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Rapid syntheses of N-fused heterocycles via acyl-
transfer in heteroaryl ketones
Dan Ye1,3, Hong Lu 1,3, Yi He1, Zhaojing Zheng2, Jinghao Wu1 & Hao Wei 1✉

The wide-ranging potencies of bioactive N-fused heterocycles inspire the development of

synthetic transformations that simplify preparation of their complex, diverse structural

motifs. Heteroaryl ketones are ubiquitous, readily available, and inexpensive molecular

scaffolds, and are thus synthetically appealing as precursors in preparing N-fused hetero-

cycles via intramolecular acyl-transfer. To best of our knowledge, acyl-transfer of unstrained

heteroaryl ketones remains to be demonstrated. Here, we show an acyl transfer-annulation to

convert heteroaryl ketones to N-fused heterocycles. Driven via aromatisation, the acyl of a

heteroaryl ketone can be transferred from the carbon to the nitrogen of the corresponding

heterocycle. The reaction commences with the spiroannulation of a heteroaryl ketone and an

alkyl bromide, with the resulting spirocyclic intermediate undergoing aromatisation-driven

intramolecular acyl transfer. The reaction conditions are optimised, with the reaction exhi-

biting a broad substrate scope in terms of the ketone and alkyl bromide. The utility of this

protocol is further demonstrated via application to complex natural products and drug

derivatives to yield heavily functionalised N-fused heterocycles.
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N -fused heterocyclic compounds, such as pharmaceuticals,
agrochemicals, plastics, and dyes (Fig. 1a), are integrated
into everyday life1–6. Big data analysis shows that het-

erocycle synthesis is one of the most common reactions in the
field of medicinal chemistry7,8. Among the best-selling ther-
apeutics, almost a third contain fused heterocyclic structures9.
Due to the high value of N-fused heterocycles, their novel,
effective, flexible, general syntheses require investigation10–12.

Acyl transfer is a critical process in various biological
transformations13. In the field of organic synthesis, acyl transfer is
frequently used in formation carbonyl compounds14–18. A typical
acyl transfer employs a reactive carboxylic acid derivative (e.g. an
acyl chloride or a thioester) as an acyl source. However, whether
relatively inert ketones may serve as acyl transfer agents remains
unclear?

Ketones are ubiquitous functional groups that not only occur
widely in drug molecules and natural products but also act as
bulk feedstocks in the syntheses of fine chemicals and materials.
They are stable, non-toxic, and simple to prepare via various
methods, rendering them ideal synthetic precursors19. If intra-
molecular acyl transfer of heteroaryl ketones can be realised, a
transfer-annulation strategy may be employed in N-fused het-
erocycle preparation (Fig. 1b). However, owing to the kinetic
inertness of C–C bonds, acyl transfer of ketones largely focuses on
highly strained ketones20–26. For unstrained ketones27–32, the
most common strategy involves using directing groups to form of
a stable chelate (Fig. 1c)33–40. Although effective, the use of
directing groups complicates the overall synthesis and limits the
scope of the accessible products. Hence, a acyl transfer of
unstrained ketones for use in N-fused heterocycle synthesis is
warranted.

Aromatisation, which enables delocalisation of electron den-
sity, stabilising the molecule41, is a critical thermodynamic driv-
ing force in the field of organic chemistry42–45, e.g. aromatisation-
driven deacylations of ketones are prominent bond-cleavage
strategies46–48. Therefore, we conceived a approach for the acyl
transfer of unstrained heteroaryl ketones driven by aromatisation
of a pre-aromatic intermediate (Fig. 1d). This strategy may be

suitable for use in the syntheses of N-fused heterocycles, and,
critically, the directing group is no longer required. The next
challenge in this strategy is the in situ formation of special, high-
energy, pre-aromatic substrates. Transition metal-catalysed
dearomatisation is a straightforward strategy to prepare spir-
ocyclic scaffolds49–52. The spirocyclic intermediates, which are
formed in situ from readily available heteroaryl ketones via
dearomatisations53–56, should serve as pre-aromatic precursors to
facilitate rearrangement (Fig. 1d). This likely involves a Pd-
catalysed dearomative spirocyclisation of a heteroaryl ketone with
an alkyl bromide to generate a pre-aromatic intermediate (A),
which is then intramolecularly trapped by the heterocyclic
nitrogen57–61. The resulting intermediate (B) may subsequently
lose a hydrogen, restoring aromaticity to yield the fused hetero-
cyclic product.

Here, we report an acyl transfer-annulation of heteroaryl
ketones driven by aromatisation. This method is operationally
simple, scalable, and applicable to late-stage modifications of
natural products and drug derivatives, which make it a valuable
method for the synthesis of organic N-fused heterocycles.

Results
Reaction optimisation. To explore this strategy, we initially used a
heteroaryl ketone with a tethered olefin (1), which was prepared in
one step using commercially available benzimidazole and
2-vinylbenzoyl chloride, as a model substrate. Because of the unique
properties of difluoromethylene group (CF2) and its critical appli-
cations in medicinal chemistry62–64, ethyl bromodifluoroacetate
(BrCF2COOEt) was employed as the coupling partner. After sys-
tematic screening, the desired rearrangement product (2) is obtained
in a 90% yield using PdCl2 in combination with 1,1-bis(diphenyl-
phosphino)pentane (dpppent, L1) as the ligand and Na2CO3 as the
base in dioxane/tetrahydrofuran (THF) (Table 1, entry 1). The
structure of 2 was unambiguously determined by X-ray crystal-
lography. In addition, the Pd catalyst appears to be critical in this
reaction. Using Pd(OAc)2 or Pd2(dba)3 (dba=
dibenzylideneacetone) as the catalyst results in much lower yields
(Table 1, entries 2–3), and other metals, such as NiCl2 and FeCl2, are
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Table 1 Screening of reaction conditions.

Entry Variation from ‘standard condition’ Yield[a]/%

1 None 90

2 Pd(OAc)2 instead of PdCl2 54

3 Pd2(dba)3 instead of PdCl2 51

4 NiCl2 or FeCl2 instead of PdCl2 Trace

5 L2-L12 instead of L1 See right

6 Without Na2CO3 12

7 In toluene Trace

8 In dioxane 78

9 In THF 68

Unless otherwise specified, all reactions were carried out using 1 (0.1 mmol) and ethyl bromodifluoroacetate (0.15 mmol, 1.5 equiv), with 10 mol% PdCl2, 12 mol% L1 and Na2CO3 (1.0 equiv) in dioxane/
THF (1:2) at 130 °C for 24 h. The CCDC number of 2 is 2116750.
aIsolated yields after chromatography.
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completely ineffective (Table 1, entry 4). A study of the ligand effect
further suggests that bidentate phosphine ligands are generally
superior, with the yield increasing with the increasing bite angle of
the phosphine employed, and L1 is the only ligand that generates
full conversion with the optimal yield (Table 1, entry 5). The
addition of a base improves the reaction outcome appreciably, likely
by neutralising the in situ-generated HBr (Table 1, entry 6). A
survey of different solvents reveals that dioxane and THF are
individually good, albeit generating slightly lower yields than that
obtained using the mixture (Table 1, entries 7–9).

Substrate scope. With the conditions determined, the scope of
alkyl bromides was examined first (Fig. 2). Ketone 1 is success-
fully coupled with various alkyl bromides, with 5-, 6-, 7-, or 12-
membered cycloalkyls (3–6) generating good yields of the desired
coupling products. Heterocyclic bromides, with moieties such as
tetrahydropyrane (7) and THF (8), react smoothly, resulting in
good yields. Remarkably, the polycyclic bromide derived from the
natural steroid stanolone is also amenable to coupling under the
reaction conditions (9). Linear alkyl bromides are also suitable for
reaction (10–12). We then investigated substrates with a CF2
group. Bromofluoroacetate, bromodifluoromethyl ketone, per-
fluoroalkyl bromide, bromodifluoromethyl phosphonate, and
bromodifluoromethyl sulfone effectively undergo the desired
annulation (13–17).

We further explored the rearrangements of various heteroaryl
ketones with bromodifluoroacetate (Fig. 3). The rearrangement

took place smoothly by using 2-acylimidazoles and
2-acylbenzimidazoles as substrates (18–41). Both electron-rich
and deficient substrates are competent during the cyclization
process. A range of functional groups are compatible, including
aryl fluorides (28 and 40) and chlorides (20 and 39),
trifluoromethyl (21 and 38), esters (23) and cyano (22), are all
tolerated. Changing the nitrogen protecting group from methyl to
isopropyl (30) and benzyl (31) did not significantly affect the
reactivity.

Compared to the substrate with 4,5-diphenylimidazole (32),
the reactions of 4-phenylimidazole (33) and imidazole (34) yield
lower conversions, indicating that aromatisation is essential to
promote the reaction. Marketed drug-derived ketones, such as
ketoconazole (41), also react smoothly despite the presence of
several other functional groups. Significantly, numerous sub-
strates are synthesised via direct acylation of commercially
available imidazoles or benzimidazoles, with the resulting ketones
directly undergoing rearrangement, which further highlights the
efficiency of this process. Further, we examined other types of
heterocycles, which should yield different heterocyclic cores via
rearrangement. Heterocycles such as thiazole (42), benzothiazoles
(43–51), benzoxazole (52), and oxazole (53) may also be
incorporated, yielding pharmaceutically interesting fused-ring
skeletons65,66.

Mechanistic considerations. A study was performed to investi-
gate the reaction pathway. To determine whether an alkyl radical
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exists during this Pd-catalysed process, a radical inhibition study
was performed. When 2,2,6,6-tetramethylpiperidinooxy
(TEMPO) is added to the reaction mixture, it traps alkyl radicals,
indicating that the reaction involves radical species (Fig. 4a). An
electron paramagnetic resonance (EPR) study of the reaction of
bromocyclopentane with the spin-trapping agent phenyl-N-tert-
butylnitrone reveals the presence of spin adducts of the trapped
alkyl radicals 56 and 57 (Fig. 4b), as indicated by the EPR
spectrum (see supporting information). Deuterium labelling

studies were conducted using the heteroaryl ketone D-1 (79%
deuterium content) as a substrate under the optimised conditions,
with a significant level of the deuterated product D-2 (76%
deuterium content) detected, suggesting that there were no
reversible hydro-metallation in this process (Fig. 4c)67,68. Finally,
we synthesised an aryl Pd complex (58-[Pd]), with 12 produced
instead of 59 in the presence of 58-[Pd], benzyl bromide, and 1
(Fig. 4d). Therefore, the alkyl group of the fused heterocyclic
product is not derived from the migratory insertion of the Pd(II)

Fig. 5 Synthetic applications. a Using the tranfer-annulation strategy in the late-stage modifications of complex frameworks based on natural products and
drug molecules. b Gram-scale synthesis and various useful transformations of 2. The CCDC number of 74 is 2131840.
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complex. The proposed reaction pathway is thus shown in Fig. 4e.
The reaction may be initiated by a single electron transfer
between Pd(0) and the alkyl bromide, producing hybrid alkyl
Pd(I)-radical species INT I. Subsequently, radical addition to the
alkene occurs, leading to the hybrid benzylic radical INT II,
which then undergoes dearomatisative-spirocyclisation to form
the spiro-N-radical INT III. Aromatisation-driven intramolecular
acyl transfer may then occur to form the alkyl radical INT IV.
Subsequent β-H elimination at the latter yields the product with
concomitant regeneration of the Pd catalyst. This proposed
mechanism is also supported by X-ray photoelectron spectro-
scopy, which revealed the presence of three distinct Pd oxidation
states (Pd(0), Pd(I), and Pd(II)) during the process, suggesting
that Pd(I) species may be involved.

Synthetic utility. Further studies were conducted to demonstrate
the viability of this acyl transfer-annulation strategy. The protocol
was applied in the late-stage modifications of natural products
and drug derivatives (Fig. 5a). Various complex molecules with
diverse structural features, such as steroids (62 and 69), N-het-
eroarenes (oxazole 63 and indole 68), alkaloids (66), and carbo-
hydrates (72), are readily converted into the corresponding
products in useful yields. This strategy provides a straightforward,
versatile method of generating valuable N-fused heterocyclic
moieties within complex molecules. Given the ubiquity of N-
fused heterocycles in pharmaceuticals, this approach may be used
in the field of medicinal chemistry.

To showcase the scalability of this process, a gram-scale reaction
was carried out. Gratifyingly, a satisfactory 67% isolated yield (80%
yield based on recovered 1) of product 2 could be obtained without
modification of the optimised conditions (Fig. 5b). The N-fused
heterocyclic scaffold can readily undergo various transformations to
access a range of synthetically useful scaffolds. For example, the
bromination of 2 proceeded to afford 74, excellent selectivity for the
9-position was observed, which allows follow-up fused heterocycle
manipulations through cross-couplings. Treatment with mCPBA,
deconstruction of N-fused heterocycle was observed, which afforded
75 in 53% yield. Diazidation product 76 was afforded in 48% yield
via vicinal diazidation of olefin. Moreover, the ester moiety was
smoothly reduced with NaBH4, affording the corresponding alcohol
77 in 68% yield.

In conclusion, a synthetically useful, mechanistically intriguing
intramolecular acyl transfer of heteroaryl ketones was developed,
which was suitable for use in fused-ring synthesis. The formation
of a high-energy pre-aromatic spirocyclic intermediate was
critical in the successful transformation, with aromatisation the
driving force that facilitated C–C bond cleavage. Given the ready
availability of the ketone moiety, this strategy could be used to
simplify the syntheses of complex N-fused heterocyclic systems,
which are privileged structures within numerous biologically
active compounds. Moreover, the protocol enabled the late-stage
modifications of intricate natural products and drug derivatives
and may thus facilitate heterocyclic drug discovery.

Methods
General condition A for transfer-annulation of heteroaryl ketones derived
from (benzo)imidazoles. In a nitrogen-filled glovebox, an oven-dried 10 mL
sealed tube equipped with a Teflon-coated magnetic stir bar was charged succes-
sively with heteroaryl ketone 1 (0.1 mmol), alkyl bromide (0.15 mmol, 1.5 equiv),
PdCl2 (0.01 mmol, 10 mol%), dpppent (0.012 mmol, 12 mol%), Na2CO3 (0.1 mmol,
1.0 equiv) and dioxane/THF (1.0 mL, 1:2). The tube then was sealed with a Teflon
screw cap, moved out of the glovebox, and placed on a hotplate pre-heated to
130 °C for 24–36 h. After completion of the reaction, the mixture was filtered
through a thin pad of silica gel. The filter cake was washed with ethyl acetate and
the combined filtrate was concentrated under vacuum. The residue was purified via
silica gel chromatography.

General condition B for transfer-annulation of heteroaryl ketones derived
from (benzo)thiazoles and (benzo)oxazoles. In a nitrogen-filled glovebox, an
oven-dried 10 mL sealed tube equipped with a Teflon-coated magnetic stir bar was
charged successively with heteroaryl ketone 1 (0.1 mmol), difluorobromoethyl ester
(0.15 mmol, 1.5 equiv), PdCl2 (0.01 mmol, 10 mol%), dppf (0.012 mmol, 12 mol%),
K2CO3 (0.1 mmol, 1.0 equiv) and dioxane/THF (1.0 mL, 1:1). The tube then was
sealed with a Teflon screw cap, moved out of the glovebox, and placed on a
hotplate pre-heated to 120 °C for 24 h. After completion of the reaction, the
mixture was filtered through a thin pad of silica gel. The filter cake was washed
with ethyl acetate and the combined filtrate was concentrated under vacuum. The
residue was purified via silica gel chromatography.

Data availability
Data relating to the optimisation studies, mechanistic studies, general methods, and the
characterisation data of materials and products, are available in the Supplementary
Information. Crystallographic parameters for compounds 2, 43, 52 and 74 are available
free of charge from the Cambridge Crystallographic Data Centre under CCDC 2116750
(2), 2116753 (43), 2116752 (52) and 2131840 (74). These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
getstructures.
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