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Clinical relevance of molecular characteristics in
Burkitt lymphoma differs according to age
Birgit Burkhardt 1,24✉, Ulf Michgehl 1,24, Jonas Rohde 1,24, Tabea Erdmann 2, Philipp Berning 2,

Katrin Reutter1, Marius Rohde 3, Arndt Borkhardt 4, Thomas Burmeister 5, Sandeep Dave 6,

Alexandar Tzankov 7, Martin Dugas8, Sarah Sandmann 9, Falko Fend 10, Jasmin Finger1,

Stephanie Mueller1, Nicola Gökbuget11, Torsten Haferlach 12, Wolfgang Kern12, Wolfgang Hartmann 13,

Wolfram Klapper 14, Ilske Oschlies 14, Julia Richter14, Udo Kontny 15, Mathias Lutz 16,

Britta Maecker-Kolhoff 17, German Ott18, Andreas Rosenwald19, Reiner Siebert20, Arend von Stackelberg 21,

Brigitte Strahm 22, Wilhelm Woessmann 23, Martin Zimmermann17, Myroslav Zapukhlyak2,

Michael Grau 2,25 & Georg Lenz 2,25

While survival has improved for Burkitt lymphoma patients, potential differences in outcome

between pediatric and adult patients remain unclear. In both age groups, survival remains

poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort,

including 191 cases and 97 samples from adults. While TP53 and CCND3mutation frequencies

are not age related, samples from pediatric patients showed a higher frequency of mutations

in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are

almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the

mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort

confirms that TP53 mutations are significantly associated with higher incidence of relapse

(25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for

relapse incidence in pediatric BL which will be used in future clinical trials.
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Burkitt lymphoma (BL) and its leukemic manifestation
Burkitt leukemia (B-AL) is the most common subtype of
non-Hodgkin lymphoma (NHL) in children and adoles-

cents accounting for ~50% of cases. In comparison, BL only
accounts for 1% of adult NHL cases in Europe and Northern
America1–4. The genetic hallmark of BL is a translocation
involving the MYC oncogene and the immunoglobulin loci, pri-
marily immunoglobulin heavy chain (IGH) in 80% of cases
[t(8;14)(q24;q32)]. Variant MYC translocations involve the light
chain loci [t(8;22) or t(2;8)]5. Aside from MYC translocations,
somatic single-nucleotide variants, insertions, and deletions
(SNV/indels) of the ID3-TCF3-CCND3 pathway represent the
most frequent genetic events in BL, with up to 90% in pediatric
cases, but significantly lower frequency in adult BL6,7. Recent
reports have advanced the molecular understanding of BL biology
by identifying additional genetic mutations, revealing genomic
and transcriptomic alterations contributing to MYC dysregula-
tion, and tracing the clonal evolution of BL8–12. But data on the
effect of patient age on the molecular characteristics of BL are
very limited and show inconclusive results7,13.

With current risk-adapted chemoimmunotherapy, the event-
free survival exceeds 90 or even 95% for pediatric cohorts14. In
contrast, 80% of adult BL patients are cured with multi-agent
chemotherapy, and survival rates for younger adults are
better15–18. Disease relapse usually occurs shortly after the end of
therapy and is associated with a dismal prognosis and survival
rates below 30%14,19–21.

Given the poor outcome for patients who relapse, there is a
critical medical need for treatment optimization. To this end,
targeted approaches and risk-based adaptation of treatment
intensity is required. To enable such progress in patient care,
translational results based on molecular markers and clinical data
are urgently needed. Here, we provide a thorough analysis of the
mutational profile of 191 pediatric BL/B-AL by sequencing 134
predefined genes in all samples and by investigating somatic copy
number aberrations (SCNAs) in a sub-group of 72 samples.
Clinical data were sourced for all 191 cases. These results were
compared to the mutational landscape of 97 adult BL cases as
there is only limited information about the differences of both age
groups22. Our analyses identified prognostically relevant genetic
lesions of TP53 and GPC5/MIR17HG in pediatric instances, and
pinpointed promising targets for BL treatment development in
future studies.

Results
Clinical characteristics and cohort overview. We evaluated 288
patients with confirmed diagnoses of BL or Burkitt leukemia (B-
AL or Burkitt lymphoma with a blast count of 25% or more in the
bone marrow). In particular, cases with 11q aberration have been
excluded, as they are considered a different entity23. For the 191
pediatric cases, the median age at diagnosis was 9 years. 30% of
pediatric patients were female. Approximately 10% were diag-
nosed with stage I/II disease, according to the St. Jude staging
system, while about 40% had stage III and 50% stage IV disease.
The clinical characteristics of the pediatric cohort are summarized
in Supplementary Table 1. The adult cohort comprised 97 cases,
with a median age of 52 years at diagnosis, and was 40% female.
(Supplementary Data 1). For sample source information, see
Supplementary Table 2.

Mutational landscape of pediatric BL. We performed targeted
next-generation sequencing for fresh-frozen samples, including
86 matched normal tissue for the 191 pediatric cases. To max-
imize sensitivity and specificity, our analysis pipeline for variant
discovery and filtering makes use of several methods and external

databases (see Supplementary Fig. 1 and “Methods”). Overall, we
identified 1399 SNV/indels for the 191 pediatric cases and 824
SNV/indels in the adult cohort (Supplementary Data 2), repre-
senting 7.3 and 8.5 alterations per sample, and ranging from 0 to
23 total SNV/indels per case (Supplementary Data 3). To test the
sensitivity of our pipeline, we additionally performed validation
experiments. Only two variants detected by Sanger sequencing in
validation regions were not discovered by targeted DNA
sequencing, in both cases due to deletions that are likely too long
for DNA sequencing to recognize (see validation by Sanger
sequencing in “Methods” and validation overview in Supple-
mentary Data 4). As another control of our analysis pipeline, we
used ten cell lines to verify the concise calling of all SNV/indels
(Supplementary Fig 2).

In the full cohort (pediatric and adult cases combined), the
highest frequency of SNV/indels was detected in the MYC gene,
with 479 SNV/indels, resulting in 1.7 SNV/indels per case on
average, followed by ID3 with 1.1 (Supplementary Data 2).
Interestingly, MYC showed a higher mutation rate in adults when
compared to children, at 1.9 and 1.5 per case, respectively
(Supplementary Fig. 3). Most of the recurrently mutated genes are
involved in regulatory processes and are functionally linked to
transcription factor binding (DDX3X, ID3, SMARCA4, TCF3, and
TP53, Supplementary Table 2) or activation of transcriptional
processes (ARID1A, SMARCA4, TCF3, TFAP4, FOXO1, and
TP53). Furthermore, DDX3X, FOXO1, ID3, TFAP4, and TP53 are
also involved in the regulation of apoptotic processes.

Focusing on genes recurrently mutated in at least 10% of cases,
14 were identified in the pediatric cohort (Fig. 1A) and 17 in the
adult cohort. To test whether these genes were positively selected
by mutation processes, we applied dNdScv24. All genes except one
showed a dN/dS ratio significantly higher than one, indicating
excess coding mutations (Supplementary Data 5). TCF3 was
likely not verified only due to alternative transcripts (see
“Methods”); mutations were called by strongest consequence
logic for TCF3 protein variant 2 (NP_001129611). Interestingly,
these recurrently altered genes were significantly different
between the two age groups, with YY1AP1, BCL2, BTG2, and
CREBBP recurrently altered in adult but not pediatric BL cases,
while alterations in GNA13 were more predominant to the
pediatric cohort (Fig. 1B). In the pediatric cohort, eight genes
(ID3, MYC, TP53, CCND3, SMARCA4, DDX3X, ARID1A, and
FBXO11) were altered in more than 20% of all patient samples,
while in the adult cohort only five genes (MYC, TP53, CCND3,
ID3, and SMARCA4) were mutated in 20% of cases or more.

Recurrent somatic copy number alterations in pediatric BL.
Using single-nucleotide polymorphism arrays, we analyzed 72
pediatric BL cases for SCNAs via GISTIC 2.0 (Fig. 2 and Sup-
plementary Data 6). In all, 4% of all samples were identified as
polyploid according to the ASCAT analysis (Supplementary
Data 7). Chromosomes 1q (4%), 12p (4%), 12q (4%), and 13q
(4%) were mostly affected by arm level amplifications. Remark-
ably, deletions were detected less frequently in our analysis. For a
specific region that only contains the protein-coding gene GPC5
(chr13:91398619-92867237), we identified recurrent gains (8.4%)
or amplification (9.5%) in 18% of patients (Fig. 2). Investigating
this locus in detail revealed that the directly preceding miR17-92
cluster is also affected by these copy gains or amplifications
(MIR17HG at chr13:91347820-91354575, which was shown
before; cluster comprised of MIR17, MIR18A, MIR19A, MIR20A,
MIR19B1, and MIR92A1; Supplementary Data 7; Fig. 2)25. Like-
wise, four long intergenic non-protein-coding RNAs were affec-
ted (LINC01049, LINC00410, LINC00380, and LINC00379;
chr13:90493288-91211698). On chromosome 1, we identified a
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region that was deleted in 8% of all pediatric patient samples,
covering E2F2 and ID3. In addition, we detected deletions in 10%
of the pediatric cohort of BLK (8p23.1) and CLECL1 (12p13.31)
that are exclusively expressed in B cells.

Recurrent SNV/indels of ID3 are more frequent in the pedia-
tric cohort. ID3 was found to be mutated in 76% of all pediatric
cases, but only in 40% of adult samples (P= 2e-9, Supplementary
Data 8, Figs. 1, 3A), which implies a more important role for ID3
in the biology of BL/B-AL in children6,26. Similarly, SNV/indels
affecting the ID3-TCF3-CCND3 pathway were more frequent in
children than in adults (87% versus 63%, P= 2e-6; Supplemen-
tary Fig. 4A, B). Hotspot SNV/indels of ID3 were similar between
pediatric and adult BL/B-AL, mostly located within the HLH
domain (aa 42–85) and mainly characterized as missense, non-
sense, or frameshift SNV/indels (Supplementary Data 9 and
Supplementary Fig. 4C). The most frequent SNV/indel L64F in
ID3, was found in 21% of pediatric samples and in 12% of adult
cases, followed by P56S, identified in 10% of pediatric patients
and 4% of adults. Both are thought to act as loss-of-function
mutants and contribute to an increased expression of TCF3, as
well as subsequent CCND3 activation (Supplementary Fig. 4D,
E)6,10,26. CCND3 itself displayed a frameshift mutation hotspot
R271Pfs*76 detected in 15% of pediatric and 6% of adult cases.

BAF (SWI/SNF) complex components ARID1A/SMARCA4 are
recurrently mutated in pediatric Burkitt lymphoma. The genes
encoding ARID1A and SMARCA4 are two components of the
BAF complex responsible for gene regulation. They were found
to be recurrently mutated in both age groups. However, the
mutation rate was significantly higher in the pediatric cohort,
with 32% for ARID1A and 35% for SMARCA4, compared to the
adult cohort, with SNV/indels in 19% and 21%, respectively
(P= 0.008 for SMARCA4; P= 0.010 for ARID1A, Fig. 3A).
Overall, SMARCA4 SNV/indels were mostly missense SNV/
indels (84/89, 94%) and located in the DEAD-box (aa 750–942,
33%) or helicase (aa 1110–1194, 31%) region responsible for the
alteration of chromatin structure in the process of transcrip-
tional regulation. One SMARCA4 hotspot was identified with a
mutation frequency of 3% in the pediatric cohort (G1232S,
Supplementary Data 9). ARID1A showed predominantly non-
sense (pediatric: 40%, adult: 42%) and frameshift (40%, 31%)
SNV/indels, most of which were unique despite the identifica-
tion of D1850Gfs*4 and S11Afs*91 in four and two pediatric
samples, respectively. Only 3% of pediatric cases showed SNV/
indels in both genes, while 64% of the pediatric cohort had a
mutation in one of the genes. In the adult cohort, 41% of
samples were affected by mutually exclusive SNV/indels of
either ARID1A or SMARCA4 (P= 6e-5 for pediatric versus
adult, Supplementary Fig. 5A, B).
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Fig. 1 Mutational landscape of pediatric and adult BL. In total, 191 pediatric and 97 adult patient samples were analyzed. Mutations with ≥10% cohort
frequency are displayed. A In total, 14 recurrently mutated genes were found in the pediatric cohort, with ID3 being the most frequently altered gene. The
color code indicates mutation types or clinical data classes (see legend). B In the adult cohort, 17 recurrently mutated genes were detected. In particular,
YY1AP1 and BCL2 were unmutated or less frequently mutated in the pediatric cohort.
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DDX3X SNV/indels are predominantly identified in pediatric
Burkitt lymphoma. Dead box helicase 3 (DDX3X) encodes an
X-linked RNA helicase found in the nucleus as well as in the
cytoplasm and is responsible for transcriptional activation and
translation processes27. In total, 34% of all pediatric patient
samples harbored at least one mutation in this gene compared to
15% in the adult cohort (Fig. 3A, P= 7e-4). Most cases of the
complete cohort had a single SNV/indel in DDX3X, six were
double mutated and one case had a triple mutation. In total, 13
SNV/indels resulted in truncated proteins, 16 affected splice sites,
and 14 introduced frameshift mutations, ultimately resulting in
truncated DDX3X with missing functional DEAD-box or helicase
domains. Most of the SNV/indels were localized in the helicase
domain, which could potentially lead to a loss-of-function phe-
notype (Supplementary Fig. 6A).

GNA13 SNV/indels are more frequent in pediatric Burkitt
lymphoma. We found a higher frequency of GNA13 alterations in
the pediatric cohort compared to the adult cohort (Fig. 3A, 19%
versus 7%, P= 0.0055). Overall, 48% of all SNV/indels in the
pediatric cohort were nonsense SNV/indels with truncation
mutations early in the N-terminal region of the protein, including

eight SNV/indels stopping at Q27/28, which suggests loss-of-
function mutations (Q27*: 4%/6% mutation frequency, Supple-
mentary Data 9, Supplementary Fig. 6B). Mutual exclusivity of
GNA13 and P2RY8, as reported for DLBCL samples, could not be
confirmed in our total cohort as we found SNV/indels in both
genes28,29. While 29% of the pediatric patient samples showed
SNV/indels in GNA13 and/or P2RY8, the adult cohort had a
slightly lower mutation rate at 21% (P= 0.11, cf. Supplementary
Fig. 6C, D). The majority of P2RY8 SNV/indels were located
within the transmembrane domain. Loss of function due to
misfolded or mislocalized protein appears likely, which has pre-
viously been demonstrated for several point mutations (Supple-
mentary Fig. 6E)28.

YY1AP1 is predominantly mutated in adult BL. Recurrent
SNV/indels in YY1AP1 were found in 16% of cases in the adult
cohort. The mutation frequency was significantly higher com-
pared to the pediatric cohort (2%, P= 1e-5). YY1AP1 is
responsible for transcriptional activation, DNA repair and repli-
cation, and is linked to other cancer types30. We found three
hotspot SNV/indels with mutation frequencies ranging from 8-
12% directly adjacent (G23R, V24G, S25A) or in close proximity
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Fig. 2 Somatic copy number aberrations (SCNAs). Significant recurring SCNAs are displayed as blocks, based on 72 pediatric cases (55 BL and 17 B-AL
cases). Curves indicate residual q-values by GISTIC 2.0 after explaining broad aberrations (Supplementary Data 7). A Focal deletions affecting E2F2 and
ID3 were detected. B The most consistently observed SCNA contains GPC5 (q= 1.8e-9). Notably, the non-protein-coding MIR17HG cluster directly
precedes this gene and is also affected by these gains and amplifications (Supplementary Data 6). *: might represent benign (germline) copy number
variants.
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(S30R, 4%), which were exclusively in the adult cohort (Supple-
mentary Data 9). Interestingly, seven of these samples showed a
single mutation, while five cases had two or more SNV/indels
within these sites. Additional SNV/indels of the S30R site
occurred in four cases (Supplementary Data 9).

A second gene with alterations predominantly occurring in the
adult cohort was BCL2, which was found to be mutated in 11% of
the adult BL cohort, while there were no SNV/indels detected in
the pediatric cohort (Fig. 3A, P= 4e-6). Furthermore, the adult
cohort showed significantly higher mutation frequencies in PIM1
(7%), CREBBP (10%), CARD11 (5%), SOCS1 (6%), and DTX1
(5%, Fig. 3A). All of these were either undetected or detected at
only very low rates in the pediatric cohort. Taken together, our
data reveal a distinct difference between the mutational spectrum
in pediatric and adult Burkitt lymphoma with respect to
specific genes.

Cutoff-free mutation density analysis reveals the main transi-
tion of the mutational signature occurs between 25 and 40
years. In addition to the usual age cutoff for adults at 18 years, we
performed a cutoff-free mutation enrichment analysis (Fig. 3B).
Enrichment tests (see “Methods”) confirmed the significance of
age biases in genes determined by the Fisher tests above. How-
ever, gene mutation densities over age revealed that the biological
main transition of the mutational signature surprisingly occurs
later, between 25 and 40 years with a median of about 35 years in
our study. In particular, ID3 mutation density relative to children
falls to about 40% during this transition, and BCL2 mutations did
not occur before. In addition, a tendency for lower mutation
frequencies in some genes can be seen for children younger than
7 years, including SMARCA4, FBXO11, and PCBP1. In contrast,
several other genes including MYC and TP53 did not show any
age bias with respect to mutation density. The highest homo-
geneity of the mutation profile is visible in the age range of about
7–15 years.

Associations of distinct SNV/indels with clinical characteristics
of Burkitt lymphoma. Associations of genetic markers with

clinical data of pediatric Burkitt lymphoma are still scarce and are
urgently needed to identify ways for therapy improvement. To
this end, we systematically tested for such associations (Supple-
mentary Data. 8).

Only tendencies to slightly higher rates of SNV/indels in TP53
(P= 0.044) and SMARCA4 (P= 0.01) were observed in adoles-
cents of 10–18 years compared to younger children (Fig. 4A).
This is consistent with our mutation over age analysis suggesting
a homogeneous mutation signature from about 7–15 years of age.

Strikingly, DDX3X showed a very strong bias to male patients,
of 46%:4% incidence compared to females (Fig. 4B, P= 4e-10).
CCND3 SNV/indels were significantly more frequent in cases
with bone marrow (BM) involvement or Burkitt leukemia
(Fig. 4C, P= 0.003). In contrast, SNV/indels in GNA13 showed
an incidence of only 4%:32% in B-AL, i.e., was significantly less
frequent (Fig. 4D, P= 6e-7). Likewise, cases with SNV/indels in
GNA13 were less likely to have CNS involvement at diagnosis
(Fig. 4E, 5%:23%, P= 0.007).

As the information on clinical parameters for the adult patients
was limited, the analysis was restricted to differentiation by sex.
Again, a male predominance for SNV/indels in DDX3X was
observed, but only by 3%:22% and with a relatively high false
discovery rate due to lower case numbers (Fig. 4F, P= 0.006).

TP53 mutation status is associated with inferior outcome in
pediatric patients. The overall survival for pediatric patients with
SNV/indels in TP53 was significantly inferior to patients with
TP53 wild-type (Figs. 5A, 6A). To exclude effects from other
events (e.g., treatment-related deaths, etc.) further analyses
focused on the cumulative incidence of relapse. SNV/indels of
TP53 were significantly associated with a cumulative incidence of
progression or relapse of 25 ± 4%, compared to 6 ± 2% for BL
with TP53 wild-type status (Fig. 5B, P= 0.0002). Remarkably, a
higher number of TP53 SNV/indels per case was not correlated
with a higher cumulative incidence of relapse (Supplementary
Fig. 7A). The pediatric cohort comprised 40 patients, who
received rituximab in addition to chemotherapy according to the
NHL-BFM treatment protocol. The prognostic relevance of TP53
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Fig. 3 Age dependency of the mutation profile. A Comparison of mutation counts between age groups, using the usual age cutoff of 18 years for adult
patients. Mutations in ID3, DDX3X, SMARCA4, GNA13, ARID1A, and PTEN are significantly more frequent in pediatric patient samples, while BCL2, YY1AP1,
PIM1, CREBBP, CARD11, SOCS1, and DTX1 are significantly more frequently altered in the adult cohort (P values by one-sided exact Fisher tests, see
Supplementary Data 8 for exact P values and FDRs, *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001). B A cutoff-free enrichment analysis of mutation densities over age
largely confirms cutoff-based results but reveals that the main biological transition of the mutational profile occurs later between 25 and 40 years (P values
by one-sided enrichment analysis and permutation test with 1e5 permutations per tail).
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Fig. 4 Mutational frequencies associated with clinical characteristics. For the pediatric cohort, gene mutation rates were associated with the following
clinical characteristics: age dependency (A); sex (B); BM (bone marrow, C); B-AL vs. BL (D); and, central nervous system (CNS, E). F shows the sex-
specific differences in the adult cohort. FOXO1, BCL2, and CREBBP are predominantly found in the female cohort, while MYC, SMARCA4, and DDX3X are
overrepresented in the male cohort (P values by one-sided exact Fisher tests, see Supplementary Data 8 for all P values and FDRs, *P≤ 0.05, **P≤ 0.01,
***P≤ 0.001.
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Fig. 5 Mutations associated with survival and cumulative incidence of relapse in the pediatric cohort. A The overall survival for pediatric patients with
SNV/indels in TP53 was significantly inferior to patients with TP53 wild-type (Kaplan–Meier survival estimation, log-rank test). B TP53mut cases also
showed an increased risk of relapse (cumulative incidence, Gray’s test20, no adjustments for multiple comparisons in this descriptive context). CMutations
in PCBP1 show a tendency toward prognostic relevance. D Cases with lymphomas harboring MYC and PCBP1 mutations are characterized by an increased
risk of relapse. Gains or amplifications on 13q31 specific to GPC5/MIR17HG were significantly associated with a higher risk of relapse (E). The lowest
incidence of relapse (0/38 cases) was observed for the TP53wt sub-group and mutations in FBXO11/FOXO1 (F).
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SNV/indels could also be observed in the rituximab cohort
(Supplementary Fig. 7B).

The mutational status of PCBP1 tended to be associated with
an increased incidence of relapse as well (Fig. 5C, 26 ± 8% vs
14 ± 3%, P= 0.08). Interestingly, all patients with PCBP1
mutation who suffered relapse also showed MYC alterations
(Fig. 5D, 13 ± 3% vs 31 ± 9%, P= 0.018). As PCBP1 was shown to
interact with MYC and regulate its IRES-dependent expression, it
is possible that the truncation mutant Y183* of PCBP1 identified
in seven out of eight relapse cases might have an impact on MYC
expression (Fig. 6B and Supplementary Data 9)31,32.

Very interestingly, we discovered with respect to SCNAs that
the highly specific focal gains and amplifications of GPC5/
MIR17HG were also significantly associated with inferior survival
(Fig. 5E, P= 0.024). For cases with available SNP measurement,
6/13 cases showing this GPC5/MIR17HG lesion relapsed, whereas
only 10/59 relapsed without (53% versus 83% relapse-free follow-
up).

Of the 13 cases with GPC5/MIR17HG lesions, 11 also had a
TP53 mutation. Of these double-hit cases, 5/11 relapsed (55%
relapse-free follow-up). In contrast, of the 29 cases in our study
with TP53mutation but without GPC5/MIR17HG copy gain, only
7 relapsed (75% relapse-free follow-up). While these numbers
hint to a double-hit BL subtype with a very high relapse
probability, this hypothesis requires further validation with larger
case numbers.

Notably, we observed a good-risk sub-cohort of 38 samples (20%)
without relapses for patients with TP53wt status and additional
FOXO1 and/or FBXO11 mutations (P= 0.05, Figs. 5F, 6C, D).

Discussion
In general, the process of BL lymphomagenesis is thought to
depend on three different important pathways that are partially
interconnected: escape of apoptosis, deregulated PI3K signaling,
and changes in the cell cycle leading to proliferation and survival
of cancer cells33. In all cases of BL/B-AL pathogenesis, deregu-
lated MYC signaling is a main driver. Due to MYC mutation,
proliferation and apoptosis are uncoupled, consequently pro-
liferation is stimulated and apoptosis abrogated. Deregulation and
progression of cell cycle is augmented by several mutations, for
example by a mutation in CCND3, TCF3, ID3, and TP539,26,34,35.

Here, we analyzed a large cohort of pediatric BL, based on
high-quality DNA from fresh-frozen samples and an analysis
pipeline validated by comprehensive Sanger sequencing, to have a
calling sensitivity of 0.993 and specificity of 0.989. We system-
atically compared the mutational spectrum with adult BL as only
limited information on the differences/similarities to pediatric
cohorts are available22,36. In addition to the well-known MYC
driver we identified recurrent SNV/indels in the ID3-TCF3-
CCND3 pathway in 87% of cases as a potential second hit in our
pediatric cohort. This is in contrast to the adult cohort, in which
alterations of the ID3-TCF3-CCND3 pathway were identified in
only 63%. However, SNV/indels of BCL2 or YY1AP1 were nearly
exclusively identified in adult BL cases. Our cutoff-free analysis of
the mutation landscape over age suggests that the biological
transition of mutational profile occurs between 25 and 40 years,
i.e., later than the typically assumed adult threshold.

The question of why more male patients are affected by BL
remains unanswered. Therefore, we analyzed gender-specific
alterations in both cohorts and, strikingly, found a very strong
bias of DDX3X mutations towards male individuals, which was
very recently confirmed by Gong and colleagues37. In total, 64%
of all SNV/indels identified in the pediatric relapse cohort were
nonsense or frameshift variants of DDX3X, thought to decrease
the expression level of DDX3X.

ARID1A and SMARCA4, two subunits of the SWI/SNF com-
plex, were frequently targeted by mutations in pediatric BL
samples. For ARID1A, a functional compensation by ARID1B
and ARID2 has recently been shown38. Hence, it would be rea-
sonable to analyze these genes or other members of this complex
in future studies to determine if they can indeed functionally
compensate for the loss of function of ARID1A, as suggested by
our mutational analysis. Interestingly, SNV/indels of genes
encoding SWI/SNF components result in increased activity of the
histone methyltransferase EZH2, which can be targeted by EZH2
inhibitors such as tazemetostat. Tazemetostat shows promising
activity in aggressive B-cell lymphoma, such as r/r GCB-type
DLBCL, especially when EZH2 is mutated39,40. In addition, loss
of the SWI/SNF subunit ARID1A is further reported to be
associated with increased sensitivity to PI3K/Akt inhibition in
cancer. However, the role of this potential crosstalk mechanism in
lymphoma is as yet unclear41,42.

In DLBCL, SNV/indels of FOXO1 or FBXO11 are linked to a
higher relapse rate43,44. Notably, the pediatric BL sub-group with
the most favorable prognosis in this study were patients with
SNV/indels in FBXO11 or FOXO1 on a TP53wt background. The
T24I mutation of FOXO1 identified in pediatric patient samples
may lead to an escape of the BCR/PI3K signaling phosphorylation
site required for nuclear localization and subsequent expression
of target genes45. As most SNV/indels are in close proximity to
this phosphorylation site, they may have similar effects on the
phosphorylation state or transcriptional activity of FOXO146.
Taken together, it seems possible that FBXO11, as the direct
interaction partner of TP53 responsible for its neddylation and
subsequent degradation, and FOXO1 influence survival and
proliferation47. The least favorable prognosis in this study with a
relapse-free follow-up of only 55% was observed for cases double-
hit by a TP53 mutation and simultaneous copy gain or amplifi-
cation of GPC5/MIR17HG. Interestingly, increased expression of
MIR17HG has already been assigned to inferior outcome in BL48.
Mechanistically, MIR17HG overexpression leads to the down-
regulation of PTEN, ultimately resulting in increased PI3K/Akt
signaling49,50.

A key finding of this study is that the prognostic relevance of
recurrent SNV/indels affecting TP53 is in line with our previous
clonal evolution data, which point to missing TP53wt protein
expression levels in lymphoma samples11. The relevance of this
finding is underlined by the findings from refs. 35,51, which were
published during the revision of this study36,51. Both studies show
the negative impact of TP53 mutations on survival. The results of
these independent studies validate each other and pave the way
for rapid translation into upcoming clinical trials by targeting
malfunctioning TP53 directly. One strategy might be the inhibi-
tion of upstream regulators MDM2 and MDM4, to decrease the
ubiquitination and subsequent proteasomal degradation of
TP53wt. In addition, eprenetapopt, which was recently positively
evaluated in a study of patients with MDS, could be a promising
drug to restore the TP53wt level52. However, the impact of these
drugs on mutated TP53 in BL must be verified in vitro and
in vivo. In summary, restoring the TP53wt level could also
decrease MYC expression and initiation of apoptosis.

Taken together, we provide a detailed comparison of BL in
different age groups that will contribute to a sub-group-specific
understanding of BL biology and future treatment options.

Methods
Samples and cell lines. This study complies with all relevant ethical regulations
and was approved by the ethics committee of the medical association Westfalen-
Lippe, Germany, and the University of Muenster, Germany (pediatric cohort:
2015-495-f-S, adult cohort: 2017-534-f-S). In total, fresh-frozen samples of 298
mature B-cell lymphoma for 191 pediatric BL patients, 97 adult BL patients, and 10
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BL cell lines were evaluated (Supplementary Fig. 8). For 86 of the 191 sequenced
pediatric BL or Burkitt leukemia (B-AL) cases, additional paired fresh-frozen
germline samples were available. All 191 pediatric cases were registered in the
NHL-BFM data center and received confirmation of diagnosis by central reference
laboratories of the NHL-BFM study group. Pediatric tumor samples were reviewed
by expert hematopathologists and classified according to the WHO 2016 guide-
lines. They were treated according to the consecutive uniform protocols NHL-
BFM95, B-NHL BFM04 or NHL-BFM Registry 201253. Clinical data for pediatric
patients were obtained from the NHL-BFM study center in Münster, Germany.
Molecular features of 18 of the 191 pediatric cases have been described already in
previous publications of the ICGC MMML-Seq consortium8,11. For the analyses of
adult BL, samples were contributed by experienced laboratories for 97 adult BL
patients. Written informed consent was obtained from all patients and/or their
legal guardians. Patients did not receive any financial compensation for
participation.

Cell lines Blue-1, Daudi, Dogkit, Gumbus, Jijoye, Raji, and Ramos were
obtained from Louis Staudt (National Cancer Institute, Bethesda). Namalwa and
BL-60 were obtained from Stephan Mathas (Max Delbrueck Center, Berlin). BL-70
was obtained from the DSMZ, Braunschweig, Germany (catalog number
ACC 233).

Tissue handling. DNA was extracted from fresh-frozen tumor tissue, bone mar-
row, or effusion samples using the DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany). For the isolation of corresponding germline DNA, peripheral blood or
bone marrow without blast infiltration was used.

Targeted deep sequencing and data analysis. Targeted deep sequencing was
performed for 134 genes previously identified to be recurrently mutated in BL/B-
AL (Supplementary Table 3). Previous publications and publicly available data
from the International Cancer Genome Consortium (www.ICGC.org) were
screened for genes with recurring genomic alterations (≥ 2 SNV/indels in the same
gene). A Nextera rapid capture custom kit was designed using the Illumina
DesignStudio. For every gene, all regions in which previous SNV/indels had been
described were covered. For 40 of these genes, the entire coding sequence was
covered because previously described alterations were scattered over the entire
coding sequence or they were exceptionally frequently affected by SNV/indels
according to previous reports. Exact positions of all probes used for enrichment are
listed in Supplemental Data 2. Library preparation was performed according to
manufacturer recommendations (Illumina, San Diego, USA). Qubit dsDNA assay
and Bioanalyzer High Sensitivity DNA chips were used for DNA quantification and
library validation. Targeted deep sequencing was performed on a MiSeq-Sequencer
using MiSeq Reagent Kit v2 (300 cycle) with 24 samples per run.

An overview of our analysis pipeline with integrated methods and utilized
external databases is shown in Supplementary Fig. 1; key steps are described next.
All somatic mutations are provided in Supplementary Data 2.

Sequence alignment. Measured sequence reads were preprocessed and quality-
controlled using cutadapt 1.16, Trim Galore! 0.5.0 and FastQC 0.11.554–56.
Trimmed reads were aligned against the current human reference genome from the
Genome Reference Consortium (GRCh38) using HISAT2 v2.0.457,58.

Variant discovery, quality control on read and sample level, final cohort sizes.
For variant discovery, we utilized the Genome Analysis Toolkit v4.0.6.059 and
Mutect260. Only reads aligned by HISAT2 that also passed GATK and Mutect
quality control filters were utilized for subsequent variant discovery.

Basic variant filtering. To build a panel of normal variants (PON)61, we per-
formed variant discovery with the same experimental and analytical pipeline for all
normal controls. A variant was included in the PON if Mutect determined it as
significant in at least two independent subjects. This PON was subsequently used to
filter germline variants and potential pipeline-specific artefacts when applying
Mutect. For tumor samples for which DNA sequencing of paired normal cell
samples was available, we additionally utilized matched normals for a more specific
paired statistical variant analysis by Mutect. Otherwise, we used the unpaired
analysis mode. In addition, we used the gnomAD database as large population
germline resource based on the Exome Aggregation Consortium ExAC62 for basic
filtering.

Variant annotation and advanced filtering. Next, we applied an optimized
multistage filter hierarchy to reach maximal specificity of somatic mutation calls.
All filter steps in the applied order are listed in Supplementary Data 3. For this
hierarchy, we annotated discovered variants with their transcript and protein level
consequences using TransVar 2.4.063 and the NCBI RefSeq gene models64. In case
of multiple RefSeq transcripts per gene, we annotated each variant with the one
leading to the strongest possible biological consequence on protein level according
to TransVar. For mutation overview plots, we selected the first principal transcript
of the respective gene according to the APPRIS database65. In addition, we
annotated variants with confirmed somatic mutations according to the Catalogue

Of Somatic Mutations In Cancer (COSMIC v85)61, the NCBI database of common
human variants (>=5%) in any of the five large populations from dbSNP build
15166, and NCBI ClinVar67 (version 2018-04) using vcfanno v0.3.068.

Variants called somatic. Based on variant statistics from Mutect, GATK, and all
annotations, our filter hierarchy called 0.25% of all variants in this targeted panel as
somatic mutations for the pediatric sub-cohort, i.e., 7.32 on average per sample. For
adult BL patients, 0.33% were called somatic (8.49 per sample) whereas for cell
lines, 0.52% were called somatic (13.29 per sample). See Supplementary Data 3 for
detailed mutation counts and percentages remaining after each filtering step.

Identification of cancer genes by mutation abundance. To test if genes depicted
in our oncoplots (with >=10% cohort mutation frequency, Fig. 1a, b) were posi-
tively selected by mutation processes, we applied the dNdScv tool to all somatic
mutations (including synonymous ones)24. All oncoplot genes except for TCF3 had
a dN/dS ratio significantly greater than 1 (qdNdS <=0.1), suggesting an excess of
coding mutations (Supplementary Data 5). The likely reason for the negative result
for TCF3 is alternative transcripts. We discovered 40 missense mutations for
NM_001136139 [https://www.ncbi.nlm.nih.gov/nuccore/NM_001136139] (TCF3
transcript variant 2, protein variant NP_001129611 [https://www.ncbi.nlm.nih.gov/
protein/NP_001129611]), whereas only 2/40 were counted by dNdScv, as 38/40 are
intronic in context of the default transcript NM_003200 [https://www.ncbi.nlm.
nih.gov/nuccore/NM_003200].

Additional tools and software utilized for sequencing analysis. For various
analysis tasks in the sequencing pipeline, we used bedtools69, the Integrated
Genomics Viewer70, the Picard toolkit71, and SAMtools72. For analysis pipeline
orchestration including parallel remote analysis jobs on high-performance clusters
as well as for most visualizations including oncoplots, we used MATLAB® (versions
R2018a-R2020a, The MathWorks® Inc., Natick, Massachusetts, USA). R (version
3.6.3, R Foundation for Statistical Computing, Vienna, Austria), Python (version
2.7-3.X, Python Software Foundation, Wilmington, Delaware, USA), and GNU
parallel were used for running various tools or for local parallelization73. Needle
plots of mutation profiles were created using ProteinPaint74. All used tools are
summarized in Supplementary Table 4.

Validation by Sanger sequencing. Validation by Sanger sequencing was per-
formed for a subset of the 191 pediatric patient samples and cell lines; the genes
ID3, CCND3, and TCF3 were sequenced in 72/191 pediatric patient samples6. TP53
was sequenced in 57 cases, FOXO1 and FBXO11 in 25, PCBP1 in 13, and P2RY8 in
12/191 cases (for selected primers, see Supplementary Table 6). Sequence analysis
was conducted by LGC genomics GmbH, Germany.

We performed a 1:1 comparison with somatic SNV/indels discovered by
targeted DNA sequencing. Before validation, 284 variants were called by Sanger
sequencing and/or by the DNA-sequencing pipeline in regions covered by Sanger
sequencing. 243/284 were matches (identical genomic HGVS from both pipelines).
An additional 10 were matches after manual review (e.g., HGVS annotation
ambiguities). In all, 26/284 were discovered by both pipelines, but filtered by the
DNA-seq pipeline; after manual review, the DNA-sequencing filtering was
confirmed in each case. For completeness, in the same regions covered by Sanger
sequencing, additional 272 variants were discovered by DNA sequencing, but not
called due to the filter hierarchy. Notably, two variants discovered by Sanger
sequencing were not rediscovered by targeted DNA sequencing (hard false
negatives before filtering). This corresponds to a false negative rate of 0.007 and a
sensitivity of 0.993. One missing aberration was a mutation in the cell line
Namalwa at 1:g.23559108_23559207delinsCTTTGATGCAACCATGGGCAAG
TCACTTGTCCCTCTCTGGCCTCAGTTTCCCTAAACCGAGTGAGTGGCA
ATTTTTAAAAACGTCTGCCAACTCCAGGAC, which might be too long for the
sequencing technology or Mutect to recognize. The second aberration from an
initial tumor sample was a likewise length outlier: 1:g.23559159_23559248delCAG
GGGCTGGCTCGGCCAGGACTACCTGCAGGTCGAGAATGTAGTCGATGAC
GCGCTGTAGGATTTCCACCTGGCTAAGCTGAGTGCCTC. Finally, three of
the 284 somatic SNV/indels called by targeted DNA sequencing were not part of
the Sanger validation set. This corresponds to a false positive rate of 0.011 and a
specificity of 0.989 for DNA sequencing. However, further manual investigation via
visualization in IGV showed that all three were present in the raw targeted
sequencing data70. For a detailed run-down of this validation of our targeted
sequencing measurement and analysis pipeline, including detailed filter reasons for
each variant if any, see Supplementary Data 4.

Analysis of somatic copy number aberrations (SCNAs). Single-nucleotide
polymorphism arrays were measured by LIFE & BRAIN genomics, Germany, using
Human OmniExpress v1.3 (Illumina). Sufficient material for SNP arrays was
available for 72 pediatric lymphoma samples and 21 matched germline samples.
Raw data were preprocessed according to manufacturer instructions (Illumina
Genome Studio v2.0.3)75. For allele-specific copy number segmentation at the
sample level, we utilized ASCAT v2.4.3. ASCAT also estimated sample ploidy and
purity (i.e., the cell fraction originating from aberrant tumor cells, as opposed to
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non-aberrant bystander cells). Recurrent SCNAs at the cohort level were identified
and statistically evaluated using GISTIC 2.076.

Mutation clonality by integrative analysis of targeted sequencing and SNP
results. To identify potential early mutations in the pathogenesis, we estimated
mutation clonality. First, we integrated SNP array results (tumor purity, ploidy, and
copy numbers) with variant allele frequencies from the targeted sequencing data to
estimate the cancer cell fractions (CCF) that harbor-specific mutations. We utilized
the formula:77

f CCF :¼
f VAF
f purity

� 1� f purity

� �
� nCN;normal þ f purity � nCN;tumor

� �
ð1Þ

where f VAF denotes variant allele frequency, f purity denotes tumor purity,
nCN;normal ¼ 2 assuming diploid normal bystander cells, and nCN;tumor denotes
tumor cell copy numbers as estimated by ASCAT. Then, we defined clonal variants
using the established threshold of f CCF ≥ 0:9

78. Estimated Cancer Cell Fractions can
be found together with all called mutations in Supplementary Data 2 (see column
group Variant def./call quality/details for tumor).

Statistics and reproducibility. No statistical method was used to predetermine
sample size; all samples of matching diagnosis with enough available sample
material were selected for this study. The experiments were not randomized.
Several samples were excluded before the final analysis for QC reasons: five samples
from the adult cohort due to <10% of the median mapped read count per sample,
six samples from the adult cohort due to potentially mismatching disease entity
after pathology revision, one pediatric sample due to cell material issues (very low
allele frequencies even at SNP loci), three pediatric samples due to potentially
wrong channel assignment or mismatching (tumor, normal) pairs, and one
pediatric sample due to NHL as second malignancy. The investigators were not
blinded to allocation during experiments and outcome assessment.

For binary comparisons between sub cohorts, e.g., pediatric versus adult, and if
not otherwise specified, P values were calculated with one-tailed Fisher exact tests.
A significance threshold of α= 0.05 was used for all Fisher exact tests (bar graphs).
Asterisks indicate significance of single tests as follows: *P ≤ 0.05, **P ≤ 0.01,
***P ≤ 0.001. In particular, we tested for associations in gene mutation status with
age, comparing pediatric (≤18 years) versus adult (>18) patients. Likewise, we
tested for significant differences between female and male patients within each age
group, as well as the following clinically defined sub cohorts within pediatric
patients: <10 years of age versus ≥10 years; with CNS involvement versus without;
with bone marrow involvement versus without; and B-AL versus BL. For each
comparison, we tested all genes with an overall mutation frequency of at least 2%.
False discovery rates (FDR) for sub-cohort comparisons were computed using the
Benjamini and Hochberg method over the set of tested hypotheses (genes with at
least 2% cohort mutation frequency; cf. Supplementary Data 8)79. For significance,
we used the prescribed error threshold of q= 0.1.

Survival analysis. The probability of EFS and overall survival (OS) was estimated
using the Kaplan–Meier method, and compared between subgroups using log-rank
tests. EFS was defined as the time from diagnosis to the first event, including
relapse, death by any cause, or second malignancy. OS was defined as the time from
diagnosis to death by any cause. Cumulative incidence functions for relapse were
constructed using the Kalbfleisch and Prentice method and compared with Gray’s
test20. For survival data, we performed explorative hypothesis generation by testing
various combinations of discovered genetic lesions. Here, no adjustments were
made for multiple comparisons. Hence, the resulting significant associations are
descriptive, but we consider validation tests for them worthwhile in future inde-
pendent BL cohorts. Death in remission and secondary malignancy were con-
sidered as competing events. All cumulative incidence estimates are given together
with their corresponding standard error (±SE).

Cutoff-free mutations-over-age analysis. To analyze the age profile of mutations,
we estimated mutation density with the Statistics and Machine Learning Toolbox
(Matlab R2020a, ksdensity command). To account for artefacts at interval borders, we
used the data reflection method. To assess the statistical significance of mutation
enrichment at either old or young ages in a cutoff-free way, we applied one-sided
enrichment analysis80 with 1e5 permutations per tail, separately for each gene by
ranking patients by their age and counting mutated cases as signature members.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The targeted sequencing data EGAD00001007708 in FASTQ.gz format and SNP data
EGAD00010002137 in IDAT format generated in this study have been deposited in the
European Genome-phenome Archive (EGA) under study accession EGAS00001005270.
These data are available under restricted access for German data privacy laws; access can

be obtained via the associated data access committee EGAC00001002105. EGA access
will be granted after a data access treaty has been agreed upon with the law department of
the University Hospital Muenster. Restrictions include limiting access to those people
named in the agreement for the duration of the named project. Typically, access for
universities or public research institutions is granted within one month provided there
are no required amendments. The processed somatic mutations and copy number
aberrations, as well as clinical metadata, are provided in respective Supplementary Data
items. The following public data sources were used in this study: The human reference
genome from the Genome Reference Consortium (GRCh38) in its pre-indexed form for
alignment with HISAT2 [http://daehwankimlab.github.io/hisat2/download/#h-sapiens],
the Catalogue Of Somatic Mutations In Cancer (COSMIC, v85) [https://cancer.sanger.ac.
uk/cosmic], the NCBI database of common human variants (based on dbSNP build 151,
version 2018-04) [https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf]),
NCBI ClinVar (version 2018-04) [https://www.ncbi.nlm.nih.gov/clinvar/], NCBI RefSeq
gene models via TransVar (file name hg38.refseq.gff.gz.transvardb, downloaded
20190227), gnomAD/ExAC germline variants as provided in the file af-only-
gnomad.hg38.ensemble.vcf.gz of the GATK resource bundle originally accessed via
ftp.broadinstitute.org/bundle, but since moved by the Broad Institute to Google cloud
bucket; see https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-
bundle for access information, and the principal splice isoforms database (APPRIS,
version 2020-01-22) [https://appris.bioinfo.cnio.es/#/downloads]. All remaining data are
available within the Article Supplementary Information and Supplementary Datasets.

Code availability
We used the following software programs and packages (in lexical order): ASCAT 2.4.3
[https://github.com/Crick-CancerGenomics/ascat], bedtools 2.27.1 [https://bedtools.
readthedocs.io], cutadapt 1.16 [https://cutadapt.readthedocs.io/en/stable/], dNdScv 0.1.0
(20211202) [https://github.com/im3sanger/dndscv], FastQC 0.11.5 [http://www.
bioinformatics.babraham.ac.uk/projects/fastqc], Genome Analysis Toolkit (GATK)/
Mutect 4.0.6.0 [https://github.com/broadinstitute/gatk/releases], GISTIC 2.0 [https://
github.com/broadinstitute/gistic2], GNU parallel 20161222 [https://www.gnu.org/
software/parallel/], HISAT2 2.0.4 [http://daehwankimlab.github.io/hisat2/download],
Illumina Genome Studio 2.0.3 [https://sapac.illumina.com/techniques/microarrays/
array-data-analysis-experimental-design/genomestudio.html], Integrated Genomics
Viewer 2.5.0-2.8.0 [http://software.broadinstitute.org/software/igv/download],
MathWorks MATLAB R2018a-R2020a [https://www.mathworks.com], picard 20180706
[https://broadinstitute.github.io/picard/], Protein Paint web app [https://pecan.stjude.
cloud/proteinpaint], Python 2.7 and 3.6 [https://www.python.org], R 3.6.3 [https://www.
r-project.org], samtools 1.1 [http://www.htslib.org], TransVar 2.4.0 (20180701) [https://
github.com/zwdzwd/transvar], Trim Galore! 0.5.0 [https://github.com/FelixKrueger/
TrimGalore], and vcfanno 0.2.9 [https://github.com/brentp/vcfanno/releases]. See
Supplementary Fig 1 for a schematic overview of main analyses. Detailed descriptions of
our analyses are provided in “Methods” and Supplementary Information. Supplementary
Table 5 provides additional details on tool availabilities.
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