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Global stable-isotope tracing metabolomics reveals
system-wide metabolic alternations in aging
Drosophila
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System-wide metabolic homeostasis is crucial for maintaining physiological functions of living

organisms. Stable-isotope tracing metabolomics allows to unravel metabolic activity quan-

titatively by measuring the isotopically labeled metabolites, but has been largely restricted by

coverage. Delineating system-wide metabolic homeostasis at the whole-organism level

remains challenging. Here, we develop a global isotope tracing metabolomics technology to

measure labeled metabolites with a metabolome-wide coverage. Using Drosophila as an aging

model organism, we probe the in vivo tracing kinetics with quantitative information on

labeling patterns, extents and rates on a metabolome-wide scale. We curate a system-wide

metabolic network to characterize metabolic homeostasis and disclose a system-wide loss of

metabolic coordinations that impacts both intra- and inter-tissue metabolic homeostasis

significantly during Drosophila aging. Importantly, we reveal an unappreciated metabolic

diversion from glycolysis to serine metabolism and purine metabolism as Drosophila aging.

The developed technology facilitates a system-level understanding of metabolic regulation in

living organisms.
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System-wide metabolic homeostasis and coordination are of
central importance to maintaining physiological functions
for living organisms1,2. Disturbance to metabolic home-

ostasis causes cellular malfunctions and several major human
diseases3,4. In the past two decades, untargeted metabolomics has
been developed to measure differences in metabolite concentra-
tions between biological conditions, aiming to provide system-
wide characterizations of metabolic homeostasis in living
systems5–7. However, changes in metabolite concentrations do
not readily imply alterations in metabolic pathway activities, since
metabolite levels measured are the converged results of both
production and consumption from multiple metabolic
reactions8–12. Alternatively, stable-isotope tracing-based meta-
bolomics administers isotopic tracers such as 13C-glucose and
13C-glutamine into living systems, and tracks the isotopically
labeled metabolite products generated by cellular metabolism9,11.
By quantifying labeling patterns and fractions of the labeled
metabolites, this technology enables unraveling metabolic activity
at both the cellular and organismal levels13–18. Yet, many isotope
tracing studies were largely restricted by targeting only a limited
number of metabolites in specific pathways, and it is difficult to
delineate the system-wide metabolic homeostasis with a high
metabolite coverage11,19. Recently, combination of untargeted
metabolomics and isotope tracing analysis, such as X13CMS20,21,
geoRge22, and others23–29, has been developed to comprehen-
sively characterize isotope labeled metabolites in an untargeted
manner, and provides possibilities to discover new metabolic
transformations and pathways. Owing to the complexity of iso-
tope labeling metabolomics data, however, untargeted isotope
tracing metabolomics usually has relatively low coverages in the
detection of labeled metabolites and lacks quantitative informa-
tion such as labeling rates on a large scale. Global tracking of the
isotopically labeled metabolites remains the bottleneck to
delineate metabolic activities with a metabolome-wide coverage.
More challenging is to calculate absolute fluxes for hundreds of
metabolites in a pathways-intertwined metabolic network,
wherein complicated mathematical frameworks and algorithms
are usually required. These challenges are particularly prominent
in mammalian systems,which impedes a large-scale quantitative
investigation of system-wide metabolic homeostasis10,11,19.

Disruption of metabolic homeostasis has been recognized as a
hallmark of aging4,30–32. Increasing studies have demonstrated
the age-dependent and system-wide dysregulation in metabolic
pathways in different organisms. Various metabolic interventions
have been proven to be beneficial to extend lifespans in different
model organisms33–36. Among them, Drosophila melanogaster
(hereafter Drosophila) is an important model organism for
metabolism research37,38, and has emerged as a model system to
investigate metabolic alternations and organismal homeostasis
during aging34,39,40. For instance, in Drosophila, levels of inter-
mediate metabolites in the glycolysis pathway progressively
declined with aging, and boosting glycolysis was demonstrated to
extend lifespan41. Instead, S-adenosylmethionine (SAM) levels
are increased during Drosophila aging, while enhancing SAM
catabolism extends the lifespan35. Despite increasing aging-
related metabolites and metabolic pathways are uncovered,
these studies were independently investigated, and the underlying
mechanism by which coordination of metabolic activities impacts
aging is not elucidated due to the lack of appropriate technolo-
gies. In addition, quantitative investigations of metabolic activities
during aging on a metabolome-wide coverage has not been
achieved yet, which hinders the delineation of the complex milieu
of metabolic coordination and the system-level understanding of
metabolic regulation of aging and longevity.

In this study, we first developed an untargeted isotope tracing
metabolomics technology, namely MetTracer, to trace the stable-

isotope labeled metabolites globally. This technology leveraged
the advantages of untargeted metabolomics and targeted extrac-
tion to track the isotopically labeled metabolites in living
organisms with a metabolome-wide coverage. MetTracer enabled
to simultaneously quantify the labeling patterns and extents of
several hundreds of metabolites in one experiment. Performances
of MetTracer were benchmarked and validated with other exist-
ing tools. We further employed Drosophila as a model organism
for untargeted in vivo isotope tracing metabolomics and quan-
tified the in vivo labeling rates and extents of hundreds of labeled
metabolites. We demonstrated that MetTracer supported quan-
titative comparisons of metabolite labeling extents across differ-
ent conditions and discovered a system-wide loss of metabolic
coordination that impacted both intra- and inter-tissue metabolic
homeostasis significantly in aging Drosophila. In particular, we
discovered a metabolic rewiring model during aging, wherein
glucose was metabolically channeled to serine metabolism and
purine metabolism from glycolysis. In summary, global in vivo
isotope tracing metabolomics enabled delineation of metabolic
activities with a metabolome-wide coverage and unraveled the
system-wide loss of metabolic homeostasis during aging.

Results
Global stable-isotope tracing metabolomics. Stable-isotope tra-
cing technology is significantly restricted by the analysis coverage
of labeled metabolites. In this work, we developed a global stable-
isotope tracing metabolomics workflow, namely MetTracer, to
trace the isotopically labeled metabolites in a metabolome-wide
coverage (Fig. 1a). MetTracer leveraged high coverage of untar-
geted metabolomics and high accuracy of targeted extraction. In
brief, both unlabeled and labeled samples were analyzed using
liquid chromatography–mass spectrometry (LC–MS)-based
untargeted metabolomics. Metabolite annotation was first per-
formed in unlabeled samples by matching experimental
MS2 spectra against the standard spectral libraries and/or using
bioinformatics tools (Supplementary Data 1–3). With annotated
metabolites, MetTracer performed targeted extraction of all
possible isotopologues with high accuracy through three major
steps (Fig. 1b and Supplementary Fig. 1): (1) generation of a
targeted list for isotopologues; (2) extraction of isotopologue
peaks, and (3) isotopologue correction and quantification.

As a proof-of-concept, we analyzed 293T cell samples labeled
with a mixture of tracers ([U-13C]-glucose, [U-13C]-glutamine
and [U-13C]-acetate) using a time-of-flight (TOF) mass spectro-
meter. Specifically, 1347 metabolites were putatively annotated
(215, 219, and 913 metabolites with MSI levels 1, 2, and 3,
respectively). Then, the theoretical m/z values for 12,020 possible
13C-isotopologues (M0-Mn) were calculated from the formulas of
1347 metabolites. MetTracer performed targeted extraction of all
possible isotopologues and successfully extracted a total of 10,663
isotopologues (88.7%) from 1203 metabolites (89.3%) (Supple-
mentary Fig. 2a, b), which ensured the high-coverage tracking of
labeled metabolites. Finally, MetTracer determined the labeled
fraction for each isotopologue with the criterion of labeled
fraction larger than 2% in >50% samples. As a result, MetTracer
identified a total of 830 13C-labeled metabolites and 1725
13C-labeled isotopologues, which covered 66 metabolic pathways
(Fig. 1c, d). Further benchmark analyses demonstrated that
MetTracer improved the coverage of the labeled metabolites
substantially compared to other tools such as X13CMS, El-
MAVEN, and geoRge (Fig. 1d, Supplementary Table 1, Supple-
mentary Data 4). Next, we evaluated the quantification accuracy
for the 830 labeled metabolites identified by MetTracer. We
manually integrated peak areas of the 7426 isotopologues from
the 830 labeled metabolites using Skyline, and compared the
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labeling extents (LE; see Methods) with those calculated by
MetTracer. Results showed that 82% of metabolites had good
consistency between MetTracer and manual analysis using
Skyline (relative errors ≤ 30%; Fig. 1e and Supplementary Data 5).
We also demonstrated a good quantitative consistency of the
labeled isotopologue abundances between MetTracer and Skyline
(Supplementary Fig. 2c). Examples were given for the labeled
fractions of metabolites analyzed by MetTracer and Skyline in

Supplementary Fig. 2d. To investigate the extraction reproduci-
bility, we calculated the relative standard variations (RSDs) for
the labeled metabolites and isotopologues in the stable-isotope
labeled 293T cell samples. Median RSDs of labeled fractions for
metabolites and isotopologues obtained using MetTracer were
4.9% and 23.1%, respectively, which were close to those from
geoRge and X13CMS. As a comparison, El-MAVEN resulted in
significantly higher median RSD values of 77.6% and 121.7% for

Fig. 1 Global stable-isotope tracing metabolomics. a Schematic illustration of MetTracer workflow. b Detailed data processing workflow in MetTracer.
c Distributions of the 830 labeled metabolites in 293T cells in the metabolic network (left panel) and pathways (right panel). Red dots in the left panel
represent the labeled metabolites. The circle size in the right panel represents the ratio of the number of labeled metabolites to the number of metabolites
in a pathway. d Numbers of labeled metabolites and isotopologues using MetTracer and other indicated software tools. The Venn diagram shows the
overlap of the labeled metabolites using MetTracer and other software. e Distribution of relative errors of labeling extent values between MetTracer and
manual analysis using Skyline (n= 830 metabolites). f Relative standard deviation (RSD) distributions of metabolites and isotopologues obtained from
MetTracer and other software tools (n= 6 technical replicates of 293T cell samples). The black dots represent median RSD. g False-positive rates of the
labeled metabolites and isotopologues obtained from MetTracer and El-MAVEN. Source data are provided as a Source Data file.
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the labeled metabolites and isotopologues, respectively (Fig. 1f).
Further, we evaluated the false-positive rate (FPR) of MetTracer.
MetTracer outperformed El-MAVEN in FPR performance, with
the FPR values of 5.2% and 3.6% for the labeled metabolites and
isotopologues, respectively (Fig. 1g and Supplementary Table 2).
In addtion, we have also provided several metabolite examples to
demonstrate the unique technical advantages of MetTracer
(Supplementary Figs. 3–6).

To demonstrate the broad application of MetTracer in different
mass spectrometers, we also analyzed the stable-isotope labeled
293T cell samples using an Orbitrap mass spectrometer. Herein, a
total of 1035 metabolites were annotated (347, 144, and 544
metabolites with MSI levels 1, 2, and 3, respectively), and 14,132
corresponding isotopologues were generated in 293T cell samples.
With a total of 896 metabolites (86.6%) and 11,844 isotopologues
(83.8%) being extracted, MetTracer identified 635 13C-labeled
metabolites and 1433 13C-labeled isotopologues, which covered
69 metabolic pathways successfully (Supplementary Fig. 7a, d).
Also, we demonstrated the technical advancements of MetTracer
including the high coverage, high quantification accuracy and
reproducibility, and low false-positive rate for analyzing the
stable-isotope labeled 293T cell dataset from the Orbitrap
mass spectrometer (Supplementary Fig. 7e–h, Supplementary
Table 3, Supplementary Data 6). Altogether, MetTracer is a high-
coverage isotope tracing metabolomics technology enabling
global tracking of stable-isotope labeled metabolites with high
reproducibility and quantification accuracy, as well as low false-
positive rate.

Quantitative in vivo stable-isotope tracing of the metabolome
in Drosophila. Next, we used Drosophila as a model organism to
demonstrate the in vivo application of global isotope tracing
metabolomics, and applied MetTracer to quantify the labeling
extents and rates of metabolites in Drosophila. We conducted the
continuous stable-isotope labeling in Drosophila using [U-13C]-
glucose and collected head tissues at six time intervals for global
isotope tracing metabolomics. In head tissues, a total of 745
metabolites were annotated, and 390 labeled metabolites from 59
metabolic pathways were tracked by MetTracer (Fig. 2a and
Supplementary Data 7). We also validated the high coverage, high
quantification reproducibility, and low false-positive rate for
labeled metabolites in Drosophila labeling experiment using
MetTracer (Supplementary Fig. 8 and Supplementary Table 4).
Then, labeling extents for each metabolite at all time points were
calculated, and were subjected to hierarchical cluster analysis
(HCA; Fig. 2b). Three cluster groups were generated, with 201
metabolites being categorized in cluster 1, 94 metabolites in
cluster 2, and 95 metabolites in cluster 3. We next analyzed the
labeled metabolites in individual clusters by the non-linear fitting
of labeling extents and labeling times (Fig. 2c). The fastest
labeling cluster 1 reached the isotopic steady state within 3–6 h.
Pathway-enrichment analysis revealed that labeled metabolites in
cluster 1 were mainly in fructose and mannose metabolism and
galactose metabolism (p-value < 0.05; hypergeometric test).
Labeled metabolites in cluster 2 exhibited slower labeling rates,
which required 12–24 h to reach the isotopic steady state. These
metabolites were enriched in lysine degradation. In contrast,
metabolites grouped as cluster 3 wherein purine metabolism and
fatty acid biosynthesis were enriched, could not reach the isotopic
steady state after the 24-h labeling.

We then fitted the in vivo tracing kinetics of labeled
metabolites in Drosophila using the general first-order exponen-
tial function, and enabled large-scale quantitation of labeling rates
from the [U-13C]-glucose tracer to the downstream metabolites
(see Methods). Labeling extents for each metabolite at all time

points were used to fit the exponential function. Thus, the
labeling rate k, which is the apparent first-order constant in the
exponential function, was calculated to quantify the incorporation
rate of the tracer to metabolite targets in the continuous stable-
isotope labeling. Taking aspartate as an example, the labeling
extent was gradually increased to 0.84 within 24 h labeling. The
fitted labeling rate k of aspartate was calculated as 0.12 h−1 with
an R-value of 0.99 (Fig. 2d). In total, labeling rates for 292 out of
390 labeled metabolites were successfully fitted with R-values >
0.8 (Supplementary Data 8). Comparative analysis showed that k-
values were significantly different among three cluster groups,
with cluster 1 being the largest k-value (0.67 h−1) and cluster 3
being the smallest k-value (0.08 h−1) calculated (Fig. 2e). Other
metabolite examples in each cluster with labeling rates k-values
were also provided (Supplementary Fig. 9). We further investi-
gated the mean labeling rates for metabolites from 19 metabolic
pathways in Drosophila head, and provided an estimation of
metabolic kinetics on the pathway level. (Fig. 2f). Generally, the
mean labeling rates k-values were decreased from carbohydrate
metabolism, to amino acid metabolism, and down to purine and
fatty acid metabolism. Galactose metabolism (dme00052) was
found as the pathway with the highest labeling rate, and fatty acid
biosynthesis (dme00061) was the lowest one. Collectively, we
demonstrated that the application of MetTracer in the continuous
stable-isotope labeling of Drosophila provided in vivo and
quantitative characterizations of labeling kinetics from the tracer
with a metabolome-wide coverage.

Quantitative stable-isotope tracing reveals distinct metabolic
profiles in different tissues. We next sought to compare the
inter-tissue differences in metabolic activity between head and
muscle tissues in Drosophila using global isotope tracing
metabolomics. In the same continuous labeling experiment,
MetTracer tracked 597 labeled metabolites from 64 metabolic
pathways in Drosophila muscle tissue (Supplementary Fig. 10a,
Supplementary Data 7). HCA analysis also identified three
metabolite clusters in the muscle (Fig. 3a). Non-linear fitting
analysis of labeled metabolites in each cluster revealed three
different labeling profiles, and different metabolic pathways
were enriched in clusters 1–3 (Fig. 3b). Similarly, labeling rates
k-values were calculated and clear differences among three
clusters were observed (Supplementary Fig. 10b and Supple-
mentary Data 8). With labeling extent being quantitatively
characterized, we systematically compared the metabolic label-
ing extents of 14 shared metabolic pathways between head and
muscle tissues (Fig. 3c and Supplementary Fig. 11a–c). Inter-
estingly, energy metabolism related pathways such as pentose
phosphate pathway displayed higher labeling extents and
activities in the muscle than in the head. As a comparion,
labeling extents of metabolites in pathways such as nicotinate
and nicotinamide metabolism, amino acid metabolisms,
including alanine, histidine, cysteine and methionine metabo-
lism, and purine metabolism were presented at higher levels in
the head compared to the muscle (Fig. 3c). Taken the purine
metabolism as an example (Fig. 3d, e and Supplementary
Fig. 11d), intermediate metabolites including adenosine mono-
phosphate (AMP), adenosine, adenine, inosine, and guanosine
displayed higher labeling extents and labeling rates in the head
than those in the muscle. The higher metabolic activity of purine
metabolism in the head was also evidenced by the significantly
higher labeled fractions of isotopologues (M+ 5, M+ 6, M+ 7,
M+ 8, M+ 9, and M+ 10; Fig. 3e). Altogether, in vivo isotope
tracing metabolomics supported quantitative comparison of
metabolic activities across tissues and revealed distinct inter-
tissue metabolism in Drosophila.
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System-wide loss of metabolic coordination in Drosophila
during aging. Dysregulation in metabolic homeostasis repre-
sents a hallmark of aging. Metabolic coordination between
metabolites is crucial for the maintenance of tissue metabolic
homeostasis, particularly in the context of aging. Here, we
characterized the system-wide alternations in metabolic coor-
dination in both head and muscle tissues during Drosophila
aging (Fig. 4a). In head tissues, we performed Pearson corre-
lation analyses of labeling extents among the 390 labeled
metabolites (Fig. 4b). We observed as many as 1117 significant
metabolite–metabolite correlations in young head tissues (3d).

Strikingly, these correlations were dramatically reduced by 38%
in old head tissues (30d). Taken the labeled glucose and pyr-
uvate as examples, the labeling extents of glucose were posi-
tively correlated with those of pyruvate in young head tissues,
whereas the correlation was completely lost in old ones (Fig. 4c
and Supplementary Fig. 12a). This loss of metabolic coordi-
nation is consistent with our previous report that a progressive
decline of glycolysis is associated with aging in Drosophila41. In
addition, the transcriptional levels of the glycolytic genes were
also decreased in the old head tissues, which further explained
the loss of metabolic coordination between glucose and

Fig. 2 In vivo stable-isotope tracing of the metabolome in Drosophila. a Illustration of in vivo stable-isotope tracing in Drosophila and the distribution of
390 labeled metabolites from 59 pathways in head tissues. b Hierarchical-clustering analysis of the labeled metabolites (n= 390). c Upper panels, labeling
dynamics of metabolites in each cluster; black dots represent the median labeling extent (LE) values of metabolites in the cluster; black lines represent the
fitted metabolic dynamics; error bands represent 95% confidence intervals. Bottom panels, enriched pathways in each cluster (p-values < 0.05;
hypergeometric test). d The example of aspartate for the calculation of labeling rate k (n= 10 biological replicates in each time point); black dot represents
median LE; whiskers represent ±s.d. e k-value distributions for metabolites in three clusters (n= 182, 68, 42 fitted metabolites in clusters 1, 2, and 3,
respectively). The centerlines of the boxplots indicate the median values, the lower and upper lines in boxplots correspond to 25th and 75th quartiles, and
the whiskers indicate the largest and lowest points inside the range defined by 1st and 3rd quartile plus 1.5 times interquartile ranges (IQR). f Heat map
showing the mean k-values of metabolties from 19 significantly labeled pathways. Pathway names are provided in Supplementary Table 5. Source data are
provided as a Source Data file.
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pyruvate (Supplementary Fig. 12b). We further classified the
metabolite–metabolite correlations according to their labeling
rate clusters shown in Fig. 2 (Fig. 4b). Examination of metabolic
coordination in individual metabolite cluster revealed that
metabolites in the fast-labeling cluster 1 were severely affected
by aging, wherein 42% of correlations were diminished (Fig. 4b,
right panel). Similarly, substantial loss of metabolite correla-
tions was observed in the Drosophila muscle during aging, with
the total correlations being decreased from 1,565 to 822 (47%;
Fig. 4d). Again, metabolites in the fast-labeling cluster 1 were
severely affected by aging, wherein as large as 78% of correla-
tions were diminished in old muscle tissues. We also analyzed
correlations between the metabolites in the head and muscle
tissues. The inter-tissue metabolic coordination was also
impacted by aging, with the number of correlations being sig-
nificantly decreased (Fig. 4e). Metabolites in cluster 1 lost the

largest number of intra-tissue correlations, with the total cor-
relations being decreased by 65%. We also investigated the
effect of aging on inter-cluster metabolite correlations. In fly
head and muscle tissues, the correlations between metabolites
in fast-labeling cluster 1 and other clusters were severely
affected by aging, wherein about 60% correlations were
diminished. The correlations between metabolites in cluster 2
and cluster 3 were slightly affected by aging within head and
muscle tissues (Supplementary Fig. 13a, b). The inter-cluster
metabolic coordination between head and muscle was also
impacted by aging, especially metabolites in cluster 3 with other
clusters, wherein >60% of correlations were diminished (Sup-
plementary Fig. 13c). In summary, in vivo isotope tracing
metabolomics revealed a system-wide loss of metabolic coor-
dination that significantly impacted both intra- and inter-tissue
metabolic homeostasis in aging Drosophila.

Fig. 3 Quantitative stable-isotope tracing reveals distinct metabolic profiles in different tissues. a Hierarchical-clustering analysis of labeled metabolites
in Drosophila muscle tissues (n= 597 metabolites). b Upper panels, labeling dynamics of metabolites in each cluster; black dots represent the median
labeling extent (LE) values of metabolites in the cluster in muscle tissue; black lines represent the fitted metabolic dynamics; error bands represent 95%
confidence intervals. Bottom panels, enriched pathways in each cluster (p-values < 0.05; hypergeometric test). c Comparisons of labeling extents of
14 shared metabolic pathways in head and muscle tissues. d Labeling extents (LE) and labeling rates (k) of metabolites in purine metabolism (n= 10
biological replicates per group; two-tailed Student’s t-test). The centerlines of the boxplots indicate the median values; the lower and upper lines in
boxplots correspond to 25th and 75th quartiles, and the whiskers indicate the largest and lowest points inside the range defined by 1st and 3rd quartile plus
1.5 times interquartile ranges (IQR). e Labeled fractions of metabolite isotopologues in purine metabolism. Bar plots represent mean ± SD (n= 10 biological
replicates per group). The red dots in chemical structures represent 13C-labeled carbon atoms. Source data are provided as a Source Data file.
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Metabolic shift from glycolysis to serine metabolism in aging
Drosophila. Pyruvate, the end product of aerobic glycolysis, has
been demonstrated as a crucial metabolic hub for multiple
pathways to sustain metabolic homeostasis in organisms. In
young Drosophila head tissues, after the 24-h labeling, pyruvate
had metabolic correlations with other 23 metabolites such as
serine, succinate, and glucose (Supplementary Table 6). Inter-
estingly, these metabolic correlations with pyruvate were com-
pletely disrupted in old Drosophila (Fig. 5a). In particular, in
young Drosophila but not old ones, pyruvate was positively cor-
related with serine, which is an important carbon donor to the
one-carbon metabolism. Since serine can be metabolically con-
verted to glycine by serine hydroxymethyl transferase (shmt), we
next examined the relationship between pyruvate and glycine in
the two age groups. Results showed that pyruvate was also

positively correlated with glycine in young Drosophila head, while
this correlative relationship was not present in the aged ones
(Fig. 5b). Notably, the correlation scenario between pyruvate and
serine and glycine during aging could not be revealed by abun-
dance correlation analysis in unlabeled Drosophila samples
(Supplementary Fig. 14a).

We also analyzed the labeling extents of pyruvate, serine and
glycine in the two Drosophila groups. Pyruvate showed decreased
labeling extent in aged Drosophila while serine and glycine
had higher labeling extents (Fig. 5c). Comparisons of 13C-labeled
fractions revealed that the labeled fraction of pyruvate (M+ 3)
was decreased after 24-h isotope labeling in the old Drosophila,
while that of serine (M+ 3) was increased. In 30d Drosophila,
glycine was isotopically labeled rapidly after 1 h feeding of
[U-13C]-glucose, and its labeled fraction (M+ 2) was significantly

Fig. 4 System-wide alternations of metabolic homeostasis in Drosophila during aging. a The in vivo isotope tracing metabolomics of young (3d) and old
(30d) Drosophila. b Left, a Circos plot showing metabolite–metabolite correlations in young and old Drosophila head tissues. Right, a bar plot showing the
numbers of metabolite–metabolite correlations in each metabolite cluster. c Correlation of labeling extents for the labeled glucose and pyruvate during
aging (n= 10 biological replitates in each group). Dashed line, linear regression; gray shadow, 95% confidence interval of the linear relationship between
pyruvate and glucose. The p-value of Pearson correlation coefficient was calculated by two-sided Student’s t-test. d Left, a Circos plot showing
metabolite–metabolite correlations in young and old Drosophilamuscle tissues. Right, a bar plot showing the numbers of metabolite–metabolite correlations
in each metabolite cluster. e Left, a Circos plot showing metabolite–metabolite correlations between head and muscle tissues in young and old Drosophila.
Right, a bar plot showing the numbers of metabolite–metabolite correlations in each metabolite cluster. In panels b, d, e, the colored circle refers to the
labeling rate cluster. Clusters 1–3 represent the labeling rate clusters in Figs. 2 and 3. Ribbon connecting metabolite clusters refers to the significant
correlations between metabolites. Ribbon thickness refers to the number of significant metabolite-to-metabolite correlations. Source data are provided as a
Source Data file.
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higher than that in 3d Drosophila (Fig. 5d). One-carbon
metabolism fueled by serine biosynthesis further contributes to
purine metabolism. We found that the representative metabolites
in purine metabolism showed higher labeling extents (Fig. 5c and
Supplementary Fig. 14b) and labeled fractions of metabolites such
as inosine (M+ 10), inosine monophosphate (IMP, M+ 10),
adenosine monophosphate (AMP, M+ 10), adenosine (M+ 10),

and adenine (M+ 5) in old Drosophila head tissues than those in
young ones (Fig. 5d and Supplementary Fig. 14c), which suggests
a higher metabolic activity of purine metabolism in old
Drosophila. Importantly, these results revealed by the global
isotope tracing metabolomics were evidenced by the levels of
genes responsible for these pathways (Fig. 5e and Supplementary
Data 9). Pyk, which is the gene for pyruvate kinase in glycolysis to

Fig. 5 Metabolic shift from glycolysis to serine metabolism in aging Drosophila. a Correlation network showing the correlation between labeled pyruvate
and other labeled metabolites in Drosophila head tissue. Red line, significant correlation; gray dashed line, no correlation. b Correlations between labeled
pyruvate and serine or glycine during aging (n= 10 biological replicates in each group). Dashed line, linear regression; gray shadow, 95% confidence
interval of the linear relationship between pyruvate and serine or glycine. The p-value of Pearson correlation coefficient was calculated by two-sided
Student’s t-test. c Labeling extents (LE) of metabolites in 3d and 30d Drosophila (n= 10 biological replicates per group; two-tailed Student’s t-test).
d Boxplots showing the labeled fractions of pyruvate (M+ 3), serine (M+ 3), glycine (M+ 2) and Inosine (M+ 10) at each time point in 3d and 30d WT
flies (n= 10 biological replicates in each group). e Heat maps of the z-score normalized gene expression levels of enzymes. The significantly changed genes
were shown (P-value < 0.05; two-tailed Student’s t-test). f The proposed model of metabolic rewiring in aging Drosophila. g Boxplots showing the labeled
fractions of pyruvate (M+ 3), serine (M+ 3), glycine (M+ 2), and Inosine (M+ 10) in 8d WT, 30d WT, and 30d Drosophila with PRC2 mutation (n= 8
biological replicates in each group). In d, g, the labeled fraction was normalized to the fraction of glucose (M+ 6). In c, d, g, the centerlines of the boxplots
indicate the median values; the lower, and upper lines in boxplots correspond to 25th and 75th quartiles, and the whiskers indicate the largest and lowest
points inside the range defined by 1st and 3rd quartile plus 1.5 times interquartile ranges (IQR). Two-tailed Student’s t-test. Source data are provided as a
Source Data file.
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produce pyruvate from phosphoenolpyruvate (PEP), was sig-
nificantly reduced in 30d Drosophila. Glucose metabolism
provides the precursor 3-phosphoglycerate (3-PG), thereby
supporting serine biosynthesis. We found that two genes involved
in serine biosynthesis, CG11899 and CG6287, were significantly
increased in 30d Drosophila. Higher levels of shmt in old
Drosophila heads were also observed. In addition, genes
responsible for purine metabolism, including Pfas, Gart, Paics,
and AdSL showed increased levels in 30d Drosophila. Altogether,
these data revealed that declined glycolysis activity during aging
was coupled with enhanced purine metabolism that was fueled by
serine and glycine supported one-carbon metabolism. Finally, we
propose a metabolic rewiring model during Drosophila aging,
wherein glucose is metabolically channeled to one-carbon
metabolism and purine metabolism from glycolysis (Fig. 5f).

To verify the metabolic remodeling, we investigate whether the
metabolic shift from glycolysis to serine metabolism and purine
metabolism in aged Drosophila could be reverted in the long-lived
Drosophila mutation. In our previous report, the PRC2 mutation
has been proven to extend the lifespan of Drosophila by boosting
glycolysis in aged Drosophila41. We re-analyzed the data from the
[U-13C]-glucose labeling experiments in young (8d) and aged
(30d) wild-type (WT) Drosophila, and aged (30d) PRC2 mutants
for 24 h. The results demonstrated that the labeled fraction of
pyruvate (M+ 3) was decreased with aging in wild-type
Drosophila but rescued in the age-matched PRC2 mutants
(Fig. 5g). In addition, the increased labeled fractions of serine
(M+ 3) and inosine (M+ 10) were also significantly reversed by
PRC2 mutation. The results suggested that reversing the
metabolic shift from glycolysis to one-carbon metabolism and
purine metabolism may contribute to the lifespan extension in
Drosophila.

Discussion
Untargeted metabolomics measures metabolite concentrations on
a large scale and provides system-wide characterizations of
metabolic status in living systems. However, changes in meta-
bolite concentrations do not readily imply metabolic activities.
Isotope tracing technology enables unraveling metabolic activity,
but is largely restricted by the metabolite coverage. In this work,
we developed MetTracer, an untargeted isotope tracing metabo-
lomics technology, to trace labeled metabolites with a
metabolome-wide coverage. We benchmarked that MetTracer has
made pivotal improvements in terms of coverage, quantification
accuracy, reproducibility and false-positive rate. Although we
have tried our best to perform fair comparisons between different
software tools, and provided the detailed parameters for each tool,
such comparisons are still difficult to judge, because output of
each tool being compared may depend significantly on the choice
of tool-specific parameters. The main advancement of MetTracer
comes from the integration of untargeted metabolite annotation
and targeted isotopologue extraction. First of all, MetTracer
benefited from the input of metabolite annotations of unlabeled
samples from different bioinformatic tools, which ensures the
high coverage of labeled metabolite extraction. Second, MetTracer
has also made several data processing innovations to targeted
isotopologue extraction, which ultimately contributes to the high
coverage of labeled metabolites and high accuracy of isotopologue
quantitation. For example, MetTracer performed targeted
extraction of all possible isotopologues and employed the most
intensive isotopologue peak instead of the M0 base peak for peak
detection. For highly labeled metabolites wherein M0 peak has a
relatively low intensity, the use of the most intensive isotopologue
peak achieved a higer rate of successful peak detection. Then, the
employment of targeted extracted ion chromatogram (i.e., target

EIC in Fig. 1b; see Methods) from unlabeled samples and cal-
culation of peak-peak correlation (PPC) between isotopologue
peak and target EIC peak also improved the accuracy and reduced
the false positives. Finally, the isotope contamination estimation
and correction improved accurate quantitation of isotopologues.
We have provided several examples to demonstrate the unique
technical advantages of MetTracer (Supplementary Figs. 3–6). It
is also worthy to note that MetTracer supports data analysis of
multiple sample groups simultaneously. Therefore, MetTracer
could be of enormous application values in a broad range of
biological scenarios wherein more than two groups are generally
compared.

MetTracer enabled a system-wide measurement of several
hundreds of isotopically labeled metabolites and harvested rich
information on labeling patterns, labeling extents, and labeling
rates in one experiment, thereby enabling characterization of
metabolic activities at systems-level. Conventionally, stable-
isotope tracing technology resolves quantitative metabolic fluxes
using metabolic flux analysis (MFA) and flux balance analysis
(FBA). However, it requires comprehensive prior knowledge of
biochemical reactions in specific pathways, and is very time and
computationally intensive. More challenging is to calculate fluxes
for hundreds of metabolites in a pathways-intertwined metabolic
network. These challenges are particularly prominent in mam-
malian systems for fluxes analyses, and most of existed quanti-
tative flux studies were limited to specific pathways and simple
model organisms (such as yeast and bacteria). Previously, Yuan
et al. developed the kinetic flux profiling (KFP) analysis for
metabolic flux calculation, which required a fast switch of labeling
substrates42. As such, the KFP model is typically used in cultured
cells wherein the labeling substrate in media can be rapidly
exchanged. Here, the KFP model for metabolic flux calculation
may not be valid for in vivo isotope tracing of Drosophila. Instead,
we fitted the in vivo tracing kinetics of labeled metabolite using
the first-order exponential equation to calculate labeling rate k-
value. The labeling rate k quantifies the incorporation rate of the
[U-13C]-glucose tracer to downstream metabolite targets in the
continuous stable-isotope labeling. Our data showed that, in the
head tissue, 75% metabolites (292 out of 390) had the in vivo
tracing kinetics successfully fitted with the first-order exponential
equation. Similarly, 73% metabolites (437 out of 597) in the
muscle tissue had successful fittings. Since the k-value indicates
the incorporation rate of the tracer to a metabolite target, it is
reasonable that the isotopically labeled metabolites nearer to the
[U-13C]-glucose tracer in the metabolic network have higher k-
values being calculated. Indeed, we showed that metabolites in
glycolysis such as pyruvate exhibited larger k-values than those in
fatty acid synthesis such as hexadecenoic acid (Supplementary
Fig. 15). Of note, we cannot determine the absolute metabolic flux
through multiplying the k-values calculated here by metabolite
concentrations because the assumption of KFP analysis is not met
in Drosophila. This limitation, however, does not detract from our
fittings of in vivo tracing kinetics on a metabolome-wide scale
and comparative analyses of k-values for the same metabolite
between different biological scenarios.

Drosophila is a widely used model organism to study aging.
Previous studies using traditional metabolomics methods have
disclosed metabolic changes associated with aging in varied
genotypes of Drosophila35,40,41,43–53 (Supplementary Table 7).
For example, Chang et al.54, Hoffman et al.45, and our group41

reported the declination of metabolites in glycolysis pathway
during aging. Metabolites in amino acid metabolism were found
to have correlation with aging46–49,52,53. For example, Tapia et al.
revealed that reduction in amino acids such as histidine, tyrosine,
and leucine is protective against aging52. Instead, Parkhitko et. al.
showed that metabolic intervention with supplementation of

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31268-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3518 | https://doi.org/10.1038/s41467-022-31268-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


tyrosine contributed to lifespan extension48. In addition, Laye
et al. reported that S-adenosyl-methionine (SAM) cycle was
downregulated in flies under diet restricted condition compared
to the age-matched flies with normal diet, suggesting that the
long-lived flies have lower level of SAM46. Similarly, enhance-
ment of SAM catabolism by overexpressing glycine
N-methyltransferase (Gnmt) has also been demonstrated to
extend lifespan of Drosophila, as reported by Obata et al.35 Ele-
vated purine metabolism was also found to be associated with
short lifespan of Drosophila40,50.

Despite the accumulative aging-related metabolites and meta-
bolic pathways being uncovered by measuring the changes of
metabolite concentrations associated with aging, these were inde-
pendently studied, and the underlying mechanism by which
coordination of metabolic activities impacts aging is not elucidated
due to the lack of appropriate technologies. Here, in addition to
metabolite concentrations, we demonstrated that the global isotope
tracing metabolomics can provide an orthogonal perspective to the
changed metabolome by monitoring the labeling parameters at
different levels, thereby supporting quantitative comparison of
metabolic activities during aging. We discerned the age-dependent
changes of metabolic activities in Drosophila, in which carbohy-
drate related metabolic pathways were enriched with metabolites of
declined metabolic activities in aging, while amino acid related
metabolic pathways and purine metabolism were enriched with
metabolites of increased metabolic activities in aging, which were
consistent with the observations in previous studies (Supplemen-
tary Table 7). This suggests that distinct metabolite utilization in
different biological scenarios can explain the age-dependent
metabolic responses in physiological status. A key contribution of
this work is to reveal a system-wide loss of metabolic coordination
during aging in Drosophila using global isotope tracing metabo-
lomics. This uniquely system-wide loss was evidenced by the
massive reduction of metabolite–metabolite correlations within the
head and muscle tissues and across tissues. We showed that gly-
colysis was skewed to one-carbon metabolism that ultimately
fueled purine metabolism, suggesting that the disruption of
metabolic coordination among three metabolic pathways promotes
Drosophila aging. In agreement with our previous study, with the
long-lived Drosophila (PRC2 mutants) that have enhanced glyco-
lysis activity41, we revealed that the PRC2 mutation had decreased
metabolic activities for intermediate metabolites in one-carbon
metabolism and purine metabolism compared with the age-
matched wild-type Drosophila. This result, combined with our
findings of the system-wide loss of metabolic coordination
observed in naturally aging Drosophila, highlights the importance
of metabolic homeostasis and coordination among glycolysis, one-
carbon metabolism, and purine metabolism as a critical regulation
of aging and longevity.

In this study, we used w1118 fly model to demonstrate the
utility of MetTracer in studying aging, and we considered that,
the metabolic changes between 3d flies and 30d flies were caused
by aging here. Although the w1118 flies were widely used as wild-
type controls in many fly aging studies41,46,47,51, it is worth noting
that, previous studies have discovered that the w mutant of w1118

flies have an impact on fly metabolism. The Drosophila w gene
encodes an ATP binding cassette transporter, which contributes
to transportation of metabolites such as guanine, tryptophan and
kynurenine55–58. The w mutant flies were also observed with low
levels of the biogenic amines, such as serotonin, dopamine, and
histamine59,60. The Drosophila w gene is expressed principally in
eyes and excretory organs and testes, but has very low levels
observed in the glia and neurons of the brain and various other
tissues61,62. Although whether the metabolome of w1118 will be
affected by aging is unclear, we should still be cautious that this
mutation alters the metabolism of Drosophila.

Methods
Chemicals. LC–MS grade water (H2O) was purchased from Honeywell (Muske-
gon, MI, USA). LC–MS grade acetonitrile (ACN) was purchased from Merck
(Darmstadt, Germany). Ammonium hydroxide (NH4OH) and ammonium acetate
(NH4OAc) were purchased from Sigma (St. Louis, MO, USA). The [U-13C]-glu-
cose, [U-13C]-glutamine and [U-13C]-acetate was purchased from Cambridge
Isotopes laboratories (MA, USA).

Stable-isotope tracing experiments. The 293T cell line was bought from ATCC
with Product No. CRL-2925. 293T cells were seeded in 6-cm cell culture plates with
Dulbecco Modified Eagle’s Medium (DMEM) containing with 10% dialyzed fetal
bovine serum (dFBS) and 1% penicillin/streptomycin. When cells were grown to
80% confluence, unlabeled DMEM was removed. Cells were washed using ~3 mL
of PBS. The culture medium was replaced as glucose-free and glutamine-free
DMEM containing 25 mM [U-13C]-glucose, 4 mM [U-13C]-glutamine, 5 mM [U-
13C]-acetate and 10% dialyzed FBS. After 17 h labeling, cells were washed twice
with PBS. Cell plates were placed on the dry ice and fast quenched with 1 mL of
MeOH:ACN:H2O (2:2:1, v/v/v, pre-cooled in −80 °C refrigerator) solvent mixture.
The plates were incubated at −80 °C for 40 min. Cells were scraped from the plate
and transferred to a 1.5-mL centrifuge tube. The samples were vortexed for 1 min,
and followed by 15 min centrifugation using 16,200 × g at 4 °C. The supernatant
was taken and evaporated to dryness in a vacuum concentrator. Dry extracts were
reconstituted in 100 μL of ACN:H2O (1:1, v/v), followed by 10 min sonication
(50 Hz, 4 °C) and 15 min centrifugation using 16, 200 × g at 4 °C to remove inso-
luble material. Supernatants were finally transferred to HPLC glass vials and stored
at −20 °C prior to LC/MS analysis.

The fly culture and stable-isotope labeling experiments followed our previous
publications63. In brief, flies were cultured in standard media at 25 °C with 60%
humidity in a 12 h light and 12 h dark cycle. The standard Drosophila food contains
sucrose (36 g/L), maltose (38 g/L), yeast (22.5 g/L), agar (5.4 g/L), maizena (60 g/L),
soybean flour (8.25 g/L), sodium benzoate (0.9 g/L), methyl-p-hydroxybenzoate
(0.225 g/L), propionic acid (6.18 mL/L), and H2O to make up 1 L of the food. The
wild-type fly line used was 5905 (FlyBase ID FBst0005905, w1118). To age flies,
adult male flies were collected at the day of eclosion and maintained at 20 flies per
vial at 25 °C with 60% humidity and a 12 h light and 12 h dark cycle. Aged flies
were transferred to new vials every other day. For isotope tracing study, male flies
at ages of 3d and 30d were used with 15 flies per vial. Prior to isotope labeling, flies
were starved for 6 h, then transferred to new vials containing a small piece of
Kimwipe paper pre-soaked in 800 μL of 10% [U-13C]-glucose. When the desired
time points (0, 1, 3, 6, 12, and 24 h) were reached, the flies were dissected under
CO2 anesthesia. It took about 15–20 s to dissect a fly. The whole muscle tissues and
whole head tissues were collected from flies. Head or muscle tissues from fifteen
flies were pooled into one microcentrifuge tube as one biological replicate. After
dissection, the tissue samples were quickly frozen using liquid nitrogen, and stored
at −80 °C. The pooled sample was used as one biologically independent replicate.
For each condition, 10 biologically independent replicates were prepared. The
sample heterogeneity was confirmed similar between 3d and 30d flies
(Supplementary Fig. 16). The raw data of validation experiment with PRC2
mutants was retrieved from our previous study41. PRC2 mutation is referred to
mutations to genes in the Polycomb repressive complex 2. The genotype of PRC2
mutant was Pcl c421/+; Su(z)12 c253/+. Three groups of flies (WT 8d, WT 30d,
PRC2 mutant 30d) were included in data re-analysis and there were eight
biologically independent replicates in each group.

For metabolite extraction, dissected fly tissues were homogenized with 200 μL of
H2O and 20 ceramic beads (0.1 mm) using the homogenizer. Samples were
extracted with 800 μL of ACN:MeOH (1:1, v/v), and followed by 10 min sonication
(50 Hz, 4 °C). To precipitate protein, samples were incubated for 2 h at −20 °C,
followed by 15 min centrifugation using 16,200 × g at 4 °C. The supernatant was
taken and evaporated to dryness in a vacuum concentrator. Dry extracts were
reconstituted in 100 μL of ACN:H2O (1:1, v/v), followed by 10 min sonication
(50 Hz, 4 °C), and 15 min centrifugation using 16,200 × g at 4 °C to remove
insoluble material. Supernatants were transferred to HPLC glass vials and stored at
−20˚C prior to LC/MS analysis.

LC–MS analysis. Metabolomics data of 293T cell samples were acquired using a
UHPLC system (UltiMate 3000, Thermo Scientific) coupled to an orbitrap mass
spectrometer (Exploris 480, Thermo Scientific). Waters ACQUITY UPLC BEH
Amide column (particle size, 1.7 μm; 100 mm (length) × 2.1 mm (i.d.)) and Phe-
nomenex Kinetex C18 column (particle size, 2.6 μm; 100 mm (length) × 2.1 mm
(i.d.)) were used for LC separation for HILIC mode and RP mode, respectively.
Column temperature were both kept at 25 °C. For HILIC mode, Mobile phases
A= 25 mM ammonium acetate and 25 mM ammonium hydroxide in 100% water,
and B= 100% acetonitrile, were used for both ESI positive and negative modes.
The linear gradient eluted from 95% B (0.0–0.5 min), 95% B to 65% B
(0.5–7.0 min), 65% B to 40% B (7.0–8.0 min), 40% B (8.0–9.0 min), 40% B to 95% B
(9.0–9.1 min), then stayed at 95% B for 2.9 min. The flow rate was 0.5 mL/min. The
sample injection volume was 2 μL. For RP mode, Mobile phases A= 0.01% acetic
acid in 100% water, and B= acetonitrile/isopropanol (1/1; v/v), were used for both
ESI positive and negative ionization modes. The linear gradient eluted from 1% B
(0.0–1.0 min), 1% B to 99% B (1.0–8.0 min), 99% B (8.0–9.0 min), 99% B to 1% B
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(9.0–9.1 min), then stayed at 95% B for 2.9 min. The flow rate was 0.3 mL/min. The
sample injection volume was 2 μL. ESI source parameters were set as follows: spray
voltage, 3500 V or −2800 V, in positive or negative modes, respectively; aux gas
heater temperature, 350 °C; sheath gas, 50 arb; aux gas, 15 arb; capillary tempera-
ture, 400 °C. LC–MS data acquisition was operated under full scan polarity
switching mode for all samples. A ddMS2 scan was appied for QC samples to
acquire MS/MS spectra. The full scan was set as: orbitrap resolution, 60,000; AGC
target, 1e6; maximum injection time, 100 ms; scan range, 70–1200 Da. The
ddMS2 scan was set as: orbitrap resolution, 30,000; AGC target, 1e5; maximum
injection time, 60 ms; scan range, 50–1200 Da; top N setting, 6; isolation width,
1.0m/z; collision energy mode, stepped; collision energy type, normalized; HCD
collision energies (%), 20,30,40; Dynamic exclusion duration was set as 4 s for
excluding after 1 time.

Metabolomics data of 293T cell samples and fly tissue samples were also
acquired using a UHPLC system (1290 series, Agilent Technologies) coupled to a
quadruple time-of-flight mass spectrometer (TripleTOF 6600, Sciex). Waters
ACQUITY UPLC BEH Amide column (particle size, 1.7 μm; 100 mm
(length) × 2.1 mm (i.d.)) was used for the LC separation and LC condition was the
same as that described above. ESI source parameters were set as followings: ion
source gas 1 (GS1), 60 psi; ion source gas 2 (GS2), 60 psi; curtain gas (CUR), 35 psi;
temperature (TEM), 600 °C; ion spray voltage floating (ISVF), 5000 V or −4000 V,
in positive or negative modes, respectively; declustering potential (DP), 60 V or
−60 V in positive or negative modes, respectively. LC–MS data acquisition was
operated under information-dependent acquisition (IDA) mode. The instrument
was set to acquire over the m/z range 60–1200 Da for TOF MS scan and the m/z
range 25–1200 Da for product ion scan. Collision energy for product ion scan was
30 eV or –30 eV in positive or negative modes, respectively, while collision energy
spread (CES) was 0 eV. The accumulation time for TOF MS scan was set at 150 ms
per spectrum and product ion scan at 30 ms per spectrum. The unit resolution was
selected for precursor ion selection. IDA settings were set as followings: charge state
1 to 1, intensity 100 cps, exclude isotopes within 4 Da, mass tolerance 10 ppm, and
maximum number of candidate ions 12. The “exclude former target ions” was set
as 4 s after two occurrences. In IDA advanced tab, “dynamic background
subtraction” was chosen.

Data processing. The raw data was acquired from orbitrap mass spectrometer
using Xcalibur (version 4.4.16.14, Thermo Fisher Scientific, USA) and TOF mass
spectrometer using Analyst TF Software (version 1.7.1, Sciex, USA). For data
acquired from the orbitrap mass spectrometer, the raw MS data files (.raw) were
converted to.mzXML (for full scan mode) and.mgf (for ddMS2 mode) format using
ProteoWizard (version 3.0.20360). Then, mzXML data files of unlabeled samples
were grouped for peak detection and alignment using the R package “xcms”
(version 3.12.0; https://bioconductor.org/packages/release/bioc/html/xcms.html).
Key parameters were set as follows: method, “centWave”; ppm, 10; snthr, 10;
peakwidth, c(5,30); minfrac, 0.5. For data acquired using TOF mass spectrometer,
the raw MS data files (.wiff) were converted to.mzXML format using ProteoWizard
(Version 3.0.6150). Then, mzXML data files of unlabeled samples were grouped for
peak detection and alignment using the R package “xcms” (version 1.46.0; https://
bioconductor.org/packages/release/bioc/html/xcms.html). The key parameters
were set as follows: method, “centWave”; ppm, 25; snthr, 10; peakwidth, c(5,30);
minfrac, 0.5. The intermediate xcmsSet object from “xcms” after peak detection
was exported as a xcmsSet file (.Rda). The generated MS1 peak table and MS2 files
were uploaded to MetDNA64 (version 1.2.2; http://metdna.zhulab.cn/) for meta-
bolite annotation. The metabolite annotation parameters were set as “HILIC” or
“RP” according to liquid chromatography mode, “Sciex TripleTOF” or “Thermo
Exploris” according to instrument platform, and “30” or “SNCE_20_30_40%” for
collision energy. We performed the metabolite annotation separately on both
positive and negative modes. Before MetTracer analysis, MetDNA annotation
results were further filtered, including removal of isotope annotations, removal of
grade 4 annotations, removal of redundant peaks, while annotation types such as
seed and metAnnotation, and annotations with reliable adducts (e.g., [M+H]+,
[M+Na]+, [M+NH4]+, [M-H]−, [M+ Cl]−, [M-H-H2O]−) were kept. Finally,
MS-Finder (version 3.24; http://prime.psc.riken.jp/Metabolomics_Software/MS-
FINDER/index.html) was used for formula prediction (top 5 candidates) and
annotation filter. The final annotation table for 293T cells and fly samples were
provided in Supplementary Data 1–3. According to the definition of metabolomics
standards initiative (MSI), we assigned the metabolite annotations with three
confidence levels. Level 1 means metabolites annotated through matching of MS1,
RT and MS/MS spectra with the in-house metabolite spectral library. Level 2 means
metabolites annotated through matching MS1 and MS/MS2 spec with public
metabolite spectral library (mainly from NIST 2017). Level 3 means metabolites
annotated based on MS1 and surrogated MS/MS match using MetDNA. In total,
1,035 metabolites were annotated in 293T cell samples acquired on Orbitrap
Exploris 480, including 347, 144, and 544 metabolites with annotation MSI level 1,
2, and 3, respectively. For 293T cells samples acquired on TripleTOF 6600, a total
of 1347 metabolites were annotated, including 215, 219, and 913 metabolites with
annotation MSI level 1, 2, and 3, respectively. For fly head samples, a total of 745
metabolites were annotated, and 112, 91, and 542 metabolites were annotated as
MSI level 1, 2, and 3, respectively. For fly muscle samples, a total of 1290 meta-
bolites were annotated, and 117, 102 and 1071 metabolites were annotated as MSI

level 1, 2, and 3, respectively. In addition to MetDNA, MetTracer also supports
metabolite annotation results from other software tools such as MS-DIAL65,
SIRIUS CSI-FingerID66, and GNPS67.

For MetTracer analysis, the metabolite annotation table (Supplementary
Data 1–3), the previously generated xcmsSet file from XCMS, and raw data files
(.mzXML) for unlabeled samples were organized in a folder named “unlabeled”.
The raw data files (.mzXML) from labeled samples were organized in a folder
named “labeled”, and separated into several subfolders according to their
experimental groups. Finally, the “unlabeled” and “labeled” folders were subjected
to the R package “MetTracer” for global tracking of labeled metabolites. The
parameters for MetTracer were set as follows: rt.extend, 15; value, “maxo”;
d.extract, “labelled”; correct.iso, “TRUE”; adj.contaminate, “TRUE”. The detailed
parameter setting for MetTracer is provided in Supplementary Table 8. In labeled
samples, if the labeled fraction of one isotopologue (except M0) in the metabolite is
larger than 0.02 in >50% of samples, we consider the metabolite was isotopically
labeled.

The workflow of MetTracer. The MetTracer data processing workflow includes
three major steps: (1) generation of a targeted list for isotopologues; (2) extraction
of isotopologue peaks, and (3) correction and quantification.

(1) Generation of isotopologue targeted list. The metabolite formulas in the
annotation table were used to calculate the theoretical m/z values of all possible
13C-isotopologues (M0-Mn) for each metabolite with the R package “enviPat”68

(version 2.4). For each monoisotopic peak (M0), the corresponding extracted ion
chromatogram (EIC) peaks were extracted from each unlabeled sample according
to the feature information recorded in the xcmsSet file. The EIC peak with highest
peak height was selected as the “targeted EIC” to aid the extraction of labeled
metabolites in labeled samples. The retention time and peak shape of the targeted
EIC were also recorded in the isotopologue targeted list. Finally, for each annotated
metabolite, the isotopologue targeted list included m/z values of all possible 13C-
isotopologues, retention time, and peak shape of the target EIC.

(2) Extraction of isotopologue peaks. The isotopologue targeted list was used for
targeted extraction of isotopologue peaks in the labeled samples (.mzXML). For each
metabolite, the ion chromatograms of all isotopologues were extracted within the
extended retention time (RT) range ([RTleft boundary – 15 s, RTright boundary+ 15 s]).
The m/z tolerance of extraction was set as 25 ppm (or 0.01 Da for ion <400 Da). For
each EIC of isotopologue, the noise level and baseline were determined. The EIC with
maximum signal-to-noise (S/N) ratio lower than 3 were removed. Then the EICs
were smoothed using “Gaussian” method and subjected to peak detection with the
“centWave” algorithm. The peak-peak correlation (PPC) was also calculated to
characterize the similarity between the detected isotopologue EIC peaks and the
targeted EIC in the isotopologue targeted list using a modified Pearson correlation
coefficient. All isotopologue peaks with PPC ≥ 0.6 were kept. For the remaining
isotopologue peaks, hierarchical-clustering analysis was applied for clustering the
peak apexes with a cutoff threshold of 3 s, which indicated that the RT differences
among peak apexes should be <3 s in one isotopologue peak group. The isotopologue
peak group with the closest RT to the targeted EIC was selected. The RT range and
peak apex of isotopologue peaks in the selected isotopologue peak group was re-
adjusted according to the peak with highest peak height in the group.

(3) Correction and quantification. For each isotopologue peak of one
metabolite, the sum intensity of three scans around the peak apex was used as a
proxy to the intensity of the peak. If one isotopologue in isotopologue targeted list
was not detected, this isotopologue peak was extracted mandatorily according to
the theoretical m/z and RT range. Next, natural isotope correction was performed
using the R package “AccuCor” (version 0.2.4; https://github.com/XiaoyangSu/
AccuCor) to obtain the corrected peak intensities and mass isotopemer distribution
(MID) table. The MID describes the labeled fraction of each isotopologue of
metabolites. Then the isotope contamination was estimated in unlabeled samples.
For each metabolite, if monoisotopic peak (M0) intensities were 0 in >50% of
unlabeled samples, we considered that the metabolite did not exist in unlabeled
samples. In labeled samples, the labeled fractions of all the isotopologues of this
metabolite were set as 0. In unlabeled samples, if the labeled fraction of one
isotopologue (except M0) is larger than 0.02 in >50% of samples, we consider the
isotopologue was isotopically contaminated. We assumed that the contamination
levels in both labeled and unlabeled samples were the same. Thus, the labeled
fractions of contaminated isotopologues in labeled samples were corrected by
subtracting the contaminate level estimated in unlabeled samples. Finally, the MID
table that describes the labeled fractions of isotopologues of each metabolite was
outputted as the final result.

Labeling extent (LE) calculation. Labeling extent (LE) represents the labeling
enrichment of one metabolite69. It is calculated by Eq. (1):

LE ¼
∑
C

i¼1
IMi

∑
C

i¼0
IMi

¼ 1� IM0

∑
C

i¼0
IMi

¼ 1� LM0 ð1Þ

where IMi is the peak intensity of isotopologue Mi, LM0ð¼ IM0

∑C
i¼0 IMi

Þ is the labeled
fraction of M0, C is the total carbon number of the metabolite. Moreover, the
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labeling extent of a given metabolic pathway in Fig. 3C is represented by the mean
labeling extent of all labeled metabolites in the pathway.

Labeling rate calculation. Here, in global isotope tracing analysis, we fitted the
in vivo tracing kinetics of the isotopically labeled metabolites using the general
first-order exponential equation for large-scale quantitation of the labeling rates of
metabolties, which correspond to the incorptation rate of the tracer to the
downstream metabolite targets. Labeling extents (LE) for each metabolite at all
time points were used to fit the exponential function.

LE ¼ a ´ e �ktð Þ � a ða < 0Þ ð2Þ

k and a are fitted using R package “nls” from the LE values, where k is the first-
order rate constant, indicating the incorporation rate of the tracer to a metabolite
target. Moreover, the labeling rate of a given metabolic pathway in Fig. 2 is
represented by the median labeling rate of all labeled metabolites in the pathway.

Benchmark of coverage performance. The extractions of labeled metabolites
using X13CMS20, geoRge22 and El-MAVEN29 were evaluated as follows. For
X13CMS, the R package “X13CMS” was downloaded from the website (version 1.4;
http://pattilab.wustl.edu/software/x13cms/x13cms.php). For geoRge, the R package
“geoRge” was downloaded from GitHub (version 1.0; https://github.com/
jcapelladesto/geoRge). Both X13CMS and geoRge provided the result table of
13C-labeled isotopologues for each peak group. Then, the unlabeled peak in the
peak group was matched with the peak in MetDNA annotation table according to
the m/z and RT. For El-MAVEN, the GUI software was used(version 0.11.0;
https://resources.elucidata.io/elmaven). The list of 1347 annotated metabolites
including metabolite name, formula, and retention time and the raw data files
(.mzXML) were imported into El-MAVEN for targeted extraction of labeled
metabolites. In El-MAVEN, the labeled metabolite was defined if any isotopologue
except M0 had the labeled fraction >0.02 in >50% of samples. The detailed para-
meters of these software tools were provided in Supplementary Table 9. The main
parameters modified of these three softwares and the reason for modification were
provided in Supplementary Table 10.

Manual analysis of labeled metabolites using Skyline. The Skyline software
(version 20.2.0.286; https://skyline.ms/project/home/software/Skyline/begin.view)
was used for manual analysis of labeled metabolites. The raw data files (.mzXML)
and the isotopologue target list were imported into Skyline. For each isotopologue,
the integration range was manually checked and adjusted for accurate quantifi-
cation of each isotopologue peak. The quantification result was also corrected with
“Accucor” for natural isotope correction, and then labeled fractions and labeling
extents were calculated. The relative errors for labeled metabolites were calculated
by Eq. (3):

Relative error ¼ LE MetTracerð Þ � LE Skyline
� �

LE Skyline
� � ð3Þ

False-positive rate evaluation. First, both unlabeled and labeled samples were
analyzed by MetTracer and El-MAVEN using the above protocol. Next, in the
unlabeled samples (instead of labled samples), the labeled fraction of isotopologues
were calculated. We defined the isotopologue with the labeled fraction >2% in any
one sample as a false positive. False-positive rate at isotopologue level referred to
the ratio of the number of false-positive labeled isotopologues to the number of all
isotopologues for all metabolites. False-positive rate at metabolite level referred to
the ratio of the number of labeled metabolites to the number of all extracted
metabolites. Detailed numbers were listed in Supplementary Tables 2–4. There is a
technical limitation to estimate false-positive rate in untargeted methods such as
X13CMS and geoRge. They require both unlabeled and labeled samples as inputs to
determine the labeled isotopologues and metabolites. The unlabeled samples were
necessary in the data processing and served as control samples. As a result, it is not
possible to estimate the false-positive rates of X13CMS and geoRge using the similar
method as MetTracer and El-MAVEN.

Metabolic pathway-enrichment analysis. Metabolic pathway-enrichment ana-
lysis was performed via hypergeometric test70. For the enrichment analysis of the
labeled metabolites in cluster 1, 2, and 3 in the head and muscle tissues of Dro-
sophila, the background database was all of the labeled metabolites in the head and
muscle tissues, respectively. For the enrichment analysis of the shared labeled
metabolites in both head and muscle tissues, the background database was the
metabolites in KEGG.

Hierarchical-clustering analysis. Hierarchical-clustering was performed using an
R package “pheatmap” (version 1.0.12) with the default parameters. The mean
labeling extent values of metabolites in each labeling time point were used. The
clustering method was “ward.D” for head and “complete” for muscle. The corre-
lation values were used as the clustering distance in heat map plot.

Metabolite–metabolite correlation calculation. The labeling extent values after
24 h labeling were used for Pearson correlation calculation between metabolites
from each cluster. Only metabolite correlations with p-value <0.05 after FDR
correction were retained to construct the correlation network. The correlation
network was visualized by R package “circlize” (version 0.2.10).

PolyA-selected RNA-seq. For RNA-seq experiments, dissected fly head tissues
(3d and 30d) were used. Tissues were homogenized in a 1.5 mL tube containing
1 mL of Trizol Reagent (Thermo Fisher Scientific, USA). RNA isolation was fol-
lowed in accordance with manufacturer’s instruction. RNA was resuspended in
DEPC-treated RNase-free water (Thermo Fisher Scientific). TURBO DNA free kit
was used to remove residual DNA contamination according to manufacturer’s
instruction (Thermo Fisher Scientific). One microgram of total RNA was used for
sequencing library preparation. PolyA-tailed RNAs were selected by NEBNext
Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, USA), followed
by the library preparation using NEBNext Ultra RNA library Prep Kit for Illumina
according to manufacturer’s instruction (New England Biolabs, USA). Libraries
were pooled and sequenced on the Illumina Miseq platform with single end
100 bps (Illumina, USA). Sequencing reads were mapped to the reference genome
dm6 with STAR2.3.0e by default parameter. The read counts for each gene were
calculated by HTSeq-0.5.4e htseq-count with parameters “-m intersection-strict -s
no” with STAR generated SAM files. The count files were used as input to R
package “DESeq” (version 1.8.3) for normalization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw metabolomics and RNA-seq data files generated in this study have been
deposited in the National Omics Data Encyclopedia under accession code OEP002699.
The raw metabolomics data files have also been deposited in Metabolights under
accession code MTBLS3322. The RNA-seq data files generated in this study have been
deposited in the Gene Expression Omnibus database under accession code GSE204740.
Sequencing reads were mapped to the Drosophila Melanogaster reference genome dm6.
The annotation results for all metabolomics datasets are provided in the Supplementary
Data 1–3. Source data are provided with this paper.

Code availability
The source code of MetTracer is provided on GitHub https://github.com/ZhuMetLab/
MetTracer and Zenodo https://doi.org/10.5281/zenodo.657530871.
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