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Simulated co-optimization of renewable energy and
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The interdependence between the water and power sectors is a growing concern as the need

for desalination increases globally. Therefore, co-optimizing interdependent systems is

necessary to understand the impact of one sector on another. We propose a framework to

identify the optimal investment mix for a co-optimized water-power system and apply it to

Neom, Saudi Arabia. Our results show that investment strategies that consider the co-

optimization of both systems result in total cost savings for the power sector compared to

independent approaches. Analysis results suggest that systems with higher shares of non-

dispatchable renewables experience the most significant cost reductions.
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The water and energy sectors are becoming inextricably
linked as water resources become scarcer worldwide1. In
2014, nearly 4% of global electricity consumption was due

to the water sector. Projections estimate that the energy used by
the water sector will double by 20402. The largest increase is
associated with desalination, an energy-intensive process that
requires electrical and/or thermal power to produce freshwater.
Today, desalination and water re-use meet only 0.7% of the global
water need; however, these processes account for nearly a quarter
of the total energy consumption by the water sector2.

Desalination technology has been commonly used in the
Middle East and North Africa (MENA), where surface freshwater
resources are limited, and fossil groundwater is rapidly being
depleted. Countries in the MENA region have increased their
desalination capacity to keep up with water demand and reduce
groundwater withdrawals3. In 2016, approximately 7 billion m3 of
water were desalinated in the MENA region, a number that is
expected to increase twelve-fold to eliminate reliance on non-
renewable groundwater extraction2. Saudi Arabia, which experi-
ences the largest water deficit in the region, will see the largest
growth in desalination and water storage capacity. The country is
expected to desalinate nearly 30 billion m3/day of water in 2040,
up from 1.5 billion m3/day in 20144.

While desalination plays a significant role in the Middle East
region, it has gained prominence in other parts of the world,
including the United States, where droughts have dwindled water
supplies5. Water-rich states located in the central region of the US
have, for decades, provided water across borders to meet the
growing demand of the dry Southwest. To do so requires trans-
portation networks with significant investment and high opera-
tional costs. Similarly, geopolitics and concerns over aquifer
recharge in the central states may limit water sent to dry areas6.

With the risk of permanent aridification of the Southwest
states, the region has begun to invest heavily in desalination
technology rather than relying on neighboring states to meet
water demand. In 2015, the Carlsbad Desalination Plant, the
largest desalination plant in the United States with a capacity of
190,000 m3/day, opened in California7. Other states such as
Arizona and Texas have followed suit to address their water
scarcity issues. Currently, the United States has a total installed
desalination capacity of 7.5 million m3/day6.

The impact of growing desalination demand on the power
sector is significant. Electricity consumption due to desalination is
expected to grow ten times the current consumption in MENA by
20503. Similar trends are found in other parts of the world1.
These changes are not only associated with growth in desalination
needs but also due to a shift away from thermal-based
desalination2. The alternative approach, electric-based desalina-
tion, relies on electric pumps to push seawater through mem-
branes to remove the salt. Such an approach is deemed a
sustainable method to desalinate water if the electricity is derived
from renewable sources.

New projects in the region are pushing the integration of
desalination with renewable technologies to ensure a sustainable
stream of water. Such projects include the futuristic cities/com-
munities of Masdar City in the United Arab Emirates and Neom8

in Saudi Arabia. The idea of futuristic cities is to create envir-
onments dedicated to sustainable practices such as zero waste,
high renewable energy penetration (zero carbon) and carbon-
neutral fuels9, and green infrastructure. With these considerations
in mind, it is essential to develop modeling and optimization tools
to understand the impact of a growing water sector on the power
system.

Tools such as generation expansion planning (GEP) models
enable decision-makers to identify the optimal generation/pro-
duction mix of a system10. Generation expansion planning

models have evolved11 and become more important as power
systems transition to integrate renewable generation
facilities10,12–19, energy storage16, and required transmission
expansion17,19, accommodate environmental costs10, and address
reliability and flexibility concerns. The integration of investment
and operational constraints in GEPs provides a means to deter-
mine the best course of action regarding what technologies to
install, the plant capacities, or where and when to build them20.
These models are driven by technology costs and renewable
resource availability to meet power demand.

GEPs are challenging to solve because they involve decisions
happening at different time scales. Operational decisions typically
occur hourly for the power sector, whereas investment decisions
occur yearly or after several years11. Such models become harder
to solve when dealing with variabilities such as renewable power
output, intra-annual demand variability, or long-term uncertainty
such as annual demand growth, investment costs, or operating
cost17. It is necessary to consider that when dealing with uncer-
tainty, longer time horizons result in higher uncertainty.

GEPs have been historically used to model an individual sector,
particularly the power sector10,12–19. As sectors become more
interdependent, there has been growing research interest in sector
coupling and co-optimization to understand the reliability and
flexibility of such systems. With co-optimization, sectors can
react to one another to make more informed investment and
operational decisions. On the operational side, electricity con-
sumption peaks can be shifted by considering incentives/disin-
centives on the consumer end (the other sector), a practice known
as demand-side management21.

In the traditional sense, demand-side management (DSM)
refers to strategies and initiatives that encourage consumers to
shift their energy use. DSM has two main benefits; first, con-
sumers can benefit from favorable tariffs when their behavior is
altered to adjust when and how much electricity they use. Sec-
ondly, the power system benefits by shifting energy consumption
from peak to non-peak hours, preventing the system from
potentially overloading22. Demand-side management benefits can
also be assessed by shifts in production from high production cost
hours to low-cost hours. In investment models, shifting electricity
peaks may allow for cost savings by reducing the total power
generating capacity necessary to meet demand23.

The goal of co-optimizing the water and energy sectors is to
exploit potential investment and operational cost savings arising
from the optimized sizing of generation plants and storage due to
desalination-induced demand-side management. In a traditional
power system GEP model, electricity consumption from desali-
nation is accounted for in the total hourly demand at each node,
with assumptions made regarding the power consumption by the
water sector.

Literature on GEP is vast; however, literature that focuses on
the co-optimization of the water and power sectors is limited.
Bognar et al.24 quantify the cost reductions of water and elec-
tricity due to the integration of desalination with a wind-diesel
power system on a Cape Verdean island. Caldera et al.25 explore
the investment strategy of desalination and renewables in Saudi
Arabia’s power sector. They found a 1-3% decrease in the annual
levelized cost of the integrated system. However, in the previous
references, the models are deterministic. Therefore, they do not
consider uncertainties in long-term demand growth.

Al-Nory and Brodsky26 examine the optimal scheduling of a
desalination plant with a smart power grid to provide a buffer for
times when renewable resources are interrupted. They found that
desalination plants over-produced water when electricity prices
were at the marginal level. When electricity prices are high,
desalination output decreases, and demand is met primarily with
stored water. That study, however, did not explore capacity
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investments, given that the considered time horizon is only one
day. Al-Nory and El-Beltagy27 use polynomial chaos expansion to
account for uncertainty (renewable supply, water, and electricity
demand). However, their planning time horizon is only seven
days with a daily resolution. While short-term uncertainty is
considered, long-term uncertainties such as demand growth or
investment costs are ignored.

This work proposes a multiperiod (2020–2029) generation and
expansion planning co-optimization model for a system that
considers investment and operation decisions for the power and
water sectors under uncertainty. The model accommodates a high
penetration of renewable energy sources and introduces flexibility
through water storage, batteries, and demand-side management.
We assess the benefits of co-optimizing the water and electricity
sectors by comparing the results to stand-alone models that
optimize the water and power sectors, each acting independently
of the other. In a co-optimized model, the electricity demand at
each hour excludes desalination consumption – we call this
baseline power demand. The water sector has an hourly water
demand schedule and must desalinate to meet this demand. The
significance of co-optimization is that the two sectors can interact
and make cost-saving decisions. Accordingly, the water sector
may desalinate water based on electricity production costs or the
availability of renewable resources. The power sector must pro-
duce enough electricity to meet the baseline demand and the
power demand required by the water sector, shifting water pro-
duction to non-peak electricity hours. The model was applied to
Neom, Saudi Arabia, as it is a new construction project –
greenfield – which aims to be fully/or near fully renewable. In a
particular case, the model includes a 4 GW transmission con-
nection to the existing Saudi Arabian power grid to study the
costs and added flexibility to the power-water coupled system.
With the same goal in mind, the model also allows for CCGT
investments.

Results
We present a case study to highlight a clear example of the
benefits of co-optimization. We choose Neom, Saudi Arabia8. The
area of Neom is slightly smaller than the country of Belgium;
therefore, the implementation of our model takes a country-level
perspective, and it can be applied to other countries as well.

Neom is projected (high scenario estimate) to consume nearly
45.35 TWh of electricity by 2030 for a population of 770 thou-
sand people; this will translate to an annual per capita electricity
consumption of 59.35 MWh. The projected per capita con-
sumption will be higher than any developed country, including
Iceland, at 55.05 MWh. Industries that will contribute to Neom’s
high per capita power consumption include renewable tech
manufacturing, green chemical production, desalination, and data
centers. We follow a scenario-based approach to capture the
uncertainty in demand growth each year. The uncertainty is
characterized by a set of distinct realizations. Each scenario
defines the number of decisions that must be made. Our model
considers three scenarios: low, medium, and high, each with a
definite demand for water and power and a probability of
occurrence. We do not consider uncertainty in renewable
resources due to the difficulty of generating hourly forecasts for
an entire year or more. However, we used ten years of high-
resolution data to generate representative days that represent
clusters of days with similar attributes.

We divide Neom into nine nodes; we also include one node
located outside of Neom and surrounding the city of Tabuk, as
depicted in Fig. 1. Power demand is considered for one node
(Node 7), given that most industries and residential areas would
be in that location. Having a single demand node could limit the

model to building all power generating and water producing
capacities at that given node. However, that is only the case if the
renewable resource potential for that node is equivalent to or
better than all surrounding nodes. Therefore, an expansion would
depend on the resource availability of renewables in the regions
surrounding the demand node. If desalination facilities are built
in other regions along the Red Sea coastline (Nodes 1 and 9), their
electricity consumption will create power demand in the nodes
where they are constructed. We assess the economics of investing
in four possible power generating technologies: combined cycle
gas turbines (CCGT), photovoltaics (PV), concentrated solar
power (CSP), and onshore wind turbines, as well as battery sto-
rage and hydroelectric pumped storage (HPS). We consider
constructing 14 possible transmission lines with a nodal balance
to ensure that supply meets demand.

For the water sector, reverse osmosis (RO) desalination and
water storage tanks are considered for investments. We do not
account for water flow at a nodal level but instead define a
constraint requiring that the aggregate hourly water production
equal the aggregate hourly water demand.

Given that desalination can account for a large percentage of
the electricity consumption in the Middle East, we present a
power mix where desalination accounts for 20% of the total
electricity consumption. We have also included results for a
power mix where desalination accounts for 4% of the total elec-
tricity consumption in the Supplementary Information under
Supplementary Figs. 9–14 and Supplementary Tables 11–17.

We present results for four cases: 1) Base case, where invest-
ment is allowed in only renewable generating technologies
(CCGT is not considered), 2) the Kingdom of Saudi Arabia (KSA)
Grid, where Neom is allowed to obtain power from the existing
KSA power network via a 4-GW transmission line, 3) Photo-
voltaics (PV) Only, where investments are only allowed in PV
solar technology and battery storage, and 4) Wind Only, where
investments are only allowed in wind turbines and battery sto-
rage. The PV Only and Wind Only cases are used to validate our
results and understand why wind was selected over PV by our
model in the Base case. Furthermore, given Saudi Arabia’s high
potential for solar energy, we sought to quantify the decision
strategy for systems that are solely powered by PV. In Supple-
mentary Figs. 3 and 4, we present results where we allow for the
investment of CCGT under varying levels of renewable penetra-
tions. These scenarios were designed to explore the added flex-
ibility of allowing investments in fossil-fuel-based power
generators.

For each case, we compare two strategies: (1) an independent
approach, where the power and water sector investments are
planned individually, and (2) a co-optimized approach where
both sectors are aware of their corresponding decisions and adjust
accordingly.

Figure 2 presents the optimal power generation mix for all
cases using the co-optimization strategy. For the Base case, the
5.2-GW system is comprised of CSP and wind power, with
CSP accounting for 75% of the total power capacity. Investments
for CSP are higher than those for wind due to the availability of
thermal energy storage, which allows power to be generated
even when solar resources are low. There are no investments in
PV solar capacity, as it is more cost-effective to invest in
wind turbines than in PV, due to their slightly lower per mega-
watt investment costs and the more readily available
renewable resource. PV would only generate power for half of
the day.

Hydroelectric pumped storage systems are expensive. Their
application in hot arid regions such as the Middle East would
require significant maintenance to deal with high evaporation
losses, further driving up costs. Given its high costs compared to
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other power generation technologies, the model does not invest in
hydroelectric pumped storage in the Base case.

For the KSA Grid case, CSP and wind are also the only gen-
erating technologies the model selects for investment. However,
the total investment capacity is lower (4.4 GW) than in the Base
case, and the capacity mix is roughly 48% CSP and 52% wind.
The model decides to invest slightly more in wind capacity than
in CSP because of the added flexibility and reliability offered by
obtaining power from the rest of Saudi Arabia. At any time, 4 GW
of power can be obtained from outside of Neom. Therefore, the
model can invest in more wind technology (cheaper) than in CSP
because additional thermal energy storage is not required.

A summary of the capacity values for all cases is presented in
Supplementary Tables 8–10. Location siting maps for the invested
technologies for all cases are shown in Supplementary Figs. 5–8.

For the Wind Only and the PV Only cases, the total generating
power capacities are much larger than in the Base case, and they
require investments in battery storage. Because wind and solar
power are intermittent resources, farm capacities must be large
enough to generate power at a given hour to meet demand when
the resource is available, and enough power to store in batteries to
meet demand when the resource is limited. As a result, the
capacity investment for the Wind Only case is 12.1 GW, which is
2.3 times larger than the Base case. However, the battery storage
capacity is about the same as the thermal storage capacity
required in the Base case. For the PV Only case, the power
generating capacity is the largest at 40.4 GW due to the limitation
of solar resources. Solar power is only available for half the day, so
the system invests significantly in storage capacity and must
operate the batteries more than the other cases.

Table 1 presents the power sector’s investment, operating, and
total costs for all cases and strategies. As expected, the co-
optimization of both sectors is beneficial in that it results in a total
cost reduction for the power sector compared to the independent
strategy. The cost savings are due to decreased total invested
power generating capacity. Note that systems that do not invest in

dispatchable power generators are significantly more expensive as
they require battery capacity to supply power when renewable
resources are limited or unavailable. Nevertheless, the cost savings
are more significant when co-optimizing these systems with the
water sector.

All co-optimized models show a decrease in total investment
capacity for the power sector. Co-optimization allows for shaving
peak demand by shifting necessary power consumption by the
water sector to other times during the year. Such shifts reduce the
total generating capacity required to meet power demand. The
savings are greatest for the Wind Only and PV Only cases. For
these cases, the generating capacity is significantly greater than
the power demand at any given hour because these systems must
generate enough electricity to meet demand and battery storage
for future use.

Table 2 presents the costs incurred by the water sector for all
cases under the two strategies. Unlike the power sector, which
saw cost savings, the water sector experienced increased total
costs, mainly due to increased investments. Note that for cases
with dispatchable power generators such as the Base and KSA
Grid, the percentage change in total costs between the indepen-
dent and co-optimized models is negligible, 0.1% and 0.2%,
respectively.

For the Wind Only and PV Only cases, total costs increased by
about 1% and 5%, respectively, due to increased total RO and
tank storage capacity. For the Wind Only case, RO capacity
increased by 8%, and storage tanks capacity increased by about
14% for the co-optimized strategy compared to the independent
strategy.

The PV Only case saw a substantial increase in total desali-
nation capacity. The co-optimized PV Only model required
nearly 41% more RO desalination capacity than the independent
strategy. There was also a 4% increase in water storage capacity.
Because the PV system can only generate power half of the day,
more desalination capacity is needed to produce excess water
during hours when there is a power surplus, or when it is more

Fig. 1 Nodal system for Neom. Generation technologies can be built on ten nodes and linked via 14 possible transmission lines (L1-L14).
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cost-effective to do so (namely when batteries are not discharging
to meet power demand).

Despite the increase in total costs for the water sector, the total
costs of the entire system (water and power) decreased for all
cases, as shown in Table 3. Co-optimization, therefore, resulted in
net savings for the power-water system.

The costs of both the power and water sectors were also
evaluated using levelized cost metrics, reported in Table 4. For all
cases, excluding the KSA Grid case, the levelized cost of electricity

(LCOE) decreased when the sectors were co-optimized. For the
Base case, the reduction in LCOE is negligible, a minor 0.1%
reduction. The LCOE of the independent Wind Only and PV
Only cases were 134.07 USD per MWh and 47.90 USD per MWh.
Co-optimizing the two sectors resulted in a 4% and 7% decrease
in LCOE for the respective cases. By understanding water pro-
duction patterns, capacity investment or power spillage can be
decreased, which reduced the LCOE. However, in the KSA Grid
case, the co-optimized model had a higher LCOE than the

Fig. 2 Power generating capacities for the a) Base, b) the Kingdom of Saudi Arabia (KSA) Grid, c) Photovoltaics (PV) Only, and d) Wind Only cases.
Cases PV Only and Wind Only, without dispatchable generators, require significantly larger generating capacities and battery storage. Plotted are curves
for concentrated solar power (CSP), photovoltaics (PV), wind, combined cycle gas turbine (CCGT), battery, thermal energy storage (TES), hydroelectric
pumped storage (HPS), and the Kingdom of Saudi Arabia (KSA) Grid.
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independent model because it buys more power from the Saudi
power grid to supply water desalination facilities at more strategic
times.

For all cases, excluding the KSA Grid, the change in LCOW is
negligible.

The benefits of co-optimization can also be seen on the
operational level, for both the power and water sectors. Figure 3a
shows the operations for the Base case where water production is
relatively constant until there are two dips – a minor dip between
hours 1604-1607 and a more significant decrease between hours
1640-1656. Note that the reduction in water production coincides
with the exact hours when CSP operates at its maximum capacity.
In Fig. 4a, for the PV Only system, we see sharp drops in water
production during hours when there is no sun, and the system
relies solely on battery discharge to meet the total power demand.
We see a similar pattern in the Wind Only case, where water

production declines when batteries meet most power demand.
This is seen in Fig. 4b between hours 1637 and 1656. These drops
in water production are related to the need to minimize total
costs. By producing less water during these periods, battery dis-
charge is lower, and the system incurs a smaller battery opera-
tional cost.

From Fig. 5a, we see that the co-optimized model shaved the
power demand peaks compared to the independent strategy
during these times. In the case of the KSA grid, the same limiting
factor occurs between hours 1596–1608 and hours 1650–1654, as
depicted in Fig. 3b. It is important to note that the desalination
plant is built in the same node as the CSP facility in both cases.
The desalination facilities are powered by CSP exclusively;
therefore, when the generators are at maximum capacity, water
production decreases to ensure that the baseline power demand
is met. Figure 5b shows the power consumption line from the

Table 1 For the power sector, all cases experience a decrease in total cost due to decreased investment spending.

Power Sector Investment cost [M$] Operating cost [M$] Total cost [M$] % Change of Total Cost

Independent / Co-Optimization

Base 1705 / 1626 299 / 271 2004 / 1897 −5.3
KSA Grid 1146 / 1143 359 / 348 1505 / 1490 −0.9
Wind Only 5088 / 4517 149 / 150 5236 / 4667 −10.9
PV Only 13,766 / 12,892 1094 / 1079 14,860 / 13,971 −6.0

However, systems lacking dispatchable power generators see the most considerable savings. Shown are results for the Base, Kingdom of Saudi Arabia (KSA) Grid, Wind Only, and Photovoltaics (PV)
Only cases.

Table 2 For the water sector, an increase in total costs resulting from higher investment spending is particularly evident in the
PV and Wind Only cases.

Water Sector Investment cost [M$] Operating cost [M$] Total cost [M$] % Change of Total Cost

Independent / Co-Optimization

Base 361 / 366 2347 / 2345 2708 / 2711 0.1
KSA Grid 361 / 378 2347 / 2335 2708 / 2714 0.2
Wind Only 361 / 390 2347 / 2340 2708 / 2730 0.8
PV Only 361 / 496 2347 / 2337 2708 / 2833 4.6

Shown are results for the Base, Kingdom of Saudi Arabia (KSA) Grid, Wind Only, and Photovoltaics (PV) Only cases.

Table 3 For all cases, total system costs decrease when co-optimizing the power and water sectors.

System Investment cost [M$] Operating cost [M$] Total cost [M$] % Change of Total Cost

Independent / Co-Optimization

Base 2066 / 1993 2646 / 2615 4712 / 4608 −2.2
KSA Grid 1507 / 1521 2706 / 2683 4213 / 4204 −0.2
Wind Only 5449 / 4907 2496 / 2490 7945 / 7397 −6.9
PV Only 14,127 / 13,387 3441 / 3416 17,568 / 16,803 −4.4

Shown are results for the Base, Kingdom of Saudi Arabia (KSA) Grid, Wind Only, and Photovoltaics (PV) Only cases.

Table 4 Levelized cost of electricity (LCOE) and levelized cost of water (LCOW).

LCOE [$/MWh] LCOW [$/m3]

Independent / Co-Optimization % Change Independent / Co-Optimization % Change

Base 17.95 / 17.93 −0.1 0.61 / 0.61 0
KSA Grid 13.34 / 13.78 3.1 0.61 / 0.54 −11.5
Wind Only 134.07 / 128.92 −3.8 0.61 / 0.61 0
PV Only 47.90 / 44.57 −7.0 0.61 / 0.61 0

Shown are results for the Base, Kingdom of Saudi Arabia (KSA) Grid, Wind Only, and Photovoltaics (PV) Only cases.
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co-optimized model falling significantly below the independent
model’s consumption, evidence of power demand peak shaving.

The solutions of the proposed model are driven by the tech-
nology costs and the availability of the renewable resources (solar
irradiance, temperature, and wind speed), and their hourly
availability to match power and water demand. Therefore, pro-
jected technology costs impact the capacity of each technology to
install, as discussed in Alraddadi et al.19. However, projected
technology costs over the medium-term future are uncertain. In
the proposed model, we do not consider uncertainty in the

technology investment costs; average values are adopted. Thus,
the model can be solved using a rolling horizon approach to
accommodate the future variability of technology costs. The
presented case study assumes a time horizon of ten years, with
investments in technology capacities being made at the beginning
of each year. The investments for each year are the so-called first-
stage decisions that are made before the realization of the
uncertain parameters. In a rolling horizon approach, the opti-
mization problem is solved in the first iteration, and only the
investments for the first year are implemented. In the second

Fig. 3 Power and water system operations in year 10 for the a) Base and b) the Kingdom of Saudi Arabia (KSA) Grid cases. Desalination plants are
powered entirely by concentrated solar power (CSP) at their given node; therefore, when CSP farms operate at maximum capacity, water production
decreases to meet the baseline power demand.
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iteration, moving forward one year along the time horizon and
after the first-year investments are made, technologies forecast
costs are updated. The optimization problem is then solved for
the next ten years. Again, only the first year (second year from the
original time horizon) investments are implemented from the
optimization solution. The nine years after the first year in each
optimization problem prevent a limited view of future demand.
In this way, technology costs are updated yearly, and their
uncertainty is mitigated.

Incorporating stochasticity into generation expansion
planning models makes them more challenging to solve.

Nevertheless, stochastic programming allows decision-makers
to make decisions that are feasible over a number of scenarios
and obtain a solution that is optimal for the expectation of the
scenarios considered. This feasibility feature is highly relevant.
For example, an optimal solution resulting from a determi-
nistic optimization problem using average values of the
uncertain parameters may be infeasible for some scenarios
describing the uncertain parameters. This can occur if the
optimization model does not include recourse actions (e.g., the
option to obtain power from the KSA grid) to handle some
investment decisions. Besides, stochastic programming

Fig. 4 Power and water system operations in year 10 for the a) Photovoltaics (PV) Only and b) Wind Only cases. Co-optimization allows water
production to decrease during hours when batteries are discharging to meet the majority of or all power demand.
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problems can unveil solutions that are not available by opti-
mizing one scenario at a time.

To assess the quality of the stochastic programming solutions,
we present the values of the stochastic solution (VSS) obtained.
We also report the expected value of perfect information (EVPI),
which indicates the maximum price that decision-makers should
pay to obtain perfect information. Table 5 presents the VSS and
EVPI values for the four cases presented. On average, decision-
makers can save 115 million USD for the Base case by considering
uncertainty. The VSS is also greater than zero for the remaining

cases, indicating potential cost savings when using a stochastic
programming approach. The EVPI results show that perfect
information is less important in the KSA Grid case, which results
from the constant power availability provided by the KSA grid,
and more relevant in the PV Only case.

In the multiple cases addressed in this work, representative
days are adopted in the stochastic programming model to over-
come the computational burden of considering a full-time reso-
lution with 8760 h per year in a multi-year horizon model. This
reduces the model complexity and computational burden by

Fig. 5 Power demand for the a) Base, b) the Kingdom of Saudi Arabia (KSA) Grid, c) Photovoltaics (PV) Only, and d) Wind Only cases under
independent and co-optimization strategies. Due to co-optimization, peak shavings occur in all cases. Power consumption is shifted accordingly – at the
start of the year, the co-optimized model consumes more power than the independent model. However, the co-optimized model consumes less power than
the independent model at specific times throughout the remainder of the year.
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reducing the model size in the time dimension. However, an
approximation is introduced by compressing the variability of the
renewable resources time series into a number of representative
days. To investigate the trade-offs of using representative days, we
compare results from models using representative days and a full-
time resolution in Supplementary Note 9. The results show that a
stochastic planning model using a multi-year horizon with a full-
time resolution is computationally intractable, highlighting the
importance of using representative days in these types of models.
Considering a single-year horizon stochastic model, the results
with both time representations lead to similar investment deci-
sions in various technologies. However, compared to the repre-
sentative day model, the full-time resolution model shows a
5.12% and 2.21% increase in CSP and wind capacities, respec-
tively, with a 193.5% increase in computing time. The results of
the deterministic model with both approaches follow a similar
trend, with equivalent investments in various technologies.
However, the full-time resolution model shows a 3.00% and
1.64% increase in CSP and wind capacities, respectively, with a
167% increase in computing time. Overall, these results highlight
the computational advantage of using representative days for
multi-year models. Furthermore, close investment decisions are
obtained using representative days compared with the full-time
resolution models. These results are summarized in Supplemen-
tary Tables 18 and 19.

The impact of the water sector on the power grid is significant
as co-optimizing the two systems reveals changes in the invest-
ment strategy and shifts in the power demand. Thus, co-
optimization over multiple sectors can be instrumental for
decision-makers to make more effective decisions regarding
operations and system investments. The results show that co-
optimizing the power and water sectors results in lower total
costs. In particular, if only renewable energy sources are selected,
the total cost reduction is more significant. The operational
results also demonstrate that the water desalination operations
adapt to the availability of wind and solar resources, which pre-
vents the model from making further investments. Other sectors
of importance would include the transportation sector, where
there is a push towards utilizing electric or hydrogen-fueled cars
and the chemical sector. Neom is constructing the largest
hydrogen facility to produce hydrogen using renewable energy
sources and water. Hydrogen production will directly impact
Neom’s energy storage capability and power demand. In the same
realm, the electrification of the transportation fleet will also drive
power demand and serve as a distributed battery system in Neom
for short-term energy storage.

The Base case results provide the optimal generation mix for a
fully renewable power system. However, we also analyzed one
case where Neom could obtain power from the KSA grid based
on fossil fuels. The carbon emissions related to this power gen-
eration can be accounted for, and a mechanism to offset emis-
sions can be implemented. The hydrogen produced can be
utilized to produce e-fuels, carbon-based fuels such as methanol,

and formic acid9. The production of these fuels will also require
carbon dioxide to be sequestered from the air or from industry. In
a similar context, geothermal technology that uses carbon dioxide
as the injection fluid can generate power while reducing the total
emissions of the system.

Future work will evolve in two directions: 1) quantifying car-
bon emissions and addressing a dynamic carbon offsetting sys-
tem; and 2) coupling additional sectors (hydrogen production,
transportation, e-fuels) in our co-optimization model to highlight
sector interactions and the collective and individual reliability of
the systems.

The proposed model was applied to Neom, Saudi Arabia;
however, it is a generic model which can be adapted to other
regions given the respective data inputs. The results obtained for
Neom may provide insights into other systems with similar cli-
mates, renewable resource availability, or a need for desalination.
These regions include the Southwestern region of the United
States, parts of Australia, Chile, South Africa, and the MENA
region28.

Methods
Stochastic programming model. We developed a stochastic programming model
to co-optimize the expansion planning of water desalination, power generation,
and transmission lines. The model considers long-term uncertainty for electricity
and water demand and variability of the availability of renewable resources. The
decision framework involves a two-stage decision process encapsulated into a
single model. The first-stage decisions are investment decisions at the start of each
year to install power generation facilities, storage technologies, transmission lines,
and water desalination systems. The second-stage decisions are related to power
generation operations, water desalination operations, and storage inputs and out-
puts. The model equations can be found in Supplementary Note 6.

The objective function consists of the total investment cost plus the expected
operating cost from 2020 to 2029. To minimize the objective function, we
approximate a multiple-stage decision process with a two-stage framework.
Investment decisions for each year are all treated as first-stage decisions. The model
should be run every year to improve the approximation, using updated demand
growth forecasts to determine the investment decisions.

Power generating and storage technologies include concentrated solar power
(tower), photovoltaics, hydroelectric pumped storage, combined cycle gas turbines,
and batteries. Water desalination and storage technologies include reverse osmosis
desalination and water storage tanks. Investment decisions are based on the
investment costs of the technologies themselves in a given year. We assume a 1%
decrease in technology investment costs every year. The demand growth
uncertainty is revealed in the subsequent stage, and operating decisions are made
regarding power generation, water desalination, and storage inputs and outputs.
These decisions are made considering the variable operating costs of the
technologies and the resource availability of renewables. Operating decisions are
made on an hourly scale.

The uncertainty in interannual demand growth of both water and electricity is
represented by three scenarios: low, medium, and high demands, each
characterized by a corresponding probability of occurrence. We assume that water
demand growth is related to electricity demand growth; a high demand scenario
means that both water and electricity demands are high. A low-demand scenario
means that both water and electricity demands are low.

Electricity demand, water demand, and renewable resources available for wind
and solar power generation vary throughout a given day and year. We use
representative days rather than all 365 days (8760 h) of a year to make the model
tractable.

The model is formulated as a mixed-integer linear program using the modeling
system GAMS29 27.2 and solved with a branch & bound algorithm within the
CPLEX 12.830 package using an optimality gap tolerance of 0.1% and a time limit
of 168 hours. All optimization runs were performed on the KAUST IBEX computer
cluster using exclusive nodes, each having 40 Intel Gold 6148 @ 2.6-GHz
processors and 384 GB of RAM.

Electricity and water demand profiles. Because Neom is a planned project, there
is no historical electricity or water demand data. Therefore, we use annual pro-
jections between 2020 through 2029 for both water and electricity (all sectors)
demand. The scenarios are dependent on the projected population sizes. Because
we are co-optimizing the electricity and water systems, we subtract the electricity
demand from desalination based on water demand projections using a conversion
factor of 4 kWh/m3. The model accounts for the power consumption needed for
desalination when it determines how much water to desalinate.

We derived the yearly water and electricity demand profiles for Neom from the
demands at KAUST - an academic institution of 7000+ residents approximately in

Table 5 Value of Stochastic Solution (VSS) and Expected
Value of Information (EVPI).

VSS [M$] EVPI [M$]

Base 115 423
KSA Grid 85 195
Wind Only 111 1195
PV Only 60 3391

Shown are results for the Base, Kingdom of Saudi Arabia (KSA) Grid, Wind Only, and
Photovoltaics (PV) Only cases.
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Thuwal, Saudi Arabia. We obtained the 2018 hourly water and electricity demand
curves for KAUST. We applied the profiles to Neom by normalizing the area under
the curve to 1 and multiplying it by the total annual demand for Neom in a
given year.

Climate data. We use direct normal irradiance, global horizontal irradiance, and
temperature data for Jan 2008 through June 2019 (11.5 years) at a 5 km resolution
spanning the entire region of Neom. This data was obtained from a high-resolution
evaluation of the solar energy resources over the Arabian Peninsula using reana-
lysis data generated by the Weather Research and Forecasting (WRF) Solar model.
Reanalysis data was validated using daily observations at 46 in-situ radiometer
stations throughout Saudi Arabia31.

Wind speed data for the Neom region over the same timespans and resolution
as the irradiance and temperature data was used. The wind speed data was derived
from a high-resolution reanalysis generated using WRF and validated with data
from buoys, scatterometers, and altimeters placed throughout the area32.

k-means clustering for representative regions and days. Clustering methods
involve several steps, (1) data normalization, (2) data assignment, and (3) cluster
representation33. We normalize our data using the z-scoring full scope normal-
ization on each attribute to shift the mean to 0 and standard deviation to 1. In the
data assignment step, we use a partitional clustering method known as k-means
clustering, which uses Euclidean distance as its distance measure and the centroid
(mean) as its cluster center. Once the clusters are determined, each cluster is
represented by one of its assigned observations, typically done by selecting the
observation that minimizes its distance to the cluster center.

The goal of k-means clustering is to select a set of k clusters that minimizes the
sum of the squared distance between the rows of a dataset and the cluster centroid
they are assigned to; this sum is called the potential. The k-means approach most
commonly used is Lloyd’s algorithm34, which begins by selecting k arbitrary
centroids, chosen uniformly at random from the normalized dataset. Each row is
assigned to the nearest centroid, determined by calculating the Euclidean distance
between a given row to the k possible centroids. This step forms the initial clusters.
The centroid is then recalculated for each cluster by taking the mean of all data
points in the cluster. We used an alternative approach, k-means++, which
initializes Lloyd’s algorithm with random starting centers with specific probabilities
proportional to their contribution to the overall potential35. Clustering was
performed on MATLAB R2020a using the kmeans function. For more information
on k-means++, see Supplementary Note 2.

Representative regions. Clustering methods are used to divide Neom into regions
according to climate conditions (e.g., wind speed, solar irradiance, and
temperature)10. Climate data is available for a spatial resolution of 5 km,
accounting for 4270 locations within Neom. k-means clustering is used to group
these locations into ten representative regions. More information can be found in
Supplementary Note 3.

Representative days. Clustering methods are also used to capture the hourly
variability from renewable generation and power and water demand33,36. This
approach decreases the model size by aggregating long time series into shorter time
slices. We use k-means clusters to group 4194 days (~11.5 years) into seven
representative days per year. The days were clustered based on the water and power
demand, wind and solar availability, and temperature. More information can be
found in Supplementary Note 4.

Capacity factors of renewable technologies. Global Horizontal Irradiance
(GHI), the total amount of radiation received by a horizontal surface, and tem-
perature data were used to obtain the capacity factors of photovoltaic panels based
on a standard 0.25 kW solar cell. Direct Normal Irradiance (DNI), the amount of
radiation received per unit area by a surface perpendicular to the incoming rays, is
used to obtain power outputs for CSP farms. Wind power output was obtained
from wind speed data by applying the power curve of Vestas 150-4.237, a 4.2 MW
wind turbine with a hub height of 150 m. Supplementary Note 5 presents the
equations to obtain the power production and capacity factors.

Water desalination. Several technologies are commonly utilized for water desa-
lination, such as multi-effect distillation (MED), multistage flash (MSF) distillation,
and reverse osmosis (RO). Our model includes only RO and limits the operational
constraints, such as ramping rates, to reduce computational complexity. We
assume that a RO plant cannot be shut down as periodic shutdowns generally
damage the permeable membranes. Electricity consumption for a typical RO plant
is held constant throughout the project lifetime at 4 kWh/m3.

Preoptimization calculation of annualized costs. Annualized cost is a metric that
allows decision-makers to compare the cost-effectiveness of technologies with
different lifespans, accounting for a given annuity factor. The definitions are given
in Supplementary Note 1. Annualized cost values are given in Supplementary
Tables 1 and 2.

Postoptimization analysis using levelized costs of electricity and water.
Levelized costs of electricity (LCOE) and water (LCOW) metrics are used
to compare the competitive costs of different investment plans. They
describe the average net present value of electricity generation or water pro-
duction over the lifetime of the project. Their definitions are given in Sup-
plementary Note 7.

The value of the stochastic solution and the expected value of perfect
information38. The value of the stochastic solution (VSS) is a measure that
quantifies the cost of planning without considering uncertainty. The expected value
of perfect information (EVPI) is the maximum amount one should pay for com-
plete and accurate information about the future. The definitions of both terms are
given in Supplementary Note 8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data relating to the representative days and regions, capacity factors, and electricity and
water demand are available in a Supplementary Data file: Supplementary_Data_2.xlsx. For
original climate data, please contact the authors in31 and32. The cost information and
performance parameters for technologies and transmission lines are available in the
Supplementary Information. The raw data for Figs. 2–5 are available in a Supplementary
Data file: Supplementary_Data_1.xlsx.

Code availability
This work did not use a specific developed algorithm to perform the optimizations. The
mathematical programming models were written in the modeling system GAMS 27.2
and solved with the commercial solver CPLEX 12.8. Detailed descriptions of the sets,
parameters, objective function, constraints, and variables are available in the
supplementary information document. The clustering analysis applied to the climate data
was performed using the commercial software MATLAB R2020a.
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