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Multiple myeloma is the second most common hematological malignancy. Despite significant

advances in treatment, relapse is common and carries a poor prognosis. Thus, it is critical to

elucidate the genetic factors contributing to disease progression and drug resistance. Here,

we carry out integrative clinical sequencing of 511 relapsed, refractory multiple myeloma

(RRMM) patients to define the disease’s molecular alterations landscape. The NF-κB and

RAS/MAPK pathways are more commonly altered than previously reported, with a pre-

valence of 45–65% each. In the RAS/MAPK pathway, there is a long tail of variants asso-

ciated with the RASopathies. By comparing our RRMM cases with untreated patients, we

identify a diverse set of alterations conferring resistance to three main classes of targeted

therapy in 22% of our cohort. Activating mutations in IL6ST are also enriched in RRMM.

Taken together, our study serves as a resource for future investigations of RRMM biology and

potentially informs clinical management.
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Multiple myeloma (MM) is a malignancy of plasma cells,
mature B lymphocytes dedicated to producing immu-
noglobulins. The median age of diagnosis of MM is 70

years, and MM affects individuals of African descent two- to
three-fold more than those of European descent, accounting for
significant health disparities1,2. Over the last two decades, many
novel treatments have been developed for MM, including pro-
teasome inhibitors, immunomodulatory drugs, monoclonal
antibodies, and CAR-T-cell therapies3. The 5-year relative sur-
vival rate across all stages combined is 54%, which has improved
based on the advent of these new treatments4. Despite this, the
majority of MM patients suffer a relapse, and each subsequent
relapse limits treatment options and reduces the ability to control
disease progression1,5. Thus, understanding the genetic hetero-
geneity of relapsed, refractory MM (RRMM) will shed light on
MM disease progression as well as elucidate therapeutic resistance
mechanisms. Newly diagnosed MM (NDMM), like other primary
cancers, has been genomically dissected by a number of groups,
including the Multiple Myeloma Research Foundation’s (MMRF)
CoMMpass Study (NCT01454297)6. Less is known about the
genomic heterogeneity and resistance mechanisms of RRMM.

In this work, as part of the MMRF’s molecular profiling
initiative (NCT02884102) which included 22 academic medical
centers, we carry out clinical-grade targeted sequencing (tumor/
normal) and whole transcriptome sequencing of 511 RRMM
patients and reanalyzed equivalent data from 965 patients
enrolled in the CoMMpass Study to systematically compare
alterations in RRMM with NDMM. Our uniform integrative
analyses uncover a wide range of genetic alterations, implicate
known oncogenic MM pathways often at a much higher pre-
valence than previously known, and provide a comprehensive
genetic basis for drug resistance mechanisms in RRMM.

Results
The landscape of genomic alterations in relapsed refractory
multiple myeloma. As part of the MMRF molecular profiling
initiative, a consecutive series of 762 RRMM patients were
enrolled and provided CLIA genomic sequencing from May 2017
to June 2020. As part of this precision oncology study, molecular
reports were provided to the participating physicians within a 10-
day turnaround period. After the exclusion of patients that either
had allogeneic stem cell transplants (allo-SCT), or had low tumor
purity (<20%) following CD138+ selection, we compiled a
cohort of 511 RRMM patients with comprehensive 1700-gene
tumor/normal DNA sequencing and whole transcriptome
sequencing7–10 for integrative analyses (Supplementary Fig. 1a
and Supplementary Data 1). Overall, RRMM samples were con-
tributed by 22 academic medical centers that participate in the
Multiple Myeloma Research Consortium (MMRC), with the
University of Michigan Rogel Cancer Center, Mt. Sinai Medical
Center, and Hackensack Medical Center as the top three enrolling
centers (Supplementary Fig. 1b). The cohort was comprised of
53.3% males and 46.7% females. Light chain type statistics
included 52.4% kappa, 31.5% lambda, and 0.4% biclonal; 15.7%
did not have available information. After CD138+ selection, the
average tumor content of our RRMM cohort was 62%. For each
patient, we performed targeted sequencing (Onco1700 panel)10

on DNA from tumor and matched normal samples to call
somatic and germline genetic aberrations (Methods, Supple-
mentary Data 2). Mean target coverages for tumor and normal
libraries were 655X and 483X, respectively, which is a depth
conducive for subclonal assessments. RNA-sequencing for all but
one tumor sample was available and performed by capture
transcriptome sequencing with a cohort average of 44.5 M
uniquely mapped reads. Our computational pipeline9 also called

copy-number alterations (CNAs) (Supplementary Data 3), gene
fusions (Supplementary Data 4), and provided gene expression
levels on a per-sample basis (Supplementary Fig. 1c). FASTQ files
of 1108 NDMM samples from the CoMMpass Study were
downloaded from dbGaP as of August 2020 and analyzed with
the same bioinformatics pipeline to facilitate comparisons with
RRMM. In total, 965 complete CoMMpass cases were available
for downstream integrative analyses (Methods and Supplemen-
tary Fig. 1a, c).

Employing an ensemble approach of statistical tools11 to
discover cancer drivers based on single nucleotide variants (SNV)
and indels, we identified a set of 43 high-confident, significantly
mutated genes (Fig. 1a and Supplementary Data 2). Their
biological functions can be classified into the following categories:
(1) RAS-MAPK pathway (KRAS, NRAS, BRAF, PTPN11, NF1,
IL6ST), (2) NF-κB pathway (CYLD, TRAF3, TRAF2, NFKBIA,
IRAK1), (3) MYC pathway (MYC, MAX, EP300, CREBBP, SP3),
(4) cell cycle and DNA damage checkpoints (TP53, RB1,
CDKN2C, CDKN1B, ATM, FGFR3, LATS2), (5) RNA processing
machinery (DIS3, FAM46C, DDX3X, DDX5), (6) epigenetic
modifiers and transcriptional co-activators/co-repressors
(KDM3B, SETD2, ARID1A, ARID2, MBD1, IDH1, BCORL1,
ATAD2B), (7) B lymphocyte development (PRDM1, SP140,
UBR5, IRF4), and (8) genes that likely acquired mutations due
to MM treatment (CRBN, CUL4B, NR3C1) (Supplementary
Fig. 2a, b)12. The average mutation rate of RRMM was 3.43
point mutations/megabase. Hypermutation was observed in 9.8%
of cases due to the APOBEC mutational process and in another
2.7% due to undefined mechanisms (Supplementary Fig. 2c).
Mutations in cancer driver genes were also detected in matched-
normal sequencing libraries with a wide range of variant allelic
fraction (VAF) due to the presence of circulating tumor cells
(CTCs) in advanced patients (Supplementary Fig. 2d).

Global copy-number analyses identified recurrent arm-level
and chromosome-level gain of 1q, 3, 5, 7, 9, 11, 15, 17q, 19, and
21 (e.g., “hyperdiploid”) and loss of 6q, 8p, 13,16, 22q and X
(Fig. 1b, Supplementary Fig. 3a, and Supplementary Data 3).
Frequent focal losses tended to center at or near known tumor
suppressors in MM, such as GFI1, FAM46C, CDKN2C, ARID1B,
NKX3-1, CDKN2A/B, BIRC2/3, CDKN1B, RB1, TRAF3, and
CYLD, while focal gains were at or near oncogenes including
MYC, CCND1, and TXNDC5 (Fig. 1b)13. Interestingly, there were
recurrent homozygous deletions of diaphanous-related formin 2
(DIAPH2) on the X chromosome. These deletions were focal,
affecting single exons or a group of exons, and affected both
males and females in NDMM and RRMM (Supplementary
Fig. 3b, c).

Integrative analysis of trinucleotide mutational signatures, gene
expression, and copy-number identified distinct transcriptional
signatures associated with high expression (presumably due to
translocation) of WHSC1, CCND1, and MAF family genes (MAF,
MAFA, and MAFB) (Supplementary Fig. 4a, b). As previously
reported, samples with high expression of MAF family genes
tended to associate with the APOBEC-enriched trinucleotide
mutational signature (Supplementary Fig. 4a)14 and had elevated
expression of APOBEC3G (Supplementary Fig. 4c). A small subset
(2.9%) of patients with high expression of CCND1 also exhibited
high expression of pre-B cell markers, such as FCER2 (CD23),
VPREB3, PAX5, and TNFRSF13C (Supplementary Fig. 4a, d), a
finding which was also observed in NDMM15.

Highly prevalent, diverse mechanisms of NF-κB pathway
activation. The NF-κB pathway functions as an anti-apoptotic
signal in myeloma cells and thus, mutations that lead to con-
stitutive activation of NF-κB are selected for16–18. Our findings in
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RRMM were in line with previous studies17 in NDMM in that
genes involved in alternative (non-canonical) NF-κB signaling via
the cell surface TNF family receptors, including CD40, LTBR,
TNFRSF17 (BCMA), and TNFRSF13B (TACI), were the most
frequently affected by alterations (Fig. 2a, b). These alterations
also induced robust activation of a previously defined NF-κB
transcriptomic signature16 (Fig. 2a, top). Our integrative cross-
cohort analysis further identified in-frame insertions and dele-
tions in the transmembrane domains of TNFRSF17 (NDMM
n= 7, RRMM n= 4) and CD40 (NDMM n= 3) (Fig. 2c, d).
Cloning of these mutations confirmed their activating potential in
a cell-based, NF-κB reporter assay (Supplementary Fig. 5a, b).
Thus, we hypothesize that in-frame indels involving amino acids
in the transmembrane domain of these cell surface receptors
induce local conformational alterations that facilitate ligand-
independent oligomerization, leading to constitutive activation of
downstream signaling. In addition to alterations in the alternative
NF-κB pathway, our integrative analysis revealed recurrent
alterations in genes of the classical (canonical) NF-κB signaling
pathway, including Toll-like receptors (TLR), B cell receptor
(BCR), and TNF-α (Fig. 2a, b right).

MAP3K14 (NIK), the central kinase of the alternative NF-κB
pathway, was also frequently truncated at the N-terminus by
rearrangements that form in-frame fusion transcripts (Supplementary

Fig. 5c)19. These chimeric products have an intact kinase domain but
lack the TRAF3 binding domain, and thus escape cIAP-TRAF2-
TRAF3-mediated proteasomal degradation and remain stabilized in
MM cells20. We also observed N-terminal intragenic deletions of
MAPK314 in both cohorts (Fig. 2e) which result in in-frame
transcripts with a translation start site (methionine) located before
the kinase domain. More complex rearrangements were out of frame
or apparently lacked a methionine before the kinase domain. These
co-occurred with a secondary event to restore the translation frame or
introduce a de novomethionine. Examples of such a “second hit”were
a frameshift mutation (P254fs) or intron retention/de novo splice site
(Fig. 2e and Supplementary Fig. 5d). Interestingly, one case harbored a
start-loss (M1I) mutation of MAP3K14 while maintaining a robust
NF-κB transcriptomic signature (Fig. 2e, last row). MAP3K14 was
recently reported to have an N-terminal binding site for BIRC2 (c-
IAP1)21. The start-loss mutation at M1 may force an alternative
translation site (M4), thus disrupting the binding of BIRC2 and
evading proteolytic degradation by the cIAP-TRAF2-TRAF3 complex.
In-frame C-terminal fusions and deletions were also observed in
NFKB2 (p100) andNFKB1 (p105) (Fig. 2f and Supplementary Fig. 6a).
These rearrangements had breakpoints located in the ankyrin repeats,
the domains on the precursor forms (p100 and p105) that bind the
preformed NF-κB dimers (e.g., p50:RelA and p52:RelB), and thus
disrupt the inhibitory activities of the precursors22.

Fig. 1 The landscape of somatic alterations in relapsed refractory multiple myeloma. a Oncoprint of point mutations and small indels for significantly
mutated genes in 511 cases of relapsed and refractory multiple myeloma (RRMM) from the MMRF Molecular Profiling Initiative. The panel of significant
genes was derived from an ensemble approach for statistical testing (Methods). Classes of alterations are indicated in the legend. The upper histogram
represents the mutation rate (number of point mutations per megabase) per case. APOBEC and non-APOBEC hypermutated cases are indicated. The right
histogram represents the number of patients with an indicated mutation in the cohort, with percentages provided on the left. b Consensus plot for arm-
level (lower panel) and focal copy-number alterations (upper panel). Gains are shown in red and losses in blue. Relevant genes in the recurrent gain or loss
regions are indicated. The q-values were calculated by GISTIC2.0. Horizontal dashed green lines correspond to q value= 0.05.
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While inspecting CD40 across the MM cohorts, we observed
cases with outlier gene expression levels coincident with robust
NF-κB transcriptomic signatures. This finding prompted us to
perform a systematic screening for patients with rare outlier
expression (Supplementary Fig. 6b) and to search for genomic
rearrangements to explain these events. Our analyses revealed
that cell surface receptors (CD40, LTBR) and the kinase
MAP3K14 exhibited outlier expression levels in select cases
(Supplementary Fig. 6c). Overexpression of the receptors could
potentially lead to oligomerization, activating downstream
signaling23. Whole-genome sequencing of representative cases
(Fig. 2g) revealed that the outlier expressed genes were
translocated in proximity to loci harboring strong enhancers.
Interestingly, in one patient, we observed outlier expression of the
NF-κB activating ligand TNFSF13 (APRIL) which is associated
with a translocation to the 3′ region of TXNDC5, a gene highly
expressed in plasma cells. Although APRIL is typically secreted by
monocyte-derived dendritic cells and not plasma cells24, the
tumor cells in this case ectopically express APRIL and become

more independent of the bone marrow environment in an
autocrine manner. This exemplary case serves as evidence of
positive selection for tumor cells that can remodel the micro-
environment to facilitate their survival.

While plasma cells represent the end-stage of differentiation in
B lymphocytes, a subset of MM patients shared common features
with earlier stage B cell malignancies and had TLR and BCR-
mediated NF-κB signaling activated by mutation (Fig. 2a, b)25–27.
These alterations included truncating mutations in A20
(TNFAIP3) and missense mutations in the coiled-coil domain
of CARD11 (Fig. 2h). An in-frame deletion in the transmembrane
domain of CD79B was observed in one RRMM patient (Fig. 2i)
which would potentially activate NF-κB in the same manner as
the aforementioned in-frame indels in TNFRSF17 and CD40.
Interleukin-1 receptor-associated kinase 1 (IRAK1) exhibited loss-
of-function mutations, as well as recurrent missense mutations at
highly conserved residues in the kinase domain, such as Asn 345
in the catalytic loop and the magnesium ion-binding residue Asp
358 in the Asp-Phe-Gly (DFG) motif (Fig. 2j and Supplementary
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Fig. 2 Diverse alterations of the NF-κB pathway in relapsed refractory multiple myeloma. a Integrative heatmap for alterations in the NF-κB pathway for
cases with tumor purity greater than 30% (n= 450). The transcriptomic signature for NF-κB activation was experimentally derived16. “Biallelic
inactivation” includes homozygous deletion, hemizygous deletion coupled with mutation, or hemizygous deletion or uniparental disomy (UPD) coupled
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respective alterations is provided to the right. b Summary of the alterations observed in the NF-κB pathway. Alterations in affected genes (highlighted in
violet) were detected in all four branches of the NF-κB pathway, including TNF receptor family, non-canonical, Toll-like receptor (TLR), and B cell receptor
(BCR) signaling. c In-frame tandem duplications or insertions in the transmembrane domain (TMD) of TNFRSF17. d In-frame deletions in the TMD of CD40.
e N-terminal deletions in MAP3K14 (NIK) truncating the TRAF3 binding site in RRMM. Variant allelic fractions are indicated (VAF). f Schematics of gene
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strong enhancer (IgH, IgL, FAM46C, and TXNDC5). Breakpoints are shown as dashed vertical lines. h Lollipop plot for CARD11 mutations in RRMM cohort.
i In-frame deletion in the TMD of CD79B. j Lollipop plot for IRAK1 mutations aggregated from RRMM and newly diagnosed MM (NDMM) cohorts.
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Fig. 6d). Substitutions at these key residues would render the
protein kinase-dead, and interestingly, have not been reported in
any other hematological tumor. They also provide genetic
evidence of IRAK1 functioning as a context-specific negative
regulator of survival or proliferation in addition to its role in the
formation of the Myddosome28.

In summation, previous studies profiling NDMM have
implicated alternative NF-κB alterations at a prevalence of
20%17. Our comprehensive integrative approach included all
characterized NF-κB pathways and encompassed diverse
mechanisms, indicating that over 60% of MM harbor alterations
in this key cell survival pathway.

Heterogeneity of alterations in the RAS-MAPK pathway
including Rasopathy-related genes. Similar to NDMM, altera-
tions in the RAS-MAPK pathway play a major role in RRMM
(Fig. 3a, b). KRAS was the most frequently mutated gene in
RRMM with a frequency of 26%, followed by NRAS at 25% and
BRAF at 15% (Fig. 1a). The distribution of mutated KRAS codons
(Fig. 3c, left) was distinct from that observed in a pan-cancer
assessment29. Although codon G12 was still the most common

(34%) in MM, there was strong enrichment for Q61 (28.1%) and
G13 (12.6%)29. Across all cancers, non-G12/G13/Q61 codons
constituted around 2% of total KRAS mutations. By contrast, the
incidence for recurrent atypical codons was higher in RRMM:
8.1% for A146, 3% for K117, and 3% for Q22 (Fig. 3c, left). NRAS
codon distribution more closely resembled the pan-cancer
assessment, with Q61 as the dominant codon observed in 73%
of cases, and non-G12/G13/Q61 codons in 7% (Fig. 3c, middle).
Across cancers, NRAS G13 was twice as frequent as G1229, while
NRAS G12 and G13 were both observed at 10% in RRMM.

BRAF mutations in MM can be stratified into three classes
based on their kinase activities30,31. All three classes of BRAF
mutations were well-represented in our MM cohorts (Fig. 3c,
right). Class 1 mutations (V600E monomer) were the most
common at 32%, followed by Class 3 mutations (kinase-impaired
or dead) at 28%, and Class 2 alterations (constitutive dimers,
including N-terminal BRAF fusions) at 17%. Among the BRAF
alterations whose kinase activities have not yet been classified
include the in-frame deletion involving codons 485 to 490
(Fig. 3c, right). These rare in-frame indels have been demon-
strated to form BRAF homodimers and are potentially

Fig. 3 Alterations of the RAS-MAPK and JAK-STAT3 pathway in relapsed refractory multiple myeloma. a Heatmap of RAS-RAF pathway alterations in
cases with at least one mutation with CCF (cancer cell fraction) ≥0.05 (n= 354) (Methods). Clonal mutations of RAS and BRAF (RAS Q61, G12, G13, and
BRAF V600) showed a strict pattern of mutual exclusivity (top left panel). Mutations which appeared to co-occur were subclonal and likely belonged to
different clones (top middle panel). There was also a distinct group of cases with mutations associated with the Rasopathies (bottom right panel). IL6ST
was also included given the reported association with SHP2 (PTPN11) b Overview of the RAS-RAF signaling pathway and summary of alterations observed
in RRMM. Rasopathy-associated genes that had mutations in our RRMM cohort are highlighted in light orange. c Pie charts show the distribution of
mutations in NRAS, KRAS, and BRAF across our RRMM cohort. d Lollipop plot of LZTR1 which was enriched for loss-of-function mutations. e Lollipop plot of
mutations in IL6ST. f JAK-STAT3 pathway activation in HEK-293FT cells overexpressing IL6ST mutants. Western blot analyses of protein levels of IL6ST,
phosphorylated STAT3(Y705); total STAT3, and a-tubulin (loading control) are shown. The experiment was repeated twice independently with similar
results. Source data are provided as a Source Data file.
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druggable32,33. Clonality analysis by calculating cancer cell
fraction (CCF) (Methods) revealed that clonal RAS G12, G13,
Q61, and BRAF V600E were strictly mutually exclusive with each
other (Fig. 3a, top left cluster). It was possible to observe RAS
G12, G13, Q61, and BRAF V600E in the same patient, although as
subclonal events and most likely belonging to different clones
(Fig. 3a, top middle cluster). The co-occurrence of many different
subclonal RAS and BRAF alterations in the same patients
demonstrates the high level of intraclonal heterogeneity in
RRMM and emphasizes the selection pressure to activate RAS
signaling in RRMM.

Interestingly, in addition to patients with KRAS, NRAS, and
BRAF mutations, we found that MM exhibited a long tail of
alterations in rare, congenital RAS-pathway-related diseases,
known as the “Rasopathies” (Fig. 3a, bottom right panel, Fig. 3b).
This “tail” recapitulated the spectrum of germline mutations
found in Noonan syndrome (NS), cardiofaciocutaneous syn-
drome (CFC), LEOPARD syndrome (LS), and neurofibromatosis
type 1 (NF1)34–36. These genetic alterations include missense
mutations in the SH2 domains of PTPN11, missense mutations in
SOS1, truncating mutations and focal hemizygous deletions of
NF1, truncating mutations in negative regulators of RAS signaling
such as CBL, LZTR1, and RASA2, and hotspot mutations in RAF1
(S257 and S259)34–36. BRAF E501K and L485F (Fig. 3c) have also
been observed as germline mutations in NS and CFC
patients37,38. Somatic mutations in LZTR1, while relatively rare
(2.5% with CCF ≥ 0.05), were enriched in the RRMM cohort (P
Value < 0.01, one-sided Fisher’s exact test) (Fig. 3d). LZTR1 was
recently characterized as a substrate adapter for the CUL3 E3
ligase complex and can mediate the detachment of RAS from the
cell membrane39. Germline missense and truncating mutations of
LZTR1 have been associated with NS, schwannomatosis, and
pediatric brain tumors39. Interestingly, one of our patients had a
germline frameshift at P807 (Fig. 3d), which later co-occurred
with a somatic hemizygous deletion of 22q. This combination led
to biallelic inactivation of LZTR1 and likely acted as a strong
RAS-activating event.

It has been reported that interleukin 6 cytokine family signal
transducer (IL6ST or gp130) could activate the RAS-MAPK
pathway through its association with PTPN11, as well in the JAK/
STAT pathway through JAK40,41. The pattern of mutations in
IL6ST in our RRMM cohort was strikingly similar to those
described in inflammatory hepatocellular carcinoma (IHCA)42,43.
In-frame indels and recurrent point substitutions affected the D2
domain of IL6ST (Fig. 3e), which could facilitate its dimerization
even in the absence of IL-642,43. While IHCA-associated IL6ST
variants almost always cluster from codon 168 to 216, we
observed mutations that appeared earlier in the D2 domain
(V136E, E138K) and far later in the D3 domain (K303T,
D312_S314dup) (Fig. 3e). These rare mutants could meditate
STAT3 activation as robustly as the more common ones (Fig. 3f).
In addition, IL6ST variants were significantly enriched in RRMM
compared to NDMM (P < 0.001, one-sided Fisher’s exact test),
which reflects the progressive independence of the myeloma cells
from bone marrow cytokines in some advanced patients.

Alterations in the MYC pathway. Dysregulation of MYC path-
ways is common in MM44. In our analyses, focal amplification
and rearrangements involving the MYC/PVT1 locus producing
chimeric transcripts were detected in at least 10% of samples in
the cohort (Fig. 1b and Supplementary Fig. 7a). Recurrent
mutations in MYC were detected in the combined NDMM and
RRMM cohorts, including S161L (n= 2 RRMM, n= 3 NDMM)
and an uncharacterized in-frame deletion at Val 280 (n= 3
RRMM, n= 6 NDMM) (Supplementary Fig. 7b). Val 280 is

located within the PEST sequence, a domain required for efficient
proteolysis45, and this alteration may disrupt post-translational
modifications and enhance MYC stability45. MYCL and MYCN
were also affected by structural rearrangements that led to over-
expression (Supplementary Fig. 7c, d).

Alterations related to disease progression and drug resistance.
We next systematically compared the mutational landscape of
RRMM with NDMM from the CoMMpass cohort. We observed a
significantly higher incidence of mutations and copy-number loss
in tumor suppressors such as TP53, RB1, CDKNA2/B, BIRC2/3,
and CDKN2C (Fig. 4a, b and Supplementary Fig. 8a–c), likely due
to MM progression. Furthermore, in RRMM relative to NDMM,
we uncovered a diverse range of mutations in genes that confer
resistance to three classes of MM therapies - immunomodulatory
imide drugs (iMiDs), synthetic glucocorticoids, and monoclonal
antibodies (Fig. 4c–i). Immunomodulatory imide drugs (such as
thalidomide, lenalidomide, and pomalidomide) function by
binding to a tri-tryptophan pocket in CRBN, the substrate
receptor of the CUL4–ROC1–DDB1–CRBN (CRL4CRBN) E3
ubiquitin ligase46,47. The binding of iMiDs induces a conforma-
tional change and shifts the target of degradation from endo-
genous substrates to IKZF1 and IKZF3, two essential
transcription factors in MM46,47. Various types of alterations
frequently targeted two genes of the CRL4CRBN complex in
RRMM, CRBN, and CUL4B, at a cohort frequency of 11 and 5%,
respectively (Fig. 4c, e, f). Missense substitutions were observed
throughout the gene body of CRBN (Fig. 4e), including those at or
near the binding pocket (E377K, H353N, G354E) and CRBN-
DDB1 interface (T238N, D249Y, E187K) (Fig. 4e and Supple-
mentary Fig. 8d, e). CRBN was also frequently affected by trun-
cating mutations (frameshift, stop-gain, and splice site) and
hemizygous deletion involving cytoband 3p26 (Fig. 4b and Sup-
plementary Fig. 8c, right). CUL4B harbored truncating mutations
and missense mutations clustered in the cullin domain, which
could significantly disrupt the scaffold’s structure (Fig. 4f).
Acquired alterations in CRBN and CUL4B due to iMiD therapies
not only have relevance to MM treatment but also presage ana-
logous mutations that are likely to be acquired based on various
proteolysis targeting chimera (PROTAC) therapies under
development48.

At high doses, glucocorticoids such as dexamethasone and
prednisone affect MM cells potentially via an anti-NF-κB
transcriptional program mediated by the glucocorticoid receptor
(NR3C1)49. In addition to truncating mutations, missense
mutations were observed in the ligand-binding domain and
N-terminal domain of NR3C1 in the RRMM cohort (Fig. 4c, g).
One case had an in-frame intragenic deletion that removed the
DNA-binding domain of NR3C1 (Supplementary Fig. 9a). This
deletion may disrupt NR3C1’s transcriptional activity while
retaining protein interactions, such as binding to co-activators.
Interestingly, retinoic acid receptor alpha (RARA), another
nuclear receptor, harbored mutations enriched in the RRMM
cohort compared to the NDMM cohort (Fig. 4a). RARA
mutations clustered in the ligand-binding domain (Fig. 4h), a
pattern similar to those found in fibroepithelial breast tumors50.
It has been demonstrated that these mutations may not disrupt
RARA’s ligand-binding ability but enhance its interaction with
other co-repressors50.

Monoclonal antibodies targeting CD38 may induce cell death
via antibody-dependent cellular phagocytosis (ADCP) or
antibody-dependent cellular cytotoxicity (ADCC)51. In RRMM
relative to NDMM, we screened for alterations in CD38 and
identified several loss-of-function events, such as homozygous
deletions, truncating mutations, and fusions in which the
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extracellular domain was lost (Fig. 4c, i, top, Supplementary
Fig. 9b, c). Systematic analysis of de novo splice junctions
identified two cases with exon 6 skipping (Fig. 4i, bottom). One
case exhibited a splice donor mutation, while another had a point
substitution of two nucleotides upstream of the splice site. This
point mutation could function as a stop-gain (R251*) but instead

unexpectedly induced in-frame exon skipping and removed most
of the epitopes on CD38 that interact with daratumumab52. These
events may facilitate the evasion of MM cells from binding by
daratumumab, while still retaining a major portion of the
extracellular domain (Fig. 4i, j). Overall, CD38 mutations were
associated with lower CD38 expression than the rest of the cohort
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(one-sided Wilcoxon rank-sum test P < 2 × 10−3) (Supplementary
Fig. 9d).

While many mutations causing resistance were detected at low
variant allele frequency (VAF), some appeared “clonal” due to a
bottleneck effect, where a single cell that acquired resistance
mutations survives treatments and becomes the “founder”
(Supplementary Fig. 9e, f). Several RRMM patients also acquired
resistance-related mutations in multiple genes (Fig. 4c and
Supplementary Fig. 9f), reflecting complex histories of tumor
evolution under varied treatments. The intra- and inter-clonal
heterogeneity of RRMM can also be inferred by the presence of
CTCs in peripheral blood. For example, one sample harbored a
stop-gain mutation of CRBN detected only in the peripheral
blood but not at the biopsy site. However, copy-number analysis
of the bone marrow aspirate specimen revealed a subclonal
hemizygous deletion of CRBN (Supplementary Fig. 9g). These
spatially separated alterations were the result of convergent
evolution resulting in resistance to iMiD treatment.

Discussion
RRMM is difficult to manage malignancy with an aggressive
disease course3,4. Our study represents comprehensive integrative
analyses of RRMM genetics and, further, systematically compares
the genetic landscape of RRMM with that of NDMM. By covering
somatic mutations, indels, copy-number alterations, gene fusions,
gene expression, and outlier expression, we demonstrate that a
majority of MM patients harbor alterations in the NF-κB and
RAS-MAPK pathways; this is a level of prevalence that has not
been previously reported and includes many alterations with
diverse mechanisms of action.

It was surprising to observe that at least 45% of MM harbors
alterations in the NF-κB pathway. Several activating mechanisms
were identified, including: (1) in-frame insertions and deletions in
the transmembrane domain of TNFRSF17 and CD40, (2)
N-terminal intragenic deletions of MAP3K14, (3) in-frame C-
terminal fusions and deletions in NFKB2 (p100) and NFKB1
(p105), (4) genomic rearrangements or translocations of CD40,
LTBR, and TNFSF13, and (5) diverse alterations in A20, CARD11,
CD79B, and IRAK1. Notably, mid-size to larger indels in CD40,
TNFRSF17, and MAP3K14 already occurred in the published
CoMMpass dataset but have not been reported by any studies.
These results highlighted the importance of thorough bioinfor-
matics analyses in variant calling. It is fascinating to note that
recurrent mutations in IRAK1 were kinase-dead mutants in MM.
Our finding agrees with a previous study that showed IRAK1 is
an important upstream adapter for NF-κB signaling via TLRs, but
its kinase domain is dispensable for signaling activity53. It is also
possible, as is the case for another receptor-associated kinase of

the NF-κB pathway, RIPK1, that the kinase domain of IRAK1
plays a role in inducing apoptosis54.

Alterations in the RAS-MAPK pathway in MM are even more
prevalent than alterations in the NF-κB pathway. In addition to
the well-characterized NRAS, KRAS, and BRAF genes, our study
revealed that the germline Rasopathy genes represent a long tail
of somatic alterations linking MM to these rare, congenital RAS-
pathway-related diseases. If the designation of Rasopathy is
extended to include mosaic conditions, such as keratinocytic
epidermal nevus syndrome55, alterations in FGFR3 can also be
integrated into this long tail, making alterations in the RAS-
MAPK pathway even more prevalent in RRMM. It is generally
observed that the spectrum of mutations in the Rasopathies and
in cancer minimally overlap, as exemplified by PTPN11 and
BRAF56,57. One possible explanation is that cancer-associated
RAS-MAPK mutations would be lethal for embryonic develop-
ment, while the Rasopathy-associated RAS-MAPK mutations are
too mild to evade apoptosis in malignant transformation. Inter-
estingly, RAS-MAPK aberrations in RRMM are a conglomeration
of both, making RRMM an ideal model to study strong and weak
RAS-activating events. Future studies should investigate the
correlation between strong and weak RAS activators with the
clinical history and outcome of RRMM patients

We observed that IL6ST aberrations are enriched in RRMM,
suggesting that this gene is associated with MM progression.
IL6ST engages in both RAS-MAPK signaling via PTPN11 and
JAK/STAT3 signaling via JAK40,41. As in inflammatory hepato-
cellular carcinoma, point mutations and in-frame indels of IL6ST
occurred within or nearby the dimerization interface42,43 and
could activate STAT3. Follow-up studies could investigate the use
of approved JAK inhibitors, like ruxolitinib and tofacitinib, as
potential therapeutic strategies for a subset of relapsed refractory
multiple myeloma patients.

A unique opportunity afforded by this study was the ability to
systematically compare the MMRF’s multi-institutional cohorts
of NDMM patients with RRMM patients sequenced at our center.
In addition to IL6ST mentioned above, mutations and copy-
number loss in tumor suppressors such as TP53, RB1, CDKNA2/
B, BIRC2/3, and CDKN2C were enriched in RRMM, suggesting
that these are also likely events associated with disease progres-
sion. Our analyses also identified resistance alterations that
develop in the context of commonly used MM therapies,
including iMiDs (CRBN and CUL4B), synthetic glucocorticoids
(NR3C1), and monoclonal antibodies (CD38), which expands
upon previous studies58,59. The most common resistance altera-
tions were associated with iMiDs, and these alterations have
significant implications for clinical research and drug develop-
ment beyond MM. For example, given that CRBN-based PRO-
TACs are emerging as a promising approach for targeted

Fig. 4 Alterations enriched in relapsed refractory multiple myeloma associated with drug resistance or disease progression. a Scatter plot of mutation
frequency in RRMM vs. NDMM. The size of the circles correlates with log2 of q value two-sided Fisher exact test. Genes with top coefficients from the
regression model (Methods) are highlighted in red. b Comparison of focal deletions (less than 20MB) in NDMM vs. RRMM. *, **, *** indicate P < 0.05,
0.01, 0.001, respectively for the two-sided Fisher exact test. P values obtained: 7.1 × 10−6 (TP53), 1.4 × 10−9 (CRBN), 1.3 × 10−4 (CDKN2A/B), 2.2 × 10−3

(RB1), 0.025 (BIRC2/3), and 0.035 (CDKN2C). c Heatmap of drug resistance-related genes identified in RRMM. The types of alterations are indicated in the
legend. There were cases with alterations observed in more than two genes or different types of alterations per gene, reflecting the complex history of
tumor evolution through several treatments. d Overview of therapies in MM with observed resistance mechanisms. Genes highlighted in blue are
resistance mutations found in RRMM. ADCP antibody-dependent cellular phagocytosis, ADCC antibody-dependent cellular cytotoxicity, mABs monoclonal
antibodies, GCs glucocorticoids, iMiDs immunomodulatory imide drugs. e–h Lollipop plots for CRBN, CUL4B, NR3C1, and RARA. i Top panel, lollipop plot for
CD38. Frameshift mutations would completely abolish CD38, and fusions that truncate the extracellular domain would disrupt binding events. Bottom
panel, Sashimi plot for two cases with exon 6 skipping. MM_5034 had a splice donor mutation. MM_5183 had a missense mutation that was two
nucleotides upstream of the splice site, which would naturally introduce a new stop codon (R251*). Unexpectedly, this mutation functioned as a splice
donor mutation instead, which also induced the skipping of exon 6. MM_5191 is included as a control. j The skipping of CD38 exon 6 in MM_5034 and
MM_5183 was in-frame and would delete 29 amino acids (highlighted in red), including the epitope of daratumumab (PDB structure 7DUO)52.
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therapy60, developments in this drug class must anticipate pos-
sible resistance via acquired alterations in CRBN and CUL4B.
Indeed, in vitro CRISPR-Cas9-mediated loss-of-function screen-
ing in prostate cancer cells treated with a CRBN-based BRD4
degrader also predicted CRBN as the most likely candidate for
drug resistance48. Furthermore, as mutations in CRBN, CUL4B,
and NR3C1 were detected in peripheral blood in a subset of
RRMM patients, these genes should be included in CTC
screening panels employing next-generation sequencing. Inter-
estingly, despite our unbiased effort to search for the enrichment
of mutations and copy-number alterations in RRMM compared
to NDMM, a genetic basis for resistance against proteasome
inhibitor drug class remains elusive. We suggest that genome-
wide gain-of-function or loss-of-function CRISPR screening
could help to narrow the candidate gene list.

Another clinically relevant aspect of our study concerns the
monoclonal antibodies targeting CD38. Although potent as
MM therapies, they were subject to resistance mutations and
copy losses, according to our analyses. Two of our patients
harbored distinct mutations that converged into the in-frame
exon skipping affected codons 221 to 250, presumably only
disrupting the epitope of daratumumab while retaining a major
portion of the extracellular domain. In theory, such patients
could still benefit from isatuximab, another monoclonal therapy
targeting CD38. As ref. 52 pointed out, that the epitope of
isatuximab is composed of residues from codons 34 to 189, thus
completely unaffected by this exon skipping the event. Future
structural and clinical studies should explore this direction to
widen the therapeutic options for patients who relapse on
daratumumab. Together, this study defines the genetic land-
scape and pathways of progression to RRMM while also iden-
tifying targeted therapy resistance mechanisms likely to impact
the clinical management of RRMM.

Methods
Patient samples. All samples were acquired after patients provided written
informed consent in compliance with the Multiple Myeloma Research Foun-
dation Institutional Review Board (IRB) (Protocol# MMRF-002; IRB Tracking
Number 20151186) and the University of Michigan IRB. Germline assessment
was carried out using blood specimens. CD138+ cells from fresh bone marrow
mononuclear cells were isolated by immuno-magnetic selection. In brief,
mononuclear cells were separated from bone marrow by density centrifugation
by Ficoll-Paque (GE Healthcare). Mononuclear cells were then incubated with
CD138 antibody-conjugated microbeads and loaded onto a MACS column
according to the manufacturer’s instructions (Miltenyi Biotec). After washing
with 10 volumes of PBS buffer, the column was removed from the magnetic
stand, and CD138+ cells were eluted from the column. Smears of CD138-
selected cells were prepared by cytospin centrifuge and stained by HEMA-DIFF
Fixative/Xanthene/Thiazine reagents (StatLab Medical Products) for pathology
review. Samples passing tumor content assessment were processed for sequen-
cing analysis.

Integrative clinical sequencing. Integrative clinical sequencing was performed
using standard protocols in our Clinical Laboratory Improvement Amendments
(CLIA)-certified sequencing laboratory. CD138+ tumor cells and matched-normal
blood mononuclear cells were resuspended in RLT lysis buffer (Qiagen) and dis-
rupted by 5 mm beads on a Tissuelyser II (Qiagen). Genomic DNA and total RNA
were purified from the same sample using the AllPrep DNA/RNA/miRNA kit
(Qiagen). Matched-normal genomic DNA from blood, buccal swab, or saliva was
isolated using a DNeasy Blood & Tissue Kit (Qiagen). RNA integrity was measured
on an Agilent 2100 Bioanalyzer using RNA Nano reagents (Agilent Technologies).
RNA-sequencing was performed by the exome-capture transcriptome platform
developed in our lab and as described previously61. In brief, capture transcriptome
libraries were prepared using 1–2 μg of total RNA. Following the steps of cDNA
synthesis, end-repair, A-base addition, and ligation of adapters, pre-capture
libraries were size-selected by the PippenHT system (Sage Science). Recovered
fragments were enriched by PCR using Phusion DNA polymerase (New England
Biolabs) and index primers and purified by AMPure XP beads (Beckman Coulter).
Coding exons were then captured by Agilent SureSelect Human All Exon v.4
probes following the manufacturer’s protocol. Final sequencing libraries were
analyzed by Agilent 2100 Bioanalyzer for product size and concentration. Libraries
were sequenced by the Illumina HiSeq 2500 (2 × 126-nucleotide read length), with

a sequencing coverage of 40–60 million paired reads. Reads that passed the chastity
filter of Illumina BaseCall software were used for subsequent analysis.

Exome libraries of matched pairs of tumor/normal DNA were prepared as
previously described9. In brief, 1 μg of genomic DNA was sheared using a Covaris
S2 (Covaris) to a peak target size of 250 bp. Fragmented DNA was purified using
AMPure beads, followed by end-repair, A-base addition, and ligation of adapters
using the Kapa HyperPrep kit and protocols (Roche/Kapa Biosystems). DNA
molecules were size-selected by the PippenHT system (Sage Science). Fragments
between 300–350 bp were recovered, amplified by KAPA HiFi HotStart Mix and
index primers, and purified by AMPure beads. One microgram of the pre-capture
library was hybridized to an in-house developed Oncoseq targeted gene panel
containing 1711 genes with suggestive links to cancer (probes synthesized by
Roche). The targeted exon fragments were captured and enriched following the
manufacturer’s protocol (Roche). Final sequencing libraries were analyzed by
Agilent 2100 Bioanalyzer and sequenced by Illumina HiSeq 2500 (Illumina;
2 × 126-nucleotide read length).

FastQC62 (version 0.11.8) was used to assess read quality per lane. FASTQ
conversion was performed with bcl2fastq-1.8.4 in the Illumina CASAVA 1.8
pipeline. Picard (version 2.20.3) was used to monitor other sequencing metrics
such as duplication rate, GC biases, and targeted coverage.

Alignment, mutation calling, and filtering. The FASTQ files were aligned to the
reference genome build hg19/GRCh37 using Novoalign63 Multithreaded (version
3.02.08) (Novocraft) and converted into BAM files using Samtools64 (version
0.1.19). BAM files were sorted, indexed, and marked duplicates with Novosort
(version 1.03.02). Single nucleotide variants (SNVs) and small indels were called by
freebayes65 (version 1.0.1). Larger indels and exon-level structural arrangements
were called with pindel66 (version 0.2.5b9). freebayes and pindel calls were then
compiled and annotated to RefSeq and COSMIC67 v90, dbSNP68 v146, ExAC69

v0.3, and 1000 Genomes phase 370 databases using snpEff71 (version 4.3t) and
snpSift72 (version 4.3t).

We employed a two-step filtering strategy to detect somatic mutations when
there was contamination of CTCs in peripheral blood controls. First, mutation
calling was performed on normal libraries to estimate the level of contamination.
This information would be used to adjust the somatic filtering threshold
accordingly. To be more specific:

● In the normal-only variant filtering step, a normal-contaminated mutation
was identified as the call that: (1) was supported by at least five reads, (2)
had the population minor allele frequency (MAF) <0.05%, (3) passed the
filtering against an in-house database of recurrent sequencing artifacts (e.g.,
pool-filtering) constructed from 2000 genomic sequencing libraries. Known
hotspot mutations (such as those from TP53, NRAS, KRAS, BRAF,
PIK3CA, etc.) were inferred from COSMIC v90 and 2000 genomic libraries
of the same sequencing platform at our center, then “white-listed” out from
the pool-normal. This is because variants at these locations are more likely
to be real mutations than artifacts. To enhance the specificity, variants with
ultra-low Variation Allelic Fraction VAF (<5%) were (4) further filtered for
8’oxoG artifacts73, (5) required to have evidence supported by reads in both
forward- and reverse- strands. Strand-specific reads at a given position
were counted by bam-readcount74 (version 0.8.0) for SNV and small indel
up to 5 bp. The maximum VAF of all contaminated mutations in each
normal library was then used as a threshold to filter somatic mutations in
the next step. This threshold could be more than 30% for some cases in our
cohort (Supplementary Fig. 2d). This approach allowed us to discover
CTC-associated mutations that may not even be present at the biopsy site
(Supplementary Fig. 9g).

● In the tumor-normal variant filtering step, in addition to satisfying
criteria (1–5) above, a somatic mutation should tolerate a matched-
normal VAF up to the contamination threshold (if there is no normal
contamination, an arbitrary threshold of 2% was applied, Supplementary
Fig. 2d, horizontal dashed line). To further distinguish recurrent indel
artifacts in homopolymer regions from true somatic variants, especially
in tumors with microsatellite instability phenotype, a logistic regression
model using PCR duplication rate as a covariate to model variant and
total read counts were applied to improve the read cut-off for indels, as
detailed previously75.

Variant calling for SNVs and small indels from RNA-seq (tumor-only) was
performed using sentieon76 (version 202010.02) (Sentieon, Inc). Calls were
annotated to RefSeq and COSMIC67 v90, dbSNP68 v146, ExAC69 v0.3, and 1000
Genomes phase 3. We adopted a similar variant filtering strategy to the normal-
only variant filtering step detailed above, and further filtered calls against
RADAR77, a database for A-to-I RNA editing. Potential variants in CD38 were
validated by whole-exome sequencing using Agilent Human All Exon v4 reagents.

Copy-number analysis. Targeted sequencing and whole-exome sequencing data
were analyzed for copy-number using an in-house pipeline (cnatools), as pre-
viously described75. Circular binary segmentation (CBS) algorithm (as imple-
mented in DNAcopy78 version 1.48.0) was used to jointly segment B-allele
frequencies and log2-transformed tumor/normal coverage ratios across targeted

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31430-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3750 | https://doi.org/10.1038/s41467-022-31430-0 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


regions. The expectation-maximization (EM) algorithm79 was used to jointly
estimate tumor purity and classify regions by copy-number status, namely gain,
loss, and loss of heterozygosity. CNVkit80 (version 0.9.6) with CBS and haar seg-
mentation method were also run in all samples. Results from cnatools and CNVkit
were compiled by a customized script to inspect discrepancies in segmentation,
especially for highly heterogeneous samples with subclonal CNAs. For each result
from cnatools, different ploidy models were manually reviewed by D.R.R., Y.-
M.W., and J.N.V. to account for the possibility of whole-genome duplication
(tetraploidy).

GISTIC2.081 was used to locate arm-level and focal peaks of recurrent copy-
number gains and losses. Germline CNAs, IgH, IgL, IgK, TCR loci, and recurrent
noisy segments were removed before running GISTIC2.0. Significant peaks were
defined as those with a q value < 0.05.

Trinucleotide mutational analysis. The limited number of mutations detected
from targeted sequencing in our study did not allow us to discover de novo
trinucleotide mutational signatures. However, APOBEC-enriched patients can be
assessed as in Roberts et al.82. For each case, within a fraction of the captured
genome, the number of C-to-T or C-to-G, and G-to-A or G-to-C substitutions that
occurred in and out of the APOBEC motif (TCW or WGA), as well as the total
number of C or G occurred in and out of APOBEC motif, was tabulated. One-sided
Fisher’s exact tests were performed, and P values were corrected using the
Benjamini–Hochberg method. Samples with FDR < 0.05 were marked as APOBEC-
enriched.

Gene expression and fusion analysis. Strand-specific RNA-seq FASTQ files were
aligned to reference genome build hg19/GRCh37 in chimeric alignment mode by
STAR aligner83 (version 2.7.4a). After alignment, libraries with ribosomal content
≥60% mapped reads (i.e., failed ribosomal removal) and libraries with a low
number of splice junctions (<25th percentile of all in-house libraries) were
excluded from the final cohort. Gene expression was quantified with
featureCounts84 (version 2.0.0), and gene fusions were called using an in-house
pipeline as previously described75. Highly recurrent RNA chimeric transcripts (e.g.,
“trans-splicing”) were filtered out from the reported fusions (Supplementary
Data 4). Differential gene expression analysis was performed with edgeR85 (version
3.34.0).

CoMMpass data re-analysis. Using CoMMpass consortium data, we reanalyzed
raw (FASTQ) NGS data using our integrative pipeline so that direct comparisons
could be made to RRMM samples sequenced in this study. FASTQ files were
downloaded from dbGaP with the accession number phs000748 and analyzed for
mutation and copy-number, as outlined above. We adjusted critical parameters and
reference files as CoMMpass used a different probe set for whole-exome sequen-
cing (Agilent Capture V5+ 5′UTR). After excluding duplicate entries, and samples
without available matched peripheral blood normal or CD3+ selection normal, the
remaining samples were included for mutation and copy-number analyses. A small
number of CoMMpass samples were subjected to whole-exome sequencing more
than once. To fairly compare mutation and CNA incidence, we only included the
cases with the highest number of mutations. Finally, we excluded samples that did
not pass quality control assessed from Picard’s AT-dropout metrics, which resulted
in noisy copy-number results.

Nomination of cancer driver genes panel. Integration of results from various
statistical tools that predict significantly mutated genes would result in a more
comprehensive list of key cancer driver genes since these tools are
complementary11. We, therefore, ran oncodriveFML86 (version 2.0.3),
oncodriveCLUSTL87 (version 1.1.3), MutsigCV88, Mutsig2CV89, and 20/20+90

(version 1.0.1) on RRMM SNV and small indels. A relaxed threshold FDR <0.2 was
applied in each tool to call significantly mutated genes. Finally, we only included
genes that were predicted to be significantly mutated in at least two different
statistical tools (Supplementary Fig. 2a).

Outlier expression analysis. To search for rare outlier expression, we used the
statistical approach employed by the R package OUTRIDER91 (version 1.7.1),
which models RNA-seq read counts with a negative binomial distribution and
corrects for variations in sequencing depth and co-variations across samples.
Before parameter fitting, OUTRIDER requires the control of confounders, which
was performed by PEER92 implementation on 100 factors. Finally, genes with
outliers were prioritized by the minimum p value (or maximum log p value) among
all detected samples.

Clonality analysis. The cancer cell fraction (CCF) of a variant (including point
mutation or small indel) i was defined as in ref. 93. Briefly, the relationship between
mutation multiplicity mi of a variant and its cancer cell fraction CCFi is considered
as the following:

ui ¼ CCFimi ð1Þ

where:

ui ¼
1� purity
� � � 2þ purity � localcopynumberi

purity
VAFi ð2Þ

Ideally, a clonal mutation should have a CCF of 1.0 (100% of tumor cells should
contain this mutation), and a subclonal mutation should have a CCF less than 1.0.
Therefore, the multiplicity mi can be calculated as:

mi ¼
ui; ui ≥ 1

1; ui < 1

�
ð3Þ

To account for the uncertainty in the estimation of tumor purity and local copy-
number, a clonal mutation was defined as one with CCF ≥0.8, whereas a subclonal
mutation had CCF <0.8. In one illustrative case (Supplementary Fig. 9f), SciClone94

was used to perform 1-D clustering of VAF of mutations on diploid regions.

Structural rearrangement analyses for whole-genome sequencing. Whole-
genome sequencing FASTQ files were aligned to the reference genome build hg19/
GRCh37 with bwa-mem95 (version 0.7.17). BAM files were sorted, indexed with
Samtools, and marked duplicates with samblaster96 (version 0.1.25). Structural
rearrangements such as chromosomal translocations and deletions were called with
LUMPY97 (version 0.3.1). Split reads supporting the breakpoints were further
confirmed by Blast98.

Comparing point mutation frequencies between cohorts. The number of
patients affected by point mutations in the RRMM and NDMM cohorts was
tabulated for each gene in the Onco1700 panels. Functionally, point mutations can
be synonymous, missense, stop-gain, start-loss, and splice site. Two-sided Fisher
exact tests were performed, and FDR was calculated using the
Benjamini–Hochberg method. Since the sequencing coverages for CoMMpass WES
data were lower than the coverages for our targeted sequencing, we only included
mutations with VAF ≥5% in the comparison.

We also used another regression-based strategy to account for the observations
that mutation rates varied between samples and cohorts, and some patients
harbored several mutations per gene. Mutation counts for genes in the Onco1700
panels were considered a set of markers used to assess their association with a
cohort (RRMM vs. NDMM) and derive an optimal gene set to determine cohort
memberships. All available markers were considered potential candidates for an
optimal predictive signature. Since the number of candidates was high compared to
the number of subjects, regularization methods based on logistic regression were
used. The individual mutation rate was used as the covariate. LASSO and Elastic
Nets penalty99 were applied, and a full regularization path was computed. The
choice of the optimal regularization parameter was done by maximizing the area
(AUC) under the receiver-operating characteristic curve (ROC) as a criterion
(Supplementary Fig. 8b). Tenfold cross-validation was used to correct for over-
optimistic model-building bias. An average over cross-validation run was reported
in the final ROC analysis predicting the performance of the marker signature in
future observations. LASSO penalty was preferred for its ability to drop non-
essential markers from the signature by explicitly assigning them zero weights.
Genes with top coefficients were included in Supplementary Data 5.

Data visualization. Molecular graphics were generated with Pymol100 (version
1.8.2) and some illustrations were created using BioRender.com.

NF-κB reporter assay. The impact of mutations in CD40 and TNFRSF17 on the
NF-κB signaling pathway was assessed by NF-κB reporter assays. HEK-293FT cells
(purchased from the ThermoFisher/Invitrogen) were plated in 24-well plates at a
density of 105 cells per well in Dulbecco’s Modified Eagle medium (DMEM)
containing 10% fetal bovine serum and antibiotics. The next day, cells were
transiently co-transfected with CD40 or TNFRSF17 wt and mutant expression
plasmids at 250 ng/well, the pGL4.32[luc2P/NF-κB-RE/Hygro] reporter plasmid at
250 ng/well (Promega), and the pRL-TK internal control plasmid at 25 ng/well
(Promega) using the FuGene-HD transfection protocol (Promega). The
pGL4.32[luc2P/NF-κB-RE/Hygro] plasmid contains five copies of an NF-κB
response element that drives the luciferase reporter gene transcription. Cells were
harvested 48 hours post-transfection, and luciferase activities were measured using
the Dual-Luciferase Reporter Assay System (Promega).

Functional analysis of IL6ST variants. The full-length open reading frame of the
wild type IL6ST was generated by PCR. Patient-derived IL6ST mutations were
subsequently generated by site-directed mutagenesis (QuikChange, Agilent). IL6ST
variants were cloned in the lentiviral vector pCDH510 (System Biosciences) for
mammalian expression. Expression constructs were transfected into HEK-293FT
cells using FuGene-HD transfection reagent (Promega). Transfected cells were
cultured in DMEM medium supplemented with 10% FBS for 48 h and harvested
for Western blot analysis. HEK-293FT was purchased from the ThermoFisher/
Invitrogen and validated by genotyping. Antibodies and their commercial sources
are as follows: anti-IL6ST/gp130 (Abcam, ab283685, 1:1,000 dilution), anti-alpha-
tubulin (Abcam, ab184577, 1:5,000 dilution), anti-phospho-STAT3-Y705 (Cell
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Signaling, 9131 S, 1:2,000 dilution), and anti-STAT3 (Cell Signaling, 4904 S, 1:1,000
dilution).

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequencing data (fastq files of targeted sequencing and RNA-seq) from RRMM
patients enrolled in this study have been deposited in the database of Genotypes and
Phenotypes (dbGaP) under accession number phs002498.v1.p1. Raw sequencing data
(fastq files of WES and RNA-seq) of the CoMMpass study can be accessed from dbGaP
under accession number phs000748.v7.p4. Per dbGaP policy, these datasets are available
under controlled access since they contain de-identified individual-level genotype and
phenotype information. Principal investigators wishing to access these data must submit
their dbGaP Access Applications through the NCBI dbGaP website. Access to these
datasets must be renewed annually. Additional information about the application process
can be found on dbGaP website. All structures used in the analysis (7DUO52 and 4CI246)
are available on PDB. The remaining data are available within the Article, Supplementary
Information, or Source Data file. Source data are provided with this paper.
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