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Unveiling the S=3/2 Kitaev honeycomb spin liquids
Hui-Ke Jin1✉, W. M. H. Natori 2,3, F. Pollmann4,5 & J. Knolle 1,3,5

The S=3/2 Kitaev honeycomb model (KHM) is a quantum spin liquid (QSL) state coupled to

a static Z2 gauge field. Employing an SO(6) Majorana representation of spin3/2’s, we find an

exact representation of the conserved plaquette fluxes in terms of static Z2 gauge fields akin

to the S=1/2 KHM which enables us to treat the remaining interacting matter fermion sector

in a parton mean-field theory. We uncover a ground-state phase diagram consisting of

gapped and gapless QSLs. Our parton description is in quantitative agreement with numerical

simulations, and is furthermore corroborated by the addition of a [001] single ion anisotropy

(SIA) which continuously connects the gapless Dirac QSL of our model with that of the S=1/

2 KHM. In the presence of a weak [111] SIA, we discuss an emergent chiral QSL within a

perturbation theory.
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The search for quantum spin liquids (QSLs) has been at the
forefront of condensed matter physics for many decades
because they represent novel quantum phases of matter

beyond the Landau paradigm of symmetry breaking—instead
they are characterized by fractionalized excitations and non-local
quantum entanglement1–4. A paradigmatic example of a two-
dimensional (2D) QSL is the seminal Kitaev honeycomb model
(KHM)5, which was initially derived to illustrate the basic ideas of
topological quantum computation6. Remarkably, the model has
an exact solution which shows that its excitations are free
Majorana fermions with a Dirac dispersion and gapped conserved
plaquette fluxes which couple to the Majoranas via a static Z2
gauge field. In the context of frustrated magnetism research, the
KHM provided a first rigorous example how a QSL with frac-
tionalized excitations and emergent gauge fields can emerge in a
concrete microscopic 2D spin model.

In the last years, the KHM has transformed from a theoretical
toy model to one of experimental relevance because a flurry of
spin-orbit-coupled 4d and 5d transition metal compounds7–12

has been proposed as candidates for realizing its bond-anisotropic
Ising interactions. Remarkably, experiments have also observed
signatures of the proximate Kitaev spin liquid (KSL) in several
materials with effective spin 1/2 moments, such as α-RuCl313–18

and (Na1−xLix)2IrO3
19,20, despite the residual zigzag ordered state

which appears at low temperature21,22 because of additional
interactions, e.g., an off-diagonal symmetric Γ exchange13.
However, the exchange frustration of the KHM is not restricted to
spin 1/2 and recently some promising realizations of higher-spin
Kitaev materials have been proposed based upon 3d orbitals23–25,
in which the QSL-disrupting non-Kitaev exchanges might be
reduced26–28. In particular, a microscopic derivation of the S=3/2
KHM model with an extra single ion anisotropy (SIA) has been
established for the quasi 2D systems CrI3 and CrGeTe323,24.

After the original proposal of the S=1/2 KHM5, much effort
has been devoted to investigating the KHM models for S > 1/2,
which have not found an exact solution29–36. Nevertheless, Bas-
karan et al.30 showed early on that a generic spin-S KHM still has
conserved Z2 fluxes for each elementary hexagon and suggested
via a semiclassical analysis that the ground state of KHMs for all
values of S exhibits a homogeneous flux configuration in which all
values of Z2 fluxes are+ 130. Subsequently, it has been proposed
that the ground states of the S > 3/2 KHMs are Z2 QSLs described
by an effective toric code on a honeycomb superlattice, but the
employed semi-classical analysis breaks down precisely at S=3/
234. The S=1 KHM is amenable to numerical investigations and
studies using exact diagonalization33 and density matrix renor-
malization group (DMRG)35 point to a gapless QSL ground state,
whereas a tensor network approach proposes a gapped QSL for
the isotropic model36. Overall, the S=3/2 KHM seems to be the
least understood of all Kitaev models — the conserved plaquette
fluxes alone do not help to gain an analytical understanding and a
high density of low energy excitations lead to strong finite-size
effects for numerical investigations.

Here, we report new exact properties of the S=3/2 KHM and
provide a systematic understanding of its ground-state phase
diagram and excitations. We introduce an SO(6) Majorana
representation for the spin-3/2’s which permits an exact mapping
of the spin model to one of fermions coupled to a static Z2 gauge
field. The latter determines the conserved plaquette flux just like
in the original S=1/2 KHM. Within a given gauge field config-
uration, the Hamiltonian still contains quartic and even sextic
fermion interaction terms but we construct a parton mean-field
(MF) theory which turns out to be even quantitatively reliable.
Our theory is furthermore corroborated by the addition of an
extra [001] SIA to the S=3/2 KHM, which still preserves the
conservation of the Z2 fluxes and allows us to map out the phase

diagram consisting of two gapless Dirac and two gapped QSLs. In
the limit of large [001] SIA, we find an exact solution of an
effective S=1/2 KSL, which is continuously connected to one of
the two gapless phases of the pure S=3/2 KHM. We also inves-
tigate the model using DMRG37,38 and find the numerical results
to be in quantitative agreement with the predictions from our
parton MF theory. In the presence of a weak [111] SIA, we can
derive an effective Hamiltonian within the zero-flux sector and
argue that a chiral KSL is established.

Results
Model Hamiltonian. The Hamiltonian of the S=3/2 KHM reads

H ¼ ∑
hijia

JaS
a
i S

a
j ; ð1Þ

where Sai (a= x, y, z) are three components of an S=3/2 spin at
site i and 〈ij〉a denotes the nearest neighbor (NN) bonds of a-type
S=3/2 Ising interactions (see Fig. 1). There exist commuting
plaquette operators Wp for each hexagon p (see Fig. 1) as
Wp � �eiπðS

x
1þSy2þSz3þSx4þSy5þSz6Þ30. By noticing that ½Wp;H� ¼ 0, the

total Hilbert space of Hamiltonian (1) can be divided into
orthogonal sectors characterized by flux configurations {wp= ± 1},
where wp is the eigenvalue of Wp.

SO(6) Majorana representation. We introduce three gauge
Majorana fermions ηai and three itinerant Majorana fermions
θai (a= x, y, z), to obtain the SO(6) Majorana representation for spin-

3/2’s39–52: Sai ¼ i
4 ϵabcη

b
i η

c
i � i

2 η
a
i
~θ
a
i ; where ~θ

xðyÞ
i ¼ θzi � ðþÞ ffiffiffi

3
p

θxi ,
~θ
z
i ¼ �2θzi , and ϵabc is the Levi-Civita tensor (summation over
repeated indices throughout). This parton representation doubly
enlarges the Hilbert space and the physical Hilbert space of spin-3/
2’s can be restored by imposing the local constraint
Di ¼ iηxi η

y
i η

z
i θ

x
i θ

y
i θ

z
i ¼ 1. One can then obtain iηbi η

c
i ¼

ϵabcη
a
i θ

x
i θ

y
i θ

z
i and rewrite the spin operators as

Sai ¼
i
2
ηai θxyzi � ~θ

a
i

� �
; ða ¼ x; y; zÞ; ð2Þ

where θxyzi ¼ �iθxi θ
y
i θ

z
i .
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Fig. 1 Graphic representation of the S=3/2 KHM (3) and the SO(6)
Majorana representation. Down (up) triangles stand for S=3/2 spins on A
(B) sublattice. Each spin is represented by SO(6) Majoranas, e.g., three
gauge Majoranas ηx,y,z (circles) and three itinerant Majoranas θx,y,z (dots).
The blue, green, and red bold lines denote the static Z2 gauge fields ux, uy,
and uz for x-, y-, and z-bond Ising interactions, respectively. The plaquette
operator Wp � �eiπðS

x
1þSy2þSz3þSx4þSy5þSz6Þ can be expressed as the product of

uaij around hexagon p. The gray dashed line stands for the mirror symmetry
Mz with Jx= Jy.
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Eq. (1) then becomes an effective Hamiltonian for Majoranas

H ¼ � i
4
∑
hijia

Jau
a
ij θxyzi � ~θ

a
i

� �
θxyzj � ~θ

a
j

� �
; ð3Þ

where uaij ¼ iηai η
a
j . One can now verify that ½uaij; ubkl� ¼ 0 for all

different bonds and ½uaij;H� ¼ 0. Therefore, uaij with eigenvalues ±
1 is a static Z2 gauge field! Similar to the S=1/2 KHM, the
plaquette operator Wp is exactly mapped to a product of uaij
around hexagon p, e.g.,Wp ¼ uz12u

x
32u

y
34u

z
54u

x
56u

y
16 (see Fig. 1). In a

fixed Z2 gauge field configuration the Hamiltonian only depends
on the itinerant Majoranas θai .

The microscopic derivation of the S=3/2 KHM introduced in
Ref. 23–25 suggests that it is usually accompanied by an extra [111]
SIA term of the form Sci

� �2
with Sci ¼ 1ffiffi

3
p Sxi þ Syi þ Szi

� �
. In

addition to the [111] SIA, we also consider a simplified [001] SIA
term and focus on the Hamiltonian

HD ¼ Hþ∑
i
DzðSzi Þ2 þ Dc Sci

� �2h i
: ð4Þ

Note that ½Wp; ∑i S
z
i

� �2� ¼ 0 but the [111] SIA breaks the

conservation of fluxes, namely, ½Wp; ∑i S
c
i

� �2�≠ 0. Therefore we
always treat Dc as a small perturbation to ensure that the system is
close to the Kitaev limit.

The [001] SIA limit. First, we focus on the Dc= 0 limit with
conserved fluxes. Since the local S=3/2 states of Szi ¼ ± 3

2

�� �
Szi ¼ ± 1

2

�� �� �
will be energetically favored when Jz (Dz) dominates,

we expect that the competition of Jz and Dz leads to a rich phase
diagram. Moreover, below we show that for Dz→∞, we can
recover an effective S=1/2 KSL.

By using Szi
� �2 ¼ �iθxi θ

y
i (a constant of 5/4 has been

omitted), the effective Majorana Hamiltonian can be
divided into two parts. One is a quadratic Hamiltonian
Hð2ÞðfugÞ � �i

4 ∑hijia Jau
a
ij
~θ
a
i
~θ
a
j � iDz∑iθ

x
i θ

y
i , and the other is an

interacting Hamiltonian consisting of quartic and sextic terms,
which we treat within a MF analysis. In our decoupling
scheme, the MF Hamiltonian reads

HMFðfugÞ ¼ Hð2ÞðfugÞ þ ∑
hijia

iJau
a
ij

4

ϵopqϵrst
4

hθoi θpi θrj θsjiθqi θtj
n

þ ϵlmn

2
θmi θ

n
i hθliθxj θyj θzj i � θmj θ

n
j hθljθxi θyi θzi i

� �

þ ϵuvw
2

Quv
i θwi

~θ
a
j � Δw~a

ij θ
u
i θ

v
i þ iQuv

i Δw~a
ij

� �
� ði $ jÞ

h io

ð5Þ
with the on-site parameters Qab

i � �hiθai θbi i (a ≠ b) and bond

parameters Δab
ij � hiθai θbj i Δa~b

ij � hiθai ~θ
b
j i

� �
. In accordance with

Wick’s theorem, the average of quartic terms can be decoupled
as hθoi θpi θrj θsji ¼ �Qop

i Qrs
j þ Δor

ij Δ
ps
ij � Δos

ij Δ
pr
ij and hθliθxj θyj θzj i ¼

Δlx
ij Q

yz
j þΔly

ij Q
zx
j þ Δlz

ij Q
xy
j . Eventually, HMF is parameterized by

MF parameters Q and Δ, which we determine self-consistently
(see Supplementary Note 1). In the presence of Z2 flux
conservation, we can restrict to antiferromagnetic couplings of
Ja > 0 since in the parton level a sign change of Ja →− Ja can be
resolved by uaij ! �uaij. For simplicity, we focus on the case of
Jx= Jy= 1 with a mirror symmetry Mz across the z-bonds (see
Fig. 1) which leads to a vanishing of Qyz,zx= 0. The only
nonzero on-site parameter is Qxy � �hiθxθyi ¼ h Szð Þ2i which is
a time-reversal-invariant spin quadrupolar component char-
acterizing the MF ground states of HMF({u}) (see Supplemen-
tary Note 2).

Following the proposal of Ref. 30 that for generic spin-S KHMs
the ground-state always exhibits a zero-flux configuration with
{wp}= 1, we will mainly focus on the zero-flux sector and fix
{u}= 1 for studying the Majorana excitations of HMF. Note that
the quadratic Hamiltonian H(2)({u}) alone always energetically
favors a zero-flux state.

The Hamiltonian HMF({u}= 1) displays four phases which are
characterized by their distinct Majorana excitations and the value
of the quadrupolar parameter Qxy, as shown in Fig. 2a. (i) At the
isotropic point of Jz= 1 and Dz= 0, the ground state is a Dirac
QSL with Qxy= 0. The Majorana band structure of HMF({u}= 1)
at the isotropic point is almost the same as that of the quadratic
Hamiltonian H(2)({u}= 1), except that the exact flat bands
populated by θy in Fig. 3a acquire a very narrow dispersion as
shown in Fig. 3b. Consequently, in this phase HMF({u}= 1) has a
Dirac point at the K-point, around which there exist two gapless
Majorana bands crossing linearly at zero energy but one of whose
velocity is close to zero. (ii) In the A0 phase, the ground state is a

A   phase:
Q   < 0
gapless

Isotropic: Q   = 0
gapless

B phase:
Q   > 0
gapped

xy
0 A   phase:

Q   < 0
gapped

xy
z

xy

xy

(a)

(b) (c)

Fig. 2 The ground-state phase diagram and the values of parameter Qxy.
a The MF phase diagram of Hamiltonian (5) in zero-flux sector on a 36 × 36
torus. The A0 phase is a Dirac QSL with spin quadrupolar parameter
Qxy < 0. In the Az (B) phase, the Majorana excitations are gapped with
Qxy < 0 (Qxy > 0). At the isotropic point, the ground state is a QSL with
Qxy= 0. The bold blue line at Dz=∞ with Jz < 8 (Jz > 8) represents the
effective gapless (gapped) S=1/2 KSL. The gapless phases in S=3/2 and
S=1/2 KHMs can continuously connect to each other through the A0 phase
without energy gap opening. The orange stars (green triangles) represent
the ground states obtained by DMRG on a 3 × 4 torus with zero-flux
(disordered-flux) configurations with bond dimension χ= 4000. The
values of Qxy as a function of Jz with Dz= 0 (b) and Dz with Jz= 7 (c). The
computations of DMRG and parton MF theory are performed on a
3 × 4 torus.

Fig. 3 Band structure of itinerant Majorana fermions. a The Majorana
band structure of the quadratic Hamiltonian H(2) at the isotropic point Jz= 1
and Dz= 0. The Majorana band structures of the MF Hamiltonian HMF with
(b) Jz= 1 and Dz= 0, (c) Jz= 1.2 and Dz= 0.4, and (d) Jz= 1.4 and Dz= 0.
Here Jx= Jy= 1, and a zero-flux configuration of {u}= 1 is used. The inset in
(b) shows the zoom-in around the K point.
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Dirac QSL coexisting with a spin quadrupolar parameter Qxy < 0.
Because of a nonzero Qxy < 0, only one branch of gapless spin
excitations remains around the Dirac point (see Fig. 3c). (iii) In
the Az phase, the effect of Dz remains, but a relatively large
anisotropy of Jz gaps out all Majorana excitations and the ground
state is a gapped QSL coexisting with a spin quadrupolar
parameter Qxy < 0. (iv) In the B phase, the dominant Jz leads to a
positive Qxy > 0 and all Majorana excitations are gapped. Fig. 3d
shows a typical Majorana band structure for the B phase. We
conclude that the transition between the B phase and the A0 (Az)
phase is of first-order since Qxy shows a discontinuous bump at
the phase boundary in Fig. 2b, c.

Effective S=1/2 KSL. A key advantage of using the [001] SIA is
that the Hamiltonian can be solved exactly in the limit of Dz→∞,
because the high energy local states of Szi ¼ ± 3

2

�� �
are removed

and the ground-state subspace of Hamiltonian (4) is spanned by
the local states of Szi ¼ ± 1=2

�� �
only. Within the framework of the

SO(6) Majorana representation, the itinerant Majoranas θxi and θyi
are paired up subjected to the constraint iθxi θ

y
i ¼ 1 (Qxy=− 1).

Then the three S=3/2 operators in Eq. (2) projected onto the
subspace of iθxi θ

y
i ¼ 1 become

Szi ’
i
2
ηzi θ

z
i ; SxðyÞi ’ iηxðyÞi θzi : ð6Þ

Obviously, Eq. (6) is equivalent to Kitaev’s original four-Majorana
representation5. It is remarkable that an effective S=1/2 KHM
with a renormalized coupling constant Jz→ Jz/4 emerges in our
S=3/2 Hamiltonian (3) for Dz→∞ with an effective gapless
(gapped) S=1/2 KSL for Jz < (>)8. This connection gives addi-
tional support to the assumption of a zero-flux ground state and
our MF treatment, which is known to exactly capture the phase
diagram and nature of excitations of the S=1/2 KHM53,54.
Indeed, we find that the gapless KSL of the emergent S=1/2 KHM
is continuously connected to the gapless A0 phase of the pure
S=3/2 KHM in Fig. 2a.

Numerical results. Since Lieb’s theorem55 may not be applicable
for the interacting Hamiltonian (3), we examine the zero-flux
ground-state configuration, which is a pivotal assumption in our
parton theory. We find that the ground states in our DMRG
simulations always exhibit a zero-flux configuration in the A0 and
Az phases. In contrast, for the B phase, DMRG does not converge
to a unique ground-state flux configuration but instead leads to a
disordered-flux ground state in which the measured flux for each
plaquette is neither 1 nor−1. The data points for different
DMRG-obtained ground-state flux configurations are shown in
Fig. 2a.

The disordered-flux ground states obtained by DMRG indicate
an extremely small flux gap above the zero-flux state in the B
phase. This flux gap can also be evaluated within our MF theory
in the B phase. To connect to our DMRG simulations, we have
performed the MF calculations on the same 3 × 4 torus. We find
that the energy of a pair of neighboring fluxes is E2fluxes≃ 10−6

for Jz= 1.2 and Dz= 0, which is as small as the corresponding
DMRG truncation error ϵ≃ 10−6. The flux gap E2fluxes rapidly
decreases as Jz increases, which explains why DMRG fails to
capture the conserved Z2 flux in the B phase.

Next, we investigate the local spin quadrupolar parameter Qxy
i

using DMRG and find that the Qxy
i are spatially uniform (on the

torus and in the bulk of cylinders) as assumed in our parton
description. A remarkable observation is that, if we ignore small
discrepancies near the phase boundaries, the values of the
DMRG-obtained Qxy are even in quantitative agreement with
those given by the parton MF theory within the zero-flux sector,

as shown in Fig. 2b, c. For the purpose of comparison, we have
chosen the same lattice geometry, e.g., a 3 × 4 torus, to calculate
the MF and DMRG values of Qxy. The difference between the MF
Qxy for a 3 × 4 torus and its extrapolation to an infinite lattice is of
the magnitude of 10−2 (except near the phase boundaries), thus
finite-size effects for Qxy are small. This remarkable quantitative
agreement demonstrates that our SO(6) Majorana MF theory
provides a compelling scenario for describing the S=3/2 KHM.
For example, we can now understand why the S=3/2 KHM at the
isotropic point is so challenging for numerical methods, e.g., the
extreme system-size dependence encountered in our DMRG
simulations, because the almost flat Majorana bands, see Fig. 3b,
lead to a large pile up of close to zero energy states.

The [111] SIA limit. Next, we study the experimentally more
relevant case, i.e., Jx= Jy= Jz= J, Dz= 0, and Dc≪ ∣J∣. A finite
[111] SIA breaks the flux conservation, leading to a dynamical
gauge field. In analogy to the procedure of treating a magnetic
field in the S=1/2 KHM5, we circumvent this problem by deriving
an effective three-body quadrupolar interaction within the zero-
flux sector. This can be further motivated by noticing that
Sci
� �2 ¼ � i

3 ηxi þ ηyi þ ηzi
� �

θyi plays a similar role as the [111]
magnetic field in the S= 1/2 KHM5. The effective term H(3)

described by three-body quadrupolar interactions is represented
by

Hð3Þ ¼ κ ∑
ijh ia jkh ib

uaiju
b
jk iθyi θ

z
j

� �
iθxj θ

y
k

� �
; ð7Þ

where κ � D3
c=Δ

2
flux (Δflux ≈ 0.093J) and 〈ij〉α and 〈ij〉β are two NN

bonds connected by site j (see Fig. 4a). Eq. (7) clearly commutes
with the Z2 gauge fields but is quartic in the itinerant Majoranas.
Its most general decoupling reads

Hð3Þ
MFðfug ¼ 1Þ ¼ κ ∑

ijh ia jkh ib
i Δyz

ij θ
x
j θ

y
k þ Δyx

kj θ
z
j θ

y
i

� �

þ κ ∑
ijh ia jkh ib

i �Qzx
j θ

y
i θ

y
k þ ξyyik θ

x
j θ

y
j

� �
;

ð8Þ

where ξyyik ¼ �hiθyi θyki is the hopping parameter on the 2nd NN
bond. A nonzero Qzx breaks time-reversal symmetry (TRS) so
that Hð3Þ

MF naturally describes a chiral KSL analogous to the S= 1/
2 case5. A key difference is that here TRS is spontaneously broken
since Eqs. (4) and (7) are even under time-reversal.

Hð3Þ
MF favors the S= 3/2 chiral KSL, which undergoes a first-

order phase transition on the parton MF level. For small κ= 0.01,
the self-consistent solution converges to parameters Qzx ≈ 0.28
and ∣ξyy∣ ≈ 0.115. Fig. 4a presents the evolution of Qzx as a

Fig. 4 Chiral KSL induced by [111] SIA. a Qzx as a function of κ. Inset: A
sketch for the three-body quadrupolar interactions in Eq. (7). The blue,
green, and red bonds stand for the x-, y-, and z-type S=3/2 Ising
interactions, respectively. The summation in Eq. (7) takes place over the
triangle with vertexes i, j, and k (and symmetry-equivalent ones). b The
band structure and corresponding Chern numbers for the parton MF theory
in Eq. (8) with κ= 0.01.
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function of positive κ—solutions for negative κ are obtained by
changing the signs of Qzx, ξyy, and Δyx(z).

Next, we study properties of this chiral KSL. The Majorana
hybridization induced by a nonzero Qzx narrows all dispersions
and separates the six bands from each other, see Fig. 4b. We
evaluate the topological characteristics of these bands in terms of
the Chern number, which is

C0s ¼ 1; 0;�1; 1; 0;�1ð Þ

for the lowest to the highest band. Notice that in contrast to the
S= 1/2 chiral KSL, the sum of Chern numbers over the negative
energy bands is zero. Therefore, no quantized thermal Hall
conductivity is expected in the low temperature limit, but an
activated signal emerges for increasing temperatures.

Discussion
In summary, we have studied the ground-state phase diagram and
excitations of the S=3/2 KHM with additional SIA terms. We
employed a parton theory based on the SO(6) Majorana repre-
sentation of spin=3/2’s, which is supported by DMRG simula-
tions. We have shown that the conserved flux for each
honeycomb plaquette can be represented exactly via a static Z2
gauge field similar to the well-known S=1/2 KHM, which is key
for identifying the correct MF decoupling of the parton
description. For a [001] SIA, DMRG calculations are shown to
agree with our self-consistent MF theory qualitatively and even
quantitatively. We uncover a rich phase diagram characterized by
distinct Majorana excitations and different phases with spin
quadrupolar parameter Qxy ¼ h Szð Þ2i: (i) a gapless Dirac QSL
with Qxy= 0 and an additional almost flat Majorana band close
to zero energy at the isotropic point (Jz= 1,Dz= 0); (ii) a gapless
Dirac QSL with Qxy < 0 in the A0 phase; (iii) a gapped QSL with
Qxy < 0 in the Az phase; and (iv) a gapped QSL with Qxy > 0 in the
B phase. For a dominating [001] SIA, the low energy sector of the
S=3/2s reduces to effective S=1/2s which allows us to con-
tinuously connect the gapless A0 phase of the pure S=3/2 KHM
to that of the well-known Dirac QSL of the S=1/2 KHM. In the B
phase, we found that DMRG fails to capture the conservation of
Z2 fluxes because of an extremely small flux gap above the zero-
flux ground state, which is again accounted for in our parton MF
theory. In the presence of a small [111] SIA, we establish an
effective model in the zero-flux sector with three-body quad-
rupolar interactions. Our parton MF study indicates an emergent
chiral KSL spontaneously breaking TRS.

We argue that our SO(6) Majorana parton theory efficiently
describes the different QSLs of the S=3/2 KHM, which also
provides a compelling scenario for explaining the difficulties
encountered in the numerical studies. Hence, it will provide an
good starting point for studying the robustness of the QSL
regimes with respect to additional terms in the Hamiltonian, for
example different exchange interactions and the SIA relevant for
microscopic realizations of the S=3/2 KHM24. The connection to
the S=1/2 KHM indicates that in particular the ferromagnetic
QSLs will be very fragile and, in general, the formation of con-
ventional magnetic order will be further facilitated because of
flux-fermion bound state formation involving the almost flat
Majorana bands. In that context, large-scale numerical studies for
S=3/2 KHM with non-Kitaev interactions like [111] SIA and
Heisenberg terms are still highly demanded, and the quality of
our parton MF states can be further improved by efficient tensor
network representation with Gutzwiller projection56–58 or by
including different flux sectors in the variational ansatz59.

In the future, it will be worthwhile to study the effect of
applying a magnetic field and the ensuing QSL phases of the S=3/
2 KHM. Similarly, it would be desirable to generalize our

Majorana parton construction to higher-spin systems whose
dimension of local Hilbert space is 2n (with n integer), i.e., the
S=7/2 KHM could possibly have a similar exact static Z2 gauge
field permitting an efficient description via an eight Majorana
representation for spin-7/2’s.

Methods
In order to examine the reliability of our parton MF theory in the case of a [001]
SIA, we employ state-of-the-art DMRG method37,38 to study the ground state of
Hamiltonian (4). DMRG is a very powerful numerical approach for studying 1D
strongly-correlated systems. To perform DMRG calculations on a 2D honeycomb
lattice of L1 × L2 unit cells, we consider a cylindrical geometry for which the per-
iodic boundary condition (PBC) is imposed along the shorter direction (e.g., the
circumference L1), while the longer (e.g., the length L2) is left open. Moreover, we
also adopt small tori with PBCs along both directions to strictly preserve the A/B
sublattice and translational symmetries. The DMRG simulations are performed on
a 3 × 4 torus as well as a 4 × 8 cylinder (L1= 4). The bond dimension of DMRG is
kept as large as χ= 4000, resulting in a typical truncation error of ϵ≃ 10−6

(ϵ≃ 10−4 close to the isotropic point Jz= 1 and Dz=Dc= 0). In general, we
encounter significant finite-size effects in our numerical studies in contrast to
checks on the S=1/2 and S=1 KHMs.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Information. The raw data sets used for the presented analysis within
the current study are available from the corresponding authors on reasonable request.

Code availability
The code that support the findings of this study is available from the corresponding
author upon reasonable request.
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