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Observation of supersymmetry and its
spontaneous breaking in a trapped ion
quantum simulator
M.-L. Cai 1,2,4, Y.-K. Wu 1,4, Q.-X. Mei1, W.-D. Zhao1, Y. Jiang1, L. Yao1,2, L. He1, Z.-C. Zhou1,3 &

L.-M. Duan 1✉

Supersymmetry (SUSY) helps solve the hierarchy problem in high-energy physics and pro-

vides a natural groundwork for unifying gravity with other fundamental interactions. While

being one of the most promising frameworks for theories beyond the Standard Model, its

direct experimental evidence in nature still remains to be discovered. Here we report

experimental realization of a supersymmetric quantum mechanics (SUSY QM) model, a

reduction of the SUSY quantum field theory for studying its fundamental properties, using a

trapped ion quantum simulator. We demonstrate the energy degeneracy caused by SUSY in

this model and the spontaneous SUSY breaking. By a partial quantum state tomography of

the spin-phonon coupled system, we explicitly measure the supercharge of the degenerate

ground states, which are superpositions of the bosonic and the fermionic states. Our work

demonstrates the trapped-ion quantum simulator as an economic yet powerful platform to

study versatile physics in a single well-controlled system.
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Supersymmetry (SUSY) is a quantum mechanical symmetry
that unifies the space-time and the internal degree of free-
dom of elementary particles1,2. In an SUSY theory, bosons

and fermions have one-to-one correspondence with the same
mass, which leads to a cancellation in the Lagrangian of the Higgs
particle and thus helps solve the hierarchy problem or the
ultraviolet divergence in Standard Model2. However, in reality,
this cancellation in Higgs mass is not exact and no SUSY partners
of known particles have been discovered at the current energy
scales, which requires the spontaneous breaking of SUSY2,3. Since
it is mathematically daunting to decide if SUSY is spontaneously
broken in a quantum field theory, supersymmetric quantum
mechanics (SUSY QM)4,5 has been proposed as a toy model for
understanding this crucial property3. In an SUSY QM model,
Hamiltonians have nonnegative eigenvalues E ≥ 0 with all the
E > 0 levels being degenerate, which is a consequence of the
boson-fermion correspondence6. On the other hand, there can
also be E= 0 bosonic or fermionic ground states, which are
vacuum states annihilated by supercharges, the generators of
SUSY, and do not necessarily have the boson-fermion corre-
spondence. This can be characterized by the Witten index, the
number of E= 0 bosonic states minus that of the fermionic
states6. If such E= 0 levels do not exist, the SUSY is said to be
spontaneously broken as the degenerate ground states with
positive energies transform between bosons and fermions by the
supercharge rather than being invariant6.

Although the SUSY theory has inspired wide applications in
fields like optics7, condensed matter physics8, quantum chaos8 or
even outside physics9, whether it correctly describes the physical
world has not yet been determined by the state-of-the-art high-
energy physics experiments10,11 or other indirect experimental
evidences12,13. However, many theoretical proposals already
exist14–18 to examine its effects by quantum simulation19,20. As
one of the leading platforms for quantum information processing
with long coherence time, convenient initialization and readout,
as well as accurate laser or microwave control21–25, ion trap has
demonstrated the quantum simulation of various phenomena
such as quantum phase transitions26,27, many-body dynamics26,
relativistic effects28 and quantum field theories29. In this work, we
report experimental realization of a prototypical SUSY QM
model14 in a trapped ion quantum simulator and demonstrate the
spontaneous SUSY breaking in this model. The SUSY QM model
is realized by tuning suitable parameters in a quantum Rabi
model (QRM) Hamiltonian27,30. Through a combination of the
state-of-the-art manipulation techniques for spin and phonon
states in ion trap, and the joint spin–phonon state tomography
scheme we develop that has not been achieved before, we expli-
citly demonstrate the characteristic signatures of the SUSY theory
by measuring the energy degeneracy between the bosonic and the
fermionic states, and the nonvanishing supercharges of the
degenerate ground states in the spontaneous SUSY breaking case.

Results
Our experimental scheme is sketched in Fig. 1. We create a QRM
Hamiltonian with bichromatic Raman laser beams on a single
trapped 171Yb+ ion27,30 (see Methods)

H ¼ ωs

2
σz þ ω ayaþ 1

2

� �
þ gσxðaþ ayÞ þ g2

ω
; ð1Þ

where σz, σx denote the components of the Pauli spin operator, a
(a†) the bosonic annihilation (creation) operator for the phonon
mode, and the last term a renormalization constant14. This sys-
tem possesses two supersymmetric points. One is at g= 0 and
ωs= ω where the system is as simple as a spin and an oscillator
without coupling. This becomes evident if we write σz= 2f† f− 1

and σx= f+ f† where f (f†) denotes the annihilation (creation)
operator of a fermionic mode. The excited states |↑〉|n〉 and |↓〉
|n+ 1〉 (n ≥ 0) are degenerate fermionic and bosonic states (|↑〉
and |↓〉 have fermionic occupation number of 1 and 0, respec-
tively) with positive energy En+1= (n+ 1)ω, while the unique
ground state |↓〉|0〉 has zero vacuum energy E0= 0 owing to the
cancellation between the spin (fermionic) energy ωs and the
phonon (bosonic) energy ω.

The other more interesting SUSY point appears if we turn on
the spin–phonon coupling g and set ωs= 0 (see Supplementary
Note 1). In this special situation, while the Hamiltonian is still
supersymmetric, its ground state is not, which indicates a spon-
taneous SUSY breaking. We connect these two supersymmetric
points by the path

H ¼ ð1� rÞω
2

σz þ ω ayaþ 1
2

� �
þ rgmσxðaþ ayÞ þ ðrgmÞ2

ω
;

ð2Þ
which corresponds to ωs= (1− r)ω and g= rgm in the QRM. The
energy spectrum for this system under ω= gm= 2π × 5.73 kHz is
plotted in Fig. 2a, b with r ranging from zero to 0.8. At r= 0, the
first and the second excited states are degenerate, with a finite
energy gap of ω from the unique ground state. As r increases, the
degeneracy between the two excited states is lifted while the gap
between the ground state and the first excited state shrinks. To
probe this energy spectrum, we first prepare the ground state at
the desired r through an adiabatic passage; then we apply a weak
probe pulse Hp=Ωp σx cos ωp t with the QRM Hamiltonian
turned on and measure the change in the spin population30 (see
Methods). By scanning ωp, we obtain the energy gap between the
ground and the excited states as shown in Fig. 2c, d as two
examples.

In the above process, the energy gap between the ground state
and the first excited state closes as r→ 1, which seems to violate
the adiabatic condition when preparing the ground state.

Boson Fermion

= 0

E=0

Boson Fermion

= 1

E=0

Fig. 1 Quantum Simulation of SUSY and its spontaneous breaking. We
simulate the QRM Hamiltonian by coupling the internal states of an ion
with its spatial oscillation using bichromatic Raman laser beams. Under
suitable parameters, the system possesses SUSY and there is a unique
E= 0 bosonic ground state with all the other excited states being double-
degenerate for bosonic and fermionic states. This corresponds to a Witten
index of one. When moving to a different set of parameters, the
Hamiltonian is still supersymmetric, but this symmetry spontaneously
breaks and the ground states are no longer unique but obtains nonvanishing
supercharges and positive energies. The Witten index in this case is zero.
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Nevertheless, these two states locate in different symmetry
branches of the QRM under parity transform σze

iπaya, which
commutes with the QRM Hamiltonian. Therefore, the two states
will not evolve into each other and the adiabatic condition can
still hold. However, there is another problem that as r increases,
the coupling between these two lowest levels by Hp becomes
weaker, which leads to a reduction in the resonant signal even for
the ideal state as illustrated in Fig. 2a at large r. Consequently, it is
still difficult to accurately determine the energy degeneracy near
r= 1, the nontrivial spontaneous SUSY breaking point. For this
purpose, we explicitly measure the energy expectation values of
the two ground states at r= 1.

To prepare these two states, we fix ωs= 0 in Eq. (1) and gra-
dually turn up g from zero to gm (see Methods). The two initial
ground states |↑〉|0〉 and |↓〉|0〉 will then adiabatically evolve into
the ground states at the spontaneous SUSY breaking point
jψ ± i ¼ ðjþij � gm=ωi± j�ijgm=ωiÞ=

ffiffiffi
2

p
, which are ideally two

Schrödinger’s cat states.
Now to evaluate the expectation value of the Hamiltonian

H ¼ ωðayaþ 1=2Þ þ gmσxðaþ ayÞ þ g2m=ω, we only need to
measure the average phonon number 〈a†a〉 and a spin–phonon
coupling term 〈σx (a+ a†)〉. The former can be derived by the

standard procedure of first resetting the spin state to |↓〉 and then
driving the phonon blue-sideband to fit the phonon number
population from the spin dynamics21, as shown in Fig. 3a, b. As
for the second term, we apply a spin-dependent force HSDF=
(−Ωp/2)σy (a+ a†) and measure the evolution of σz (t) by
observing that eiHSDFtσze

�iHSDFt has a linear term in t as Ωp tσx
(a+ a†)28. Therefore, after preparing |ψ±〉, we adjust the para-
meters of the bichromatic Raman laser beams to create this spin-
dependent force and fit 〈σz (t)〉 to extract the slope at t = 0 (see
Methods), from which we obtain 〈σx (a+ a†)〉, as shown in
Fig. 3c. Combining these two results, we obtain E+= 2π × (7.3
± 1.9) kHz and E−= 2π × (5.2 ± 2.1) kHz for |ψ+〉 and |ψ−〉
respectively at the parameters ω= 2π × 10 kHz and gm= 2π ×
5.73 kHz. The two levels are degenerate within about one stan-
dard deviation, and also agree well with the theoretical value of
E0= ω/2= 2π × 5 kHz. Note that the error bar here, mainly
caused by fitting the phonon distribution, is much smaller than
the gap ω to higher levels. Such a double-degeneracy of the
ground state with positive energy clearly indicates the sponta-
neous SUSY breaking.

In quantum field theory, E0 > 0 has the nontrivial meaning of a
positive vacuum energy. However, in quantum mechanics, a

a Theo. b Exp.

rr

Δ
E

(2
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×
k

H
z)

probe freq. (2π × kHz)

probe freq. (2π × kHz)

c r=0

d r=0.3

Fig. 2 QRM energy spectrum and SUSY. a Theoretical energy gaps between the ground state and the first two excited states as a function of r in Eq. (2).
b Experimentally measured energy gaps. At r= 0, the system is supersymmetric with a unique bosonic ground state and degenerate first and second
excited states for the bosonic and the fermionic modes. As r→ 1, the Hamiltonian approaches the other supersymmetric point, but the unique ground state
disappears and the lowest bosonic and fermionic states become degenerate, which indicates a spontaneous SUSY breaking. c, d The resonant signals
probed by a weak pulse for energy gaps at r= 0 and r= 0.3, respectively. The solid blue curves are the theoretical results and the red dots are the
measured data, which are fitted by multiple Gaussian functions as the dashed orange curves to extract the peak locations.
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Fig. 3 Measuring ground state energies at spontaneous SUSY breaking point. a, b Phonon number distribution of the ground states |ψ+〉 and |ψ−〉,
respectively, by fitting the time evolution under a blue-sideband driving as shown in the inset. The estimated average phonon numbers are �nþ ¼
0:47±0:19 and �n� ¼ 0:42±0:21, respectively. c Measuring

�
σxðaþ ayÞ� by fitting the spin-up state population under a spin-dependent force. The

dynamics can be fitted by an analytic formula (solid curves, see Methods) and then the slope at t= 0 can be extracted as (−25.5 ± 1.9) kHz and
(−32.3 ± 1.8) kHz for |ψ+〉 and |ψ−〉, respectively. Each data point is averaged over N= 200 experimental shots. Error bars represent one standard
deviation. Combining the two results, we measure the average energy of the two ground states as E+= 2π × (7.3 ± 1.9) kHz and E−= 2π × (5.2 ± 2.1) kHz
with the ideal value E0=ω/2= 2π × 5 kHz. The two levels are degenerate within about one standard deviation.
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constant in the Hamiltonian only contributes to a global phase
and can always be discarded. Therefore, we would prefer more
direct evidences of the spontaneous SUSY breaking by measuring
the supercharge, which is the generator of the SUSY that trans-
forms between bosons and fermions. An SUSY-invariant vacuum
will be annihilated by the supercharge, while in the case of
spontaneous SUSY breaking, the degenerate ground states can
take nonzero supercharges. For the Hamiltonian of Eq. (2) with
r= 1, the supercharge can be defined as14 (see Supplementary
Note 1 for details)

Q ¼ � σz
2

Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayaþ 1

2

r
Vþ þ V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayaþ 1

2

r
V�

" #

� i
σy
2

Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayaþ 1

2

r
Vþ � V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayaþ 1

2

r
V�

" #

� σz � Aþ σy � B;

ð3Þ

where V±≡ exp[±(gm/ω)(a†− a)] are displacement operators,
and we define two phonon operators A and B to simplify the
expression. We have taken out a coefficient

ffiffiffiffi
ω

p
to make the

supercharge dimensionless. Ideally, |ψ±〉 are eigenstates of Q with
eigenvalues of �1=

ffiffiffi
2

p
.

To evaluate 〈σz ⊗ A〉, in principle we can decompose the
spin–phonon density matrix as ρ ¼ j"ih"j � ρ"" þ j"ih#j � ρ"# þ
j#ih"j � ρ#" þ j#ih#j � ρ## where ρα (α ¼""; "#; #"; ##) are
operators on the phonon states. Then we have
hσz � Ai ¼ tr½ðρ"" � ρ##ÞA�. Naively, to obtain ρ↑↑ and ρ↓↓ sepa-
rately, we can first measure σz and then reset the spin state as an
ancilla for quantum state tomography on the phonon state21, con-
ditioned on the measurement outcome σz= ±1. However, in ion trap
experiments, this measurement of the spin state typically takes
hundreds of microseconds to accumulate sufficient photon counts,
during which the decoherence of the phonon state may not be
ignored. This suggests that we shall incorporate the spin states into
the tomography of the phonon states. Rather than resetting the spin
state to |↓〉, we remove its off-diagonal term by applying random σz

operations but keep the population in the |↑〉 and |↓〉 basis (see
Methods). Then we follow the standard procedure of phonon
quantum state tomography by applying displacements in different
directions and blue/red-sideband driving21,31. Through maximum-
likelihood estimation (MLE)32, we can reconstruct the joint
spin–phonon density matrix in the diagonal spin basis, that is, ρ↑↑
and ρ↓↓. Some typical fitting results for various displacement direc-
tions and blue/red sidebands are presented in Fig. 4a–d. Similarly, by
first rotating the σy basis to the σz basis, we can reconstruct the partial
information required to evaluate 〈σy ⊗ B〉, as shown in Fig. 4e–h.
Combining the two results, we get Q−= 0.501 ± 0.016 and
Q+=−0.512 ± 0.020 after correcting a phase in the phonon state
due to the slow drift of the trap frequency (see Methods and Sup-
plementary Note 2). The measured supercharges are significantly
away from zero, which suggests that the ground states are super-
position of bosonic and fermionic states rather than an SUSY-
invariant vacuum. Note that here the error bars only account for the
statistical errors of MLE in finding the best-fitted density matrices for
the prepared states (see Methods), while imperfect state preparation
and measurement can still result in a systematic deviation from the
ideal values of ±0.707. For example, a slow fluctuation in the trap
frequency of 2π× 0.5 kHz during the joint tomography, which takes
tens of minutes, can already reduce the supercharges to about ±0.5
(see Methods). Also note that, while here we are only interested in the
σz and σy parts of the spin for measuring supercharges, our method
can be extended to include the σx part as well. Combining these
results altogether one will be able to perform full quantum state
tomography of the joint spin–phonon system.

To sum up, we have demonstrated the quantum simulation of
an SUSY QM model using a single trapped ion. By measuring the
energy spectrum of the QRM along a carefully chosen path, we
illustrate the characteristic properties in the degeneracy of the
energy levels, whether the SUSY spontaneously breaks or not. We
adiabatically prepare the degenerate ground states at the spon-
taneous SUSY breaking point and explicitly measure the expec-
tation value of the energy and the supercharge, from which the
spontaneous SUSY breaking can be verified experimentally.
Recently, quantum simulation using up to 16 ions and 16 phonon

P(
)

a

t ( )

j=0 j=3 j=6 j=9

j=1 j=4 j=7 j=10

b c d

e f g h

Fig. 4 Measuring ground state supercharges. We reconstruct the phonon density matrix with the spin projected to σz= ±1 or σy= ±1 by maximum-
likelihood estimation. a–d The measured spin dynamics under blue-sideband (blue dots) and red-sideband (red dots) driving and those predicted by the
best-fitted density matrix (blue and red curves) for |ψ−〉 after four typical phonon displacements with σz projected to ±1. Each data point is the average of
400 experimental shots, half of which have a σz gate before the measurement sequence to remove the off-diagonal spin terms. e–h Similar plots for |ψ−〉
after four typical phonon displacements with σy projected to ±1. Here, we choose ω= 2π × 10 kHz and gm= 2π × 5.43 kHz. The displacement operators
D(βj) are characterized by βj ¼ iβe2πij=N where β= 0.687, N= 12 and j= 0, 1, …, N− 1. The complete data for all the displacements and both |ψ−〉 and |ψ+〉
are presented in Supplementary Note 2. From the fitted density matrices, we get 〈σz ⊗ A〉= 0.201 ± 0.013 and 〈σy ⊗ B〉= 0.300 ± 0.009 for |ψ−〉 and 〈σz ⊗
A〉=−0.163 ± 0.017 and 〈σy ⊗ B〉=−0.349 ± 0.011 for |ψ+〉 where error bars are estimated by Monte Carlo sampling (see Methods).
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modes has been demonstrated33, which should allow the
demonstration of some lattice quantum field theory models using
spin-boson-coupled systems, similar to ref. 29 for spin models. To
follow this direction to further explore the SUSY theory, suitable
SUSY lattice models need to be designed to fit into the ion trap
setup, and suitable observables should be chosen to characterize
its properties: while the joint quantum state tomography scheme
we develop here can directly be generalized to the multi-ion case
to reconstruct the joint state of any particular collective phonon
mode with any particular spin, and provide some useful infor-
mation, in general the full tomography of all the spins and all the
phonon modes will be exponentially more challenging. Never-
theless, as we show in this experiment, partial information about
the system may suffice to demonstrate the spontaneous SUSY
breaking or other properties of concern. Our work showcases the
suitability of ion trap as an economic but powerful platform for
simulating diverse physics through its unparalleled controllability.

Methods
Experimental setup. Our experimental setup is a single 171Yb+ ion in a linear Paul
trap. The spin state is encoded in the j#i ¼ j2S1=2; F ¼ 0;mF ¼ 0i and the j"i ¼
j2S1=2; F ¼ 1;mF ¼ 0i levels of the ion with atomic transition frequency around
ωq= 2π × 12.643 GHz, and we exploit a radial oscillation mode with secular fre-
quency around ωx= 2π × 2.35 MHz.

We use counter-propagating 355 nm pulsed laser beams with a specially
designed repetition rate around 2π × 118.415 MHz and a bandwidth of about
200 GHz to manipulate the ion through Raman transition. Two acousto-optic
modulators (AOMs) are used to fine-tune the frequency, the phase and the
amplitude of the laser beams.

Before each experiment, we initialize the phonon state to |0〉 through sideband
cooling using 355 nm laser. Then we initialize the spin state by optical pumping of
369 nm laser with a 935 nm laser to repump the population leaked to the 2D3/2

levels. More details about our setup can be found in our previous work27.

Simulating quantum Rabi model. We follow the scheme of refs. 27,30 to simulate
the QRM for an ion with qubit frequency ωq in a harmonic trap with trap fre-
quency ωx. By applying bichromatic Raman laser beams along the x direction, we
get red (blue) sideband Hamiltonian HrðbÞ ¼ ΩrðbÞσxcosðkrðbÞx � ωrðbÞt þ ϕrðbÞÞ with
small detuning δr= ωq− ωx− ωr (δb= ωq+ ωx− ωb) to the red (blue) sideband,
respectively. By setting δr= ωs− ω, δb= ωs+ ω and Ωr=Ωb= 2g/η where η ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2mωx

p
is the Lamb-Dicke parameter, we get the QRM Hamiltonian of Eq. (1)

in the interaction picture of H0= (ωq− ωs)σz/2+ (ωx− ω)a† a.

Measuring excitation spectrum. After preparing the ground state of the system
(see below), we apply a weak probe Hp ¼ Ωpσxcosωpt with Ωp= 2π × 0.17 kHz
(much smaller than the typical energy scale ω and gm of the system) and a duration
τ= 1000 μs to measure the excitation spectrum of the system30, whose peaks give
the energy gaps to the excited states. Note that the QRM Hamiltonian is realized in
an interaction picture as mentioned above, in which the effective probe frequency
is ωp− ωq+ ωs. This is what we plot as the horizontal axes in Fig. 2c, d.

Adiabatic evolution. In principle, we can use arbitrary adiabatic passages to prepare
the ground states so long as the adiabatic condition is satisfied. However, the change
in the AC Stark shift must be taken into account when we tune the laser frequency or
intensity, which may accumulate into a non-negligible phase during the slow quench.

To prepare the ground state of Eq. (2), we first set ωs= (1− r)ω and g= rgm at
the desired values, and choose the phonon frequency to be 10ω, which is
significantly larger than the coupling g. We initialize the system to be |↓〉|0〉, which
is close to the ground state in this case. Here, if we apply a weak probe to measure
the excitation spectrum as mentioned above, since the spin–phonon coupling can
be neglected, the resonant signal is expected to locate at ωp= ωq, that is, the carrier
frequency. This allows us to calibrate the AC Stark shift under the coupling
strength we use. Now we can adiabatically turn down the phonon frequency
following an exponential function30 (9e−t/T+ 1)ω with T= 40 μs and an overall
quench time of 400 μs. From numerical simulation, the non-adiabatic excitation
can be below 1% for r ranging from 0 to 0.9.

As for the degenerate ground states used for measuring the average energy and
the supercharge, we observe that in the case of r= 1, the driving on the blue and
the red sidebands are balanced. Our 355 nm pulsed laser has a specially designed
repetition rate such that in this situation the AC Stark shift from these two
sidebands largely cancel each other33. For coupling as large as 2π × 10 kHz, the
measured AC Stark shift is still below 100 Hz. Therefore, here we simply perform a
linear quench in the coupling g as g(t)= gm t/τ with τ= 200 μs. From numerical

simulation we see that the error due to the violation of the adiabatic condition is far
below 0.1% and is negligible in our experiment.

Measuring expectation value of Hamiltonian. The Hamiltonian at the sponta-
neous SUSY breaking point r= 1 contains a phonon term ωa† a and a
spin–phonon coupling term gmσxðaþ ayÞ. The phonon term can be measured by
fitting the phonon number distribution through the spin dynamics under a blue-
sideband driving21. Details can be found in our previous work27.

To measure the spin–phonon coupling term, we observe that σzðtÞ ¼
UyðtÞσzUðtÞ ¼ cos½Ωptðaþ ayÞ�σz þ sin½Ωptðaþ ayÞ�σx has a linear term in t as

Ωptσxðaþ ayÞ, where UðtÞ ¼ eiðΩpt=2Þσy ðaþayÞ is the evolution under a spin-
dependent force. Therefore, we measure hσzðtÞi under the spin-dependent force
and fit its slope at t= 0 to get hσxðaþ ayÞi. This can in principle be obtained by
measuring only the initial part of the evolution, which, however, would require
high measurement accuracy. Here, we observe that for the ideal ground states

jψ ± i ¼ ðjþij � βi± j�ijβiÞ= ffiffiffi
2

p
(β ¼ gm=ω), we have hσzðtÞi ¼ e�Ω2

pt
2=2ð±e�2β2 �

sin2βΩptÞ using the fact that displacement operator DðγÞ ¼ e�jγj2=2eγa
y
e�γ�a and

thus hαjDðγÞjβi ¼ exp½�ðjαj2 þ jβj2 þ jγj2Þ=2þ γα� � γ�βþ α�β�. Considering
experimental imperfections, we fit the measured spin-up state population as

P"ðtÞ ¼ Aþ Be�Ω2
p t

2=2ð±e�2β2 � sin2βΩptÞ with two fitting parameters A and B, as
shown in Fig. 3c. After fitting these two parameters, we can compute the slope at
t= 0 and evaluate the spin–phonon coupling term using Ωp= 2π × 8.1 kHz.

Partial spin–phonon state tomography. Rather than first projecting the spin state
to σz= ±1 and then perform the quantum state tomography for the phonon state
conditionally, here we reconstruct the the desired ρ↑↑ and ρ↓↓ altogether. Different
from the standard procedure for phonon state tomography where the spin state
needs to be discarded21, here we only remove the off-diagonal terms of the spin
state by inserting a σz gate on half of the measurements. Then we follow the steps of
the phonon state tomography by applying phonon displacements in various
directions and measure the evolution of spin population under a driving on the
blue or red sidebands21. Theoretically, after removing the spin coherence between
|↑〉 and |↓〉, the spin-up state population for any quantum state under the blue or
red-sideband driving can be given by

Pb;"ðtÞ ¼
1
2

1þ ∑
Ncut

n¼0
ðP""

nþ1 � P##
n Þcos�Ωn;nþ1t

�
e�γnt

	 


þ 1
2
P""
0 ;

ð4Þ

and

Pr;"ðtÞ ¼
1
2

1þ ∑
Ncut

n¼0
ðP""

n � P##
nþ1ÞcosðΩn;nþ1tÞe�γnt

	 


� 1
2
P##
0 :

ð5Þ

In principle, by fitting these curves, one can get complete information about P""
n

and P##
n , the diagonal elements in the spin–phonon joint density matrix. Then by

applying different phonon displacements, the desired density matrices ρ↑↑ and ρ↓↓
can be obtained21.

In practice, this procedure of first extracting the coefficients P""
n and P##

n and
then solving the original density matrix can be sensitive to noise in the
measurement, and the obtained matrix may not satisfy the physical constraints
such as being positive semidefinite with a trace of one. Therefore, here we use
maximum-likelihood estimation32 to find the most probable density matrix that
can generate all the measured blue-/red-sideband evolutions. We use the
Hamiltonian Hb ¼ ðΩb=2Þσþðay þ βÞ þ σ�ðaþ β�Þ and Hr ¼ ðΩr=2Þσ�ðay þ
βÞ þ σþðaþ β�Þ to drive the blue or red sidebands along with a phonon
displacement β at the same time31. We use N= 12 displacements D(βj) with
βj ¼ iβe2πij=N , β= 0.687 and j ¼ 0; 1; � � � ; N � 1, and we set a phonon cutoff of
ncut= 7 for the reconstructed density matrices with only 10−9 population outside
the truncated Hilbert space for the ideal states.

The projection to σy= ±1 can be obtained in a similar way by first rotating the
σy basis to the σz basis. The complete data and fitting results are presented as
Supplementary Figs. 1–4 in Supplementary Note 2.

Calibrate phonon state rotation error due to trap frequency drift. In Supple-
mentary Fig. 5 of Supplementary Note 2, we present the fidelity between the recon-
structed density matrices and the ideal ones (with the off-diagonal spin terms discarded
as described in the main text), versus a rotation angle θ applied on the phonon state
RðθÞ ¼ eiθa

ya . As we can see, while |ψ−〉 has the highest fidelity near θ= 0, the best
result for |ψ+〉 is achieved at a finite rotation angle of about θ= 1.74π (or θ=−0.26π).
This may come from the slow drift in the trap frequency of our setup between the
measurements of |ψ−〉 and |ψ+〉, which in turn would result in a drift in the rotating
speed of the interaction picture and thus cause an effective rotation in the phonon state.
As we present in Supplementary Fig. 6 of Supplementary Note 2, the supercharges will
also be changing under the phonon rotation. The maximizer of the supercharge (strictly
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speaking, its magnitude) is close to that of the fidelity, but a small discrepancy exists.
Here we use the θ for the highest average state fidelity to calibrate the phonon rotation
in |ψ+〉, with no such corrections in |ψ−〉 since it is measured earlier and the drift in
parameters can be smaller. After this correction, the measured supercharges in the main
text can be obtained. Also note that once the optimal θ for |ψ+〉 is determined, it is fixed
in the data processing. That is, we keep using the same θ when estimating the error
using Monte Carlo sampling as shown in the next section, rather than optimizing a θ
for each simulated result.

Error estimation for maximum-likelihood method. We use Monte Carlo sam-
pling to estimate the error in the reconstructed density matrix obtained from
maximum-likelihood estimation and that in the computed supercharge. These
measurement outcomes are computed from the raw experimental data whether the
spin is in |↑〉 or |↓〉 for each displacement and the red/blue-sideband driving at
each time point, which is repeated for 400 times (200 times with σz operations and
200 times without to remove the spin coherence). Note that for each data point, the
number of spin-up events follows a binomial distribution whose parameter p can
be estimated using the measured frequency P↑. Therefore, we can generate new sets
of measurement outcomes following these binomial distributions, and then use
them to find the most likely density matrix and the corresponding supercharges.
We repeat this procedure for 100 times and use the standard deviation of the
simulated results to estimate the error of the measurement outcomes.

Estimation of preparation and measurement errors for ground state super-
charges. The error bars for the measured supercharges using Monte Carlo sam-
pling only consider the uncertainty from finding the best fit for the experimentally
prepared ground states. If the state preparation and measurement by themselves
are imperfect, clearly there will be a deviation from the ideal values of ± 1=

ffiffiffi
2

p
. For

the adiabatic state preparation, we can numerically integrate the master equation34

for the linear quench, using a Lindblad term L½ρ� ¼ 1=τdð2ayaρaya� ayaayaρ�
ρayaayaÞ describing the motional dephasing with an empirical coherence time of
about τd= 1.2 ms. The supercharges will reduce to ±0.66 due to this error.

A more severe error source is the slow fluctuation of the trap frequency during
the joint spin–phonon state tomography. If such a fluctuation Δωx occurs when
measuring the blue/red-sideband dynamics for the N= 12 displacement directions,
effectively the phonon state will experience a random rotation of Δωx τ where
τ= 200 μs is the adiabatic evolution time. Such a random rotation among different
displacement directions for the same ground state |ψ−〉 or |ψ+〉 cannot be corrected
by a constant rotation angle θ as done in the previous sections for a fixed drift
between the measurements of |ψ−〉 and |ψ+〉. To estimate its effect, we purposely
apply a rotation Δωx τ to the ideal ground state and calculate the supercharges. It
turns out that a fluctuation of 2π × 0.5 kHz already reduces the supercharges to
about ±0.52. In principle, such a slow fluctuation can be suppressed if we calibrate
the trap frequency before measuring each data point, which however is too time-
consuming for this experiment.

Data availability
All the data generated and analyzed in this study have been deposited in the Tsinghua
cloud database without accession code (https://cloud.tsinghua.edu.cn/f/
d9d76ad4c3364b81a9a8/?dl=1). Contact the corresponding author with any further
questions.

Code availability
The code that support the findings of this study is available from the corresponding
authors upon reasonable request.
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