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Genome-wide signatures of synergistic epistasis
during parallel adaptation in a Baltic Sea copepod
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The role of epistasis in driving adaptation has remained an unresolved problem dating back to

the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could

promote parallel evolution remains unexplored. To address this problem, we employ an

Evolve and Resequence (E&R) experiment, using the copepod Eurytemora affinis, to elucidate

the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity

at high latitudes are a predicted consequence of global climate change. Based on time-

resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic

response across ten replicate selection lines, with 79.4% of selected alleles shared between

lines by the tenth generation of natural selection. Using extensive computer simulations of

our experiment conditions, we find that this polygenic parallelism is consistent with positive

synergistic epistasis among alleles, far more so than other mechanisms tested. Our study

provides experimental and theoretical support for a novel mechanism promoting repeatable

polygenic adaptation, a phenomenon that may be common for selection on complex phy-

siological traits.
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An abundance of recent population genomic studies has
found that adaptation is often highly polygenic, with
hundreds or thousands of loci responding to environ-

mental change1–3. A longstanding debate in evolutionary biology
regards the role of epistasis in polygenic adaptation. Epistasis
refers to cases where the effects of alleles at different loci are non-
additive with respect to their contribution to a quantitative
phenotype, such that allelic effects are dependent on the presence
of other alleles at other loci4. Dating back to the Evolutionary
Synthesis, R.A. Fisher’s influential infinitesimal model assumed
that many alleles contribute independent, small effects toward
fitness4–6, whereas Sewell Wright’s shifting balance theory placed
paramount importance on allelic combinations (i.e., epistasis)7–9.

This debate is particularly important for our understanding of
mechanisms of adaptation, including parallel evolution, and
therefore the ability to predict future evolutionary genomic
responses to global change10,11. Here we define parallel evolution
as evolution driven by natural selection favoring the same loci or
mutations in independent populations exposed to the same
environmental challenge12–15. Under Fisher’s model, adopted by
the field of quantitative genetics, adaptation is predicted to pro-
ceed with low levels of parallelism at the genetic level where
different, effectively interchangeable, loci could contribute to
adaptation through a diversity of alternative evolutionary
pathways3. A key assumption made by this model is that con-
tributing alleles are redundant in function, resulting in the
expectation of non-parallelism16–18. With genetic redundancy,
different populations can reach the same adaptive optimum
through frequency changes of different sets of alleles3. Alter-
natively, if allelic effects are non-redundant, due to epistatic
effects among specific alleles, then selection might favor the same
combination of alleles across independent adaptive events. In
such cases when alleles are functionally linked, polygenic adap-
tation could become highly parallel13,19,20.

Despite Wright’s avid interest, epistasis has long been treated
as statistical noise that does not contribute directly to
adaptation5,21,22. Nevertheless, some recent theoretical studies
have indicated that epistasis could have important impacts on
long term responses to selection23–25. Synergistic fitness effects
could arise among alleles (i.e., synergistic epistasis) in cases such
as co-adapted gene complexes, which could be common for
physiological phenotypes26. For example, ion transport is
achieved through a suite of cooperating proteins functioning in a
coordinated fashion27,28, such that the effects of any given genetic
variant are likely nonredundant and their specific effects depend
strongly on the other alleles present. However, the role of epistasis
remains largely overlooked in genomic studies23,29,30 and its
contribution to producing patterns of parallel polygenic evolution
is unknown.

Genomic studies of adaptation in wild and experimentally
evolved populations have often uncovered non-parallel molecular
evolution2,31–34, especially for small-effect loci. While some
genomic studies have found more genetic parallelism than
expected by chance15,16,32,35,36, such studies tended to observe
fewer than 50% of selected alleles in common between populations
exposed to the same selection pressure14. In addition to epistasis,
several factors have been proposed that could promote parallelism,
including large distance to the new trait optimum, low divergence
between populations, higher parallelism for large effect and high
frequency alleles, pleiotropy, and others13,37. Yet, the relative
impacts of these factors in promoting molecular parallelism
remain unknown. Therefore, understanding the basis of molecular
parallelism requires approaches that can accurately characterize
the genomic architecture and evolutionary trajectory of polygenic
adaptation to tease apart putatively important factors38.

A limitation to identifying mechanisms of parallel polygenic
adaptation has been the challenge of detecting its signatures in
genomes. Polygenic adaptation is predicted to result in subtle
allele frequency shifts that could be indistinguishable from genetic
drift using standard approaches6. Analyzing replicated evolu-
tionary events combined with whole-genome sequencing could
generate sufficient power to distinguish polygenic shifts from
genetic drift and uncover the degree of parallel evolution.
Achieving such replication is possible with laboratory evolution
experiments38. Yet to date, such experiments in metazoans have
been limited to a small number of taxa, providing limited
examples for generalization. For instance, an experimental evo-
lution study using Drosophila revealed that polygenic adaptation
to a novel thermal environment proceeded in a non-parallel
fashion, with alleles at different loci responding to selection across
independent lines39. However, thermal adaptation involves
widespread physiological processes, with temperature affecting all
metabolic pathways in ectotherms40,41 and likely having many
redundant genetic components39. Therefore, to determine the
conditions under which polygenic adaptation can be repeatable,
we require additional studies using alternate selection pressures
and a variety of systems.

Thus, we employ a laboratory experimental evolution
approach, combined with time-resolved whole genome sequen-
cing (i.e., Evolve and resequence [E&R]), to dissect the genomic
basis of adaptation to salinity decline in the copepod Eurytemora
affinis, a key grazer in coastal ecosystems. Climate change is
inducing rapid salinity transformations in coastal waters across
the globe42–44, yet little is known regarding the extent and evo-
lutionary trajectory of rapid genomic adaptation to declining
salinity. As such, the specific goals of this study are to (1) char-
acterize the evolutionary genomic response of salinity adaptation
in terms of the number, genomic distribution, and fitness effects
of contributing alleles, (2) evaluate the degree and genetic basis of
parallel evolution across replicate selection lines, given the theo-
retical expectations for polygenic adaptation, and (3) determine
whether our experimental results are replicated in wild popula-
tions found across a salinity gradient.

To address our goals, we expose ten replicate lines to salinity
decline for ten generations alongside four control lines main-
tained at constant salinity. These lines are then sampled for
pooled whole-genome sequencing at three timepoints. Our
replicated and controlled experimental design gives us the power
to detect targets of selection characterized by subtle allele fre-
quency shifts from standing genetic variants. Next, we perform
computer simulations under different models of genetic archi-
tecture to evaluate the expectations for the degree of parallelism
across replicate lines and explore the contribution of different
factors in promoting parallel genomic evolution. Finally, we
perform pooled-whole genome sequencing for eight wild popu-
lations collected from a range of salinities in the Baltic Sea to test
whether the loci under selection in the laboratory experiment also
exhibit signatures of selection across a natural salinity gradient in
the wild.

In this study, we uncover highly parallel polygenic adaptation
in a laboratory natural selection experiment. Using extensive
population and quantitative genetic simulations in conjunction
with our experimental results, we find strong support for a
potentially widespread mechanism, namely positive epistasis, in
promoting this parallel response. Our findings provide unique
insights into a longstanding question in population genomics
regarding the prevalence and causes of parallel evolution. In
addition, our results point to the direct applicability of experi-
mental evolution for predicting future evolutionary responses to
climate change15.
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Results and discussion
The evolutionary trajectory of low-salinity adaptation. Expo-
sure to low salinity over ten generations resulted in a dramatic,
genome-wide evolutionary response in the ten treatment (selec-
tion) lines (Fig. 1; two of the ten treatment lines went extinct
between generations six and ten). The treatment lines experienced
significant frequency shifts in 4,977 single-nucleotide poly-
morphisms (SNPs; grouped into 121 selected “haplotype blocks”)
spread across the genome, whereas the control lines remained
relatively constant in SNP frequencies (Fig. 1a, b). To detect SNPs
with signatures of selection in response to salinity decline, we
performed whole-genome pooled sequencing at generations zero,
six, and ten. We used Cochran–Mantel–Haenszel (CMH) tests
and Chi-square tests to detect SNPs with frequency shifts that
were greater than expected, relative to a model with only genetic
drift, both across replicate lines and within individual replicate
lines (Fig. 1a, upper panel). We also used linear mixed models
(LMMs) to detect SNPs with frequency trajectories that differed
significantly between treatment and control lines (Fig. 1a, lower

panel). In total, these tests uncovered 18,072 candidate SNPs with
signatures of selection (out of a total of 353,188 SNPs tested).

To account for genetic linkage among SNPs, we used a recently
developed approach to group candidate SNPs with signatures of
selection into 121 putatively independent “haplotype blocks,”
consisting of 4977 proximate SNPs with correlated frequency
shifts45 (Fig. 1a, shaded boxes and colored points). The
121 selected haplotype blocks were very large in size (mean=
1.89 Mb [716 kb–6.6 Mb]; Supplementary Data 1), covering
~44% of the 518Mb genome assembly, potentially due to strong
selection pressure and few generations of recombination to
disassociate linked SNPs. Patterns of allele frequency change for
these haplotype blocks (hereafter referred to as “selected alleles”)
were based on the median SNP frequency in each line, for SNPs
characterizing the selected haplotype block, following recom-
mendations from a previous study39.

Selected alleles in the treatment lines diverged from the starting
frequency by an average of 9.9% at generation six and 12.8% at
generation ten (Fig. 1b). After only ten generations, these
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Fig. 1 Genomic signatures of laboratory selection in response to salinity decline. a Manhattan plot of single-nucleotide polymorphism (SNP) signatures
of selection on one arbitrarily selected genomic scaffold. SNPs above the dotted red line were deemed significant (adjusted P < 0.05). SNPs are colored
according to the selected haplotype block in which they were grouped, and shaded gray boxes delineate the 26 haplotype blocks on this scaffold. Top—
Cochran-Mantel-Haezel (CMH) test for significant allele frequency changes beyond expectations from genetic drift. Bottom—linear mixed model (LMM)
test to distinguish allele frequency trajectories between treatment and control lines. b Selected allele frequency trajectories during laboratory selection.
Gray lines represent mean allele frequencies across the ten replicate lines (eight at generation ten) for each selected allele (i.e., haplotype block, N = 121).
The purple line shows the average frequency for all selected alleles in the treatment lines. The yellow line shows the average frequency for all selected
alleles in the control lines. The blue shaded area is the 1% and 99% quantile range of allele frequencies from 10,000 neutral simulations starting from the
average starting frequency of the selected alleles. c Histogram of selected allele frequencies in the starting population, polarized to show the rising allele.
The dotted line represents the mean frequency. d Histogram of selection coefficients of selected alleles, estimated using the change in frequency after ten
generations across the replicate treatment lines. The dotted line represents the mean.
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frequency shifts resulted in relatively high selection coefficients
(s), with a mean value of 0.133 (and up to 0.372; Fig. 1d). These
estimated selection coefficients were considerably larger than
those estimated for temperature adaptation in laboratory
Drosophila lines, where mean selection coefficients were only
~0.0639,46. Interestingly, at the start of the experiment selected
alleles were found at intermediate, and often high, frequencies
(Fig. 1b, c), indicating that alleles responding to selection to fresh
water were often common in the saline starting population.
Together, these results indicate that salinity decline elicits a rapid,
polygenic evolutionary response consisting of large frequency
shifts of standing genetic variants.

Selection on ion-regulatory genes. The evolutionary trajectory of
adaptation depends on the complexity of the trait(s) under
selection2,3,6,11. To identify potential traits under selection to
declining salinity in our experiment, and determine the functional
significance of selected alleles, we performed a Gene Ontology
(GO) enrichment analysis for genes containing or proximal to
SNPs underlying our selected alleles. This analysis implicated ion
transport gene function as a primary physiological target of
selection (Supplementary Data 2). Among the 91 significantly
enriched GO terms (FDR-adjusted P < 0.05) identified using
Gowinda47, 29 (32%) were related to transmembrane transport
(e.g., GO:1902476 chloride transmembrane transport), ion
channel activity (e.g., GO:0005248 voltage-gated sodium channel
activity), the nervous system (e.g., GO:0060079 excitatory post-
synaptic potential), and muscle contraction (e.g., GO:0030432
peristalsis).

Surprisingly, genes with putative ion-transport and osmoregu-
latory function were found in many different selected haplotype
blocks spread across the genome, suggesting possible functional
coordination among distant genomic loci (Table 1). A number of
these genes have previously been implicated in rapid evolution of
freshwater tolerance in this species complex15,28,48. Of particular
interest was a selected allele 2.7 Mb long that spanned a region
containing seven paralogues of the NHA gene family, which
encode sodium-hydrogen antiporter proteins (Table 1). This
genomic region has been implicated in freshwater adaptation in

multiple previous studies of related E. affinis complex
populations15,28. This result suggests that the genetic and
evolutionary pathways that enable low-salinity adaptation are
likely to be constrained.

Exceptional genomic parallelism across laboratory lines. We
uncovered a strikingly high parallel evolutionary response among
the replicate selection lines (ten lines in generation six and eight
lines in generation ten), with an average of 79.5% overlap in
selected alleles between replicate lines in generation ten (based on
the Jaccard index49, Fig. 2a, b, upper brown dotted line). We use
the term “parallel” to refer to cases when identical alleles
experienced significant frequency shifts in the same direction
across the replicate selection lines. We defined a significant fre-
quency shift in each selection line as one that was in the top 0.1%
of neutral simulations by generation ten, given the allele’s starting
frequency (see Methods). We quantified the degree of parallelism
in terms of pairwise overlap of selected alleles between replicate
lines (Jaccard index49) and number of replicate lines in which the
allele exhibited a significant frequency shift (i.e., “Replicate Fre-
quency Spectrum”39, Fig. 2c). Of the 121 total selected alleles
(haplotype blocks), each line had significant frequency shifts for
89.0 ± 1.69 SE (74%) of the alleles at generation six and then
107.1 ± 1.70 SE (89%) alleles at generation ten. Of the alleles
exhibiting significant frequency shifts, the mean pairwise Jaccard
index was 0.647 at generation six and 0.795 at generation ten
(Fig. 2a, b, brown dotted lines). At generation six and ten,
respectively, 24 (19.8%) and 47 (38.8 %) of selected alleles
exhibited significant frequency shifts in all eight surviving repli-
cate lines (Fig. 2c, brown bars).

When simulating selection under the standard population
genetics model, here called the “multiplicative fitness” model
(Table 2a; Supplementary Table 1; Supplementary Fig. 1), we
found that the observed degree of parallelism in our natural
selection experiment had greatly exceeded expectations of this
null model, given the empirical genetic architecture of the
selection response (Fig. 2). Simulations of allele frequency shifts
under the “multiplicative fitness” model using empirical estimates
of effective population size (Ne) and selection coefficients (s), and

Table 1 Gene paralogues with putative ion-transporter and osmoregulatory function found on haplotype blocks showing
signatures of selection to salinity decline in the laboratory evolution experiment.

Gene Symbola Gene Description Haplotype Block Numberb Starting Frequency Selection Coefficient

CA-7 Carbonic Anhydrase, paralogue 7 6 0.254 0.107
CA-3 Carbonic Anhydrase, paralogue 3 6 0.254 0.107
CA-8 Carbonic Anhydrase, paralogue 8 19 0.178 0.114
AMT-1 Ammonia Transporter, paralogue 1 43 0.098 0.137
VHA-C V-type H+ ATPase, complex V1, subunit C 43 0.098 0.137
AK Arginine kinase 55 0.106 0.194
CA-9 Carbonic Anhydrase, paralogue 9 67 0.440 0.089
CA-10 Carbonic Anhydrase, paralogue 10 67 0.440 0.089
VHA-A V-type H+ ATPase, complex V1, subunit A 71 0.446 0.098
NKA-α−1,2,4 Na+/K+-ATPase, subunit α, paralogues 1,2,4 76 0.472 0.101
NKA- β−2,3 Na+/K+-ATPase, subunit β, paralogues 2,3 83 0.229 0.119
CA-5 Carbonic Anhydrase, paralogue 5 91 0.372 0.129
Rh-1 Rh Protein, paralogue 1 92 0.330 0.097
VHA-G V-type H+ ATPase, complex V1, subunit G 94 0.283 0.127
NBC Na+,HCO3

− Cotransporter, paralogue unknown 94 0.283 0.127
NHA-1,2,3,4,5,6,7 Na+/H+ Antiporter, paralogues 1-7 97 0.268 0.169
AMT-7 Ammonia Transporter, paralogue 7 114 0.206 0.100
Rh-4 Rh Protein, paralogue 4 114 0.206 0.100
CA-14 Carbonic Anhydrase, paralogue 14 117 0.378 0.102

The gene paralogues have also been implicated in previous studies of adaptation in the E. affinis species complex15,28.
aGenes names and paralogue number are based on manual annotations of the copepod E. affinis complex genome28,94.
bAdditional details regarding the selected haplotype blocks can be found in Supplementary Data 1.
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Fig. 2 Genomic parallelism across replicate treatment lines during laboratory selection. a Pairwise overlap (Jaccard index) of selected alleles between
experimental replicate lines (dotted brown lines) relative to simulations (box plots). Box plots display median (middle line), 25th and 75th percentile (box), 5th and
95th percentile (vertical line), and data beyond the 5th and 95th percentile (single points) of mean Jaccard indices at generations six (dark blue) and ten (yellow)
from 1000 simulation iterations. Empirical values most closely match those of data simulated under the “positive epistasis” model with an α parameter of 36.5
(generation six: P=0.69; generation ten: P=0.58), and are significantly higher than those simulated under the standard population genetic “multiplicative fitness”
model (P=0) and the quantitative genetic “directional epistasis”model (P=0), based on N= 1000 simulations for each model. The “multiplicative fitness”model
provides a null expectation for parallelism given the allelic selection coefficients and effective population sizes. b Relationship between number of loci contributing
to the adaptive response and levels of parallel evolution. For 100 simulation iterations, we calculated the mean Jaccard index between simulated populations and
display the mean (triangle and circle points) and interquartile range (vertical lines and shaded area) of Jaccard indices across simulation iterations. Epistatic models
(Table 2), particularly quantitative fitness models, predict that the degree of parallelism among replicate lines increases as the number of loci contributing to an
adaptive response declines. Levels of parallelism in our real data (horizontal dotted lines) can be replicated either by reducing the number of effective alleles in the
“directional epistasis” model (teal) or increasing the α parameter of the “positive epistasis” model (orange). c The distribution of selected alleles in terms of the
proportion of replicate lines in which the selected allele experienced a significant frequency shift at generation ten (i.e., “Replicate frequency spectrum” ref. 41). A far
greater proportion of replicate lines show higher proportions of the selected alleles in the empirical data (brown) than in the “multiplicative” (green) or “directional
epistasis” (teal) model simulations, but closely match simulations under the “positive epistasis” model (orange). See Table 2 for details on the models.

Table 2 Descriptions of evolutionary genetic models used in computer simulations of epistasis.

(a) Population genetic framework

Model Type Fitness Function Description

Multiplicative (no epistasis)
QNloci

i¼1 ð1þ hisiÞ The traditional population genetics model, in which a beneficial allele increases an individual’s
fitness by a fixed ratio.

Positive Epistasis
QNloci

i¼1 ð1þ hisiÞ � eαðx�δÞ2 ; α>0 The effect of an allele is increased by the presence of other selected alleles.
Negative Epistasis

QNloci
i¼1 ð1þ hisiÞ � eαðx�δÞ2 ; α<0 The effect of an allele is decreased by the presence of other selected alleles.

(b) Quantitative genetic framework

Model Type Fitness Function Description

Shifted Optimum Epistasis
e�

ð x� δð Þ�μÞ2
σ2

The traditional quantitative genetics model, with a Gaussian fitness curve around a
phenotypic optimum.

Directional Epistasis 1þ ser x�δð Þþbð Þ� ��1=s Fitness benefits saturate as the phenotype increases.

Truncating Epistasis max 0; 1� e�að x�δð ÞþbÞ� �
Phenotypes below a certain value are lethal. Fitness benefits saturate as the phenotype increases.

The Phenotype: x ¼
QNloci

i¼1
hi siQNloci

i¼1
si

Horizontal Shift: δ ¼ phenotypesimulation intial � phenotypebaseline

hi ¼
0 If the individual carries 0 copies of the allele at locus i
1=2 If the individual carries 1 copy of the allele at locus i
1 If the individual carries 2 copies of the allele at locus i

8
<

:
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with significant frequency shifts determined in the same manner
as for the empirical data, resulted in mean Jaccard indices of only
0.33 ± 0.015 SD at generation six and 0.52 ± 0.016 SD at genera-
tion ten (Fig. 2a, left). These values were significantly lower than
the Jaccard indices based on our real data (Fig. 2a, brown dotted
lines; P= 0, N= 1000 simulations). In addition, our empirical
Replicate Frequency Spectrum (Fig. 2c, brown bars) was
markedly different from that obtained under the multiplicative
model (Fig. 2c, green bars), with a much greater proportion of
selected alleles responding in most of the replicate lines in our
empirical data. Allele frequency trajectories under the standard
multiplicative fitness model are independent with respect to
individual fitness and depend on the selection coefficient and
population size. Therefore, non-parallelism could arise due to
genetic drift and random sampling35,50,51. As our simulations
used accurate estimates of effective population sizes, starting allele
frequencies, and selection coefficients (see Methods), the much
greater degree of parallelism of allele frequency shifts in our
experimental lines was quite exceptional (Fig. 2).

Physical linkage could theoretically result in a high degree of
parallelism between lines if selected alleles tend to be found close
together on the same haplotype and are inherited together52.
Alternatively, if alleles tended to be unlinked, competition
between alleles at different loci (i.e., Hill-Robertson effects) could
reduce parallelism53. Although our selected alleles were putatively
unlinked, we also explored the effect of physical linkage between
alleles by simulating realistic recombination architectures for the
121 alleles (haplotype blocks). Surprisingly, we found that in fact
physical linkage only slightly decreased the Jaccard index by
~0.003 on average across models (Supplementary Fig. 2). Even
with reduced recombination rates, the effect of physical linkage
on parallelism was very small (approximately 0.005 decrease in
Jaccard index; Supplementary Fig. 2), likely due to the large
genomic distances between selected loci and the large effective
population sizes in each of the replicate lines (mean Ne= ~1750;
see Methods). As populations in our simulations started from
linkage equilibrium, future work should investigate the effect of
starting LD structure on the degree of parallelism.

Overall, our results differed sharply from other studies of
polygenic adaptation. For example, Barghi et al.39 examined
selection response to a changing temperature regime, which
affects a broad range of physiological processes40,41, and found
highly heterogeneous responses among replicate experimental
lines with much lower parallelism than predicted under the
“multiplicative fitness” model. The exceptionally high levels of
parallelism found in our experiment, relative to the baseline
multiplicative model (Fig. 2), indicate that a factor beyond the
allele frequencies, heterogeneous effect sizes, small divergence
among populations, and population size drove parallel evolu-
tionary responses across our replicate lines (see next sections for
further discussion).

Positive epistasis promotes rapid parallel evolution. Despite
Sewall Wright’s interest in the role of epistasis in promoting
adaptative evolution7–9, the classical quantitative genetics litera-
ture has often treated epistasis as a statistical residual noise
component of phenotypic variance4,23,29,54,55. In this study, we
found that positive synergistic epistasis was likely a major force in
driving parallel selection in the replicate experimental lines
(Fig. 2). For instance, our simulations indicate that positive
epistasis could account for the 0.27 difference in Jaccard index
between our empirical data and simulations of the “multiplicative
fitness” model at generation ten (Fig. 2a, see more details below).
Based on our finding of ion uptake as the primary functional trait
under selection in our experiment (e.g., Table 1; Supplementary

Data 2), we hypothesized that synergistic effects among alleles
could have promoted the high levels of parallel evolution
observed between selection lines. Like ion uptake, many physio-
logical traits with complex architectures could be primarily con-
trolled by coordinated protein networks with extensive
interacting effects26. Ion transport is known to be driven by the
coordinated activity of a suite of primary and secondary ion
transporters27,56, several of which were identified here as targets
of selection (Table 1). Such functional coordination could result
in combinations of functionally linked alleles that are favored by
selection. If the positive fitness effects of favorable alleles were
enhanced by the presence of other favorable alleles (i.e., syner-
gistic epistasis), then the set of favored alleles would rise together
in frequency in a highly parallel fashion across replicate
experimental lines.

When we tested whether our empirical results were consistent
with this hypothesis using theoretical simulations, we found that
positive epistatic effects among alleles of selected loci greatly
increased the degree of parallelism in simulated data (Fig. 2;
Supplementary Figs. 2–5). We performed extensive Wright-Fisher
simulations under different models of epistasis to determine
whether, and what mode of, epistasis could explain the high
degree of parallelism in our data (Table 2; Supplementary Fig. 1).
We simulated both population genetic and quantitative genetic
characterizations of epistasis that all allowed allelic fitness effects
to depend on the presence of other selected alleles in an
individual. The population genetic models of epistasis were an
extension of the “multiplicative” model, but where fitness effects
are an exponential function of the sum of the allelic effect sizes in
an individual57, including either positive or negative epistatic
interactions (Table 2a). The quantitative genetic models of
epistasis were constructed to explore differently shaped fitness
functions and were parameterized to allow allelic effects to
increase with the addition of other selected alleles in the early
stages of adaptation (Table 2b). These simulations were
constructed either to model selection on 121 haplotype blocks
or the 4977 SNPs underlying those haplotype blocks using the
effect sizes, population sizes, and linkage structure from our
real data.

We found that simulations of the population genetic “positive
epistasis” model most closely matched the levels of parallelism in
our real data (Fig. 2a, middle; Fig. 2b, c, orange). In contrast, the
quantitative genetic epistasis models were unable to produce
levels of parallelism close to our real data (average Jaccard index
across quantitative genetic models in generation ten= 0.38 ± 0.03
SD), even though our simulations imposed a strong selection
pressure to maximize possible parallelism (see Methods; Supple-
mentary Fig. 1). An important parameter of the population
genetic “positive epistasis” model is the α parameter (Table 2a),
which describes the increase in fitness benefits of gaining more
beneficial alleles at other loci, i.e., the strength of the epistatic
effect (see Methods for a description of this parameter).
Therefore, we used Approximate Bayesian Computation (ABC)
to estimate the value of this parameter that could reproduce the
observed mean Jaccard index among replicate selection lines in
our empirical data. We found that the ABC-estimated α value of
36.5 produced Jaccard index values that closely matched our real
data at both generations six (P= 0.69, N= 1000 simulations) and
ten (P= 0.58, N= 1000 simulations), indicating that this level of
positive epistasis was sufficient to explain the degree of
parallelism observed in our data. By comparing the Jaccard index
under simulations of the “multiplicative”model (α= 0) relative to
the “positive epistasis” model (α= 36.5), we found that positive
epistasis could account for an increase of up to 0.27 in Jaccard
index of selected alleles among the replicate lines at generation
ten (Fig. 2a).
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To further evaluate the strength of epistasis in terms of the
effective number of loci under selection, we simulated selection
using a variable number of loci contributing to the adaptive
response under different models of epistasis (Table 2). Under the
quantitative genetic models of adaptation used here, parallelism
increases with fewer contributing loci (Fig. 2b, teal lines), as
independent populations would then have fewer possible genomic
routes to adaptation and each allele would have a larger relative
effect on the phenotype3. If low-salinity adaptation is achieved
through frequency changes of alleles with coordinated functions
(i.e., as in the case of synergistic epistasis), then these functionally
linked alleles would behave like a smaller number of alleles
contributing to the adaptive response and would tend to have a
parallel selection response. We found that depending on the
fitness function, our 121 selected haplotype blocks (alleles)
responded as if they were 20 or fewer alleles in terms of the degree
of parallelism (Fig. 2b, intersection between teal lines and our
empirical data; Supplementary Fig. 4). This result implies that
despite the many unlinked loci involved, the selection response
might consist of a small number of co-adapted gene complexes.

This study is novel in demonstrating that positive epistasis can
promote parallelism on a polygenic, genome-wide scale. Previous
studies have shown that epistasis can limit evolutionary
trajectories, and thereby promote parallelism among closely
related populations, but only at the scale of a few loci20,37. By
combining experimental evolution and extensive genetic simula-
tions in this study, we were able to identify a mechanism that
could drive parallel evolution across many loci. Indeed, positive
epistatic interactions could actually increase the rate of evolu-
tionary responses23 and therefore be prevalent during rapid
adaptation. Future studies of physiological adaptation should take
into account the potential for allelic coordination to impact rates
and patterns of adaptation30.

Selection on high-frequency alleles alone cannot explain the
high levels of parallelism. As our previous study using this
copepod system implicated selection on high-frequency alleles,
potentially maintained by balancing selection, as a promoter of
parallelism15, we sought to determine the extent to which this
factor could also explain the high levels of parallelism observed in
our experiment in this study. We found that the effect of starting
frequency on the Jaccard index was much lower than the esti-
mated effect of epistasis (see next paragraph). We found that
SNPs characterizing selected haplotypes were at significantly
higher starting frequencies than non-selected SNPs (mean minor
allele frequency [MAF] of 0.139 vs. 0.089, respectively; two-sided
Kolmogorov-Smirnov test, D= 0.214, P= 0). This finding was
not an artifact of selected SNPs with low starting frequencies
being difficult to detect using the CMH test58. In fact, our CMH
test results showed a negative correlation between the test statistic
and starting frequency (Pearson’s r=−0.118, P < 0.0001), sug-
gesting that lower-frequency SNPs were in fact more detectable as
targets of selection. Our LMM test showed no significant corre-
lation between the test statistic and starting frequency (Pearson’s
r= 0.03, P= 0.345), indicating no clear bias.

Interestingly, higher frequency alleles did not exhibit a more
parallel response. We found that starting MAF was somewhat
negatively correlated with the number of replicate lines in which the
allele experienced a significant frequency shift (Pearson’s correlation
test–Generation six: r=−0.260, t value=−2.94, DF= 119,
P= 0.00399; Generation ten: r=−0.214, t value=−2.40, DF=
119, P= 0.0183). We also used theoretical model simulations to
evaluate the potential contribution of selection on high-frequency
alleles toward promoting parallelism. Using the same simulation
schemes as above, we compared the degree of parallelism observed

when (1) alleles started from mutation-drift balance (i.e., neutrality)
and (2) alleles started with a frequency of 0.5, meant to maximize
the potential effect. We found that simulating selection from
mutation-drift balance only decreased the Jaccard index by ~0.001
on average across models, relative to simulations from empirical
frequencies (Supplementary Fig. 3). Simulating from frequencies of
0.5 increased the Jaccard index by ~0.05 on average across models.
Overall, this effect of starting frequency on the Jaccard index was
much lower than the estimated effect of epistasis (which showed a
Jaccard index increase of up to 0.27).

The elevated frequencies for selected alleles were consistent
with the presence of synergistic epistasis, given that epistasis
could aid in maintaining balanced polymorphisms55. For
instance, our previous study found that many SNPs with
signatures of parallel directional selection during freshwater
invasions by North American E. affinis complex populations
exhibited signatures of ancient balancing selection in the native
range populations15. This result indicated that balancing selection
could maintain many alleles that are beneficial in fresh water at
elevated frequencies in the saline native populations. Synergistic
epistasis acting among those particular beneficial alleles could
help explain the effectiveness of balancing selection at maintain-
ing genetic variation at many sites across the genome over long
periods of time55.

Experiment-selected loci are also under selection across salinity
gradients in the wild. Population genomic analyses revealed that
experiment-selected alleles also exhibited signatures of selection
in wild E. affinis populations from eight Baltic Sea locations
(Fig. 3a) spanning a salinity gradient (2.5–18.7 practical salinity
units [PSU]; Supplementary Data 3). This striking result indicated
that the repeatability of the selection response extends beyond the
laboratory and was recapitulated in natural populations. In fact,
most SNPs underlying experiment-selected alleles (N= 3655;
74%) harbored segregating SNPs in the wild populations. Due to
the polygenic nature of the selection response observed in the
laboratory, we used the method of Berg and Coop (2014)59 to test
for a population genomic signature of polygenic selection on the
SNPs underlying experiment-selected alleles (haplotype blocks) in
the Baltic Sea populations. Rather than analyzing each SNP
separately, this method tests a set of trait-associated loci for a
signature of selection, captured in the QX statistic, based on the
degree to which SNPs at those loci vary across populations and
covary with each other. We found that the QX statistic for
experiment-selected loci was significantly higher than that of the
null distribution of genomic background loci matched in minor
allele frequency (experiment-selected loci QX= 22.46, back-
ground loci mean QX= 9.61, P= 0.016; Fig. 3b), indicating a
strong signature of selection and high variance in experiment-
selected SNP frequencies among populations. We also used this
method to calculate polygenic scores for freshwater survival for
each Baltic Sea population using selection coefficients for each
SNP as a proxy for its effect size. Interestingly, polygenic scores
were significantly negatively correlated with mean annual salinity
(β=−0.064, P= 0.021), indicating that alleles that responded to
selection in our experiment were more common in Baltic Sea
populations from lower-salinity habitats.

Minor allele frequencies for experiment-selected loci were
significantly higher than non-selected loci in every sampled wild
population (e.g., Fig. 3c; Supplementary Data 4). The fact that this
pattern was observed across populations inhabiting very different
annual salinities points to spatially varying selection potentially
maintaining important SNPs at high and intermediate frequen-
cies, provided there is sufficient gene flow among populations.
Using the f4 statistic60, we found genomic evidence for
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considerable gene flow among geographically distant populations.
The f4 statistic tests whether the possible phylogenetic trees
relating populations are consistent with admixture among
populations. Gene flow or admixture is inferred if all three
possible trees for a group of four populations are rejected by the
data60. Testing all 126 possible groupings of four populations, 47
groupings (37.3%) showed significant support for gene flow
(Supplementary Data 5), including populations from the most
distant sampling sites in the northern and southern regions of the
Baltic Sea.

Baltic Sea habitats are characterized by considerable depth and
latitudinal gradients in salinity61,62. Such spatial heterogeneity of
selection pressures could result in the maintenance of adaptive
genetic variation, given the right combination of genetic
architecture, selection pressures, population sizes, and migration
rates63–67. Indeed, characteristics of E. affinis complex popula-
tions might enable local adaptation with gene flow to serve as a
key force maintaining adaptive genetic variation. These features
include large effective population size68,69 and negative genetic
correlations between high and low salinity tolerance70–72.
Furthermore, spatially varying selection could favor the synergis-
tic effects among adaptive alleles, as such interactions would
produce greater variance in fitness and faster adaptation to local
conditions23.

The extent to which the same alleles that responded to
selection in the laboratory also exhibited significant signatures of
natural selection in wild populations was striking. An ongoing
question is whether laboratory evolution experiments can truly
replicate natural processes and inform predictions of evolutionary
responses in the wild, given the simplified conditions. The
advantages of laboratory evolution experiments are the ability to
isolate a selective pressure and to have complete knowledge of the
study populations’ history during the experiment. While
numerous experimental studies have shed important insight into
the genomics of adaptation73,74, it remains unclear whether these
results can be translated to natural populations75. Our results

suggest that we can expect the loci detected in our experiment to
play an important role in future responses to salinity decline in
the Baltic Sea and other high latitude regions.

Concluding remarks
Polygenic adaptation is predicted to proceed in a non-parallel
manner when a trait optimum can be achieved through frequency
changes in different combinations of effectively interchangeable
(redundant) loci3. In this study, we found that polygenic adapta-
tion proceeded in a highly parallel, repeatable manner (Figs. 1, 2),
in stark contrast to what has been found in some comparable
experimental evolution studies39,76. It is possible that the low
levels of parallelism often reported in wild genomic studies2,31–34

could be due, in part, to a lack of power in identifying the targets
of selection. In this study, we found parallelism not only among
replicate laboratory lines, but also between the laboratory and wild
populations. Our computer simulations allowed us to rule out the
impacts of allelic effect sizes, starting frequencies, population sizes
and divergence, and physical linkage on producing the observed
high degree of parallelism. The primary mechanism we identified
as promoting this polygenic parallelism, namely positive epistasis,
may be widespread particularly for physiological adaptation. A few
genomic studies of physiological adaptation have reported
instances of molecular and phenotypic parallelism, but did not
compare support for different mechanisms underlying parallel
evolution77–79. Assessing the prevalence of genome-wide epistasis
and its impact on parallel evolution across a diversity of traits and
systems would provide insights into the role of positive epistasis in
promoting rapid and repeated adaptation.

Among the most ecologically and economically impactful
consequences of global climate change is the rapid change in
ocean salinity throughout the globe80. Due to massive increases in
ice melt and precipitation, salinity is predicted to decline at
unprecedented rates in higher latitude coastal waters, by up to 5
PSU in the coming decades42–44. Salinity is arguably the strongest
driver of aquatic biogeographic distributions81–83. Therefore,
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changes in this critical environmental stressor will force popula-
tions to adapt, migrate, or face extinction. Zooplankton popula-
tions, which constitute the largest animal biomass in water
column habitats, may be particularly vulnerable to changes in
salinity because of their limited ability to migrate and often
narrow salinity tolerance ranges70,72,84. This study makes
important contributions toward understanding the evolutionary
mechanisms of how populations will respond to such rapid
changes in environmental salinity.

Our study uncovered genomic and experimental evidence that
E. affinis populations in the Baltic Sea have a high probability of
adapting rapidly to decreasing salinity caused by climate change.
The observation that the same alleles responded to laboratory
selection across replicate lines suggests that the ability to adapt to
decreasing salinity relies on a predictable set of genetic variants
that we also found present in the wild populations. Although our
laboratory selection experiment was performed on a population
derived from a single location, potentially biasing our discovery of
selected loci, we did find that the majority of experiment-selected
genetic variants (74%) were segregating in wild Baltic Sea
populations and that many were found at high and intermediate
frequencies (Fig. 3). These results imply that the standing genetic
variation required for adaptation to freshening water is both
available and abundant across a broad geographic range of E.
affinis populations in the Baltic Sea. Moreover, epistatic interac-
tions among the beneficial alleles could allow adaptation to be
rapid and repeatable. Such evolutionary resilience for this cope-
pod, which serves as a critical food source for many important
fisheries, could be vitally important for maintaining healthy
ecosystems in the face of climate change.

Methods
Population sampling, design of the laboratory evolution experiment, and
sequence data collection. All copepod populations examined in this study,
including that used in the laboratory evolution experiment and those surveyed in
the wild are considered Eurytemora affinis proper, which is the European clade of
the Eurytemora affinis species complex85–87. The E. affinis copepods used in the
laboratory natural selection experiment were collected from Kiel Canal in Kiel,
Germany (latitude= 54°19′ 59.88′′N, longitude = 10°9′0′′) in 2017 (~1000 cope-
pods) and on May 30, 2018 (85 gravid females and 40 juveniles). The two col-
lections of copepods were mixed and maintained at 15 PSU to increase population
size and acclimate to laboratory conditions. Two samples of adult copepods (25
male and 25 female each) from the mixed culture were collected for pooled whole-
genome sequencing (Pool-seq) to represent the starting population for the
laboratory natural selection experiment and capture variance in starting SNP fre-
quency. The culture was then split into 14 equally sized beakers. Control lines
(N= 4) were maintained for the duration of the experiment in 15 PSU water made
with Instant Ocean, along with Primaxin (20 mg/L) to avoid bacterial infection.
The control lines were fed the marine alga Rhodomonas salina every three to four
days with water changed weekly. The ten treatment lines were exposed to
decreasing salinity over the first six generations until they reached 0 PSU (Lake
Michigan water, ~300 µS/cm conductivity), and then maintained at 0 PSU for four
additional generations.

Beginning at generation two, salinity declination proceeded at each generation
as follows: 5 PSU, 1 PSU, 0.1 PSU, 0.01 PSU, 0 PSU. Animals were not transferred
individually to the next generation but instead were allowed to survive and
reproduce undisturbed with overlapping generations. The generation number was
monitored by assuming a generation time of approximately three weeks72,88.
Treatment lines were fed a 50:50 mixture of R. salina and the freshwater alga R.
minuta at 5 PSU and only R. minuta at 1 PSU and below. These algal species are
closely-related cryptophytes89 that are both are rich in long-chain polyunsaturated
acids and are the preferred food source of Eurytemora populations90,91. As these
algal cells are highly sensitive to osmotic shock during salinity change, changing the
food source from saline to freshwater Rhodomonas was unavoidable during salinity
decline in the experiment. Although population size remained fairly constant for
most treatment lines, two treatment lines went extinct between generations six and
ten (BSE-7 and BSE-10) and were therefore sequenced only at generation six.

Individual adult copepods (N= 50; 25 male and 25 female) were collected for
sequencing from each laboratory selection line at generations six (after one
generation at 0 PSU in the treatment lines) and ten (after five generations at 0 PSU
in the treatment lines). Two of the control lines (BS3C and BS4C) were also
sampled at generation 20 to increase the number of sampled timepoints for our
LMM test for selection. Sampled copepods from each line (Supplementary Data 6)

were pooled and their DNA was extracted using the DNeasy Blood and Tissue
Extraction kit (Qiagen, Inc.). Paired-end whole-genome sequencing libraries were
prepared using the Nextera DNA kit (Illumina Inc.) and sequenced on four lanes of
Illumina Hi-Seq 4000 and one lane of Illumina NovaSeq 6000 at the University of
Chicago Genomics Facility, generating an average of ~117 million paired-end
(100 bp) reads per pool.

Additionally, wild E. affinis populations were collected from eight locations in
the Baltic Sea (Fig. 3; Supplementary Data 3) using bongo and WP2 nets with 100
μm mesh. These sampling locations spanned a range of mean annual salinities
from low (~3 PSU) to higher salinity (~19 PSU). Mean annual salinity for each site
was calculated from the International Council for the Exploration of the Sea (ICES)
database (https://ocean.ices.dk/Helcom/Helcom.aspx?Mode=1; accessed June
2020), using data collected from 1995-2020. From each population, individual
copepods (ranging from 50 to 200 in number) were pooled and their DNA was
extracted using the DNeasy Blood and Tissue Extraction kit (Qiagen, Inc.). Paired-
end whole-genome sequencing libraries were prepared using the Illumina Nextera
DNA kit (Illumina, Inc.) and sequenced on five lanes of an Illumina HiSeq
4000 sequencer at the University of Chicago Genomics Facility, generating an
average of ~176 million paired-end (100 bp) reads per pool.

Reference genome assembly and SNP calling. A draft genome for Eurytemora
affinis complex was constructed from long-read and long-range sequencing tech-
nology. To generate genomic data for assembly, an inbred line was generated from 30
generations of full-sibling mating of copepods derived from a saline population in
Baie de L’Isle Verte, St. Lawrence marsh, Quebec, Canada (Atlantic clade, aka E.
carolleae86). Prior to DNA extraction, the culture was treated with a series of anti-
biotics to reduce bacterial contamination, including Primaxin (20mg/l), Voriconazole
(0.5mg/l for at least 2 weeks prior to DNA extraction), D-amino acids to reduce
biofilm (10mM D-methionine, D-tryptophan, D-leucine, and 5mM D-tyrosine, for
at least for 2 weeks prior to DNA extraction). DNA was extracted from pooled adult
copepods and used to generate Pacific Biosciences (PacBio) long-read data (2.65
million subreads, 30.2 Gb, read N50= 19.25 kb), Dovetail Chicago® (213 million
150 bp read pairs) and Hi-C (171 million 150 bp read pairs) Illumina HiSeq X data.

PacBio reads were assembled into contigs using wtdbg v2.592 and polished with
Racon v1.4.393. This procedure resulted in an assembly of size 575Mb in 3013
contigs with an N50 of 951 kb, an N90 of 106 kb, and maximum contig length of
7.7 Mb. Contigs were scaffolded with HiRiseTM (Dovetail Genomics) using
Dovetail Chicago® and Hi-C data. This procedure resulted in a highly contiguous
assembly with 90% of the genome present in four scaffolds (1706 total scaffolds,
0.02% gaps), likely corresponding to the four chromosomes of E. affinis observed in
karyotype (data not shown). These four scaffolds consisted of 518Mb of sequence.
Gene annotations were generated by mapping annotations from the previously
published, short-read-assembled genome of E. affinis complex94 using LiftOff
v1.6.195.

European E. affinis populations, the subject of the laboratory selection
experiment, are highly genetically divergent from North American populations of
the E. affinis complex85,86, from which the draft genome was derived. Therefore, to
maximize the number and accuracy of SNP calls, a pseudo-reference genome was
assembled for SNP calling following an approach used in a previous study96. This
approach uses a reference transcriptome as an anchor to assemble Pool-seq data
around coding regions, generating a reference assembly that includes coding
sequences and surrounding sequence with putative regulatory function.

To generate RNA-seq data for assembly of the reference transcriptome,
approximately 100 individuals of all life stages were collected from the European E.
affinis laboratory culture derived from Kiel, Germany. Animals were pooled and
subjected to a Trizol/Qiagen RNeasy hybrid total RNA extraction protocol. An
mRNA sequencing library was prepared using the Illumina TruSeq Stranded
mRNA kit and sequenced on an Illumina HiSeq 4000 sequencer, generating
approximately 186 million 100 bp paired-end reads. Raw RNA-seq reads were
processed using BBDuk in the BBtools v38.37 package (https://sourceforge.net/
projects/bbmap/) to filter adapter sequences, low complexity sequences, and low
quality (Q < 10) bases using a sliding window (ktrim= r k= 23 mink= 11
hdist= 1 qtrim=w trimq= 10 minlen= 36 entropy= 0.01 entropywindow= 50
entropyk= 5 tbo).

To filter sequences that may have originated from microbial contamination
prior to assembly, reads were mapped against a database of reference and
representative bacterial, archaeal, and fungal genomes from the NCBI RefSeq using
Bowtie 2 v2.3.5 and were removed if they mapped concordantly97. Cleaned reads
were assembled using Trinity v2.6.6 in strand-specific mode98. mRNA expression
estimates were made using RSEM v1.3.199 with cleaned reads mapped to the
Trinity assembly with Bowtie 297. Only the most highly expressed Trinity
“isoform” per ‘gene’ was retained to obtain the most highly supported
transcriptome assembly. Transcript sequences were clustered to 95% similarity
using CD-HIT v4.7100 to reduce redundancy associated with allelic variation and
assembly errors. Transdecoder v5.5101 was used to predict open reading frames and
coding sequences. Predictions included BLASTP102 (BLAST+ v2.7.1) hits to
annotated proteins of the E. affinis complex draft genome and HMMER v3.2.1
(http://hmmer.org) hits to the Pfam protein database103.

The resulting non-redundant transcriptome assembly was used to anchor the de
novo assembly of Pool-seq data around coding regions to obtain a pseudo-
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reference genome. First, the “left” pairs of Pool-seq reads from the starting
laboratory population were mapped to the coding sequences of the transcriptome
with BWA-MEM v0.7.17104, retaining reads with a mapping quality >20. The
corresponding “right” pairs of the mapped reads were extracted and the mapped
reads were assembled using Trinity v. 2.6.698, as Trinity was developed to assemble
highly variable sequences with potentially uneven coverage. The resulting assembly
was clustered to 95% similarity using CD-HIT v4.7100. The aforementioned
mapping and assembly procedures were repeated one additional time, mapping
reads to the Trinity-assembled Pool-seq data rather than to the transcriptome. In
this way, the assembly was extended into genomic regions surrounding the
transcriptome-derived coding sequences. Finally, only assembled contigs with a
significant BLASTN hit (E value < 0.001) to the draft genome (see above) were
retained to further eliminate assembly errors. The pseudo-reference genome
ultimately spanned a greater portion of the genome with greater contiguity than the
transcriptome (Supplementary Data 7). These pseudo-reference genome contigs
were arranged and oriented into scaffolds using BLASTN hits (E-value < 0.001) of
the contigs to the long-read genome assembly and retaining the top hit per contig.

Raw Pool-seq reads collected from the laboratory selection lines and Baltic Sea
wild populations were processed with Trimmomatic v0.39105 to filter adapter
sequences and low-quality bases using a sliding window (LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36). Quality-filtered Pool-seq
reads were mapped to the pseudo-reference genome using BWA-MEM v0.7.17104

retaining only reads that mapped concordantly with a mapping quality >20.
Duplicate reads were removed using Picard v2.18.27 (http://broadinstitute.github.
io/picard) and regions around indels were realigned using GATK v3.8106. For the
laboratory lines and wild populations separately, SAMtools v1.3.1 was used to
convert BAM files into mpileup format after removing low-quality alignments and
bases (Q < 20). VarScan v2.4.3107 mpileup2cns was used to call SNPs for each of the
mpileup files using the following options: “–min-coverage 20 –min-avg-qual 20
–min-var-freq 0.0001 –variants –output-vcf”. The resultant VCF files were
processed using the R package poolfstat v. 1.1.1108 retaining bi-allelic SNPs with 4
reads required for a base call, an overall minimum MAF of 0.01, and a minimum
and maximum coverage of 10 and 200 reads, respectively. This procedure resulted
in 367,846 SNPs called in the laboratory samples and 693,438 SNPs called in the
wild samples.

Estimating effective population size. We used the change in SNP frequencies
over time to estimate the effective population sizes (Ne) for each line with the R
package poolSeq v0.3.5109,110 and WFABC v1.1111. Using the poolSeq model, we
made estimates using both the “Plan I” (census-size dependent) and “Plan II”
(census-size independent) methods, and, given the uncertainty in the census
population size, assumed a range of reasonable census sizes for the “Plan I” cal-
culations. We made Ne estimates in genomic windows of 1000 SNPs in size and
took the median of those windows (Supplementary Data 8).

Detecting signatures of selection in the laboratory natural selection experi-
ment. Multiple approaches were used to test for signatures of natural selection
imposed by decreasing salinity in our SNP frequency data. We used a version of the
CMH test that uses allele frequency data from multiple timepoints, and also
accounts for overdispersion due to genetic drift and Pool-seq sampling, to detect
SNPs with frequencies that changed more than expected under random genetic
drift across lines112. We also performed a similar Chi-square test to detect line-
specific signatures of selection using the same R package. These tests were per-
formed considering only the eight treatment lines with three sampling time-points,
using the mean SNP frequency from the two starting laboratory population sam-
ples as the generation zero frequency for each line. The CMH and Chi-square test
statistics were calculated using estimated effective population sizes for each line to
calibrate p values accounting for genetic drift (Supplementary Data 8). P values
were converted to q-values to correct for multiple testing using the R package
qvalue113 and SNPs with a q value < 0.05 were considered significant.

As the CMH and Chi-square tests did not take full advantage of our sampling
design with control and treatment lines, SNPs were also tested for signatures of
selection using LMMs in the R package lme4114, considering data from all control
and treatment lines. The goal of this test was to detect SNPs with frequency
trajectories that were significantly different between treatment and control lines.
Therefore, we could detect SNPs with deterministic signatures of directional
selection to decreasing salinity, while accounting for the effects of random genetic
drift and selection to laboratory conditions. SNP frequency change (xD – xA) was
considered the response variable in the linear regressions with weights proportional
to sequencing depth and number of individuals sampled (Neff)115. An angular
transformation (i.e., arcsine square root transformation) was applied to SNP
frequencies to normalize the percentage values and reduce bias due to different
starting frequencies116–118.

Likelihood ratio tests (LRT) were used to test for the significance of the effect of
treatment (2 levels) on SNP frequency change from the start of the experiment (the
response), considering the fixed effect of generation (2 levels) and the random effect
of line (14 levels). The following two models were compared: (1) yi ~ generation+
(1|line) + εi and (2) yi ~ generation + treatment + generation:treatment+ (1|line) +
εi, where yi is the SNP frequency change from the starting population at the ith SNP
and εi is the Gaussian error at the ith SNP, given the sequencing coverage and number

of individuals sampled. LRT test statistics were compared to the Chi-square
distribution with two degrees of freedom to obtain p values. P values were converted
to q values to correct for multiple testing113 and SNPs with a q value < 0.05 were
considered significant.

To account for linkage among SNPs, which could inflate signatures of selection
for neutral SNPs, putatively independent selected “haplotype blocks” were
identified using the R package haplovalidate45,119 considering the eight treatment
lines with three sampled timepoints. This approach identifies and delimits selected
haplotype blocks by clustering candidate SNPs with correlated frequency changes.
The union of candidate SNPs from all three tests for selection (CMH test, line-
specific Chi-square, and LMM; N= 18,072) were used as input to haplovalidate,
which was run with default settings. Identified selected haplotype blocks were
considered as selected alleles. The median frequency of SNPs characterizing each
haplotype block was used to estimate allele frequencies at each timepoint in each
line. To determine whether an allele had responded to selection in each line and
timepoint, we simulated 10,000 iterations of neutral evolution using the R package
poolSeq109 for each allele’s starting frequency using an effective population size of
1750 (the approximate average of Ne estimates across lines and methods;
Supplementary Data 8). Alleles were then considered to be under selection in each
line and timepoint if the frequency had increased more than the 99.9th percentile
of neutral simulations at generation ten.

Selection coefficients (s) were estimated by linear modeling with lme4114 from
the slope of the linear regression of logit-transformed allele frequencies against
generation, averaged across lines. The slope of this regression has been shown to
accurately estimate s, assuming a continuous-time approximation to the Wright-
Fisher model and codominance109. The factor line was considered a random effect
in the linear model with weights proportional to sequencing depth and number of
individuals sampled (Neff)115. We also calculated s using the poolSeq R package,
which also uses lme4 to regress logit-transformed allele frequencies against
generation, but without considering the random effect of line or variable
sequencing depth. The two estimates of s were well correlated (Pearson’s
correlation test, r= 0.79, DF= 119, t value = 14.12, P < 0.001).

Simulations of laboratory selection. To evaluate the expected degree of paral-
lelism under different genetic architectures (Table 2; Supplementary Fig. 1), we
performed extensive Wright-Fisher simulations using SLiM v3.7120. We included
both population genetic and quantitative genetic characterizations of epistasis
(Table 2; Supplementary Fig. 1; Supplementary Table 1) to test which could best
explain the extent of parallelism in our experimental data. We simulated ten
replicate lines under selection with a constant population size of 1750 individuals,
based on the average effective population size estimated across lines and methods
(Supplementary Data 8). Mirroring the design of our E&R experiment, we recorded
allele frequencies of selected loci in every population at generations zero (starting
allele frequencies), six, and ten. To introduce the additional variance in allele
frequencies due to population sampling and sequencing, we sampled 100 indivi-
duals from each population to be included in each “pool”, and then sampled allele
copies from the pool according to empirical sequencing coverage of each locus.

We accounted for directional (positive or negative) epistasis under a population
genetic (multiplicative fitness) framework by extending Keightley and Otto’s57

characterization of epistasis (Table 2a). The “multiplicative fitness” model is the
standard population genetic model in which allelic effects are independent with
respect to individual fitness and allele frequency trajectories depend on the
selection coefficient and effective population size (Table 2a, first equation). In this
population genetic framework, epistasis is described as an exponential function of
the square of the sum of the effect sizes of the beneficial alleles an individual carries,
where the α parameter (β in Keightly and Otto57) indicates the strength and sign of
the epistatic effect. Furthermore, this framework allows for mutations of variable
effect sizes and for mutations with larger individual effect sizes to have larger
epistatic effects (Table 2a, second and third equations).

In addition, we included several quantitative fitness functions with epistatic
effects, in which the positive fitness effects of alleles increase in the presence of
additional alleles (Table 2b; Supplementary Fig. 1). The quantitative trait (QT,
quantitative fitness) models were chosen to replicate the models used in similar
simulation studies of replicated evolution experiments38,50 and are also available in
the simulation software MimicrEE2121. We simulated under multiple different
quantitative fitness functions for two reasons: (1) our experiment allowed
individuals to survive and replicate naturally (i.e., we did not select and transfer
individuals to the next generation), and therefore the exact mode of selection is
unknown, and (2) our experimental design included a moving optimum (salinity
declined over generations 2–6), which was not perfectly captured by available
fitness functions. Therefore, simulating under a range of different quantitative
fitness functions could help capture the allele frequency dynamics under the
quantitative genetic paradigm, regardless of the exact (and unknown) mode of
selection.

The Shifted Optimum QT model is a standard QTL model with a Gaussian
fitness curve around a phenotypic optimum (Table 2b; Supplementary Fig. 1). The
Directional model is similar to the Shifted Optimum model with the “stabilizing”
component removed, such that fitness benefits plateau with increasing phenotype
instead of a fitness reduction. The Truncating model is very similar to the
Directional model, but where having a low phenotype is lethal rather than low
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fitness. Our “Truncating” model is equivalent to the “diminishing returns epistasis”
model in MimicrEE2121; however, we changed the name to avoid confusion,
because negative epistasis also has diminishing fitness effects as the phenotype
increases.

Overall, parameter values under the QT models (Supplementary Table 1) were
chosen to allow allelic effects to increase as the mean population fitness increased
in the early stages of adaptation (i.e., positive epistasis). Parameter values for the
Truncating model were chosen such that ~25% of the starting population were
culled and fitness benefits saturated quickly above that point. The Directional
model parameters were chosen to closely match the “scale” of the fitness benefit
saturation. The parameters of the Shifted Optimum model were chosen such that
the slope of the fitness functions matched the Directional model and the fitness
optimum occurred roughly where the fitness benefits saturate. Trait optima were
chosen such that the distribution of population phenotypes had just reached the
trait optimum by generation ten (examples of initial and final population
phenotype distributions are shown by the horizontal colored bars in
Supplementary Fig. 1). Therefore, populations did not spend time in a ‘non-
adaptive’ phase and our expected parallelism under this model was not reduced.
Despite this fact, the levels of parallelism observed under a trait optimum model
(quantitative trait models) did not approach the observed empirical levels of
parallelism (Supplementary Figs. 2–4).

Simulations were conducted by modeling: (1) 121 unlinked alleles (haplotype
blocks), (2) 121 alleles with linkage and recombination, and (3) 4,977 SNPs on 121
unlinked haplotype blocks with linkage and recombination between SNPs on the
same haplotype block. In simulations with linkage, alleles recombined based on
their physical distance using the copepod Tigriopus californicus recombination rate
of 1.6 cM/Mb122. Selected alleles started at observed starting frequencies unless
otherwise specified. In all cases, whether an individual carried an allele at the start
of the simulation was based solely on that allele’s starting frequency (e.g., if an allele

has frequency p, an individual carries no copies with probability 1� p
� �2

and one
copy with probability 2p 1� p

� �
).

Unless otherwise specified, simulations were carried out with parameter values
shown in Supplementary Table 1. Simulations of the QT models with 121
haplotype blocks used some different parameters from simulations of 4977 SNPs
due to the differences in range of starting phenotypes in the two scenarios
(Supplementary Fig. 1, top versus bottom rows, horizontal gray bars). 100
iterations were run for each simulation in which the number of selected loci was
varied (e.g., Fig. 2b). 1000 iterations were run for each simulation in which the
shape of the fitness function was varied (e.g., Fig. 2a, c) and the mean Jaccard index
between populations was recorded for each iteration. As with the empirical data,
simulated alleles were considered under selection in a given line and timepoint if
their frequency change was greater than 99.9% of neutral simulations performed
using the R packages poolSeq109.

To estimate the α parameter of the positive epistasis model and determine
whether the positive epistasis model could recreate the observed levels of
parallelism, we performed Approximate Bayesian Computation using the R
package EasyABC v1.5123 and the simulations as above using SLiM 3. The mean
empirical Jaccard index at generations six and ten was used as target summary
statistics. The Lenormand sequential algorithm124 was used to estimate α using a
uniform prior distribution [0,50]. 1000 post-burn-in iterations were used to
summarize the posterior distribution of α with the weighted mean taken as the
point estimate.

Explanation of the a parameter of the population genetic epistasis model. In
our population genetic model of epistasis (both positive and negative), the a
parameter signifies the strength of epistasis. That is, this value represents how
much the fitness effect of one locus is affected by the genotype at other loci. For
simplicity, consider a haploid individual with N biallelic loci where the beneficial
alleles have an equal effect size s. Note that under these assumptions, our popu-
lation genetic epistasis models (Table 2) simplify to:

1þ sð Þn � ea n
Nð Þ2 ð1Þ

Under a standard population genetic, multiplicative framework (Table 2) an
individual with n beneficial alleles (wn) will have a fitness 1þ s times greater than
an individual with n� 1 beneficial alleles (wn�1), regardless of the value of n. In
contrast, under our model of epistasis, wn will be

wn

wn�1
¼ 1þ sð Þ � ea2n�1

N2 ð2Þ

times greater than wn�1. The exponential term is equal to 1 if a ¼ 0 and grows
larger (with a > 0) with increasing n. Thus, the fitness benefit of gaining a beneficial
allele increases with the total number of beneficial alleles that individual carries
when a > 0.

For a concrete example, imagine a haploid individual with 121 loci and
a ¼ 36:5, our empirical ABC estimate. Under a multiplicative model, each copy of
the allele increases an individual’s fitness by (1+ s) times. On the other hand,
under our epistatic model the fitness benefit of the having a single allele is

w1

w0
¼ 1þ sð Þ � e 36:5

1212 � 1:002 1þ sð Þ; ð3Þ

which is slightly more than is expected under the multiplicative model. In contrast,
the fitness benefit of having 121 alleles over having 120 alleles is

w121

w120
¼ 1þ sð Þ � e36:5�2411212 � 1:823 1þ sð Þ; ð4Þ

which is much greater than expected under the multiplicative model. In other
words, the fitness benefit of having more beneficial alleles is increased by the
presence of beneficial alleles at other loci. a < 0 has the opposite effect, such that the
fitness benefit of beneficial alleles is decreased by the presence of beneficial alleles at
other loci. The strength of epistasis (either positive or negative) increases with
increasing aj j.

Simulating selection under different starting allele frequencies. To explore the
effect of starting allele frequencies on genetic parallelism, we repeated our simu-
lations with populations initialized using neutral allele frequencies (drawn from the
SNPs without significant signatures of selection using any of the three tests
[Methods—Detecting signatures of selection in the laboratory natural selection
experiment]), and where every locus had a starting frequency of 0.5. In the cases
where the number of loci contributing to a trait was varied (Fig. 2b, Supplementary
Fig. 5), the loci included were randomly selected from the total available for each
simulation. For SNP simulations, the positions of the selected SNPs were retained.
As our SNP simulations considered SNPs on the same haplotype blocks as linked, it
is possible that if, for instance, 100 loci contributed to adaptation, all 100 could be
located on the same haplotype block or they could all be located on their own
haplotype block and be unlinked.

Varying the initial allele frequencies or number of loci could lead to some issues
with the choice of parameters for the fitness functions (e.g., if all loci selected have
very low starting frequency, every individual’s phenotype could fail to meet the
truncation threshold). For this reason we introduced δ, a “horizontal shift”
parameter, defined to be the difference between the mean initial phenotype in the
current simulation (phenotypesimulation initial) and the mean initial phenotype in the
simulations using the empirical starting frequencies (phenotypebaseline). The
horizontal shift parameter adjusts the initial phenotype distribution so that it
matches the initial phenotype distribution of the simulations using the empirical
starting allele frequencies and number of loci.

Gene annotations and functional enrichment. Gene ontology enrichment ana-
lyses were performed using Gowinda v1.1247, which takes into account gene length
and SNP density, using all SNPs underlying selected haplotypes. Genes within
10 kb of a selected SNP were included in the analysis, with each gene counted only
once (“gene” mode). Gene ontology terms (Biological Process, Molecular Function,
and Cellular Component) associated with each gene model were derived from
significant (E < 0.001) BLASTN hits to the UniProtKB Swiss-Prot database.

Detecting signatures of selection in wild Baltic Sea populations. The method of
Berg and Coop59 was used to test for signatures of polygenic selection on
experiment-selected SNPs in eight wild populations from the Baltic Sea (Fig. 3a;
Supplementary Data 3). Using this method, a “polygenic score” for freshwater
survival was calculated for each population by taking the sum of each experiment-
selected SNP’s frequency multiplied by its effect size. Estimated selection coeffi-
cients from the laboratory experiment were used as proxies for effect size for
freshwater survival. The QX statistic, which measures the variance in polygenic
scores considering the neutral population history, was calculated to test whether
experiment-selected SNPs exhibited signatures of selection. The neutral population
history (i.e., SNP variance-covariance matrix) was estimated using three samples of
50,000 background SNPs. To test whether experiment-selected loci evolved faster
than background loci, that is, exhibited a signature of selection, a null distribution
of QX statistics was calculated using 10,000 samples of background SNPs matched
in minor allele frequency to the experiment-selected loci. This null distribution was
used to calculate a p value for whether the experiment-selected loci evolved sig-
nificantly faster than the genomic background.

To test for signatures of gene flow among geographically distant populations,
we calculated the f4 statistic60 implemented in TreeMix v. 1.13125 for every
combination of four populations, calculating standard errors with groups of ten
SNPs. We considered the f4 test significant if all three of the possible four-
population trees were rejected with a |Z-score| > 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw Pool-seq data generated in this study have been deposited to the NCBI Short
Read Archive under BioProject ID PRJNA844002. The E. affinis complex (Atlantic
clade) draft genome and the Baltic pseudo-reference genome are available on Dryad
(https://doi.org/10.5061/dryad.r7sqv9sdz)126. Study information has been deposited to
BCO-DMO (https://www.bco-dmo.org/project/816918). Allele frequency data (SNP and
haplotype block) are available on https://github.com/TheDBStern/Baltic_Lab_Wild
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(v.0.0.1127). Data used in this study from publicly available databases include the
International Council for the Exploration of the Sea (ICES) database (https://ocean.ices.dk/
Helcom/Helcom.aspx?Mode=1), NCBI RefSeq (https://www.ncbi.nlm.nih.gov/refseq/),
the Pfam database (https://pfam.xfam.org/), and the UniProtKB Swiss-Prot database
(https://www.uniprot.org/uniprot/?query=reviewed:yes).

Code availability
Custom analysis and simulation scripts used throughout this study are available on
https://github.com/TheDBStern/Baltic_Lab_Wild (v.0.0.1127).
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