¼ 011,38. For example, in order to prepare the state ψ
�� � ¼

ð1= ffiffiffi
2

p Þð 01j i þ eiϕ 10j iÞ we set g01l ¼ �eiϕg01r and Ω01
l ¼ �eiϕΩ01

r .
We emphasize that this qutrit-qubit scheme is the minimal

system to realize trade off-free stabilization of a two-qubit maxi-
mally entangled state, using only unconditional continuous-wave
driving and linear dissipation. Specifically, restricting to linear
engineered dissipation allows using bilinear interactions, which
are easy to implement via three-wave parametric mixing in
Josephson circuits. Further, leveraging the tunability of parametric
interactions with pump amplitude, coupling strengths can be
tuned in situ from weak to strong coupling to find the optimal
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drives required to achieve lowest error. In our experiment, we bias
the SQUID coupler at Φext=−0.39Φ0 corresponding to transmon
0–1 transition frequencies of ω01

l ¼ 2π ´ 5:928 GHz and ω01
r ¼

2π ´ 4:993 GHz and center frequency of the resonator ωa= 2π ×
8.124 GHz (Fig. 1d). The noise in spectroscopy visible at zero flux
in Fig. 1d is due to the low readout fidelity caused by weak cou-
pling of the readout cavity of transmon l to the input transmission
line. We characterize the parametric drive amplitudes g01l;r by
initializing each transmon in state 1j il;r and subsequently turning
on the respective red-sideband ωa � ω01

l;r to measure the coherent
swaps with the resonator, see Fig. 1e, f. Similarly, we measure g12l
by initializing the left transmon in the state 2j il using a sequence
of π01, π12 pulses, the first resonant with the ω01

l and the second
resonant with the ω12

l ¼ ω01
l þ αl , where the anharmonicity αl=

−2π × 198MHz (Supplementary Note 4). We then measure the
coherent swap between the states 2j il 0j ia and 1j il 1j ia under the
action of red-sideband at ωa � ω12

l . In Fig. 1e we show an example
of time-domain oscillations, indicating coherent swap with decay
time approximately equal to 2/κ, which is consistent with the
hybridization between the transmon transitions and the lossy
resonator. We fit the oscillations on resonance corresponding to
each transition to a decaying sinusoid and extract the parametric
coupling rate from the swap period 1/g; we do this for different
drive amplitudes and measure coupling rates up to g= 2π × 17.5
MHz (Fig. 1f).

The minimality of the scheme, i.e., why it is sufficient to
include one extra level to achieve trade off-free stabilization, can

be seen using the following simple argument. Let us assume,
without loss of generality, that we want to stabilize the singlet
state Sj i ¼ ð1= ffiffiffi

2
p Þð 01j i � 10j iÞ. The most general jump operator

restricted to a two-qubit (four-level) space that satisfies L Sj i ¼ 0
is L= c−J−+ c+J+ where J± are the total spin raising and low-
ering operators. Similarly, if Sj i is an eigenstate of the system
Hamiltonian, the latter commutes with the total spin H; J2

� � ¼ 0.
We conclude that since every generator commutes with J2, the
total spin is a conserved quantity and hence the qubits cannot be
stabilized into Sj i (corresponding to J= 0) when initialized in a
state corresponding to different total spin (J= 1). Figure 2a
illustrates the problem—that in the process of engineering Sj i as
the steady state of dissipation, we completely decouple it from the
rest of the Hilbert space. The previous argument can be extended
to the stabilization of any Bell state, by redefining the spin
operators up to a local unitary on either qubit.

In the past38, this issue has been bypassed by stabilizing an
“approximate” Bell state, ψ

�� � ¼ N δð Sj i þ δ ξj iÞ with Ly ξj i≠0,
thus allowing the use of interactions which do not conserve the
total spin. This approach, however, only enables a perturbative
stabilization of Bell states, which results in a trade off between
intrinsic error of the protocol and stabilization rate. In contrast,
the procedure presented here eliminates this problem by
expanding the system Hilbert space minimally to a qutrit-qubit
system and realizing a scheme with ideally no intrinsic error (see
Supplementary Note 2 and Supplementary Fig. 1). The sideband
coupling to the second-excited state of the qutrit (g12l ) leads to a

(a) (b)

(d)

(c)

(e) (f)

Fig. 1 Device design and characterization. a Schematic diagram showing a lossy resonator with linewidth κ coupled to a qutrit-qubit system via three
parametric drives. Rabi drives resonant with the 0–1 transition are also applied to both the qutrit and the qubit. b Circuit realization of the scheme in
a showing two superconducting transmons (green and turquoise) and central resonator (orange), as well as the dedicated readout resonators (gray). The
transmons and central resonator share a SQUID that implements parametric couplings (gn;nþ1

k ). c Optical micrographs of the device layout (left) and a
magnified view of the junctions and the SQUID coupler (right). The external bias line used to pump the SQUID can be seen at the bottom of the device. The
resonator consists of an array of 10 Josephson junctions, each having a critical current Iac≈ 540 nA, in series with a fixed capacitor. d Measured 0–1
transition frequency for each transmon and resonator center frequency as a function of flux through the SQUID loop. The operating flux bias is indicated
with a dashed-black line. e Time-domain parametric swaps measured as a function of pump frequency for each of the three parametric drives in Eq. (1).
From left to right, the transmons are initialized in 10j i, 20j i, and 01j i respectively. f Parametric coupling rates measured as a function of pump amplitude.
Solid lines are linear fits to the data; the nonlinear response of g12l at higher drive amplitude is due to enhanced mixer saturation at the corresponding IF
frequency of 150MHz, as compared to the other drives, which use 50MHz.
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jump operator as indicated in Eq. (2) that does not preserve the
“total spin” on the qubit-qubit subspace but still supports Sj i as a
steady state. Figure 2b illustrates the mechanism of our protocol
after adiabatic elimination of the oscillator39. There is no direct
coupling between the singlet and triplet subspaces, either dis-
sipative or coherent. Instead, the additional levels included in the
Hilbert space due to the second-excited state of the qutrit mediate
a pathway for population to decay from the triplet to the singlet
subspace in a multi-step process.

We note that extending the Hilbert space is not the only
method available to mitigate the trade off between error and time
of stabilization. Previous works have considered time-dependent
control of drives40 or conditional (number-selective) driving15 as
a way to increase stabilization speed. Nonetheless, the interactions
required are either more complex to control, and/or rely on a
combination of both static and parametric interactions. More
crucially, such protocols are susceptible to coherent leakage for
drive amplitudes comparable to dispersive shifts (few MHz),
which reimposes the error-time trade off11. On the other hand,
with higher level driving the frequency of the nearest counter-
rotating terms is determined by the anharmonicity of the atom
(few 100MHz for transmons), allowing usage of larger drive
amplitudes and, consequently, stronger engineered dissipation
rates (see Supplementary Fig. 2).

Stabilization mechanism and performance. The stabilization
procedure implemented by the Hamiltonian in Eq. (1), in con-
junction with the resonator decay (κ), is able to stabilize any odd-
parity Bell state through appropriate choice of phases ϕk, θk.
Figure 3a shows the full energy level diagram, including the
resonator levels, depicting the mechanism for stabilization of
triplet state Tj i ¼ ð1= ffiffiffi

2
p Þð 01j i þ 10j iÞ as an example. Here, the

two 0–1 sideband drives are set out-of-phase (purple arrows) to
selectively couple only the orthogonal state Sj i to the even-parity
states in the one-excitation manifold of the resonator. The out-of-
phase Rabi drives (blue arrows) couple 00j i (and 11j i) to Sj i and
prevent the system from being trapped in 00j i 0j ia. Finally, the
1–2 sideband drive (magenta arrows) couples the second-excited
state of the left transmon to the states in the one- and two-
excitation manifolds of the resonator. The combined action of the
three parametric and two direct drives pumps the population into
Tj i 1j ia, which then quickly decays to the target state Tj i 0j ia.
Crucially, no drive acts on Tj i 0j ia directly, suppressing any
coherent leakage out of the target state as explained before.

For demonstrating stabilization, we initialize both transmons
in their ground state since it requires no prior active preparation,

simultaneously turn on all three parametric drives and two Rabi
drives for a fixed time t, and finally perform two-qubit quantum
state tomography to reconstruct the evolution of the two-qubit
state as a function of t. We note here that stabilized state is
independent of the initial state of the qubits; data for different
initial states are discussed in (Supplementary Fig. 7).

We examine the stabilization time constant, τ, and steady-state
error, ε∞, from fitting the dynamical error for a given set of drive
parameters as εðtÞ ¼ ε1 þ ~ε expð�t=τÞ, where εðtÞ ¼ 1� Tr
fρðtÞIres � Tj i Th jg11. With the Rabi drives tuned to their optimal
coupling strength, the average stabilization trajectory displays an
exponential behavior with a characteristic 1/e time of 339 ns as it
approaches its steady state fidelity of 84(1)%, found from the average
and standard deviation of the data points between 10 and 50 μs
(Fig. 3b). The remaining population resides primarily in the ground
state 00j i (11%), with small residuals in 11j i (2%) and the orthogonal
Bell state Sj i (2%). We verified that the qubits remain in the steady
state for as long as the pumps are on up to 50 μs, which is about 10×
longer than the timescale set by the decoherence time of each qubit
T�
2 (Supplementary Table 1). In Fig. 3b we also show a full master

equation simulation of the system and a tomogram of the
reconstructed two-qubit density matrix at t= 50 μs. The simulations,
which are entirely based on independently measured device
parameters, predict the correct target state fidelity within our
measurement uncertainty. The measured convergence time is about
15% faster than predicted by the theory for the measured drive
amplitudes, which we attribute to residual drive detuning and
imbalance, see also Fig. 4 and Supplementary Fig. 12.

We separately characterize leakage out of the qubit manifold by
measuring the population of the 2j il state, which peaks at
t= 150 ns and then drops to less than 2.5% at t > 1 μs. In the
Supplementary (Supplementary Note 5 and Supplementary Figs. 9
and 10) we provide details of obtaining a numerical bound on the
error caused by this high-dimensional leakage (<1%) in the steady
state reconstructed from two-qubit state tomography.

By exploiting the tunable nature of parametric interactions, we
realize in situ coherent control within a fixed parity manifold. For
example, the stabilized Bell state can be rotated by tuning the
phases of the 0–1 sidebands and Rabi drives while ensuring
ϕ01l þ θl ¼ ϕ01r þ θr . Such phase tuning allows for selection of any
maximally entangled state while maintaining the purity, P(ρ), and
concurrence, C(ρ), of the two-qubit state, as demonstrated in
Fig. 3c. Additionally, it is possible to continuously move along the
longitude from 01j i to 10j i by changing the ratio between g01l =g01r
and Ωl/Ωr. The post-selected two-qubit state (Fig. 3d) shows an
average purity of 95% and 80% in odd- and even-parity
manifolds, respectively. Using these numbers to model the full
two-qubit state as a probabilistic mixture of even and odd parity
subspaces, ρ4×4= xρeven⊕ (1− x)ρodd allows us to extract an
improved post-selected fidelity of 97.25(5)% for the odd-parity
Bell state averaged across the range of phases. This fidelity
corresponds to the state obtained by performing an ideal parity
measurement and projecting the stabilized state onto the odd-
parity manifold15. In Fig. 3d we used the symbols Φ± ¼
ð1= ffiffiffi

2
p Þ 00j i± 11j i for the even-parity maximally entangled states.
The main distinctive feature of our stabilization protocol is the

concurrent scaling of preparation time and steady-state error.
This is confirmed by the data presented in Fig. 4 which shows a
linear relationship between τ and ε∞; both decrease as the Rabi
drive strength is increased, reaching a minimum near the optimal
Ωopt

l;r � 1:5κ. Simulations of both the full and reduced system (the
latter obtained via adiabatic elimination of the resonator) confirm
the linear error-time scaling, with the slope determined almost
entirely by the total decoherence rate of the stabilized Bell state
1=TB ¼ ∑k2l;r? > ðγ01k þ γ11k Þ=2, i.e., ε∞/τ ≈ 1/TB. Here γ01k is the

(a) (b)

Fig. 2 Minimality of proposed scheme. a Quasi-local dissipation
engineered with red- and blue-sideband qubit-oscillator interactions: it is
not possible to protect the target Bell state Sj i from decay (red arrow)
without also suppressing any repumping channel from the orthogonal
subspace into the target state (orange arrow). b The effective action of our
protocol on the reduced qutrit-qubit subspace. Note how the qutrit levels
provide the triplet subspace an indirect path to decay into the singlet
subspace (Supplementary Fig. 1).
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0–1 relaxation rate and γ11k is the pure dephasing rate. The linear
relationship between ε∞ and τ indicates that the steady-state error
is due to competition between engineered dissipation and local
decoherence rates rather than any coherent error process. This is
further confirmed by the fact that the data match the theory more
closely at high drive strengths, where the engineered dissipation
rate is stronger.

The line corresponding to the experimentally measured stabiliza-
tion error and time has a steeper slope than 1/TB (c.f. Fig. 4b). Our
simulations agree with the measured data when we include the effect
of parametric crosstalk-induced drive detuning and amplitude
imbalance, both of which lead to coherent leakage out of the target
state11. The fitted detunings (about 400 kHz on average) are a small
fraction (≤3%) of the measured power-dependent frequency shift of
the right transmon (18MHz), (see Supplementary Fig. 11 for details).
We stress here that this coherent leakage remains weak compared to
the engineered dissipation strength and, therefore, does not alter the
expected error-time linear scaling.

To assess the performance reported here against previous
experiments we compare the product of εmin

1 and τ, which can be
thought of as an “inverse gain-bandwidth product” for state
preparation. Note that in previous experiments, unlike our case,
the product between ε∞ and τ is a constant. Nonetheless, we can
still use this product as a composite figure of merit to compare
performance across different protocols. Our experiment yields
εmin
1 τ ¼ 54ns, which is 5x - 6x lower than previous implementa-
tions of continuous-wave state stabilization in superconducting
circuits (Table 1). We also propose an “information-theoretic”
metric that allows to compute the upper bound on error-free
output information generated by a multiple repetitions of a
stabilization protocol. To this end, we model a stabilization cycle
as a noisy binomial channel with the maximum success
probability set by p(t)= 1− ε(t) and the number of uses set by
the ratio nc= Tc/τ, where T�1

c is the repetition rate of the
experiment. Assuming the output to be a continuous normal

(c) (d)

Fig. 3 Stabilization protocol and results. a Energy level diagram showing the action of Ωl,r (blue), g01l;r (purple), g
12
l;r (magenta), and κ (orange). Only the first

two energy levels of the resonators are shown for clarity. b Stabilization trajectory for transmons initialized in 00j i obtained for Ωl,r= 2π × 7.2 MHz,
g01l;r ¼ 2π ´ 7:5 MHz, g12l ¼ 2π ´ 13:1 MHz, κ= 2π × 4.73MHz, showing target state (here Tj i) fidelity of 84% fidelity stabilized for 50 μs. The dashed line
corresponds to trajectories obtained using master equation simulations. The density matrix at t= 50 μs, reconstructed using quantum state tomography,
shows that most of steady-state error is accounted for by decay into 00j i. The size of the squares in the tomogram represent the magnitude, while the
color represents the phase of the density matrix element. c Coherent control of the stabilized state, with simultaneous tuning of the phases of Rabi (Ωl) and
parametric drives (g01l ), maintaining ϕ01l þ θl ¼ 0. The populations are shown at a fixed time t= 2 μs as a function of drive phase and remaining drive
phases fixed. The average purity and concurrence over the 2π rotation are 77%. d Two-qubit Bloch sphere representations for (normalized) projections of
steady state in odd- and even-parity manifolds.

(a)

(b)

Fig. 4 Trade off-free performance scaling. a Measurement of preparation
error as a function of time, ε(t), for different Rabi drive amplitudes of Ω01

l;r .
b Parametric plot of the steady-state error ε∞ and the stabilization time
constant τ, obtained from fitting the data in (a) showing the expected linear
scaling. The minimum ε∞ and τ are measured at Ωopt

l;r � 1:5κ. The minimum
error εmin

1 is close to theoretically achievable value for experimental κ
(shown as the gray floor), (Supplementary Fig. 11). The dotted line is the
error-time scaling obtained from a simulation of Eq. (1) and has slope equal
to 1/TB with TB= 3.38 μs, independent of drive amplitudes, in accordance
with the semi-classical estimate discussed in the “Methods” section. The
deviation of experimentally observed slope from 1/TB is quantitatively
explained by including a residual drive detuning and imbalance in the
sideband amplitude (Supplementary Fig. 12).
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distribution in the limit of large nc, this leads to the following
expression for entanglement efficiency Ee for a given scheme:

EeðTcÞ ¼
τ

Tc
lim
t!Tc

log2 1þ 1� εðtÞ
εðtÞ

Tc

τ

	 
� �
: ð3Þ

This can be understood as the maximum “rate" at which the
protocol can encode a continuous stream of bit-pairs into e-bits.
In the derivation of Eq. (3) we assume that the noise of the
channel is independent of the initial state (or the channel input)
which is a reasonable approximation for steady states that are
globally asymptotically stable, such as the one engineered by the
protocol here. For long repetition times, steady state or minimum
error, can be used to calculate the relevant efficiency. Last row of
Table 1 quotes the upper bound on the average information (here
number of e-bits) generation capacity, IeðxÞ ¼ ðx=τÞEeðxÞ, at a
fixed time set by the decoherence rates of different platforms. As
detailed in the supplement (Supplementary Note 6 and
Supplementary Fig. 13), long stabilization times limit the capacity
for short Tc, leading to an overall low capacity for trapped-ion
implementation reported in ref. 17 where T�

2 � τ.

Discussion
In this work we have demonstrated an autonomous scheme
which implements fast and high-fidelity Bell state stabilization
in a qutrit-qubit system. Use of parametric system-bath inter-
actions allows operating the protocol with strong drive strengths
(“engineered” dissipation)—a regime which has hitherto
remained inaccessible to reservoir engineering protocols based
on resonant interactions. We verify that the preparation error
scales linearly with the stabilization time constant, achieving a
minimum error-time product of εmin

1 τ ¼ 54 ns for optimal drive
strengths. The concurrent suppression of error-time product
with drive amplitude results from a simultaneous minimization
of drive-dominated and dissipation-dominated errors11, high-
lighting a crucial principle for design of reservoir engineering
schemes. Further, we implemented continuous-wave coherent
control and in situ target state selection leveraging the phase
tunability of parametric system-bath interactions.

Further improvements of the proposed scheme using simple
design variations, such as using parametric qubit-qubit drives
instead of direct drives (Supplementary Note 3) and a moderate
increase in resonator linewidth possibly coupled with the addition
of a Purcell filter41, can lead to 8–10% higher fidelity with current
hardware. Since most of the state preparation error is due to the
residual ground state population, a straightforward improvement
in fidelity is achievable by using the center resonator to herald
based on the state parity6,15. While the present work relies on
time-independent drive parameters only, a combination of

approach presented here with time-dependent control explored
previously in the context of approximate stabilization schemes40,42

can be an attractive avenue to do a fully optimized protocol that
mitigates both intrinsic and (dephasing-induced) extrinsic errors.
We expect that suppression of intrinsic error, as demonstrated
here, can ease the implementation, characterization, and optimi-
zation of stabilization protocols: such considerations will become
increasingly important when considering stabilization of larger
and more complex states. The design principles underlying this
work thus provide a novel addition to the parametric toolbox for
quantum control in systems with strong light-matter interactions
and can be readily extended for stabilization of multi-partite
entangled states in large quantum networks.

Methods
Simulation approach. We simulated our scheme using the following Lindblad
master equation:

_ρ ¼� i½HI ; ρ� þ κD½a�ρ
þ ∑

k2fl;rg
γ01k D½ 0j ik 1h j� þ γ12k D½ 1j ik 2h j��

þ 2γ11k D½ 1j ik 1h j� þ 2γ22k D½ 2j ik 2h j�� ρ;
where D½o�ρ ¼ oρoy � 1

2 foyo; ρg and HI denotes the interaction Hamiltonian in Eq.
(1). In order to simulate pump amplitude-dependent shifts, we also include
Hamiltonian terms of the form ∑k¼l;rδ

01
k 1j ik 1h j and δaa†a that describe qubit and

resonator detunings respectively. The measured relaxation rates are γ01l;r and γ12l;r .
The pure dephasing rates for 0j i þ 1j i and 0j i þ 2j i are γ11l;r and γ22l;r respectively.
We have assumed that relaxation is a sequential process 2→ 1→ 0 and cross-
dephasing terms can be ignored43. The latter approximation is justified since
dephasing in our device is primarily due to thermal photons in the resonator.
Moreover, we neglect the 0–2 decay process as it is a forbidden transition as
per selection rules of the transmon. Detailed list of experimental parameters used
for performing master equation simulations is included in Supplementary Table 1.
For performing simulations, the absolute and relative tolerances of the 12th-order
Adams-Moulton solver in QuTiP44 are each set to 10−12. Further, we truncate the
Hilbert space corresponding to a maximum photon number n= 6 in the reso-
nator, beyond which we do not observe any appreciable change in the simulated
Liouvillian gap with the number of levels.

Semi-classical estimate of steady-state error vs. convergence time. As our
protocol has no intrinsic error process, the steady state stabilization error is set primarily
by competition between the stabilization process pumping population into the target
Bell state Tj i and local decoherence leading to decay from the target state. In the
absence of decoherence, the system would relax into the target state exponentially at a
rate τ−1, so _εðtÞ � �τ�1εðtÞ. If instead the stabilization mechanism were turned off and
we consider only the effect of decoherence, at short times the decay out of Tj i is
exponential with a rate γ � T�1

B leading to _FðtÞ ¼ �_εðtÞ � �T�1
B ð1� εðtÞÞ. Taking

both these processes together, we estimate the steady state error ε∞ by solving _εðtÞ ¼ 0,
yielding ε∞≈ τ/TB, when in the dissipation engineering regime where τ≪TB. As shown
in Supplementary Fig. 11, this estimate accurately predicts the simulated steady state
error of the protocol in the absence of detuning- or asymmetry-driven coherent error
processes.

Comparison to other stabilization schemes. The estimated T�
2 ¼ 100 μs in

Table 1 for the trapped ions stabilization scheme (ref. 17) is based on assuming
magnetic field fluctuation amplitude of 0.1 μT and magnetic field sensitivity of
17.6 kHz/μT for hyperfine states 1; 1j i; 2; 2j i in 9Be+. This estimate is also con-
sistent with other values of T�

2 ¼ 80 μs reported in ref. 45 for a different pair of
levels, 1;�1j i; 2;�2j i, with slope 21 kHz/μT. Note that ref. 17 also implemented a
step-wise version of their stabilization protocol which further reduces the impact of
the qubit dephasing rate, allowing them to achieve 89% fidelity in 30 steps of 220 μs
each. This stepped implementation is less directly comparable to the other CW
schemes. Also ref. 15 presented an additional result using post-selection, allowing
them to slightly increase the measured fidelity of their CW protocol to 77%.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Table 1 Comparison of performance with previous
implementations.

Lin17 Liu22 K.S.13 This work

T�
2 100 μs 9 μs 2.6 μs 5.6 μs

10 μs 3.0 μs 4.5 μs
Fmax
1 77% 76% 71% 84%
τ >1 ms 780 ns 760 ns 339 ns
εmin
1 τ >200 μs 187 ns 220 ns 54 ns
Ie ( �T

�
2) 0.01 5.29 3.21 6.23

The quoted performance metrics are for continuous-wave (CW) driven and autonomous
protocols, without any post-selection, similar to the one in the present work (see “Methods”).
The composite metrics ε∞τ and Ie(x) provide a platform-agnostic means for comparing different
stabilization protocols.
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