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The dia-PASEF technology uses ion mobility separation to reduce signal interferences and

increase sensitivity in proteomic experiments. Here we present a two-dimensional peak-

picking algorithm and generation of optimized spectral libraries, as well as take advantage of

neural network-based processing of dia-PASEF data. Our computational platform boosts

proteomic depth by up to 83% compared to previous work, and is specifically beneficial for

fast proteomic experiments and those with low sample amounts. It quantifies over 5300

proteins in single injections recorded at 200 samples per day throughput using Evosep One

chromatography system on a timsTOF Pro mass spectrometer and almost 9000 proteins in

single injections recorded with a 93-min nanoflow gradient on timsTOF Pro 2, from 200 ng of

HeLa peptides. A user-friendly implementation is provided through the incorporation of the

algorithms in the DIA-NN software and by the FragPipe workflow for spectral library

generation.
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H igh-throughput proteomic experiments are increasingly
required for systems biology and biomedical applications.
Constrained by the complexity of the proteome, fast

proteomics creates substantial analytical challenges. Data-
independent acquisition (DIA) techniques have been introduced
to improve robustness and reduce missing value rates in large
proteomic studies1,2. Due to the developments in mass spectro-
metry (MS) instrumentation and software, DIA methods have
recently gained in depth, data consistency, and quantitative
accuracy3. For example, a recent study demonstrated the quan-
tification of more than 10,000 proteins in single MS runs4. Fur-
thermore, significant progress in the analysis of DIA data has
allowed it to move to faster gradients and higher flow rates.
Higher flow rates provide the benefit of high peak capacities as
well as increase column lifetime and chromatographic stability.
As a consequence, they simplify very large and longitudinal
experiments that were previously difficult to achieve5–8. More-
over, while the higher sample dilution did at least initially restrict
the proteomic depth5, these constraints are increasingly miti-
gated. For example, we have recently demonstrated Scanning
SWATH acquisition, which, coupled to 800 µL/min high-flow
chromatography, yielded precise quantification of over 2500
proteins in 60 s of active chromatographic gradient, and despite
the high flow rates, achieved the quantification of more than 4000
proteins in 5-min high-flow gradients9. The gains in throughput
to hundreds of samples per day per mass spectrometer give space
to new applications, such as exploratory drug screens and clinical
studies with high participant numbers. However, the high sample
dilution caused by fast chromatographic methods remains a
challenge for experiments that require the analysis of low sample
amounts, such as single-cell proteomic experiments, in the ana-
lysis of micro-biopsies, or deep spatial tissue analysis using laser
microdissection10–12. These applications call for increased depth,
and acceleration also of proteomic experiments that rely on low
flow rate chromatography.

An effective strategy to increase the sensitivity of any analytical
method is to increase the signal-to-noise ratio. A recent DIA
acquisition method, dia-PASEF, utilizes a Trapped Ion Mobility
Separation (TIMS)13 device within the timsTOF Pro mass spec-
trometer (Bruker Daltonics), to achieve an ion mobility separa-
tion of proteomic samples14. In dia-PASEF, the ion mobility
dimension allows to distinguish signals from peptides that would
otherwise be co-fragmented, thus producing cleaner spectra.
Important for the analysis of low sample amounts, dia-PASEF
can also gain a factor of 2–5 times in sensitivity, depending on the
acquisition scheme, by “stacking” precursor ion isolation win-
dows in the ion mobility dimension and thus increasing the
effective duty cycle14.

Here we present a computational strategy for the analysis of
ion mobility proteomic data acquired with dia-PASEF. This
includes algorithms for two-dimensional (2D) peak picking and a
software solution for the processing of the TIMS dimension. To
make these accessible to the proteomic community, we incor-
porated these algorithms in a TIMS module within DIA-NN, an
automated, fast, and easy-to-use software suite that employs deep
neural networks in DIA data analysis15. Moreover, we show that
the depth of dia-PASEF experiments is further improved through
the generation of optimized spectral libraries from offline-
fractionated PASEF (DDA) data with the FragPipe computa-
tional platform, using the MSFragger search engine16,17 coupled
to peptide validation, protein inference and false discovery rate
(FDR)-based filtering using Philosopher18. We show that these
developments increase the protein identification performance of
dia-PASEF by up to 83%, especially in fast proteomic experiments
that use low sample amounts, while simultaneously increasing
data consistency as well as quantification accuracy and precision.

Results
TIMS module in DIA-NN and generation of spectral libraries.
For the deep neural network-based processing of dia-PASEF
experiments, we extract ion mobility-separated data, characterize
the quality of peptide-spectrum matches using the agreement
between the expected and observed ion mobility values, and
assess these quality scores using neural networks (Fig. 1). In
contrast to the direct extraction of “profile” ion mobility data as
implemented in the Mobi-DIK module for OpenSWATH, the
first software that was able to process dia-PASEF data14, we
present an ion mobility module that starts the analysis from 2D-
peak-picking, wherein a narrow scanning window is used to find
local maxima in the 1/K0 x m/z space, where 1/K0 is the inverse
ion mobility (Methods). The subsequent chromatogram extrac-
tion is then performed as follows: for each precursor ion and for
each of its fragment ions, the most intense peaks are identified
within a particular mass threshold (automatically determined or
user-defined) and ion mobility threshold (“ion mobility window”;
automatically determined based on the alignment between con-
fident identifications and the spectral library).

We speculated that our approach based on 2D-peak-picking
should be highly efficient in maximizing the sensitivity and
minimizing interferences. The sensitivity promotes high proteo-
mic depth when analyzing low sample amounts and is enabled by
fully capturing the signal of each fragment ion in the vicinity of its
apex in the process of 2D-peak-picking (Fig. 1). Simultaneously,
scanning the 1/K0 x m/z space with a narrow window minimizes
the integration of interfering signals originating from other
peptides (Fig. 1). This is particularly beneficial for proteomic data
recorded with fast chromatographic gradients, wherein separation
of peptides in the retention time dimension is limited by the low
peak capacity.

Next, once the whole chromatograms are extracted for a
specific precursor and its fragments, candidate peaks, featuring
signals from at least two different fragments, are identified and
scored. The consistency of ion mobility values between fragment
ions is taken into account, and “outlier” fragments get lower
scores, even if their elution profiles show a high correlation with
those of other fragments. This eventually leads to preferential
selection of candidate elution peaks with high consistency of ion
mobility values across fragments. Furthermore, the deviation of
observed fragment ion mobilities from the reference precursor
ion mobility value obtained from the spectral library is likewise
taken into account. Ultimately, these scores are fed into the
ensemble of deep neural networks to assign confidence scores to
precursor-spectrum matches. This way the performance of the
ion mobility module benefits from the high flexibility and
robustness of the neural network classifier as introduced with
DIA-NN15, which further facilitates the identification of peptides
with high confidence from complex data15. Finally, signals with
deviating ion mobility values are excluded during the quantifica-
tion of peptides, thus improving quantitative accuracy (Fig. 1).
Eventually, we assembled the algorithms in an “ion mobility
module”, and, to provide an easy-to-use software solution,
integrated them into the DIA-NN software suite15.

We speculated that further gains in dia-PASEF performance
can be obtained with an adapted workflow for the generation of
specific spectral libraries. We extended our earlier work17 and
optimized a data analysis workflow (see Methods) in FragPipe,
for generating spectral libraries from fractionated PASEF data in
the format directly compatible with the ion mobility-enabled
version of DIA-NN.

Identification performance. To benchmark the performance of
the TIMS module in DIA-NN in combination with FragPipe-
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generated libraries, we first reprocessed the reference dia-PASEF
data14, wherein a HeLa tryptic digest was acquired with different
injection amounts (10–100 ng) and acquisition schemes using a
nanoLC (EASY-nLC 1200, Thermo Fisher) separating peptides
with an active LC gradient of 95-min. Data were recorded using a
25% duty cycle scheme or a “standard” scheme, or using pre-
formed microflow gradients (Evosep One microflow system,
Evosep) with different chromatographic gradient lengths (200 ng,
5.6–21 min; Fig. 2a).

In the experiments using nanoflow chromatography, the
FragPipe-generated spectral library built from 24 fractionated
DDA PASEF runs and filtered at 1% protein and peptide FDR
contained 9991 proteins and 161,325 peptides (see Table 1 and
Methods). The analysis with the herein developed ion mobility
module yielded 28–56% improvement in protein numbers. This
performance advantage led to over five-fold improvement in
sensitivity, in the sense that our workflow quantified more
proteins from 10 ng of HeLa peptides than the previous workflow
did from 50 ng.

Many of the algorithms consolidated in DIA-NN had
originally been conceived to maximize the performance of fast
proteomic experiments15. Indeed, the software suite achieves
high confidence in peptide identification with fast acquisition
schemes such as Scanning SWATH, even with high flow rate
chromatographic gradients as fast as 30 s to 5 min9,15. High flow
rate chromatography is however not the method of choice for
low sample amounts, as the higher sample dilution due to high
volumes needs to be partially compensated by higher injection
amounts6. Thus, we sought to evaluate the performance of our
workflow on fast dia-PASEF data14, and reanalyzed raw data
recorded from HeLa cells with microflow chromatography
using the Evosep One system19. The spectral library built with
FragPipe from 24 DDA PASEF runs contained 8201 proteins,

98,485 peptides, and 145,875 precursor ions (Table 1). Our
analysis quantified on average 5323 unique proteins from
200 ng of HeLa digest analyzed with a 5.6-min gradient
(200 SPD Evosep One method, SPD= samples per day), an
83% gain compared to the original values19. Illustrating that
higher proteomic depth can be exploited to accelerate
proteomics experiments, our results show that the 5.6-min
gradients yielded a number of quantified proteins 10% greater
than that reported for the longer 21-min gradient (60 SPD
method) in the original publication14. In all benchmarks, the
gains achieved by our pipeline originated from the detection of
higher numbers of medium- and low-abundant proteins
(Supplementary Fig. 4).

To illustrate how the different algorithms contribute to the
gains in proteomic depth, we sequentially disabled the individual
algorithms of the ion mobility module as well as evaluated the
impact of a FragPipe library (Supplementary Figs. 1 and 2). We
observed that each of the core TIMS algorithms (2D-peak-
picking, chromatogram extraction using an ion mobility window,
and scoring of peptide-spectrum matches based on the ion
mobility information) contributed to the performance gains, with
all of them together yielding between 849 and 1177 extra proteins
quantified, depending on the gradient length in the Evosep One
experiments, respectively. The FragPipe-generated spectral library
contributed between 598 and 740 extra protein identifications.
Furthermore, we implemented a module in DIA-NN for direct
chromatogram extraction from profile dia-PASEF data, as
described previously14, using the OpenSWATH code base as a
reference for our implementation. We observed that 2D-peak-
picking outperforms the profile extraction, with the performance
difference being higher for shorter gradients, which are
characterized by higher interference levels. We further bench-
marked the effect of the neural network module in DIA-NN, and
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Fig. 1 A concept for processing of proteomic trapped ion mobility data. a Our dia-PASEF data processing workflow starts with 2D-peak-picking using a
narrow scanning window. Chromatogram extraction is then performed, wherein for each precursor or fragment ion, only peaks within certain m/z and ion
mobility thresholds from the expected values are used. Expected values are indicated here with dotted lines, peaks discarded due to m/z thresholding are
indicated in gray, and a peak discarded due to only ion mobility thresholding is in red. Observed inverse ion mobility values (1/K0) are compared between
different fragment ions (extracted chromatographic elution profiles and apex 1/K0 values of which are indicated with different colors) as well as to the
reference library 1/K0 value (here: 1.13), to score putative peptide-spectrum matches. Fragments with outlier ion mobility values (here: black—signal from
another peptide, green—signal mildly affected by interference) are assigned lower scores. The resulting data are analyzed by an ensemble of deep neural
networks, used to distinguish true and false signals. Signals with deviating ion mobility values are also filtered out to increase quantification accuracy. b In
contrast to the 2D-peak-picking introduced herein, direct extraction of chromatograms from the profile data could potentially be used. In this case, if
extracting profile data with narrow windows (here: in blue), for example, the same size as used by the 2D-peak-picking algorithm, a significant proportion
of ion signal can be lost (example highlighted in red) due to an imperfect match between theoretical and empirical m/z or 1/K0 values. If extracting with
wide windows, more interfering signals would be integrated (example highlighted in red), increasing the complexity of the data and hampering correct
identification and accurate quantification of peptides.
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it likewise showed the greatest advantage for shorter gradients, in
line with our previous15 observations (Supplementary Fig. 2).

We validated the identification performance using a two-
species benchmark strategy4, in dia-PASEF data with varying
levels of complexity (Evosep One dataset), confirming that the

FDR and hence the identification numbers reported by the
software are conservative (Supplementary Fig. 3). Using the same
benchmark, we also compared our workflow to Spectronaut20,
another dia-PASEF-capable software. We report a roughly two-
fold gain in terms of precursor numbers detected using longer
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Fig. 2 Protein detection and quantification performance. a Number of quantified proteins for different injection amounts and instrument settings.
Numbers of proteins detected in 1, 2, or all 3 injection replicates for each dataset (nanoflow 25% duty cycle scheme and standard scheme; Evosep 200,
100, and 60 samples per day (SPD) methods) are shown with different color shades, average numbers are indicated. Numbers reported by the original dia-
PASEF workflow are shown in gray14. The numbers of proteins detected by both workflows are indicated with dashed horizontal lines. b Coefficients of
variation (CV) distributions for the same datasets. The boxes correspond to the interquartile range, with the median indicated, and the whiskers extend to
the 5–95% percentiles. c Quantification accuracy of dia-PASEF data analyzed with the new software workflow. We reanalyzed previously recorded data14,
generated by spiking a yeast digest into a HeLa digest (200 ng) in different proportions (A, 45 ng, and B, 15 ng) and analyzed in triplicates using a 90-min
nanoLC gradient. The runs were processed using a spectral library created with FragPipe. Horizontal lines indicate the expected ratios. On the boxplot, the
boxes correspond to the interquartile range, with the median indicated, and the whiskers extend by a 1.5× interquartile range. Expected ratios are indicated
with gray lines. d Analysis of a dilution series acquired on timsTOF Pro 2, a second-generation dia-PASEF-capable mass spectrometer, using a 93-min
300 nL/min gradient and a pre-column (Methods). Average protein numbers for triplicate injections after filtering at 1% run-specific protein q-value are
shown. e Comparison of the performance of DIA-NN (gray) and Spectronaut (orange) on the leukemia dataset21. Total numbers of precursors and proteins
(top), protein ID numbers distributions, and consistency of protein detection (bottom) are compared. The y-axis on the histograms represents the counts.
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gradients. The observed advantage is consistent with the
advantage demonstrated over OpenSWATH: for example, using
the library by Meier et al.14 and analyzing the Evosep 60 SPD
runs, our software workflow identifies on average 46,497
precursors, compared to 26,348 reported by OpenSWATH from
the same data. We noticed that at a shorter 5.6-min gradient both
the performance of Spectronaut and the accuracy of FDR values
reported by it further dropped significantly, similarly to what we
observed with 20–30 min non-TIMS methods previously15. Our
software, in contrast, showed robust performance and reliable
FDR for all the runs considered.

We further compared the software to Spectronaut using a
recent dia-PASEF analysis of 50 chronic lymphocytic leukemia
(CLL) samples, recorded with a 100-min 400 nL/min gradient on
timsTOF Pro, acquired as part of a larger multi-omics study,
aimed at identifying the determinants of the proteome variation
in CLL21. Here we report a 74% gain on the precursor level and
48% gain on the protein level (Fig. 2c). In this benchmark,
Spectronaut was run in directDIA (library-free) mode by the
authors of the study, due to the lack of an offline-fractionated
pooled sample analysis via DDA, and hence lack of a project-
specific spectral library. Likewise, we also performed the analysis
using the library-free capabilities of DIA-NN described
previously15, wherein a spectral library is created from DIA data
directly, and the data is then analyzed with this library, as was
first proposed for the DIA-Umpire workflow22.

In addition, we benchmarked our software workflow for use
with the recently introduced timsTOF Pro 2, the second-
generation TIMS-capable13 instrument. Here the analysis was
also performed in library-free mode, due to the lack of a project-
specific library. To the best of our knowledge, this is the first
performance benchmark of dia-PASEF on this mass spectro-
meter. We acquired a dilution series of tryptic peptides generated
from HeLa cells, measuring 0.2–200 ng on an Ultimate 3000
nanoLC equipped with a trap column, and separated the peptides
using a 93-min 300 nL/min chromatographic gradient (Fig. 2e).
We report the quantification of 8962 proteins in a single injection
from a 200 ng HeLa digest, as well as 7442 proteins from a 10 ng
HeLa digest. Compared to the original performance of dia-PASEF
on the first generation timsTOF Pro14, this is a gain of +93% in
protein IDs, and +19% in comparison to the numbers reported
previously for a 10× higher injection amount14. Of note, we
measured 3651 proteins from 1 ng of HeLa Extract, almost
matching the performance seen previously14 for 10 ng. We also
note that the numbers obtained here are still limited by the use of
a regular nanoLC with a relatively high flow rate and the use of a
pre-column, which indicates that further increases in depth are
possible.

Quantification performance. We next evaluated the quantifica-
tion performance of our data analysis strategy. Although the
increase in proteomic depth means more low-abundant peptides
are quantified, the overall parameters of robustness and quanti-
fication precision were improved. Most notably, we obtained high
data completeness, which renders the workflow attractive for the

application of machine learning methods in the analysis of large
sample series, which perform best on consistent data. Data
completeness ranged from 94% for the 200 SPD Evosep One
benchmark to 98% for 100 ng 25% cycle injections analyzed with
a 95-min gradient. Moreover, expressed as coefficient of variation
(CV), the quantification values were shown to be precise. The
median CVs of all datasets did not exceed 11% (Fig. 2b). For
datasets with higher injection amounts, we obtained encoura-
gingly low CV values with a median CV of 3.1% for the nanoflow,
25% cycle, 100 ng injection experiment. Notably, a median CV
value below 8% was achieved for the fast 200 samples per day
Evosep One method. Keeping in mind that the technical variation
in the Evosep One benchmarks here reflects not just the varia-
bility introduced by chromatography and mass spectrometer
performance, but also that due to peptide purification via solid-
phase extraction in the filter tips19, this result demonstrates that
our workflow facilitates precision proteomics even with low
sample amounts analyzed at high throughput.

Finally, we assessed the quantification accuracy of our work-
flow. Accuracy is an equally important concept as CV values, and
reflects how well quantitative ratios are preserved by the LC-MS
and the subsequent data processing workflow. Here we used the
two-organism benchmark data (Fig. 2c), wherein a yeast
(Saccharomyces cerevisiae) tryptic digest was spiked in different
concentrations (45 ng, sample A, and 15 ng, sample B) into a
human cell line (HeLa) tryptic digest (200 ng) and analyzed with
a 90-min nanoLC gradient on a Bruker nanoElute LC system14.
The human and yeast spectral libraries built with FragPipe from
24 (HeLa) and 48 (Sc) PASEF runs contained 10,353 and 5134
proteins, respectively (Table 1). On average, we report the
quantification of 12,225 unique proteins per run for sample A and
11,859 for sample B. The identification of yeast proteins in this
benchmark is particularly challenging for the low-concentration
sample B (only 15 ng of yeast digest), and thus the numbers of
valid A:B ratios reflect the ultimate sensitivity of the workflow.
We report 3178 valid A:B ratios for yeast proteins, out of which
2937 proteins were quantified in at least two replicates for each
sample, A and B, more than doubling the previously reported
number of 1394 for the same experiment14. Our data analysis
workflow also increased the quantification accuracy, with visibly
less grossly incorrect A:B ratios for yeast proteins. The numbers
of human protein ratios were moderately higher (9023, with 8924
quantified in at least two replicates for each sample, in
comparison to 7697 originally reported). For these, a quantifica-
tion precision of 4.2% median CV was observed. In total, 12,388
proteins were quantified in the whole experiment.

Discussion
In summary, we present computational concepts for 2D-peak-
picking and software developments for the analysis of proteomic
ion mobility data with deep neural networks, as well as the
generation of optimized spectral libraries, with both these
workflow elements contributing to a gain in performance. We
report substantial gains of up to 83% in proteomic depth as well
as improved quantification accuracy in the analysis of trapped ion
mobility data in fast and conventional proteomic experiments,
especially in experiments in which low sample amounts are
separated with fast microflow chromatography. To make these
developments accessible to the community, we have implemented
an ion mobility module in the DIA-NN software suite15, and have
augmented the FragPipe workflow16–18 for the automated gen-
eration of specific spectral libraries. We further provide an inte-
grated version of DIA-NN within FragPipe, allowing for
convenient execution of the whole pipeline within a single user
interface.

Table 1 Spectral libraries.

Library Ions Peptides Proteins Genes

HeLa, nanoflow 260,785 161,325 9991 9973
HeLa, Evosep One 145,875 98,485 8201 8187
HeLa, two-organism 361,555 224,597 10,353 10,332
HeLa, two-organism, filtered 360,458 223,907 10,350 10,331
Yeast, two-organism 134,148 79,860 5134 5132
Yeast, two-organism, filtered 133,351 79,337 5113 5113
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Methods
Spectral library generation in FragPipe. We used FragPipe computational plat-
form (version 15) with MSFragger16,17 (version 3.2), Philosopher18 (version
3.4.13), and EasyPQP (version 0.1.9) components to build spectral libraries. Pep-
tide identification from tandem mass spectra (MS/MS) was done using the
MSFragger search engine, using either raw (.d) files (Evosep and nanoflow HeLa
dataset) or MGF files (two-organism dataset) as input. Protein sequence databases
H. sapiens (UP000005640) or S. cerevisiae (UP000002311) from UniProt (reviewed
sequences only; downloaded on February 15, 2021) and common contaminant
proteins, containing in total 20421 (H. sapiens) and 6165 (S. cerevisiae) sequences
were used. Reversed protein sequences were appended to the original databases as
decoys. For the MSFragger analysis, both precursor and (initial) fragment mass
tolerances were set to 20 ppm. Spectrum deisotoping23, mass calibration, and
parameter optimization24 were enabled. Enzyme specificity was set to “strict-
trypsin” (i.e., allowing cleavage before Proline), and either fully enzymatic peptides
were allowed. Up to two missed trypsin cleavages were allowed. Isotope error was
set to 0/1/2. Peptide length was set from 7 to 50, and peptide mass was set from 500
to 5000 Da. Oxidation of methionine, acetylation of protein N-termini,
−18.0106 Da on N-terminal Glutamic acid, and −17.0265 Da on N-terminal
Glutamine and Cysteine were set as variable modifications. Carbamidomethylation
of Cysteine was set as a fixed modification. Maximum number of variable mod-
ifications per peptide was set to 3.

For each analysis, the MS/MS search results were further processed using the
Philosopher toolkit18. First, MSFragger output files (in pepXML format) were
processed using PeptideProphet25 (with the high–mass accuracy binning and semi-
parametric mixture modeling options) to compute the posterior probability of
correct identification for each peptide to spectrum match (PSM). The resulting
output files from PeptideProphet (also in pepXML format) were processed using
ProteinProphet26 to assemble peptides into proteins (protein inference) and to
create a combined file (in protXML format) of high confidence proteins groups and
the corresponding peptides assigned to each group. The combined protXML file
was further processed using Philosopher Filter module as follows. Each identified
peptide was assigned either as a unique peptide to a particular protein (or protein
group containing indistinguishable proteins) or assigned as a razor peptide to a
single protein (protein group) that had the most peptide evidence. The protein
groups assembled by ProteinProphet, with the probability of the best peptide used
as a protein-level score27, were filtered to 1% protein-level FDR using the picked
FDR strategy28, allowing unique and razor peptides. The final reports were then
generated and filtered at each level (PSM, ion, peptide, and protein) using the 2D
FDR approach29 (1% protein FDR plus 1% PSM/ion/peptide-level FDR for each
corresponding PSM.tsv, ion.tsv, and peptide.tsv files).

Finally, PSM.tsv files, filtered as described above, along with the spectral files
(original MGF files, or uncalibrated MGF files created by MSFragger when raw.d
files were used as input to MSFragger) were used as input to EasyPQP for the
generation of the consensus spectrum libraries. In doing so, a peptide’s retention
times in each fraction were non-linearly aligned (lowess method) by EasyPQP to a
common iRT scale using the extended HeLa iRT calibration peptide set30. Peptide’s
ion mobility values in each run in the dataset were aligned to that from one of the
runs in the dataset automatically selected as a reference run. The library was
additionally filtered to keep only peptides contained in the Philosopher-generated
peptide.tsv report file, ensuring that the final spectral library was filtered to 1%
protein and 1% peptide-level FDR.

2D-peak-picking algorithm in DIA-NN and subsequent chromatogram
extraction. The 2D-peak-picking algorithm in DIA-NN consists of two steps:
identification of local signal maxima in the 2D (1/K0 x m/z) spectrum, and
selecting, out of multiple adjacent local maxima (often occurring due to noise in the
data), those which are likely to be the best representative of the actual peptide
signal. The initial identification is done by selecting local maxima using summing
signals within a scanning window. Specifically, the window is represented by the
following tolerances: (i) maximum ion mobility tolerance is expressed as a number
of TOF scans, as recorded in the dia-PASEF acquisition, and is set to 10[frame scan
range/900]/[frame 1/K0 range]; (ii) maximum m/z tolerance is expressed as a
number of mass bins, as recorded in the dia-PASEF acquisition, and is set to 2; (iii)
within this window, only peaks for which the quantity [ion mobility deviation from
window center] + 2[mass deviation][frame scan range/900]/[frame 1/K0 range] is
less than the ion mobility tolerance (set by (i)) are being summed. Each local
maximum (i.e., the scanning window position which results in the highest sum of
signals, across all neighboring positions) is assigned an “intensity” score, which is
the respective sum of signals within the scanning window. During the second
filtering step, candidate local maxima are discarded if there are any more intense
maxima within their scanning window with a mass difference of no more than one
mass bin. The remaining local maxima are reported as the candidate peaks. For
these, three values are stored: the m/z and the 1/K0, which correspond to the
scanning window position, as well as the sum of the signals within the window,
representing the peak intensity. A special procedure is used if several identical dia-
PASEF frames are acquired within the dia-PASEF cycle, which is the way the
highest sensitivity was achieved for the low injection amounts14. In this case, the
respective m/z windows are matched together, and the profile data is summed for
these windows, before carrying out the 2D-peak-picking.

We note that the size of the 2D scanning window in the ion mobility dimension
is kept the same regardless of the ramp time and the respective number of scans in
the frame, and has been chosen based on the observed peak widths in the data we
have examined so far. However, too low or too high ramp times might significantly
affect resolution in the ion mobility dimension, so future acquisition schemes
might benefit from further optimization of the 2D scanning window size.

The chromatograms are extracted by querying a particular m/z value of interest,
corresponding to a precursor or fragment ion, against each spectrum. The peaks in
each spectrum are stored ordered by mass. Binary search is used to find a peak that
falls within the specified mass tolerance from the query m/z. DIA-NN then finds
the first and last peaks in the ordered spectrum, which lie within the mass tolerance
bounds. Out of the peaks in-between, peaks within the IM window (with the IM
tolerance set by DIA-NN automatically, based on the observed IM deviations of
peptides identified during the calibration stage of the search) from the predicted IM
value (obtained using aligning observed vs the library IM values for the peptides
identified during the calibration stage) are selected. Out of these, the peak with the
highest intensity is reported.

Spectral library processing in DIA-NN. For the two-proteome human-yeast
benchmark, the HeLa library was filtered to only include peptides present in the in
silico tryptic digest of the human database and exclude peptides present in the
tryptic digest of the yeast database and vice versa, by generating the annotation of
the library using the “Reannotate” function in DIA-NN and discarding peptides
matched to one or more proteins of the other species.

DIA software configuration and dia-PASEF data processing. The TIMS module
was incorporated in DIA-NN (version 1.8.1), which was used for the benchmarks
and was operated with maximum mass accuracy tolerances set to 10 ppm for both
MS1 and MS2 spectra. Protein inference was disabled for analyses using DDA-
based spectral libraries, to use the protein groups therein. The --relaxed-prot-inf
option was used for library-free processing of the leukemia dataset and the HeLa
dilution series on timsTOF Pro 2, as this option implements a protein grouping
strategy similar to the one used in FragPipe. Library generation was set to “IDs, RT
and IM profiling”. MBR was enabled for the two-species human-yeast benchmark.
When reporting protein numbers and quantities, the Protein.Group column in
DIA-NN’s report was used to identify the protein group and the PG.MaxLFQ
column (calculated using the MaxLFQ algorithm31) was used to obtain the nor-
malized quantity. PSM tables (PSM.tsv files generated by Philosopher) contain
accession numbers of all mapped proteins for each identified peptide, and this
information was used to identify proteotypic peptides. In the benchmark for the
numbers of unique proteins with the spectral library from the original dia-PASEF
publication (Supplementary Fig. 2), the “Genes” column was used to count unique
proteins (as gene products identified and quantified using proteotypic peptides
only). For this, proteotypic peptides were annotated as such using the “Reannotate”
option. Quantification mode was set to “Robust LC (high precision)”. All other
settings were left default. Following previously published recommendations32, and
similarly to the previous dia-PASEF workflow14, the software output was filtered at
precursor q-value <1%. Global protein q-value <1% filter was also applied to all
benchmarks, except for the HeLa dilution series on timsTOF Pro 2, wherein data
were filtered for run-specific protein q-value <1%.

Of note, one of the two-proteome human-yeast benchmark files
(200113_AUR_dia-PASEF_HY_200ng_15ng_90min_Slot1-5_1_1636.d) could not
be read correctly due to data corruption, with all frames (i.e., dia-PASEF scans)
from 55,877 onwards being discarded, which might have resulted in the benchmark
results being very slightly worse.

For the FDR accuracy benchmark using a human—A. thalaina spectral library,
Spectronaut 14.3.200701.47784 was run using default settings, except protein q-
value filtering was set to 1 (i.e., 100%), and PTM localization was disabled. The
Spectronaut 14.4 analysis of the leukemia dataset in directDIA mode was
downloaded from the PXD022216 repository.

FDR validation benchmark using a two-species human-Arabidopsis library.
The library4 (repository PXD013658, file “HumanThalianaDDAOnly (two-species
FDR test).xls”) was filtered to only include unmodified peptides or peptides with
carbamidomethylated cysteines. DIA-NN was set to replace all spectra and
retention times in this library with in silico predicted ones, as well as generate in
silico reference ion mobility (1/K0) values. This was done to eliminate any potential
bias in spectral quality between human and plant peptides in this experimental
library. “Precursor FDR” filter was set to 10%.

The experimental FDR was then determined for each of the Evosep One runs
with different gradient lengths, by counting A. thaliana precursor/protein calls.
Specifically, the FDR was determined as

Experimental FDR ¼ ½Aid=ðAid þHidÞ�½ðAlib þ HlibÞ=Alib�π0; ð1Þ

where Aid is the number of calls of A. thaliana precursors or proteins at a particular
score threshold, Hid the calls of human precursors or proteins, and Alib , Hlib the
respective numbers of precursors or proteins in the library. The π0 (“prior
probability of incorrect identification”, also known as PIT - Percentage of Incorrect
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Targets) correction factor33,34 was calculated as

π0 ¼ ðAlib þHlib � 0:95 Hð0:05Þ
id Þ=ðAlib þ HlibÞ; ð2Þ

where Hð0:05Þ
id is the number of human precursor or protein calls at q-value= 0.05.

The numbers of precursors/proteins were obtained based on filtering the library for
precursors within the mass range 400.0–1000.0 m/z (the range sampled in the
Evosep One dia-PASEF runs under consideration). The experimentally detected
FDR was then plotted (Supplementary Fig. 3) against the precursor/protein FDR
estimates reported by the software workflow.

The respective analysis for Spectronaut was performed using in silico prediction
with DIA-NN 1.8 and the same formulas for experimental FDR evaluation.

Comparison of protein numbers to the OpenSWATH workflow. Average protein
identification numbers obtained previously14 for the same experiments using the
OpenSWATH workflow were calculated based on the respective pyprophet reports,
which were downloaded from the PRIDE repository with identifier PXD017703. To
enable direct comparisons with the OpenSWATH workflow, only proteins uniquely
identified using proteotypic peptides were counted for the respective benchmarks, to
match the filtering strategy applied for OpenSWATH previously14.

HeLa culture, sample preparation, and acquisition. HeLa cells (ATCC) were
cultured in Basal Iscove media (Biochrom) supplemented with 10% fetal calf serum
(Biochrom) and 1% penicillin-streptomycin (Biochrom) at 37 °C with a humidified
atmosphere of 5% CO2. After three passages, cells were treated with Trypsin/EDTA
(Biochrom) and centrifuged at 200× g for 5 min. The pellet was once washed with
Dulbecco’s Phosphate Buffered Saline.

We have tested three protocols varying in the protein extraction, digestion, and
peptide purification methods (P1–P3).

P1 (SDC protocol): 2 × 105 cells were resolved in 75 µL Lysis-Reduction-
Alkylation Buffer, 10 mM Tris-2(2-carboxyethyl)-phosphine-hydrochloride-
solution (TCEP, Merck), 40 mM 2-Chloroacetamide (CAA, Merck), 100 mM Tris
pH 8.5 and 1% Sodium Deoxycholate (SDC, Merk).

P2 (Urea protocol): 2 × 105 cells were resolved in 75 µL Lysis-Reduction-
Alkylation Buffer, 40 mM CAA (Merck), 100 mM Tris pH 8.5 and 8M Urea,
10 mM TCEP (Merck).

For P1 and P2, cells were boiled at 95 °C for 5 min in a thermomixer at 800 rpm.
Afterward, the cells were sonicated for 20 min on ice in an UltraSonic Bath
(Branson). The lysate was diluted 1:10 with HPLC-grade water for P1, and 1:5 with
a dilution buffer (10% Acetonitrile (ACN) v/v, 25 mM Tris pH 8.5) for P2.

For P1 and P2, the lysates were digested at 37 °C using Trypsin/LysC (Promega)
in a 1:50 (enzyme:protein) ratio. After overnight the digest was acidified to a final
concentration 0.5% with trifluoroacetic acid (TFA, Thermo).

Peptides were purified using StageTips (C18 disk, Affinisep), activated with
50 µL of methanol washed/centrifuged in a two-step procedure, one with 50 µL
80% ACN/0.1% FA, and the second with 50 µL 0.1% FA. After the sample load, the
tips were washed with 0.1% FA and peptides were eluted with 30 µL 80% ACN/
0.1% FA (each time centrifuged for 5 min at 500 × g).

P3 (bulk): 1 × 107 cells were resolved in a 1 mL lysis buffer (8 M urea, 100 mM
ammonium bicarbonate (ABC)), incubated for 30 min at room temperature and
800 rpm in thermomixer (Eppendorf) and the sample was centrifuged for 20 min at
20,817 × g. The lysate was reduced with dithiothreitol (DTT, final concentration
1 mM) for 30 min at room temperature and alkylated with iodoacetamide (IAA,
final concentration 5 mM in dark). The sample was diluted 1:3 with 100 mM ABC
and digested with trypsin: protein (1:50, Promega) at 37 °C overnight. Peptides
were acidified with TFA (final concentration 1%) and purified with Sep-Pak C18
Cartridge, 50 mg Sorbent (Waters). Eluates were dried in a vacuum concentrator
(Eppendorf). Samples were resolved in 30 µL 2% ACN/0.1%TFA.

Digests obtained with P1–P3 as well as a commercial HeLa tryptic digest
(Thermo, 88329) were analyzed. A dilution series was then obtained for P1, with
injection amounts ranging from 0.2 to 200 ng.

The tryptic digests were injected using the autosampler on a pre-column
(PepMap C18, 5 mm × 300 μm× 5 μm, Thermo Scientific) with 2% ACN/water (v/
v) containing 0.1% TFA at a flow rate of 20 μL/min for 5 min and separated on the
25 cm HPLC column equipped with emitter (Aurora series, CSI, 25 cm × 75 µm ID,
1.6 µm C18, IonOpticks) operating at 50 °C controlled by the Column Oven PRSO-
V1-BR (Sonation), using UltiMate 3000 (Thermo Scientific Dionex). The UPLC
systems were coupled with TIMS quadrupole time-of-flight instrument (timsTOF
Pro 2, Bruker Daltonics) and samples were measured in dia-PASEF mode. The
column emiter was installed in the nano-electrospray source (CaptiveSpray source,
Bruker Daltonics) and the source parameters were: 1500 V of Capilary voltage,
3.0 L/min of dry gas, and 180 °C of dry temperature. The analytical column flow
was set to 300 nL/min and the mobile phases water/0.1% FA and ACN/0.1% FA (A
and B, respectively) were applied in the linear gradients starting from 2% B and
increasing to 17% in 87 min, followed by an increase to 25% B in 93 min, 37% B in
98 min, 80% B in 99–104 min, the column was equilibrated in 2% B by next 15 min
(all % values are v/v, Water and ACN solevets were purchased from Thermo
Scientific Price LC-MS grade). For calibration of ion mobility dimension, three ions
of Agilent ESI-Low Tuning Mix ions were selected (m/z [Th], 1/K0 [Th]: 622.0289,
0.9848; 922.0097, 1.1895; 1221.9906, 1.3820). For sample injection of more than

50 ng (50 ng or less), the dia-PASEF windows scheme was ranging in dimension m/
z from 400 (396) to 1200 (1103) and in dimension 1/K0 0.7 (0.6)–1.43 (1.3), with
32 × 25 Th (59 × 12 Th) windows with Ramp Time 100 ms (166 ms). The window
schemes are illustrated in Supplementary Fig. 5. For injections of 50 ng and below
the mass spectrometer was further operated in low sample injection mode.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data (HeLa dilution series) have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the
PRIDE partner repository35 with the dataset identifier PXD029836. Previously generated
data used in this study are further available from ProteomeXchange Consortium
repositories with identifiers PXD017703, PXD022216, and PXD013658. The
UP000005640 (human) and UP000002311 (yeast) sequence databases used in this work
are available from the UniProt repository. Software output reports, spectral libraries,
PSM tables, logs, and the pipeline configuration file were deposited to an OSF (Open
Science Framework) repository https://doi.org/10.17605/OSF.IO/8EPQH.

Code availability
The TIMS module is integrated into DIA-NN 1.8.1, available for download from https://
github.com/vdemichev/DiaNN. FragPipe is available for download from https://fragpipe.
nesvilab.org/. MSFragger can be downloaded from http://msfragger.nesvilab.org/ or
directly from FragPipe. The input data and scripts used to generate the figures and
numbers reported in this manuscript were deposited to an OSF (Open Science
Framework) repository https://doi.org/10.17605/OSF.IO/8EPQH.
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