
ARTICLE

Frequency spectra and the color of cellular noise
Ankit Gupta 1 & Mustafa Khammash 1✉

The invention of the Fourier integral in the 19th century laid the foundation for modern

spectral analysis methods. This integral decomposes a temporal signal into its frequency

components, providing deep insights into its generating process. While this idea has pre-

cipitated several scientific and technological advances, its impact has been fairly limited in

cell biology, largely due to the difficulties in connecting the underlying noisy intracellular

networks to the frequency content of observed single-cell trajectories. Here we develop a

spectral theory and computational methodologies tailored specifically to the computation and

analysis of frequency spectra of noisy intracellular networks. Specifically, we develop a

method to compute the frequency spectrum for general nonlinear networks, and for linear

networks we present a decomposition that expresses the frequency spectrum in terms of its

sources. Several examples are presented to illustrate how our results provide frequency-

based methods for the design and analysis of noisy intracellular networks.
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Modern microscopy and the advent of a wide array of
fluorescent proteins1 have afforded scientists the
unprecedented ability to monitor the dynamics of living

biological cells2. The rapid pace of development in imaging
technology coupled with advanced image processing techniques
has made it viable to obtain high-resolution time-lapse live-cell
data for a multitude of cell-types and biological processes. Recent
innovations in microfluidics make it possible to quantitatively
measure single-cell dynamics for long periods of time over
multiple generations3–5. These trends underscore the need for
developing theoretical and computational tools that are specifi-
cally geared towards quantitatively extracting information about
intracellular networks from live single-cell imaging data. One of
the main reasons why the development of such tools is mathe-
matically challenging is that the dynamics of single-cells is
inherently noisy due to randomness in molecular interactions
that constitute intracellular processes, and hence single-cell
dynamics must be described with stochastic models that are
more difficult to analyse than their deterministic counterparts6.
These stochastic models usually represent the reaction dynamics
as a continuous-time Markov chain (CTMC) and the existing
methods for analysing them have mostly focussed on solving the
chemical master equation (CME) that governs the evolution of
the probability distribution of the random state7. While these

methods have been successfully applied in several significant
biological studies8,9, they typically do not account for temporal
correlations in time-traces of living cells, but rather they are
designed to connect network models to flow-cytometry data10

where temporal correlations are anyway lost due to discarding of
the measured cells. Temporal correlations are a feature of single-
cell trajectories that contain valuable information about the
underlying network, and in order to access this information we
need computational methods that can efficiently deduce the
temporal correlation profile from a given stochastic reaction
network model.

As is well-known in engineering and physics communities
among many others, frequency-domain analysis is a powerful way
to analyse random signals and systematically study temporal
correlations. In particular, a signal’s power spectral density (PSD)
measures the power content at each frequency, and it is related to
the signal’s temporal autocovariance function via the Fourier
Transform (see Box 1). The PSD of a single-cell trajectory is
intimately related to the underlying network’s architecture and
parametrisation within the observed cell11. There exist many
studies that have successfully unravelled this relationship and
discovered mechanistic principles for specific examples of reac-
tion networks. For example, in ref. 12 the role of feedback-induced
delay in generating stochastic oscillations is explored and in ref. 13

Box 1 | Frequency domain analysis of stochastic signals

Consider a reaction network, comprising species X1,…, Xd whose copy-number dynamics is described by an ergodic continuous-time Markov chain
(CTMC) (X(t))t≥ 0 with stationary distribution π. Our goal is to estimate the PSD which measures the strengths of oscillatory components of various
frequencies in the output signal ðXnðtÞÞt�0 tracking the copy-number trajectory for species Xn. We first subtract the stationary mean EπðXnÞ and
construct the mean zero signal as ~XnðtÞ ¼ XnðtÞ �EπðXnÞ and then the time-averaged signal power P(Xn) is equal to the stationary variance Varπ(Xn),
i.e.

PðXnÞ :¼ lim
T!1

T�1
Z T

0

~XnðtÞ
� �2

dt ¼ VarπðXnÞ:
The power spectral density (PSD) for the output signal is given by

SXn
ðωÞ ¼ lim

T!1
T�1jF TðωÞj2; whereF TðωÞ ¼

Z T

0

~XnðtÞe�iωtdt

is the one-sided Fourier Transform, ω is the frequency and i ¼
ffiffiffiffiffiffi
�1

p
. This PSD is related to the autocovariance function

RXn
ðτÞ :¼ E ~XnðtÞ~Xnðtþ τÞ� � ¼ lim

T!1
T�1

Z T

0

~XnðtÞ~Xnðtþ τÞdt
by the well-known Wiener-Khintchine Theorem85 that shows that the PSD can be expressed as the two-sided Fourier Transform of the autocovariance
function

SXn
ðωÞ ¼

Z 1

�1
RXn

ðτÞe�iωτdτ: ð1Þ
The interpretation of the PSD curve is given above. The location ωmax of its global maximum is considered to be the oscillatory frequency of the output
signal.
Commonly the PSD is estimated by first sampling a discrete time-series from a simulated CTMC trajectory at steady-state, and then taking its discrete
Fourier transform (DFT) to estimate F TðωÞ which then yields the PSD. This nonparametric procedure for PSD estimation is often called the periodogram
method and it has known drawbacks due to estimator bias and inconsistency that often manifests in a high variance of the PSD estimator. The reliability
of the estimator can be improved by ensemble averaging, windowing or artificial smoothing32, but the underlying problems that compromise the
accuracy of the PSD estimate still remain.
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a stochastic amplification mechanism for oscillations is found.
Notably, the exact PSD for linear reaction networks was derived
in ref. 14 and this was used to show how in gene expression
networks post-translational modification reaction reduces the
noise by serving as a low-pass filter.

Other works in this direction have relied on approximating the
CTMC with a stochastic differential equation (SDE) such as the
linear noise approximation (LNA)15 or the chemical Langevin
equation (CLE)16. With these SDE-based approaches the protein
PSD for gene-regulatory networks was investigated in refs. 17–19,
the relationship between input and output PSD for a single-input
single-output system was computed in ref. 20, the single-cell PSD
for a general biomolecular network in the vicinity of a determi-
nistic Hopf bifurcation was determined in ref. 21 and corrections
to the LNA-based PSD estimates were systematically derived in
ref. 22. Even though SDE approximations make the problem of
computing the PSD analytically tractable, their accuracy is
severely compromised if any of the species are in low copy-
numbers, as is the case for many synthetic networks where low
copy-numbers are desired in order to reduce metabolic load on
the host cell23. Moreover, even when the species copy-numbers
are uniformly large, the accuracy of SDE approximations can only
be guaranteed over finite time-intervals24, and hence the PSD,
which is estimated at steady-state, could have an error (see the
example presented in Fig. 4). It must be noted that for linear
networks these approximations yield the exact PSD but if the
network has nonlinear propensities then the error in the derived
PSD expression can be significant25. In order to address these
issues, we need PSD estimation methods that work reliably for
CTMC models, especially in the low copy-number regime,
without requiring any dynamical approximations. The aim of this
paper is to develop such a method.

In a recent paper26, the analytical relationship between the
PSDs of the output species and its time-dependent production
rate was derived for CTMC models of certain reaction networks
including birth-death and simple gene expression. While this
analysis enables investigation of the dynamics of the protein
creation process from experimentally measured protein time-
traces, it does not extend to nonlinear networks, such as gene
expression networks with transcriptional feedback, for which
some analytical results exist for simplified models27.

A recurring theme in the existing literature is that typically the
autocovariance function is well-approximated by the sum of a few
exponential functions18,20,26, and consequently the PSD is a
rational function of a special form. This low dimensional feature
can be theoretically explained by appealing to the compactness of
the resolvent operator28 associated with the CTMC, which as
we prove, is connected to the PSD. Exploiting this connection we
develop the multipoint Padé approximation29 technique for
estimating the PSD for a general nonlinear stochastic reaction
network. This method, which we refer to as Padé PSD, computes
the PSD expression based on certain stationary expectations. We
design efficient Monte Carlo estimators to estimate the required
expectations by generating a handful of simulations of an aug-
mented CTMC, constructed by adding certain state-components
and reactions to the original CTMC. We show how this aug-
mented CTMC construction not only facilitates PSD estimation
but also its empirical validation.

Our PSD estimation approach is semi-analytic, in the sense
that analytical expressions for the PSD are found by first esti-
mating certain quantities with simulation. Such approaches have
become increasingly popular in recent years, as they provide
viable solutions to nonlinear problems which are otherwise ana-
lytically intractable30. Analytical expressions for the PSD are
known in the special case of linear reaction networks14, where all
reaction propensity functions are affine functions of the state

variables. We show how this expression can be alternatively
derived via the resolvent connection and we also generalise this
result to allow for arbitrary time-varying inputs. This general-
isation yields a PSD decomposition result that is similar to what
was found in previous SDE-based studies20 and it extends the
recent results in ref. 26.

Given a stochastic reaction network model, commonly the
single-cell PSD is estimated with nonparametric methods by first
simulating a trajectory, and then sampling it at finitely-many
timepoints to obtain a discrete time-series whose PSD can be
straightforwardly computed with the Discrete Fourier Transform
(DFT)31. Either one can apply the DFT directly to the time-series
to estimate the PSD or one can first estimate the autocovariance
function and then compute its DFT (see Box 1 for more details).
While the latter approach is computationally very expensive due
to the autocovariance function computation, the former approach
yields an inconsistent estimator for the PSD, which implies that
the estimator variance does not vanish, even as the time-series
length tends to infinity. To mitigate this inconsistency issue, PSDs
from several independent trajectories are averaged, at the cost of
significant computational burden as trajectory simulations are
time-consuming. More importantly, the averaged PSD may still
not be accurate because it is based on discrete sampling of con-
tinuous signals that can cause the problem of aliasing which
distorts the estimated PSD by introducing frequency components
corresponding to the sampling operation (see Chapter 1 in
ref. 32). As shown by the Nyquist’s Sampling Theorem33 we can
mitigate this aliasing effect by choosing the time-step parameter
that is smaller than half of the reciprocal of the maximum fre-
quency represented in the signal. However, for stochastic
dynamics this criterion is unusable as the range of frequencies in
the signal is very wide and picking a very small time-step can lead
to computational intractability. These issues motivated us to
devise Padé PSD that is not based on discrete-sampling and
provides a parametric approach for estimating the PSD that
rather than relying on only the output signal, uses full informa-
tion contained in the stochastic model of the dynamics.

We illustrate our results with applications of relevance to both
systems and synthetic biology. Using our PSD decomposition result
for linear networks, we demonstrate how PSDs enable differentiation
between two fundamental types of adapting circuit topologies, viz.
Incoherent Feedforward (IFF) and Negative Feedback (NFB)34, in
the presence of dynamical intrinsic noise. We also present an
example where the phenomenon of single-cell entrainment is
examined in the stochastic setting using our PSD decomposition
result. Employing Padé PSD we illustrate how the performance of
certain synthetic circuits, with noisy dynamics, can be optimised.
Specifically, we examine the problem of optimising the oscillation
strength of a well-known synthetic oscillator (called the
repressilator35) and the problem of reducing single-cell oscillations
which can arise when an intracellular network is controlled with the
antithetic integral feedback (AIF) controller36 that has the important
property of ensuring robust perfect adaptation despite randomness
in the dynamics and other environmental uncertainties. Lastly, we
present examples to highlight how our Padé PSD method helps in
the study of oscillations caused by cell-division cycles as well as
facilitate parameter inference from experimentally measured single-
cell trajectories, by providing clean and accurate estimations of the
PSD. Interestingly, inferring a parameter with PSD does not require
the explicit knowledge of the proportionality constant that relates the
measured signal to the copy-number of the output species37.

Results
The stochastic model. We first describe the CTMC model for a
reaction network and define the resolvent operator associated
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with it. We then connect this operator to the PSD. This con-
nection shall be exploited later to develop our analytical and
computational results.

Consider a reaction network with d species, called X1,…,Xd,
and K reactions. In the classical stochastic reaction network
model, the dynamics is described as a continuous-time Markov
chain (CTMC)7 whose states represent the copy numbers of the d
network species. If the state is x= (x1,…, xd) and reaction k fires,
then the state is displaced by the integer stoichiometric vector ζk.
The rate of firing for reaction k at state x is governed by the
propensity function λk(x). Under the mass-action hypothesis7

λkðx1; ¼ ; xdÞ ¼ θk
Yd
j¼1

xjðxj � 1Þ¼ ðxj � νjk þ 1Þ
νjk!

; ð2Þ

where θk is the rate constant and νjk is the number of molecules of
Xj consumed by the k-th reaction. Formally, the CTMC (X(t))t ≥ 0

representing the reaction kinetics can be defined by its generator
A, which is an operator that specifies the rate of change of the
probability distribution of the process (see Chapter 4 in ref. 38). It
is defined by

Af ðxÞ ¼ ∑
K

k¼1
λkðxÞ f ðx þ ζkÞ � f ðxÞ� �

; ð3Þ

for any real-valued bounded function f on the state-space which
consists of all accessible states in the d-dimensional non-negative
integer lattice.

For each state x, let p(t, x) be the probability that the CTMC
(X(t))t ≥ 0 is in state x at time t. Then these probabilities evolve
according to a system of ordinary differential equations, called the
chemical master equation (CME)7, which is typically unsolvable.
Hence its solutions are often estimated with Monte Carlo
simulations of the CTMC, using methods such as Gillespie’s
stochastic simulation algorithm (SSA)39. If the CME has a unique,
globally attracting fixed point π then the CTMC is called ergodic
with π as the stationary distribution. If the convergence of p(t) to
π is exponentially fast in t, then the CTMC is called exponentially
ergodic. We shall work under the assumption of exponential
ergodicity which is computationally verifiable using techniques in
ref. 40 and in ref. 41, wherein, it is also demonstrated that this
assumption is satisfied by networks typically encountered in
systems and synthetic biology. It is important to note that for an
ergodic network, all stochastic trajectories, despite being different,
have the same PSD.

Even though we primarily work with the CTMC model with
generator (3), the PSD estimation method that we develop in this
paper can also be applied to a more general CTMC model whose
generator is given by

Af ðxÞ ¼ ∑
K

k¼1
∑
ζ
λkðxÞ f ðx þ ζÞ � f ðxÞ� �

μkðx; ζÞ; ð4Þ

where μk(x, ⋅ ) is a state-dependent probability distribution that
governs the displacement upon firing of reaction k, i.e. if the state
is x and reaction k fires, the process would jump to (x+ ζ), where
ζ is randomly drawn from the probability distribution μk(x, ⋅ ).
Notice that by setting μk(x, ⋅ ) to be the probability distribution
that puts all the mass at the fixed vector ζk, irrespective of the
state x, we recover the standard CTMC model with generator (3).
The generality introduced by allowing the displacement to be
random and state-dependent is useful in capturing cell-wide
mechanisms, like cell-division, that impact the whole molecular
population within a cell (see the example presented in Fig. 7).

The resolvent operator and its connection to the PSD. Let
(X(t))t ≥ 0 be a CTMC with generator A. For such a Markov
process, we define the transition semigroup TðtÞ as the operator

which maps any real-valued function g on the state space, to the
function specified by the conditional expectation

TðtÞgðxÞ ¼ E gðXðtÞÞjXð0Þ ¼ x
� �

: ð5Þ
We now define the resolvent operator which plays a central role
in the development of our method for PSD estimation. For any
complex number s, the resolvent operator maps the function g to
the Laplace transform of the map t 7!TðtÞg

RðsÞgðxÞ ¼
Z 1

0
e�stTðtÞgðxÞdt: ð6Þ

It can be shown that the map s 7!RðsÞgðxÞ is complex-analytic.
Assuming that the observed single-cell trajectory ðXnðtÞÞt ≥ 0 is

the copy-number dynamics of the output species Xn, we now
establish a relation between the PSD SXn

ðωÞ (see Box 1) and the
resolvent operator. Let EπðXnÞ denote the stationary expectation
of the copy-number of species Xn and let f be the function

f ðxÞ ¼ xn �EπðXnÞ: ð7Þ
Defining

GðsÞ :¼ Eπ fRðsÞf� �
; ð8Þ

the PSD SXn
ðωÞ is given by

SXn
ðωÞ ¼ 2RealðGðiωÞÞ; ð9Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

. This relation is proved in Section S2.2 of the
Supplement. In this result we view the function x 7!f ðxÞRðsÞf ðxÞ
as a random variable on the probability space whose sample-
space is the state-space of the CTMC and the probability
distribution is given by the stationary distribution π. The
expectation of this random variable is denoted by G(s) and in
the PSD estimation method we develop, we first estimate G(s) and
then obtain the PSD using (9).

The eigen-decomposition of the resolvent operator allows us to
express G(s) as an infinite sum

GðsÞ ¼ ∑
1

j¼1

αj
s� σ j

; ð10Þ

where σ1, σ2,… are the non-zero eigenvalues of A, assumed to be
distinct and arranged in descending order of their real parts
(which are negative due to ergodicity). Each coefficient αj
captures the power in the signal corresponding to eigenmode
σj, and their sum is equal to the total signal power which is also
the stationary variance Varπ(Xn) of the output species copy-
number

∑
1

j¼1
αj ¼ VarπðXnÞ:

Relation (10) is equivalent to the following representation of
the autocovariance function

RXn
ðτÞ ¼ ∑

1

j¼1
αje

σ jτ : ð11Þ

In the case of linear networks, G(s) can be exactly computed
and (9) yields an analytical expression for the PSD which is
already known in the literature14. However, for such networks
stimulated by external inputs it is not known how the output PSD
is related to the PSDs of the input signals. We derive this relation
by exploiting the resolvent connection and this yields a practically
useful PSD decomposition result (see Theorem 2.1). For general
nonlinear networks, we apply the theory of Padé approximations
to find an accurate rational function representation of G(s) which
is then used to estimate the PSD (9).
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A PSD decomposition result for linear networks. In this section,
we present a PSD decomposition result for linear networks with
generator (3), that extends a similar result recently reported in
ref. 26. A reaction network is called linear if all its propensity
functions are affine functions of the state variables. Under mass-
action kinetics, linear networks are necessarily unimolecular, i.e.
all reactions have at most one reactant and are of the form ;�!?
or Xj⟶⋆, where ⋆ represents any linear combination of spe-
cies. Assuming d species and K reactions, for linear networks we
can express the vector of propensity functions λ(x)=
(λ1(x),…, λK(x)) as an affine map on the state-space

λðxÞ ¼ Λx þ ~b;

where Λ is some K × d matrix and ~b is a K × 1 vector. Letting S be
the d × K matrix whose columns are the stoichiometric vectors
ζ1,…, ζK for the reactions. We define

A ¼ SΛ and b ¼ S~b;

and under the assumption of ergodicity, the d × d matrix A is
Hurwitz-stable, i.e. all its eigenvalues have strictly negative real
parts. It can be easily shown (e.g. ref. 40) that the dynamics of the
expected state xðtÞ ¼ EðXðtÞÞ is given by

dx
dt

¼ AxðtÞ þ b; ð12Þ

and as t→∞, x(t) converges to �x which is the state expectation
under the stationary distribution π

�x ¼ EπðXÞ ¼ �A�1b:

Moreover, the stationary covariance matrix Σ for the state can
be computed by solving the following Lyapunov equation

AΣþ ΣAT þ DDT ¼ 0;

where D is the positive semidefinite matrix satisfying
DDT ¼ SdiagðΛ�x þ ~bÞST . In this setting, we can show that the
resolvent operator maps the class of affine functions to itself, and
this allows us to apply formula (9) to prove (see the Supplement,
Section S2.3) that the PSD is given by

SXn
ðωÞ ¼ �2eTn ðω2Iþ A2Þ�1

AΣen; ð13Þ

where I is the d × d identity matrix and en denotes its n-th
column. This expression is equivalent to the PSD formula for
linear networks proved in ref. 14 using Gardiner’s regression
theorem42 and it can also be derived using the LNA
approximation.

Now consider the situation where such a linear network is
being driven by external signals. These signals could be generated
by different sources, e.g. upstream interconnected networks,
environmental stimuli, or by engineered inputs introduced to
probe the dynamics (see Fig. 1). A fundamentally important
question is to understand how the internal noise and each of these
inputs (deterministic or stochastic) conspire to make up the full
power spectrum of an output of interest. Indeed it would be of
considerable conceptual and practical significance to be able to
decompose the output power spectrum in a way that allows the
quantification of the specific contributions to the spectrum of the
internal noise and of each of the external inputs. Although
approximate decompositions of this sort have been reported in
specific example networks modelled by CLEs19,20, to the best of
our knowledge no spectral decomposition results exist for general
biochemical networks modelled by CLE, nor for those modelled
by discrete stochastic CTMC models.

We consider m independent time-varying signals
ðY1ðtÞÞt ≥ 0; ¼ ; ðYmðtÞÞt ≥ 0. We assume that these signals stimu-
late through m zeroth-order reactions of the form

; �!θkYkðtÞ ∑
d

j¼1
cjkXj ð14Þ

for k= 1,…,m. Each reaction follows mass-action kinetics and
for reaction k, θk is a positive constant and ck= (c1k,…, cdk) is the
vector representing the number of molecules of each species
X1,…,Xd created by this reaction. We shall assume that process
(Y(t))t ≥ 0, which includes all the stimulating signals, is an
exponentially ergodic Markov process with stationary expectation
�y ¼ ð�y1; ¼ ;�ymÞ. Let �Σ be the stationary variance-covariance
matrix for the process (X(t))t ≥ 0 when each stimulating signal is
deterministic and fixed to its stationary mean at all times, i.e.
YðtÞ ¼ �y for all t ≥ 0. We now present our main result for linear
networks which provides an analytic relationship between the

Fig. 1 The setting of the PSD decomposition result. A stochastic reaction network with linear propensity functions embedded in the intracellular milieu
and receiving stimulation from several upstream networks. Theorem 2.1 provides an analytical decomposition for the output PSD SXn

ðωÞ in terms of the
PSDs of all the stimulating signals.
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PSD SXn
ðωÞ of our output species Xn and the PSDs SYj

ðωÞ for

j= 1,…,m.

Theorem 2.1. (PSD Decomposition) Consider a linear reaction
network comprising species X1,…,Xd, stimulated by independent
time-varying signals ðY1ðtÞÞt ≥ 0; ¼ ; ðYmðtÞÞt ≥ 0, through zeroth-
order reactions of the form (14). We assume that each Yj is an
exponentially ergodic Markov process with PSD SYj

ðωÞ. The PSD of

the output species Xn is given by

SXn
ðωÞ ¼ �2eTn ðω2Iþ A2Þ�1A�Σen|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

intrinsic

þ ∑
m

j¼1
θ2j jeTn ðAþ iωIÞ�1cjj2SYj

ðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
extrinsic

:

The proof of this result is provided in Section S2.3 in the
Supplement and it shows that the output spectrum is the sum of
the intrinsic contribution and the external contributions from all
stimulating signals. The external contribution due to signal Yj is
modulated by the frequency-dependent gain θ2j jeTn ðAþ iωIÞ�1cjj2.

Padé PSD. In this section we develop our method, called Padé
PSD, for estimating the PSD for a general nonlinear network with
generator (4). For this, we apply Padé approximation theory
which is known to be immensely useful in computing accurate
rational function approximations for analytic functions. Recall
representation (11) of the autocovariance function which is
equivalent to representation (10) for the function G(s). Previous
studies have established that usually the autocovariance function
is well-approximated by only the first few terms in this infinite
series. This fact can be justified by appealing to the compactness
of the resolvent operator which ensures that it is close to a finite-
rank operator (see Section S2.1 in the Supplement). If we only
keep the first p terms in the infinite sum (10), then we obtain a
rational function of the form

GpðsÞ :¼
κ0 þ κ1sþ � � � þ κp�1s

p�1

β0 þ β1sþ � � � þ βp�1s
p�1 þ sp

ð15Þ

where the degree of the numerator polynomial is (p− 1) while
the degree of the denominator polynomial is p. Based on this
rational Ansatz, we shall employ the method of multipoint Padé
approximation for identifying the 2p coefficients (viz. κ0,…,
κp−1, β0,…, βp−1) such that Gp(s) serves as an accurate approx-
imant for the function G(s) given by (8), which then provides the
PSD due to (9). The theory of multipoint Padé approximations29

(also called Newton-Padé approximations43) is quite rich and
many works have analysed their accuracy and convergence
properties (see Chapter 3 in ref. 44). In such an approximation,
the rational Padé approximant is constructed by matching its
power series expansions at several arbitrarily chosen points
s1,…, sL, up to a certain number of terms ρ1,…, ρL, to the cor-
responding power series expansions of the function being
approximated (i.e. G(s) in our case). In our application we allow
each sℓ to belong to the extended positive real line (0,∞] (i.e. ∞ is
included). The power series expansion of G(s) at s= sℓ can be
written as

GðsÞ ¼
að‘Þ0 þ að‘Þ1 ðs� s‘Þ þ að‘Þ2 ðs� s‘Þ2 þ ¼ if s‘ < 1
að‘Þ0
s þ að‘Þ1

s2 þ að‘Þ2
s3 þ ¼ if s‘ ¼ 1:

(
ð16Þ

We show in Section S2.4.1 of the Supplement that each að‘Þm can
be identified as the m-th Padé derivative at s= sℓ defined by

Dðs‘Þ
m ¼

ð�1Þm
m! Eπ f

R1
0 tme�ts‘TðtÞfdt� �

if s‘ < 1
Eπ fAmf
� �

if s‘ ¼ 1;

(
ð17Þ

where f is the output function (7), TðtÞ denotes the transition
semigroup operator (5) with generator A, and Am denotes the
m-th iterate of A with A0 ¼ I (the identity operator).

Suppose for now that these Padé derivatives have been
estimated. Then it can be shown (see Section S2.4.2 in the
Supplement) that for the Padé approximant Gp(s) to have a power
series expansion at s= sℓ that agrees with the first ρℓ terms in (16),
the 2p-dimensional vector of unknown coefficients x= (κ0,…,
κp−1, β0,…, βp−1) must satisfy the linear system

Að‘Þx ¼ bð‘Þ ð18Þ
where A(ℓ) is a ρℓ × 2p matrix and b(ℓ) is a ρℓ-dimensional vector
whose components in the case sℓ <∞ are given by

Að‘Þ
ji ¼

0 for i ¼ 0; ¼ ; j� 1
i
j

� 	
si�j
‘ for i ¼ j; ¼ ; p� 1

�∑minfi�p;jg
k¼0

i�p
k

� �
si�p�k
‘ Dðs‘Þ

j�k for i ¼ p; ¼ ; 2p� 1

8>><>>:
and bð‘Þj ¼ ∑

j

k¼0

p
k

� 	
sp�k
‘ Dðs‘Þ

j�k:

ð19Þ

In the case sℓ=∞ these components become

Að‘Þ
ji ¼

0 for i ¼ 0; ¼ ; p� 1 and i ≠ ðp� 1� jÞ
1 for i ¼ ðp� 1� jÞ
0 for i ¼ p; ¼ ; 2p� j� 1

�Dðs‘Þ
jþi�2p for i ¼ 2p� j; ¼ ; 2p� 1

8>>>><>>>>:
and bð‘Þj ¼ Dðs‘Þ

j :

ð20Þ
Aggregating these linear systems (18) for all ℓ= 1,…, L we arrive
at the cumulative linear system

Ax ¼ b ð21Þ
where A and b are obtained by vertically stacking A(ℓ)-s and b(ℓ)-s.
Note that the dimensions of A and b are ρsum × 2p and ρsum × 1,
respectively, with ρsum ¼ ∑L

‘¼1 ρ‘. Hence this linear system can be
underdetermined if ρsum < 2p or overdetermined if ρsum > 2p. To
handle both these possibilities in a unified way, we solve the linear
system Ax= b in the sense of least-squares, by minimising the
residual norm k Ax � bk22. This provides us with the vector of
unknown coefficients x to construct the rational Padé approx-
imant Gp(s).

Consider the scenario of Theorem 2.1 where the output
trajectory comes from a downstream network that is driven by a
stochastic external signal that emanates from an upstream
network. The denominator B(s) of the function G(s) that
characterises the PSD of the external signal can be viewed as
the product of the significant eigenvalues of the generator of the
upstream network (see (10)), and one can show that these are also
eigenvalues for the generator of the full network that includes
both the upstream and the downstream networks (see
Remark S2.2 in the Supplement). Hence we can reasonably
expect B(s) to appear as a factor in the denominator for the
function G(s) that characterises the PSD of the output signal and
this factor can be independently estimated from the upstream
network. This suggests a more general rational Ansatz than (15),
which is of the form

GpðsÞ ¼
κ0 þ κ1sþ � � � þ κp�1s

p�1

ðβ0 þ β1sþ � � � þ βp�q�1s
p�q�1 þ sp�qÞBðsÞ ð22Þ

where B(s)= B0+ B1s+⋯+ Bq−1sq−1+ sq is some known
polynomial with degree q ≤ p. In this case, the linear system for
the unknown coefficients x= (κ0,…, κp−1, β0,…, βp−q−1) changes
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from (21) to

A
Ip 0

0 C


 �
x ¼ b� A

0

B̂


 �
ð23Þ

where A and b are same as before, Ip is the p × p identity matrix,
B̂ ¼ ðB0; ¼ ;Bq�1Þ is the q-dimensional vector of coefficients of
B(s) and C is the p × (p− q) convolution matrix whose entries are
given by

Cji ¼
Bj�i if i ¼ j� q; j� qþ 1; ¼ ; j

0 otherwise:

�
For our approach to work, the main challenge is to develop a

method for reliable estimation of the Padé derivatives from a
handful of trajectory simulations. We describe such a method in
the next section and in the subsequent sections we discuss how
the resulting Padé approximant can be validated and also provide
more details on the computational implementation of our Padé
PSD method.

Estimation of the Padé derivatives. We first consider the case
sℓ <∞. Appealing to the ergodicity of the CTMC we can express
the Padé derivative Dðs‘Þ

m as

Dðs‘Þ
m ¼ ð�1Þm

smþ1
‘

Eπ f
Z 1

0

tmsmþ1
‘

m!
e�ts‘TðtÞfdt

 �
¼ ð�1Þm

smþ1
‘

lim
T!1

E f ðXðTÞÞf ðXðT � τðmÞ
s‘

ÞÞ
� 	 ð24Þ

where τðmÞ
s‘

is an independent random variable with Erlang
distribution with shape parameter (m+ 1) and rate parameter sℓ.
In other words, the probability density function of τðmÞ

s‘
is given by

FτðmÞ
s‘
ðtÞ ¼ tmsmþ1

‘

m!
e�ts‘ for t ≥ 0;

and we can view τðmÞ
s‘

as the sum of (m+ 1) independent and
identically distributed exponential random variables with rate
parameter sℓ. Noting that Xn(T) and XnðT � τðmÞ

s‘
Þ shall have the

same mean and variance at stationarity we can rewrite (24) as

Dðs‘Þ
m ¼ ð�1Þm

smþ1
‘

VarπðXnÞ �
δðs‘Þm

2

" #
; ð25Þ

where Varπ(Xn) is the stationary variance of the output species
copy-number and δðs‘Þm is the steady-state expectation of the
squared change in the output state in a time-period of length τðmÞ

s‘
,

i.e.

δðs‘Þm ¼ lim
T!1

E XnðT � τðmÞ
s‘

Þ � XnðTÞ
� 	2 �

We now discuss how we can simultaneously estimate the
steady-state expectation (25) for each m= 0, 1,…, (ρℓ− 1). For
this, we augment the CTMC state with ρℓ additional state
components, denoted by Y1ðtÞ; ¼ ;Yρ‘

ðtÞ, and an extra reaction,
called Rs‘

that fires at the constant rate of sℓ. If this reaction fires
at time t, then we reset these additional state components as

Y1ðtÞ ¼ Xnðt�Þ andYjðtÞ ¼ Yj�1ðt�Þ for j ¼ 2; ¼ ; ρ‘; ð26Þ
where Xn(t−) is the copy-number of the output species Xn, just
before the reaction firing time. Similarly for j ≥ 2, Yj(t) assumes
the value of the previous state component before the jump time,
which is Yj−1(t− ). Letting τðmÞ

s‘
be the Erlang-distributed random

variable mentioned above, for any T≫ 1

YjðTÞ ¼ XnðT � τðmÞ
s‘

Þ;

and we can express δðs‘Þm as

δðs‘Þm ¼ lim
T!1

E Ymþ1ðTÞ � XnðTÞ
� �2� 	

:

Suppose we have Q simulated trajectories of the augmented
CTMC denoted by ðXðqÞðtÞ;Y ðqÞðtÞÞt ≥ 0 for q= 1,…,Q. Then we
can simultaneously estimate each δðs‘Þm with the Monte Carlo (MC)
estimator

δ̂
ðs‘Þ
m ¼ 1

QðTf � TcÞ
∑
Q

q¼1

Z Tf

Tc

Y ðqÞ
mþ1ðtÞ � XðqÞ

n ðtÞ
� 	2

dt;

where Tc≪ Tf is the cut-off time at which stationarity is assumed
to be reached and the initial part of each trajectory in the time-
interval [0, Tc] is discarded. Observe that if Tf is large enough then
even a single trajectory (i.e. Q= 1) is sufficient for this estimation
due to Birkhoff’s Ergodic Theorem45. However, using multiple
trajectories enhances the MC estimator’s statistical accuracy
which can be measured by estimating its sample variance. Based
on Q CTMC trajectories the output variance Varπ(Xn) can be
estimated as

dVarπðXnÞ ¼
1

QðTf � TcÞ
∑
Q

q¼1

Z Tf

Tc

XðqÞ
n ðtÞ� �2

dt

� 1
QðTf � TcÞ

∑
Q

q¼1

Z Tf

Tc

XðqÞ
n ðtÞdt

 !2

:

ð27Þ

Plugging this estimate along with δ̂
ðs‘Þ
m in (25), we obtain

estimates of the Padé derivatives Dðs‘Þ
m for each m= 0,…, (ρℓ− 1).

We now come to the case sℓ=∞. As before by simulating Q
CTMC trajectories we can estimate Dð1Þ

m , for each
m= 0, 1,…, (ρℓ− 1), using the MC estimator

D̂
ð1Þ
m ¼ 1

QðTf � TcÞ
∑
Q

q¼1

Z Tf

Tc

f ðXðqÞðtÞÞAmf ðXðqÞðtÞÞdt: ð28Þ

However, we generally find that the estimator (28) has a very
large variance unless the simulation time-period [0, Tf] is very
large. To mitigate this issue we design suitable covariates that can
be added to the integrands in (28) in order to aid convergence
with respect to Tf (see Section S2.4.3 in the Supplement). The
resulting integrand is given by

ΨðcÞ
m ðxÞ ¼ �

1
2

m
r

� �ðArf ðxÞÞ2 þ∑r�1
k¼1

m
k

� �
Akf ðxÞAm�kf ðxÞ if m ¼ 2r is even

þ∑r�1
k¼0

m�1
k

� �
γkðm�1�kÞðxÞ

∑r
k¼1

m
k

� �
Akf ðxÞAm�kf ðxÞ þ∑r�1

k¼0
m�1
k

� �
γkðm�1�kÞðxÞ if m ¼ ð2r þ 1Þ is odd

þ 1
2

m�1
k

� �
γrrðxÞ:

8>>>>><>>>>>:
ð29Þ

Here the function γjl(x) is defined as

γjlðxÞ ¼ ∑
K

k¼1
∑
ζ
λkðxÞ Ajðf ðx þ ζÞ � f ðxÞÞ� �

Alðf ðx þ ζÞ � f ðxÞÞ
h i

μkðx; ζÞ:

ð30Þ
It can be shown that Dð1Þ

m ¼ EπðΨðcÞ
m Þ and hence we can

estimate it from Q CTMC trajectories as

Dð1Þ
m ¼ 1

QðTf � TcÞ
∑
Q

q¼1

Z Tf

Tc

ΨðcÞ
m ðXðqÞðtÞÞdt: ð31Þ

In practice, we find that this covariate-based MC estimator (31)
typically hasmuch lower variance than the simplerMC estimator (28).
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Validation of the Padé approximant. Once the required Padé
derivatives have been estimated, we can compute the Padé
approximant Gp(s) and then use this approximant to compute the
PSD. For this PSD estimation procedure to work well, it is crucial
that the Padé approximant Gp(s) is an accurate surrogate for the
function G(s). This depends on many factors, such as the order of
approximation p, the number of Padé derivatives that are esti-
mated and their statistical precision. In order to test if a com-
puted Padé approximant is accurate we can validate it using direct
statistical estimates (i.e. without rational approximation) of the
function G(s) at multiple values of s, prescribed by �s1; ¼ ;�sR.
These values are all real positive numbers and similar to the Padé
derivatives, the direct estimates can be estimated by augmenting
the CTMC state with R additional state components, denoted by
Z1(t),…, ZR(t), to keep track of the copy number history of the
output species Xn at random exponential times in the past.
Assume that there are R additional reactions R�s1

; ¼ ;R�sR
that

fire independently at constant rates �s1; ¼ ;�sR, respectively. If
reaction R�sr

fires at time t, then we set

ZrðtÞ ¼ Xnðt�Þ ð32Þ
where Xn(t−) is the copy-number of the output species Xn, just
before the reaction firing time. As before we can conclude that for
each r= 1,…, R the value Gð�srÞ can be estimated with Q aug-
mented CTMC trajectories, denoted by ðXðqÞðtÞ;ZðqÞðtÞÞt ≥ 0 for
q= 1,…,Q

Ĝð�srÞ ¼
1
�sr
dVarπðXnÞ �

1
2QðTf � TcÞ

∑
Q

q¼1

Z Tf

Tc

ZðqÞ
r ðtÞ � XðqÞ

n ðtÞ� �2
dt

" #
;

ð33Þ
where dVarπðXnÞ is the estimator (27) for the output variance.

If the estimated Padé approximant Gp(s) is accurate, each Ĝð�srÞ
would be close to the value Gpð�srÞ, even though both

these estimates would have some inaccuracies due to finite
sampling and the finiteness of the simulation time-period.
Upon comparing the graphs fð�sr; Ĝð�srÞÞ : r ¼ 1; ¼ ;Rg and
fð�sr;Gpð�srÞÞ : r ¼ 1; ¼ ;Rg, the Padé approximant can be
validated.

We now present several biological examples to illustrate
applications of Padé PSD method and also the PSD decomposition
result for linear networks (Theorem 2.1). We start by considering
some simple linear networks where analytical expressions for the
exact PSDs are known and we show that Padé PSD is able to
provide very accurate approximations to the PSD (see Fig. 2). Next
we discuss how our PSD decomposition result allows us to identify
a key criterion that enables differentiation between adapting circuit
topologies34. We then provide two case studies to illustrate the
usefulness of our PSD estimation method for synthetic biology
applications. We first examine the problem of optimising the
oscillation strength of the repressilator35 (see Fig. 3) and then we
consider the problem of reducing single-cell oscillations that
typically arise due to the recently proposed antithetic integral
feedback (AIF) controller36 (see Fig. 4) that has the important
property of ensuring robust perfect adaptation for arbitrary
intracellular networks with stochastic dynamics. Next, we examine
how the PSD decomposition result can help us in studying the
phenomenon of single-cell entrainment in the stochastic setting
(see Fig. 5) and then we present an example to show how Padé PSD
facilitates parameter inference with experimental single-cell
trajectories that measure the copy-numbers of the output species
up to an unknown constant of proportionality (see Fig. 6). Lastly,
we consider an example with cell-division cycle, and demonstrate
that our Padé PSD method can be used for accurately estimating
the PSDs and quantitatively examining oscillations induced by the
cell-cycle (see Fig. 7).

Detailed descriptions of the networks considered in the paper
and their PSD analysis can be found in Section S4 of the

Fig. 2 Frequency-domain analysis of linear propensity networks. A This is the standard gene expression model where mRNA (X1) is transcribed
constitutively and it translates into protein (X2). B In this RNA splicing network a gene can randomly switch between inactive (X2) (low transcription) and
active (X1) (high transcription) states. When transcription occurs, unspliced mRNA (X3) is created which is then converted into spliced mRNA (X4) by the
splicing machinery. C In the Incoherent Feedforward (IFF) network an input I (constant level I0) directly produces the output O and it produces the
controller species C, which represses the production of output O. D In the Negative Feedback (NFB) network the input I (constant level I0) produces the
controller species C, that produces the output species O which in turn inhibits the production of C from I. For all the networks single-cell output trajectories
in the stationary phase are plotted. We provide a comparison of the single-cell PSDs estimated with three approaches—(1) analytically (see Table 1), (2)
the Padé PSD method (see Table 1) using Q= 10 simulated trajectories and (3) the averaged periodogram or the DFT method mentioned in Box 1 using
discrete samples from Q= 10 simulated trajectories. For the DFT estimator, the black curve represents the mean of the PSDs and the shaded grey region
represents the symmetric one standard deviation interval around the mean. For the NFB network one can see that detecting the presence of oscillations in
the fluctuations is much easier in the frequency-domain than in the time-domain.
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Supplement. Unless otherwise stated, all reaction networks
are assumed to follow CTMC dynamics with generator (3) and
all propensity functions are assumed to be of the mass-action
form (2).

Validation of Padé PSD with linear networks. We now provide
analytical expressions for the PSD of certain simple networks, like
the birth-death, the classical gene expression network46 and the
recently proposed RNA splicing network47. We then show that
Padé PSD is able to approximate the PSD quite accurately.

Fig. 3 Improving the repressilator’s oscillatory strength. A Depiction of the repressilator network with three gene expression systems whose output
proteins cyclically repress each other. When present, the sponge plasmid can bind TetR proteins, thereby raising the derepression threshold of the cI gene.
B Shows the effect of the sponge on the PSD. It can be seen that the sponge sharpens the PSD peak for promoter cooperativity H= 1.5 but this effect is lost
for H= 2. C Plots the single-cell trajectories with and without the sponge for promoter cooperativity H= 1.5, and they show that the oscillations are more
regular in the latter case. Comparison of the PSD estimated with our Padé PSD method with the PSDs estimated with DFT is provided. For these
estimations, Q= 10 simulated trajectories were used. D Repeats the computational analysis in panel (C) for promoter cooperativity H= 2.

Fig. 4 Reducing single-cell oscillations due to the AIF controller. A Depiction of the biomolecular antithetic integral feedback (AIF) controller regulating
the gene expression network. Here mRNA (X1) is the actuated species and the protein (X2) is the output species. This protein output is sensed by the
controller species Z2 which annihilates the other controller species Z1 that is constitutively produced at rate μ. The species Z1 actuates the gene expression
network by catalysing the production of mRNA X1. The red arrow indicates an extra negative feedback from the output species (protein) to the production
of the actuated species (mRNA). In B, the single-cell oscillatory trajectories for the protein counts (without the extra feedback) are plotted and the
corresponding PSD is estimated with Padé PSD and the DFT method. C Same plots as in panel (B) for Hill feedback with kfb ¼ 0:25min�1. D Same plots as
in panel (B) for proportional feedback with kfb ¼ 0:25min�1. For other values of kfb, comparison plots between Padé PSD and DFT are provided in
Fig. S5(A) in the Supplement. The plots for the single-cell trajectories in panels (B–D) also indicate the total signal power which is equal to the stationary
output variance (see Box 1). Notice the ≥ 50% reduction in this variance in the presence of feedback. E Comparison of the PSDs estimated with the Padé
PSD method for the Hill and proportional feedback for three choices of feedback parameter kfb. In F, we simulate the deterministic model for this network
(without the extra feedback) for four values of the actuation rate constant k. Notice that for lower values of k, the deterministic trajectories converge to a
fixed point, but for higher values of k sustained oscillations emerge. This is quite different from the stochastic case, where oscillations persist even though
their power continuously decreases as k decreases, as seen in panel (G) from the plots of PSDs obtained with the Padé PSD method. H Comparison of the
PSDs estimated with Padé PSD and the DFT method for two values of k (for other values see Fig. S5(B) in the Supplement). All the PSDs were estimated
with Q= 10 simulated trajectories.
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Gene transcription. Consider a simple model of constitutive gene
transcription and mRNA degradation, given by a single-species
birth-death network with rate of production k and the rate of
degradation γ

;�!k X�!γ ;:
The stationary distribution for this network is Poisson with
parameter k/γ. Hence the stationary mean and variance and equal
to k/γ and applying formula (13) we can compute the PSD as

SXðωÞ ¼
2k

γ2 þ ω2
: ð34Þ

This shows that the PSD (normalised by the total area under its
curve) has the fat-tailed Cauchy distribution with infinite mean and
variance, showing that even for such a simple network the sto-
chastic output trajectory contains a very wide range of frequencies.

Gene expression network. We now analyse the gene expression
model shown in Fig. 2A that consists of two species—the mRNA
(X1) and the protein (X2). There are four reactions corresponding
to mRNA transcription, protein translation and the first-order
degradation of both the species. Observe that the mRNA
dynamics is birth-death and hence we can compute its PSD using
(34) with (k, γ)↦ (kr, γr). Since mRNA stimulates the creation of
protein via a reaction of the form (14) we can apply our PSD
decomposition result (Theorem 2.1) to express the protein PSD as
a sum of two components corresponding to translation and
transcription, respectively:

SX2
ðωÞ ¼ 2krkp

γrðγ2p þ ω2Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
translation

þ
k2p

γ2p þ ω2

2kr
γ2r þ ω2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

transcription

: ð35Þ

Fig. 5 Stochastic entrainment of gene expression by the repressilator. A Schematic diagram of the repressilator driving a gene expression network. The cI
protein from the repressilator acts as an activating transcription factor for mRNA (X1) which translates into output protein (X2). The red arrow from X2 to
X1 indicates negative transcriptional feedback from the protein molecules. When the repressilator is connected to the gene expression network, for
linearised feedback the PSD can be estimated with the composite Padé PSD method which is based on Theorem 2.1. In B, these PSD estimates (after
normalisation by the total area under the PSD curve) are plotted for six values of θ and compared for θ ¼ 0:4min�1 to the PSD obtained with the DFT
method. One can observe the stochastic entrainment phenomenon as θ increases. C The heat-map for the entrainment score (see (44)) as a function of θ
and the feedback strength parameter kfb. Observe that the entrainment score is monotonically increasing in both variables kfb and θ, but it is more sensitive
to kfb. D For nonlinear transcriptional feedback PSD estimates obtained with Padé PSD are plotted and compared with the DFT method for θ ¼ 1min�1 and
θ ¼ 5min�1. All the PSDs were estimated with Q= 10 simulated trajectories.

Fig. 6 PSD-based inference of a self-regulatory gene expression model. A Depicts the self-regulatory gene expression system where the output
represses the gene (shown in red) via a nonlinear Hill function (45) with cooperativity coefficient H. B Plots the normalised PSDs (area under the PSD
curve is 1) obtained by Padé PSD for various values of H, and compares it with the normalised PSD obtained from experimental single-cell trajectories. The
experimental PSD was computed by averaging the PSDs from Q= 100 single-cell trajectories, and the black curve represents the mean, while the shaded
grey region represents the symmetric one standard deviation interval around the mean.
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The translation term is computed by setting the mRNA level to its
stationary mean �x1 :¼ kr=γr and then viewing the protein
dynamics as a birth-death process with production rate kp�x1 and
degradation rate γp. The transcription term is simply the PSD of
mRNA modulated by the frequency-dependent factor given by
Theorem 2.1.

RNA splicing network. The recently proposed RNA Splicing net-
work (see Fig. 2B) was used to model the concept of RNA velocity
that can help in understanding cellular differentiation from
single-cell RNA-sequencing data47. Here a single gene-transcript
can randomly switch between active (X1) and inactive (X2) states
with different rates of transcription of unspliced mRNA (X3). The
splicing process converts these unspliced mRNAs into spliced
mRNAs (X4). Both spliced and unspliced mRNAs undergo first-
order degradation. Applying formula (13) we can write the PSD
of the dynamics of active gene count as

SX1
ðωÞ ¼ 2konkoff

ðkon þ koff Þððkon þ koff Þ2 þ ω2Þ : ð36Þ

Note that when the active gene count is X1∈ {0, 1} the tran-
scription rate is αoff+ (αon− αoff)X1. We can view transcription
as a superposition of two reactions—a constitutive reaction with

rate αoff and reaction of the form (14) where the stimulant is the
active gene X1. Applying Theorem 2.1 we can decompose the
PSD of the spliced mRNA count as

SX4
ðωÞ ¼ 2βðαoffkoff þ αonkonÞ

ðβþ γuÞðkoff þ konÞðγ2r þ ω2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
splicing

þ β2ðαon � αoff Þ2
ððβþ γuÞ2 þ ω2Þðγ2r þ ω2Þ SX1

ðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transcription

;

ð37Þ
where SX1

ðωÞ is given by (36).
Observe that for both gene expression and RNA splicing

networks we can find an analytical expression for the PSD by
directly applying formula (13) for the full network. However,
using our PSD decomposition result we not only simplify the
computation but also identify the contribution of the network
mechanisms to the PSD.

For a specific parameterisation of these two networks, we
compare the PSDs obtained analytically with those obtained by
our Padé PSD method and the standard periodogram estimator
for PSD that is based on discrete-sampling and DFT (see Box 1).
The results are presented in Fig. 2A, B and they show good
agreement, despite the noisy nature of the DFT estimate. The
analytical expressions for the PSD along with the PSD estimates
produced by Padé PSD are given in Table 1. One can see that the

Fig. 7 Cell-cycle induced oscillation in gene expression. We model the cell-cycle evolution as a N-stage Markov process with a constant rate α of
transitioning from one stage in the cycle to the next. When the transition is from state N to state 1, the mother cell splits into two daughter cells, from
which only one cell is tracked and measured. At the time of the split, the mother cell molecules are partitioned in one of two ways—symmetric binomial
(i.e. each molecule has a 50% chance of ending up in the tracked cell) and strict binary (i.e. the tracked cell receives exactly half of the molecules of each
network species). These two scenarios are depicted in panels (A) and (C). In panel B (resp. panel (D)), we suppose that the cell undergoing symmetric
binomial (resp. strict binary) partitioning, contains the gene expression network shown in Fig. 2A. We plot the single-cell trajectories for the protein counts
as well as the corresponding PSDs estimated with the Padé PSD and the DFT methods for four values of the cell-cycle length N, keeping the cell-cycle
frequency constant. All the PSDs were estimated with Q= 10 simulated trajectories.
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PSD estimated by our method is quite “close” to the analytical
PSD for the gene expression network. The same holds for the
RNA splicing network (see the PSD plots in Fig. 2B) even though
it is not apparent from the expressions in Table 1.

The PSD enables discrimination between regulatory topolo-
gies. We consider simple three-node IFF and NFB topologies
depicted in Fig. 2C, D with stochastic kinetics. We provide ana-
lytical expressions for the PSDs under the assumption of line-
arised propensity functions for the repression mechanisms. These
expressions inform us about qualitative structural differences
between the PSDs obtained from IFF and NFB topologies,
regardless of the choice of reaction rate parameters. This shows
that in the stochastic setting, the PSD of single-cell trajectories
serves as a key “response signature” that can differentiate between
adapting circuit topologies. We demonstrate this finding with our
Padé PSD model for a specific parametrisation of these networks
and we argue why this result holds for arbitrarily-sized IFF and
NFB networks.

We begin by analysing the IFF topology, where the controller
species C catalytically produces the output species O at rate Ff(xc)
which is a monotonically decreasing function of the controller
species copy-number xc and it represents the repression of O by
C. We linearise the function Ff(xc) as

Ff ðxcÞ ¼ β0 � βffxc; ð38Þ
where β0 and βff are positive constants denoting the basal
production rate and the strength of the incoherent feedforward
mechanism, respectively. With this linearisation, all propensity
functions become affine and hence we can apply the results for
linear networks. Specifically, the steady-state means �xc :¼ EπðCÞ
and �xo :¼ EπðOÞ are given by

�xc ¼
kcI0
γc

and �xo ¼
koI0 þ β0

γo
� βffkcI0

γcγo

and it is immediate that if βff ≈ koγc/kc, then the mean output
value �xo � β0=γo becomes insensitive to the input abundance
level I0. This shows the adaptation property of the IFF network.

As the dynamics of C is simply birth-death with production
rate kcI0 and degradation rate γc, its PSD is given by

SCðωÞ ¼
2kcI0

γ2c þ ω2
:

Under the assumption of linearity of the feedforward function
Ff the stimulation of O by C can be viewed as zeroth-order
degradation. Applying Theorem 2.1 we can evaluate the output
PSD as

SOðωÞ ¼
2ðkoI0 þ β0 � βff�xcÞ

γ2o þ ω2
þ β2ff

γ2o þ ω2
SCðωÞ:

Since this is a sum of two non-negative monotonically
decreasing functions of ω, we can conclude that SO(ω) is also

monotonically decreasing. Hence output trajectories cannot show
oscillations regardless of the IFF network parameters. This same
argument can be extended to IFF networks with arbitrary number
of nodes (see the Supplement, Section S4.1.3).

In the NFB topology, the production of the controller species C
is repressed by the output species O, and we model the
production rate by a monotonically decreasing function Fb(xo)
of the output species copy-number xo. As before, we linearise this
function as

FbðxoÞ ¼ β0 � βfbxo; ð39Þ
where β0 is the basal production rate and βfb is the feedback
strength. Under this linearisation, the steady-state means �xc :¼
EπðCÞ and �xo :¼ EπðOÞ are given by

�xc ¼
γoβ0I0

γcγo þ koβfbI0
and �xo ¼

koβ0I0
γcγo þ koβfbI0

:

Observe that if the input abundance level I0 is high, then mean
output value �xo � β0=βfb only depends on the feedback function
Fb and it is insensitive to I0, thereby demonstrating the adaptation
property. Applying formula (13) we arrive at the following
expression for the PSD for the output trajectory

SOðωÞ ¼
2γokoβ0I0

γcγo þ koβfbI0

γ2c þ koγc þ ω2

ðγcγo þ koβfbI0Þ2 þ ω2ðγ2c þ γ2o � 2koβfbI0Þ þ ω4

" #
:

ð40Þ
Proposition S4.1 in the Supplement proves that the mapping
ω↦ SO(ω) has a positive local maximum (which is also the global
maximum) if and only if

koβfbI0>
γ4c þ γ3c ko þ γ2oγckoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðγc; γo; koÞ
p þ γcγo þ γ2c þ koγc

; ð41Þ

where Γðγc; γo; koÞ :¼ ðγcγo þ γ2c þ koγcÞ2 þ γ4c þ γ3c ko þ γ2oγcko.
This condition shows that regardless of the choice of NFB
network parameters, the output trajectories will exhibit oscillation
if the input abundance level I0 is high enough. Using the standard
root-locus argument48 we can draw the same conclusion for
arbitrarily-sized NFB networks (see the Supplement, Sec-
tion S4.1.3). This shows that the existence of oscillations and
non-monotonicity of the PSD is a differentiator between the NFB
and the IFF networks as the latter never exhibits oscillations. Note
that high I0 is precisely the condition for NFB to show adaptation
and hence imposing this requirement is not very restrictive. The
role of negative feedback in causing stable stochastic oscillations
was explored theoretically in ref. 27 with CLE, and it has also been
demonstrated experimentally.

For a specific parameterisation of the three-node IFF and NFB
networks, we compare the PSD produced by our method with
the analytical PSD and the DFT-based estimator. The results
are shown in Fig. 2C, D and one can see that Padé PSD is quite
accurate in estimating the PSD, which is also evident from the
PSD expressions provided in Table 1. Since negative propensities
cannot be allowed, we perform simulations with the positive part
of the linear feedforward (see (38)) and feedback (see (39))
functions. Hence the analytical PSD expressions are not exact but
they are still close because the dynamics rarely enters the states
for which these linear functions become negative.

Using the PSD for enhanced oscillator design. The
repressilator35 is the first synthetic genetic oscillator and it con-
sists of three genes repressing each other in a cyclic fashion (see
Fig. 3A). These three genes are tetR from the Tn10 transposon, cI
from bacteriophage λ and lacI from the lactose operon. These
three genes create three repressor proteins which are TetR, cI and

Table 1 Expressions for PSDs estimated analytically and
with the Padé PSD method.

Network Analytical PSD Padé PSD

Gene
expression

40ω2þ120
ω4þ1:25ω2þ0:25

39:9567ω2þ118:3381
ω4þ1:2328ω2þ0:2442

RNA splicing 1:2ω4þ30ω2þ219:84
ω6þ25:25ω4þ150:25ω2þ36

1:2010ω4þ6:9450ω2þ9:4755
ω6þ5:2220ω4þ7:3450ω2þ1:5276

IFF 94ω2þ112
ω4þ1:25ω2þ0:25

93:988ω2þ114:53
ω4þ1:2752ω2þ0:2527

NFB 66:6667ω2þ200
ω4�0:75ω2þ2:25

66:6301ω2þ201:8281
ω4�0:7166ω2þ2:2159

To estimate the Padé approximant we use s= (1, 1.5, 2, ∞) and ρ= (2, 2, 2, 3) for the RNA
splicing network and for all other networks we use s= (∞) and ρ= (4).
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LacI, respectively, and the cyclic repression mechanism can be
represented as

TetR a cI a LacI a TetR:

Due to intrinsic noise in the dynamics, the repressilator loses
oscillations at the bulk or the population-average level after a few
generations. At the single-cell level this intrinsic noise broadens
the output PSD peak, making the oscillations less regular in both
amplitude and phase. In other words, intrinsic noise compro-
mises the ability of the circuit to keep track of time. This issue was
addressed in a recent paper49 which elaborately studied the
various sources of noise in the original circuit and eliminated
them to construct a modified repressilator circuit that showed
regular oscillations over several generations. It was found that
most of the noise was generated when TetR protein levels were
low and the derepression of the TetR controlled promoter
occurred at a low threshold. To raise this threshold a sponge
plasmid was introduced and this had the remarkable effect of
regularising the oscillations and sharpening the single-cell
PSD peak.

It is also known that increasing the cooperativity of the
repression mechanism improves regularity of the oscillations35. A
fundamental question then arises is that—does the PSD-
sharpening effect of the sponge plasmid persist when the
repression cooperativity is increased? If this is true then one
can regularise oscillations even more by designing cooperative
promoters in addition to employing the sponge device. We study
this question using an adaptation of the stochastic model given in
ref. 49. The stochastic model is detailed in Section S4.2.1 of the
Supplement. The repression mechanism is encoded with a
nonlinear Hill function whose coefficient H represents the degree
of cooperativity among the promoter binding sites. The sponge
plasmid, if present, can competitively bind the free TetR
molecules, reducing the number of these molecules available for
repressing the cI gene.

We demonstrate that our method is able to accurately estimate
the single-cell PSD and exhibit the sharpening of the PSD in the
presence of the sponge plasmid when the cooperativity is set to
H= 1.5. Surprisingly when the cooperativity is increased to
H= 2, the sponge loses its effect of sharpening the PSD. This
shows that in certain parameter regimes, the oscillation-
regularising effects of the sponge plasmid and the repressor
binding cooperativity are not additive, possibly due to the fact
that increased cooperativity makes the repression mechanism
more ultrasensitive50.

With our method, we estimate the PSD for the dynamics of the
copy-numbers of the cI protein, whose expression is directly
repressed by TetR. For the promoter cooperativity (i.e. the Hill
coefficient) of H= 1.5, the PSD indeed exhibits a sharper peak, in
the presence of the sponge plasmid, at the peak frequency of
around ωmax � 1:35 rad:=gen: (see Fig. 3B). This sharpness in
PSD suggests more regularity in oscillations which is also evident
from the single-cell trajectories plotted in Fig. 3C. We compare
our PSD estimation method with the DFT method in both the
cases (with and without sponge) and the results are shown in
Fig. 3C. The same analysis is repeated for the promoter
cooperativity of H= 2 and the results are shown in Fig. 3B and
D. From Fig. 3B it is immediate that for H= 2, the PSD
sharpening effect of the sponge plasmid is lost.

Biocontroller design with PSD: suppressing single-cell oscilla-
tions. In recent years genetic engineering has allowed researchers
to implement biomolecular control systems within living cells
(see refs. 36,51–60). This area of research, popularly known as
Cybergenetics51, offers promise in enabling control of living cells

for applications in biotechnology61,62 and therapeutics63. A par-
ticularly important challenge in Cybergenetics is to engineer an
intracellular controller that facilitates cellular homoeostasis by
achieving robust perfect adaptation (RPA) for an output state-
variable in an arbitrary intracellular stochastic reaction network.
This challenge was theoretically addressed in ref. 36 which
introduced the antithetic integral feedback (AIF) controller and
demonstrated its ability to achieve RPA for the population-mean
of output species. This controller has been synthetically imple-
mented in vivo in bacterial cells, and it has been shown that any
biomolecular controller that achieves RPA for arbitrary reaction
networks with noisy dynamics, must embed this controller60.

Computational analysis has revealed that AIF controller can
cause high-amplitude oscillations in the single-cell dynamics in
certain parameter regimes36,64 which could potentially be
undesirable and/or unfavourable. Hence it is important to find
ways to augment the AIF controller, so that single-cell oscillations
are attenuated but the RPA property is preserved. It is known that
adding an extra negative feedback (like proportional action) from
the output species to the actuated species maintains the RPA
property, while decreasing both the output variance and the
settling-time for the mean dynamics65. Using the PSD estimation
method developed in this paper we now demonstrate how adding
such a negative feedback also helps in diminishing single-cell
oscillations.

The AIF controller is depicted in Fig. 4A and it is acting on the
gene expression model considered in Fig. 2A. The AIF controller
robustly steers the mean copy-number level of the protein X2 to
the desired set-point μ/θ, where μ is the production rate of Z1 and
θ is the reaction rate constant for the output sensing reaction. The
AIF affects the output by actuating the production of mRNA X1

and the feedback loop is closed by the annihilation reaction
between Z1 and Z2. This annihilation reaction can be viewed as
mutual inactivation or sequestration and it can be realised using
biomolecular pairs such as sigma/anti-sigma factors54,66,67,
scaffold/anti-scaffold proteins68 or toxin/antitoxin proteins69.

It is known from ref. 36 that the combined closed-loop
dynamics is ergodic and mean steady-state protein copy-number
is μ/θ

lim
t!1

EðX2ðtÞÞ ¼
μ

θ
:

As discussed in ref. 65, this ergodicity is preserved under certain
conditions when an extra negative feedback from protein X2 to
the production of mRNA X1 is added. Letting z1 and x2 denote
the copy-numbers of Z1 and X2, respectively, we add the extra
feedback by changing the rate of the actuation reaction from kz1
to (kz1+ Fb(x2)) where Fb is a monotonically decreasing feedback
function which takes non-negative values. As in ref. 65, we
consider two types of feedback. Letting μ̂ to be the reference
point, the first is Hill feedback of the form

Fbðx2Þ ¼
4kfbμ̂

2

μ̂þ x2

which is based on the actual output copy-number x2, while the
second is the proportional feedback that is essentially the
linearisation of the Hill feedback at the reference point μ̂

Fbðx2Þ ¼ kfb max 3μ̂� x2; 0
� �

:

One can easily see that at the reference point, the values of this
feedback function Fbðμ̂Þ and its derivative F0

bðμ̂Þ (equal to −kfb)
are the same for both types of feedback. We can view kfb as the
feedback gain parameter. The Hill feedback is biologically more
realisable, while the proportional feedback captures the classical
controller where the feedback strength depends linearly on the
deviation of the output x2 from the reference point μ̂, in the
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output range ½0; 3μ̂�. In our analysis, we set the reference point μ̂
as the set-point μ/θ.

For a particular network parametrization, we use our method
to estimate the PSD for the single-cell protein dynamics in the
AIF-regulated gene expression network, and the results are
displayed in Fig. 4. When the extra negative feedback is absent
(i.e. kfb= 0) the single-cell trajectory has high-amplitude oscilla-
tions which is also evident from the estimated PSD (see Fig. 4B).
In Fig. 4C, we apply our Padé PSD method to examine how the
PSD changes when extra feedback of Hill type is added with
varying strengths given by parameter kfb. Observe that as the
feedback strength increases, the PSD peak declines and the
oscillations become almost non-existent for kfb ¼ 0:5min�1.
The same holds true for the proportional feedback (see Fig. 4D).
These results suggest that both feedback mechanisms are more or
less equally effective in reducing oscillations. This is further
corroborated by the single-cell trajectories plotted in Fig. 4C, D
which also shows that addition of feedback decreases the
stationary output variance, that is equal to the signal power
(see Box 1). In a recent paper, the decrease in oscillations upon
addition of proportional feedback has been experimentally
validated in yeast cells70.

In ref. 36, it is reported that the deterministic model of the AIF-
regulated gene expression network can exhibit both convergence to
a fixed point and sustained oscillations. Keeping all other
parameters fixed and setting kfb= 0, we simulate the deterministic
model for four values of the actuation rate constant k and plot the
output protein trajectories in Fig. 4F. One can see that for lower
values of k, the deterministic trajectories converge to a fixed point,
which is equal to the set-point μ/θ, while for higher values of k, the
trajectories oscillate around the set-point. Estimating the PSDs for
the stochastic model with our Padé PSD method we find that for all
the four k values, the PSDs have a non-zero peak around 1 rad=min
(see Fig. 4G). This shows that the oscillatory tendency of the
stochastic model persists, albeit at lower PSD peak values, for values
of k beyond the critical value where the deterministic system
transitions from a limit cycle to a fixed point. For the lower values
of k, oscillations are noise-induced in the sense that they only
emerge in the presence of randomness in the dynamics and they
disappear (at steady state) if the noise-free deterministic model is
considered. For two values of k, we plot the PSD obtained by our
method and compare it with the PSD estimated with DFT and one
can see from Fig. 4H that there is good agreement. The details on all
the computations for the AIF-regulated gene expression network
can be found in Section S4.2.2 of the Supplement.

This example with noise-induced oscillations also shows that
the LNA would yield a very inaccurate PSD estimate as it
essentially adds a Gaussian term to the deterministic dynamics.
Hence if the deterministic dynamics converge to a fixed point, the
LNA-based PSD estimator cannot have a peak at a non-zero
frequency value.

Exploiting the PSD for studying stochastic entrainment. The
phenomenon of entrainment occurs when an oscillator, upon
stimulation by a periodic input, loses its natural frequency and
adopts the frequency of the input. This phenomenon has several
applications in physical, engineering and biological systems71.
The most well-known biological example of this phenomenon is
the entrainment of the circadian clock oscillator by day-night
cycles. The circadian clock is an organism’s time-keeping device
and its entrainment is necessary to robustly maintain its periodic
rhythm72. The circadian clock is one example among several
intracellular oscillators that have been found and their functional
roles have been identified73. Often these oscillators provide
entrainment cues to other networks within cells74 and hence it is

important to study entrainment at the single-cell level, where the
dynamics is intrinsically noisy due to low copy-number effects.

We now illustrate how our PSD decomposition result
(Theorem 2.1) can be used to study single-cell entrainment in
the stochastic setting where the dynamics is described by CTMCs.
We consider the example of the repressilator stimulating a gene
expression system, as shown in Fig. 5A. This gene expression
network is the same as in Fig. 2A but we include transcriptional
feedback from the protein molecules and so the mRNA
transcription rate is given by a monotonic decreasing function
Fb(x2) of the protein copy-number x2. We shall linearise Fb(x2) as

Fbðx2Þ ¼ kr � kfbx2;

where kr is the basal transcription rate and kfb is the feedback
strength. When this gene expression network is connected to the
repressilator (see Fig. 5) the transcription rate changes from
Fb(x2) to

θp2 þ Fbðx2Þ; ð42Þ
where p2 is the molecular count of protein cI in the repressilator
and parameter θ captures the “strength” of the interconnection.
In other words, cI acts as an activating transcription factor in our
example. The parameters of the repressilator are chosen as in
Fig. 3 in the “no sponge” and Hill coefficient H= 1.5 case, but the
time-units are changed to minutes. We can view the gene
expression network as simply the negative feedback (NFB)
network in Fig. 2 with the controller species C as mRNA X1

and the output species O as protein X2. Using the same
parameters as the NFB network, we study how the PSD of the
protein output varies as a function of θ. In order for the gene
expression network to be entrained to the repressilator the global
maxima of this protein PSD should be near the repressilator’s
natural (or peak) frequency of about 1.35 rad/min (see Fig. 3C).

To compute the PSD of the combined network we shall apply
Theorem 2.1. For this, we first consider the gene expression
network in isolation with p2 in the transcription rate (42) replaced
by the constant steady-state mean of p2 (denoted by EπðP2Þ).
Hence using (40) we can estimate the protein dynamics PSD
SisoX2

ðωÞ as

SisoX2
ðωÞ ¼

2γpkpðθEπðP2Þ þ krÞ
γrγp þ kpkfb

´
γ2r þ kpγr þ ω2

ðγrγp þ kpkfbÞ2 þ ω2ðγ2r þ γ2p � 2kpkfbÞ þ ω4

" #
:

Irrespective of the value of θ, the PSD SisoX2
ðωÞ has a global maxima

at ωmax � 0:85 rad/min which is the natural frequency of the gene
expression circuit in isolation.

When the repressilator is connected to the gene expression
network, we can apply Theorem 2.1 to compute the PSD of the
protein output as

SX2
ðωÞ ¼ SisoX2

ðωÞ þ
θ2k2p

ðγrγp þ kpkfbÞ2 þ ω2ðγ2r þ γ2p � 2kpkfbÞ þ ω4

" #
ScIðωÞ:

ð43Þ
We call this method composite Padé PSD as it estimates the PSD
for the full network by combining two PSDs—one obtained with
Padé PSD for the nonlinear subnetwork (repressilator) and the
other obtained analytically for the linear subnetwork (gene
expression). Notably, this method does not require simulations of
the combined process, making it easier to obtain PSDs for
multiple values of θ without incurring any simulation burden. In
Fig. 5(B) we plot the normalised PSD (area under the PSD curve
is normalised to 1) for six values of θ and we also validate this
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composite method with the DFT method for θ ¼ 0:4min�1. One
can clearly see that as θ gets higher, the gene expression network
gives up its natural frequency upon stimulation and adopts a
frequency which is close to the repressilator frequency. This
exemplifies the phenomenon of single-cell entrainment in the
stochastic setting.

In order to investigate this entrainment phenomenon further
we define an entrainment score as

Entrainment Score ¼
R ωr

ωl
SX2

ðωÞdωR1
0 SX2

ðωÞdω ; ð44Þ

where [ωl, ωr]= [0.9ω0, 1.1ω0] represents an interval of relative
length 10% on either side of the repressilator’s natural frequency
ω0. In Fig. 5C, we plot a heat-map for the entrainment score as a
function of the feedback strength parameter kfb and the
connection strength parameter θ. One can see that the
entrainment score increases monotonically with θ which is to
be expected as the first term on the r.h.s. of (43) scales linearly
with θ while the second term scales quadratically. Similarly, by
computing the ratio of the two terms we can conclude that
entrainment score is also a monotonically increasing function of
kfb. However, as the heat-map clearly indicates, the entrainment
score is more sensitive to kfb than θ, thereby suggesting that
transcriptional feedback could be a critical mechanism for
facilitating entrainment of gene expression networks.

Now suppose that the transcriptional feedback is given by a
nonlinear Hill function Fb(x2). In this case, the gene expression
subnetwork becomes nonlinear and Theorem 2.1 cannot be used for
PSD estimation. However, we can still employ the Padé PSDmethod
on the combined network using a rational Ansatz of the form (22)
with B(s) being the denominator for the Padé approximant estimated
by our method in estimating the PSD of the stimulating repressilator
network. As shown in Fig. 5D, the PSDs estimated with Padé PSD
show good agreement with the DFT-based estimates.

PSD as a tool for parameter inference. Consider a self-
regulatory gene expression system (see Fig. 6A) modelled as a
simple birth-death network where the production rate is given by
the repressing Hill function

λHðxÞ ¼
K0

K1 þ xH
ð45Þ

of the output copy-number x and the degradation rate is γ. Fixing
all other parameters, our goal is to use the experimental PSD to
infer the degree of cooperativity H. This experimental PSD is
generated via simulations with H= 1 and we average the PSDs
over 100 single-cell trajectories in order to reduce the variance in
the DFT-based PSD estimate. We assume that the experimental
single-cell trajectories are proportional to the output copy-
number but the constant of proportionality is unknown as is
often the case in time-lapse microscopy experiments. We also
assume that there is no measurement noise—if the measurement
noise appears as an independent process then its PSD simply
appears as an additive term in the output PSD, which can be
easily removed to recover the output PSD without the
measurement noise.

Observe that the unknown constant of proportionality drops
out when we compute the normalised PSD (i.e. area under the
PSD curve is normalised to 1). Hence we can infer the unknown
parameter H by estimating the normalised PSD and comparing it
with the experimentally obtained normalised PSD, as was
previously demonstrated in37. We estimate the normalised PSD
with our Padé PSD method and provide a comparison for various
values of H in Fig. 6B and it is evident that the experimental
traces come from the network with H= 1. Note that the clean

estimates for the normalised PSD produced by our Padé PSD
method, greatly facilitate the inference of H. If the same estimates
were obtained with DFT then the estimator noise would obfuscate
the dependence of the PSD on H and make the inference task
difficult.

Exploring cell-cycle induced oscillations in gene expression. In
all the examples considered so far, we have ignored that reaction
networks reside within cells that are undergoing their own divi-
sion cycles. Overlooking the cell-cycle is only reasonable when the
dynamics of the network being analysed occurs at a timescale
which is much faster than the timescale of cell-division. If this
assumption does not hold, as is often the case in prokaryotic cells,
the cell-cycle process should not be neglected while estimating the
frequency spectrum of an output trajectory within a cell-lineage.
Tracking trajectories of output fluorescent proteins across a cell-
lineage over multiple generations is now increasingly possible due
to advanced time-lapse microscopy techniques70,75 and micro-
fluidic platforms such as the mother machine4. As these trajec-
tories can be obtained over very long time horizons, a steady-state
property like the PSD can be reliably estimated with experimental
data, and by comparing it with theoretically estimated PSDs one
may gain insights into the underlying network and the role of
cell-cycle in inducing oscillations.

Inspired by ref. 37, we consider the cell-cycle evolution as a N-
stage Markov process with a constant rate α of transitioning from
one stage to the next. Hence each transition will occur after a
random time-interval which is exponentially distributed with rate
α. Observe that the expected time to complete one cycle would be
N/α, implying that the cell-cycle frequency is fr= α/N. At the start
of each new cell-cycle, when the cell-cycle process goes from stage
N to stage 1, the mother cell undergoes division into two daughter
cells and only one of these two cells is tracked and measured,
providing us with an output trajectory over a single lineage. The
cell division entails a partition of all mother cell molecules into
two components—one for each daughter cell. We assume two
partitioning mechanisms: symmetric binomial where each
mother cell molecule is randomly assigned to each daughter cell
with an equal probability, and strict binary where each daughter
cell procures exactly half of the mother cell molecules for each
network species (see Fig. 7A, C). Observe that partitioning at cell-
division forces the displacement in the vector of molecular counts
to be state-dependent, i.e. the difference between the state x of the
mother cell pre-partition and the state x0 of the (tracked)
daughter cell post-partition will depend on x. Hence, instead of a
CTMC with generator (3) we need to model the dynamics with a
more general CTMC with generator (4). The explicit form of the
generator along with all the computational details on this
example can be found in Section S4.2.5 of the Supplement.

Suppose that this dividing cell comprises the gene expression
network shown in Fig. 2A which operates at the same timescale as
the cell-cycle process. Notice that if we ignore the cell-division
cycle, the protein count trajectory does not show any oscillations
as seen from the monotonically decreasing PSD plot in Fig. 2A.
We now include the cell-cycle and examine how the PSD for the
protein counts changes with the cell-cycle length N. As we vary N
we keep the frequency fr constant by adjusting α. The cell-cycle
process can be viewed as an external signal that stimulates the
gene expression network by inducing cell-division. Hence we
estimate the PSD with our Padé PSD method using a rational
Ansatz of the form (22), with B(s)= ∣σ∣2− 2Real(σ)s+ s2 where
σ ¼ �αð1� expð2πi=NÞÞ is the eigenvalue of the cell-cycle
evolution generator with the least magnitude of the real part.
The estimated PSDs show good agreement with the PSDs
estimated via DFT, for both types of partitioning mechanisms
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(see Fig. 7B, D) and one can see that the type of partitioning
mechanism has little effect on the PSD. Moreover as N increases,
the relative noise in the cell-cycle process goes down, causing an
increase in the off-zero peak of the PSD at the cell-cycle frequency
of roughly 1:57 rad=min. This observation is consistent with the
results reported in ref. 37 for a single-species bursty gene
expression network but with a much richer cell-division model
than what we consider. The analytical computations presented in
ref. 37 are quite elegant and the authors employ generating
function techniques to obtain closed-form expressions for the
PSD under the assumption of binomial partitioning. However,
this analytical approach may become infeasible when other
partitioning mechanisms are considered (e.g. strict binary) or
when the output trajectories come from a high-dimensional
nonlinear network. Our numerical Padé PSD method should still
perform reliably in these cases as long as one can feasibly simulate
the stochastic trajectories of the process.

Discussion
Recent advances in microscopic imaging and fluorescent reporter
technologies have enabled high-resolution monitoring of pro-
cesses within living cells5. As the accessibility of this time-course
data rapidly increases, there is an urgent need to design theore-
tical and computational approaches that make use of the full
scope of such data, in order to understand intracellular processes
and design effective synthetic circuits. An important feature of
time-course measurements, which is lacking in the data generated
by the more common experimental technique of Flow-Cyto-
metry, is that they capture temporal correlations at the single-cell
level which are rich in information about the underlying dyna-
mical model. Frequency-domain analysis provides a viable
approach to extract this information, if we have an efficient fra-
mework to connect network models to the frequency spectrum or
the power spectral density (PSD) of the single-cell trajectories
measured with time-lapse microscopy18,20. The dynamics within
cells is invariably stochastic, owing to the presence of many low
abundance biomolecular species, and it is commonly described as
a continuous-time Markov chain (CTMC). In this context, the
aim of this paper is to develop a computational method for
reliably estimating the PSD for single-cell trajectories from
CTMC models. Existing approaches for PSD estimation for sto-
chastic network models, are either applicable to a particular class
of networks17,26, or they are based on dynamical approximations
that are known to be inaccurate over large time-intervals and
in situations where low abundance species are present19,20. The
method we develop in this paper, called Padé PSD, especially
pertains to the low abundance regime. It applies generically to any
stable network and it yields an accurate PSD expression using a
small number of CTMC trajectory simulations. Moreover, for
networks with affine propensity functions, we provide a PSD
decomposition result that expresses the output PSD in terms of its
constituent parts.

The tools we develop in this paper are of significance to both
systems and synthetic biology. We demonstrate that in the pre-
sence of intrinsic noise, PSD estimation can successfully differ-
entiate between adapting Incoherent Feedforward (IFF) and
Negative Feedback (NFB) topologies34, and it can facilitate per-
formance optimisation of synthetic oscillators35 as well as syn-
thetic in vivo controllers36. Moreover, it can also aid the study of
stochastic entrainment at the single-cell level. This is of particular
relevance for applications such as designing pulsatile dynamics of
transcription factors, which is known to enable graded multi-gene
regulation76. We present a simple nonlinear network to illustrate
that PSDs enable parameter inference from experimental single-
cell trajectory data without requiring the explicit knowledge of the

constant of proportionality that links the output species copy-
number to the observed signal. Lastly, we consider an example
with cell-division cycles and show that our Padé PSD method
provides accurate PSD estimates for stochastic trajectories from a
single lineage, thereby assisting in precise quantification of the
oscillations induced by the cell-cycle process.

The main contribution of this paper is to show how the theory
of Padé approximations can be effectively applied to the PSD
estimation problem for reaction networks with stochastic CTMC
dynamics. In Padé PSD a low dimensional approximation of the
PSD is computed based on estimates of Padé derivatives that are
expressible as certain stationary expectations for which efficient
Monte Carlo estimators were developed. As our method requires
simulations of stochastic trajectories it naturally inherits the
associated drawbacks—these simulations can be computationally
expensive, especially if the network possesses multiple reaction
time-scales. Fortunately, the problem of reliably estimating
expectations under the CTMC model has received a lot of
attention in recent years77, and various methods designed for this
problem, like τ-leaping78 and/or multilevel schemes79, can be
easily integrated with Padé PSD, in order to speed up the esti-
mation process and also to reduce the variance of the Monte
Carlo estimators. Moreover, model reductions80,81 and simula-
tion tools82,83 for multiscale networks can be readily applied to
simplify the estimation of Padé derivatives. Such extensions
would greatly expand the scope of applicability of our method
and pave the way for frequency-based analysis and design of
stochastic biomolecular reaction networks.

Methods
We now discuss the computational implementation of our Padé PSD method. The
detailed algorithms for this method are provided in Section S3 of the Supplement
and its full Python implementation is available on GitHub: https://github.com/
ankitgupta83/PadePSD_python.git84.

The inputs to our method are as follows:

● A positive integer p which specifies the order of the rational Padé
approximant Gp(s) given by (15).

● A vector of distinct points s= (s1,…, sL) on the extended positive real-line
(0,∞] along with a vector of positive integers ρ= (ρ1,…, ρL). The Padé
approximant is constructed by matching between G(s) and Gp(s) the first ρℓ
terms in the power series expansion around s= sℓ for each ℓ= 1,…, L.
Without losing any generality we may assume that s1,…, sL−1 are all finite
and sL=∞.

● A vector of distinct positive real test values �s ¼ ð�s1; ¼ ;�sRÞ for validating
the Padé approximant.

Given these inputs, the main computational tasks that Padé PSD performs are:

1. Estimate the required Padé derivatives: Quantities Dðs‘ Þ
m are estimated for

each m= 0, 1,…, (ρℓ− 1) and each ℓ= 1,…, L.
2. Obtain direct estimates for validation: Quantities ðGð�s1Þ; ¼ ;Gð�sRÞÞ are

directly estimated.

Upon completing these tasks, the linear system (21) for the 2p coefficients for the
Padé approximant Gp(s) is constructed and solved. This provides us with Gp(s)
which is then validated with the direct estimates ðGð�s1Þ; ¼ ;Gð�sRÞÞ, and if the
validation is successful, the PSD SXn

ðωÞ is obtained by applying formula (9) with
G(z)=Gp(z).

All the required quantities are simultaneously estimated with Q trajectories of
the augmented CTMC ðX ðtÞÞt ≥ 0 with

X ðtÞ ¼ ðXðtÞ;YðtÞ;ZðtÞÞ
where

● X(t)= (X1(t),…, Xd(t)) is the vector of species copy-numbers.
● YðtÞ ¼ ðY1ðtÞ; ¼ ;Yϑ1

ðtÞ;Yϑ1þ1ðtÞ; ¼ ;Yϑ2
ðtÞ; ¼ ;YϑL�1þ1ðtÞ; ¼ ;

YϑL�1
ðtÞÞ is the vector of additional state-components used for estimating

the Padé derivatives Dðs‘Þ
m for each m= 0, 1,…, (ρℓ− 1) and each

ℓ= 1,…, (L− 1). Here ϑ‘ ¼ ∑‘
j¼1 ρj with ϑ0= 0. Note that the estimation

of the Padé derivatives at sL=∞ does not require these additional state
components.

● Z(t)= (Z1(t),…, ZR(t)) is the vector of additional state-components used
for estimating ðGð�s1Þ; ¼ ;Gð�sRÞÞ.
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The augmented process has

K|{z}
original network reactions

þ L� 1|fflffl{zfflffl}
Rs1

; ¼ ;RsL�1

þ R|{z}
R�s1

; ¼ ;R�sR

reactions. Note that each reaction Rs has the constant propensity of s. Our Padé
PSD method simulates such a reaction network over the time-interval [0, Tf], by
extending the classical Gillespie’s Stochastic Simulation Algorithm39, and then
estimates the Padé derivatives and the direct estimates ðGð�s1Þ; ¼ ;Gð�sRÞÞ. Under
this extension, when the firing reaction is k= 1,…, K, then the state (x, y, z) moves
to (x+ ζk, y, z) as in the original CTMC. However, when the firing reaction is Rs‘
for some ℓ= 1,…, (L− 1) then the state (x, y, z) moves to ðx; y0; zÞ where

y0j ¼
xn if j ¼ ϑ‘�1 þ 1

yj�1 if j ¼ ϑ‘�1 þ 2; ¼ ; ϑ‘
yj otherwise:

8><>: ð46Þ

Similarly, if the firing reaction is R�sr
for some r= 1,…, R then the state (x, y, z)

moves to ðx; y; z0Þ where
z0r ¼ xn and z

0
j ¼ zj for all j ≠ r: ð47Þ

Estimation of the Padé derivatives at ∞ (i.e. Dð1Þ
m for m= 0,…, (ρL− 1))

requires several evaluations of functions of the form Amf ðxÞ. This can be done
recursively but it is computationally very intensive. In order to minimise these
evaluations we exploit the fact that ergodic Markov chains visit the same set of
states again and again. Therefore if we can intelligently store the values Amf ðxÞ
generated by this function, and quickly retrieve them as needed, then it provides a
way to leverage the vast memory resources in modern computers in order to gain
computational efficiency. Fortunately, Python provides an ideal data structure,
called a dictionary, for this purpose and we use it in our computational
implementation to boost the efficiency of Padé PSD.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Custom code was written in Python for data generation. This code is publicly available at
the indicated GitHub repository84.

Code availability
The Python code for data generation and analysis can be downloaded from the GitHub
repository: https://github.com/ankitgupta83/PadePSD_python.git84.
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