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Association between resting-state functional brain
connectivity and gene expression is altered in
autism spectrum disorder
Stefano Berto 1,9, Alex H. Treacher 2,9, Emre Caglayan 1,9, Danni Luo2, Jillian R. Haney3,4,5,

Michael J. Gandal 3,4,5,6, Daniel H. Geschwind 3,4,5,6, Albert A. Montillo 2,7,8✉ & Genevieve Konopka 1✉

Gene expression covaries with brain activity as measured by resting state functional mag-

netic resonance imaging (MRI). However, it is unclear how genomic differences driven by

disease state can affect this relationship. Here, we integrate from the ABIDE I and II ima-

ging cohorts with datasets of gene expression in brains of neurotypical individuals and

individuals with autism spectrum disorder (ASD) with regionally matched brain activity

measurements from fMRI datasets. We identify genes linked with brain activity whose

association is disrupted in ASD. We identified a subset of genes that showed a differential

developmental trajectory in individuals with ASD compared with controls. These genes are

enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-

inhibition imbalance in ASD. We further assessed differences at the regional level showing

that the primary visual cortex is the most affected region in ASD. Our results link disrupted

brain expression patterns of individuals with ASD to brain activity and show developmental,

cell type, and regional enrichment of activity linked genes.
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Brain architecture and activity are governed by gene reg-
ulatory mechanisms that can be captured using tran-
scriptomic measures1–3. How these mechanisms are

impacted in neuropsychiatric disorders such as autism spectrum
disorder (ASD) remain incompletely understood. Recent advan-
ces in human brain imaging genomics have the translational
potential to address the challenge of detecting genes associated
with either structural or functional measurements4–6. For
instance, several studies have highlighted the influence of genetic
variants on brain imaging phenotypes, identifying common loci
that affect brain morphology, structure, and connectivity7–11.
However, despite this considerable progress in understanding the
genetic influence on human brain phenotypes, the gene reg-
ulatory mechanisms supporting such functional measurements
remain mostly unknown. Identification of such gene expression
patterns that underlie functional measures of human brain
activity is particularly compelling as such insights will provide
opportunities for future modulation of normal or pathological
behaviors.

To date, several studies using resting-state functional MRI (rs-
fMRI) measurements across cortical regions have identified gene
expression patterns that support functional signals in human
brain12–15. Such studies were a pioneering first step to determine
reliable sets of genes that correlate with functional brain network
measurements. These studies also established methodologies that
can also be applied to study the association between gene
expression and functional measurements in neuropsychiatric
disorders. For example, genomic perturbations associated with
differences in brain activity in a neuropsychiatric disorder such as
ASD can now be examined. Individuals with ASD have altera-
tions in both brain activity16–18, and gene expression patterns
(including at the cell-type level)19–22; thus, integrating datasets of
brain imaging phenotypes, transcriptional landscapes, and cell-
type expression patterns should provide insight into ASD
pathophysiology. Moreover, because several ASD-relevant genes
are chromatin modifiers or involved in neuronal activity23–26, we
hypothesized that brain gene expression patterns that typically
support functional brain activity in healthy individuals might be
severely affected in ASD. Therefore, coupling measurements of
brain gene expression and activity has the potential to identify
genes whose expression underlies functional networks observed
in rs-fMRI and how such relationships are altered in ASD.

Here, we apply an approach to understand the gene expression
signals that may underlie human brain activity (as assessed by rs-
fMRI) relevant to ASD. In contrast with previous studies that
used a reference dataset from a small number of “control” brain
donors27–29 or blood30, we use post-mortem brain gene expres-
sion datasets from a greater number of individuals who are
characterized as either neurotypical or who were diagnosed with
ASD. Because of the rarity of post-mortem tissue available from
ASD brain donors, our study is restricted to a subset of cortical
regions. Nonetheless, we identify genes with expression patterns
in brains from individuals with ASD that are differentially cor-
related with rs-fMRI activity. We also identify a small number of
cortical regions that display the greatest impact of gene expres-
sion on brain activity (e.g., primary visual cortex and inferior
temporal cortex). Our analyses consider the developmental
expression pattern of the genes we identify related to ASD status.
We find that many of these genes have altered expression patterns
over postnatal development into adulthood suggesting that these
particular genes are indeed relevant for brain activity respon-
siveness. Together, our results provide key insights into both
specific genes and cortical regions that are at risk in ASD. The
coupling of two diverse measurements (transcriptome and rs-
fMRI) facilitates the prioritization of specific ASD mechanisms
that might be missed by using only one type of dataset.

Results
Integration of resting-state functional MRI and gene expres-
sion measures in individuals with ASD and controls. To
identify differentially correlated genes, we determined the spatial
similarity between rs-fMRI and gene expression changes in the
human brain of subjects with ASD compared to controls across
11 matched cortical regions. We used rs-fMRI data from an
imaging database containing individuals with ASD and matched
controls (ABIDE I31 and ABIDE II32) and cortical RNA-
sequencing (RNA-seq) datasets from persons with ASD and
matched controls across development into adulthood33 (Fig. 1).
We computed two extensively validated measures of brain acti-
vation to characterize brain function from rs-fMRI. The first
brain measure, fractional Amplitude of Low-Frequency Fluctua-
tions (fALFF)34, quantifies a subset of brain activity within the
low frequency band that form a fundamental feature of the
resting brain, and that activity is vitally important whether at rest
(daydreaming, musing) or attending to a specific task. The second
brain measure, Regional Homogeneity (ReHo)35, is a com-
plementary measure of the similarity in the temporal activation
pattern manifested by clusters of voxels rather than single voxels
as in fALFF. This measure of local functional connectivity is itself
a close derivative of the underlying brain activity35. We generated
voxel-wise maps of fALFF and ReHo for a total of 1983 subjects
from the ABIDE I and ABIDE II datasets (ASD= 916, CTL=
1067; Supplementary Fig. 1 and Supplementary Data 1), and
analyzed a total of 11 regions of interest (ROIs) matching the
transcriptomic data using Brodmann area (BA) designations:
BA1/2/3/5 (somatosensory cortex), BA4/6 (premotor and pri-
mary motor cortex), BA7 (superior parietal gyrus), BA9 (dorso-
lateral prefrontal cortex), BA17 (primary visual cortex), BA20/37
(inferior temporal cortex), BA24 (dorsal anterior cingulate cor-
tex), BA38 (temporal pole), BA39/40 (inferior parietal cortex),
BA41/42/22 (superior temporal gyrus), BA44/45 (inferior frontal
gyrus).

We first assessed differences between cases and controls for both
fALFF and ReHo (Fig. 2a). We identified 4 ROIs with a significant
difference for fALFF and 1 ROI for ReHo (Wilcoxon Rank Sum Test,
p < 0.05; Supplementary Fig. 2a). BA20/37 was commonly different
using either measurement. Even though effect sizes were small
between cases and controls for all the ROIs analyzed (Cohen’s d;
d < 0.3) in agreement with other reports36,37, we observed consistency
between fALFF and ReHo (Spearman Rank Correlation, rho= 0.46;
Fig. 2b). These data reflect subtle, yet replicable functional activity
measurements linked to ASD calculated by two rs-fMRI measure-
ments. However, because the differences between cases and controls
using rs-fMRI were minimal with a small to null contribution to the
analysis, we assessed the rs-fMRI—gene expression relationship using
the control subject ReHo and fALFF values. We first assessed the
complementarity of these two rs-fMRI measurements in controls.
There was a significant correlation between fALFF and ReHo values
across individuals in each singular ROI analyzed (Spearman’s
rho= 0.58, p < 2.2 × 10−16; Supplementary Fig. 3a, b). These data
further confirmed the complementarity of these two distinct
measurements of rs-fMRI values. To understand ASD pathophysiol-
ogy in the context of brain activity and gene expression, we spatially
matched RNA-seq data33 from 11 cortical areas for a total of 360
tissue samples from cases (ASD) and 302 control samples (CTL)
(Supplementary Fig. 4a). The variance explained by technical and
biological covariates was accounted for and removed before further
analyses (see “Methods” and Supplementary Fig. 4b).

Identification of genes differentially correlated with rs-fMRI
between ASD and controls. We sought to identify genes with
correlated expression to imaging measurements across regional
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rs-fMRI values. To do this, we used Spearman’s rank correlation
between mean regional values of fALFF or ReHo and regional
gene expression. To take advantage of the entire ABIDE dataset,
we randomly sampled from the ABIDE dataset 200 times, and
correlated each sample with the genomic data (see “Methods”).
We defined genes correlated with ReHo and/or fALFF in both
controls and ASD (Supplementary Fig. 5a and Supplementary
Data 2). Using a Fisher r-to-z transformation, we assessed the
significance of the difference between ASD and CTL correlations
in both fALFF or ReHo values. We next used a Fisher’s method to
combine the resultant p-values defining 415 differentially corre-
lated genes (DC genes; Diff Cor P < 0.01, CTL FDR < 0.05; Fig. 3a;
“Methods”). DC genes showed a high proportion of positively
correlated genes with similar correlation coefficients in both
measurements (59.8%; Fig. 3b; Supplementary Fig. 5b). We next
examined the effect sizes and the relationship between fALFF and
ReHo values (Fig. 3c; Supplementary Fig. 5c). For a P < 0.01, DC
genes showed an effect size larger than 1.8, resulting in ~3% of the

gene expressed in our data (Fig. 3c). Among the genes with
highest effect size, we found FILIP1, which encodes a filamin A
binding protein important for cortical neuron migration and
dendrite morphology38–40, and GABRQ, a gene encoding a
GABA receptor subunit highly expressed in von Economo
neurons41,42. In addition, the effect sizes of the DC genes calcu-
lated with fALFF and ReHo strongly correlate (Spearman Rank
Correlation, rho= 0.54, p < 2.2 × 10−16; Supplementary Fig. 5c),
further confirming the reproducibility of the DC genes in two
different rs-fMRI measurements.

Next, we compared the genes we identified with genes linked
with rs-fMRI values from independent studies14,15. Because these
earlier studies analyzed only healthy individuals, we first
compared the genes correlated only in CTL with the ones
previously reported. We found that previously fMRI-correlated
genes were significantly enriched in CTL genes, revealing
reproducibility of fMRI-correlated genes despite variation in
cortical regions and type of fMRI measurements (Wang et al.:
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Fig. 2 Imaging differences between ASD and CTL. a Differences between ASD and CTL calculated by Cohen’s d (effect sizes) derived from ASD–CTL
comparison for both rs-fMRI measurements across the ROIs analyzed. b Scatter plot depicting the spatial correlation between Cohen’s d values of fALFF
and ReHo. Each dot corresponds to the ROI analyzed.
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odds ratio (OR)= 17.3, FDR= 2.5 × 10−15, Richiardi et al.:
OR= 3.2, FDR= 1.5 × 10−10; Fig. 3d, Supplementary Fig. 5d).
Among them, 6 genes overlapped in all previous studies, and 2
out of the 6 genes were also among the DC genes between ASD-
CTL (PVALB and SCN1B; Fig. 3d–f). These two genes are
particularly compelling as SCN1B, which encodes a beta-1
subunit of voltage-gated sodium channel, is a highly expressed
gene in fast-spiking parvalbumin (PVALB+) cortical interneur-
ons, which play a key role in neuronal networks, and whose
oscillations are linked with ASD43–46. Because PVALB gene
expression has a rostrocaudal axis gradient47, we next evaluated
the spatial distribution of both candidates’ gene expression in the
ROIs. We found that both PC1 (principal component 1), as well
as SCN1B and PVALB, displayed differences in the rostrocaudal
axis (PVALB ~ PC1, rho= 0.41; SCN1B ~ PC1, rho= 0.37), with
higher expression in caudal cortical regions (Fig. 3g). These genes
were similarly correlated with rs-fMRI measurements, (PVALB ~
fALFF, rho= 0.32; SCN1B ~ fALFF, rho= 0.33; PVALB ~ ReHo,
rho= 0.38; SCN1B ~ ReHo, rho= 0.42), but these correlations are
affected by ASD status (Fig. 3f). Overall, these results identify
many brain activity-related genes and imply that some of the high
confidence genes such as PVALB and SCN1B support brain
activity affected in ASD.

Differentially correlated genes have specific developmental
trajectories. Although we identified DC genes across all samples

with a median age of 22 years old, we asked how DC genes
compare between CTL and ASD across development given that
autism is a neurodevelopmental disorder. We leveraged the
transcriptomic dataset from this study to detect whether DC
genes follow a specific developmental trajectory in individuals
with ASD compared with CTL subjects (see “Methods”). We
identified three main clusters of DC genes: one highly expressed
in adults (Adult), one highly expressed in early development
(EarlyDev), and one with relatively stable trajectory throughout
development (Stable) (Fig. 4a). Interestingly, genes in the Adult
cluster are upregulated until adulthood in neurotypical indivi-
duals but this upregulation is delayed in individuals with ASD. In
contrast, the genes in the Stable and EarlyDev clusters follow a
similar trajectory in both groups (Fig. 4a and Supplementary
Fig. 6a). Because each region differs by sample size, we used a
subsample approach and recalculated the developmental trajec-
tories. We found that differences in sample size between regions
did not affect the overall result (Supplementary Fig. 6b). We
additionally assessed gene expression patterns in BrainSpan
dataset48 generated using healthy brain tissue (0–40 years old)
and found similar trajectory patterns with the Adult cluster dis-
playing immediate upregulation until adulthood similar to CTL
in our dataset (Supplementary Fig. 6c).

Next, we sought to understand the functional properties of the
genes associated with these developmental trajectories. Overall,
we found enrichments for transporter activity, ion channel
activity, and DNA-binding activity which are crucial for proper
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development and have been repeatedly implicated in ASD25,49,50

(Fig. 4b and Supplementary Data 2). However, these enrichments
were not distinct for a single developmental trajectory. In
contrast, enrichment in steroid binding was only present in the
Adult cluster with relatively high significance (Fig. 4b). Steroid
binding was mainly driven by enrichment for estrogen receptor
(ESRRG, ESRRA) and nuclear glucocorticoid receptor (NR3C1,
NR3C2) genes. We find this intriguing given that steroid levels are
altered in autistic individuals even in early development51,52 and
the ratio of sexes was very similar in our dataset (CTL female
ratio: ~0.18, ASD female ratio: ~0.18). Thus, our results indicate

that altered steroid biology in ASD is linked to brain activity
changes across cortical regions.

To understand the cell type-specific properties of the rs-fMRI
genes, we performed enrichment for gene expression data derived
from single-cell RNA-seq studies41 (“Methods”). We observed
that the genes in the Adult cluster were highly enriched for
parvalbumin (PVALB) expressing interneurons whereas EarlyDev
genes were enriched for excitatory neurons. No cell-type
enrichment was detected for the genes in the Stable cluster
(Fig. 4c). Because PVALB expression follows an anterior to
posterior regional gradient47, we imputed PVALB+ interneurons
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abundance for each of the region analyzed (see “Methods”). We
conducted a deconvolution analysis using MuSiC53, which allows
the inference of relative cell-type abundance in bulk data. Single-
nuclei RNA-seq from a multi-cortical region data was used to
infer cell-type proportions54. We estimated the relative cell-type
abundance by subjects and brain regions. As expected, the
PVALB+ interneurons fractional abundance was higher in
posterior regions compared with anterior regions (Supplementary
Fig. 6d; Supplementary Data 3). Notably, the relative abundance
of these interneurons was significantly reduced in individuals
with ASD in posterior regions such as BA7 and BA17. These data
indicate that our results are potentially driven by PVALB+
interneurons regional abundance further demonstrating the
important role of these interneurons in ASD pathology. We next
investigated the association of developmental gene clusters with
genomic data from brain disorders including ASD55. The Adult
cluster is enriched for downregulated genes in individuals with
ASD while the EarlyDev cluster is enriched for upregulated genes
in individuals with ASD (Fig. 4d). This result was relatively
specific to ASD as similar gene lists from individuals with
schizophrenia or bipolar disorder showed little to no enrichment
(Fig. 4d). This result was further confirmed using modules of co-
expressed genes dysregulated in such disorders (Supplementary
Fig. 6e). Together, these data extend the emerging picture of
molecular pathways disrupted in ASD corresponding to rs-fMRI
measurements14,15,30,56.

The relationship of rs-fMRI and gene expression is altered at
the brain region level. Due to the limited number of samples per
ROI, we were not able to assess the association between brain
activity and gene expression at a regional level. We overcame this
limitation with a leave-one-region out (LoRo) approach inferring
the contribution of each region in our results (see “Methods”).
Briefly, by leaving one of the 11 regions out at a time, we were able
to test whether the differential correlation was affected by one
region or several specific regions. We calculated the z-score from
the z-to-r Fisher transformation from each analysis and combined
with the Fisher’s method (Supplementary Data 4). We observed a
significant contribution from the primary visual cortex (BA17),
temporal cortex (BA20/37, BA38), parietal cortex (BA39/40), and
motor cortex (BA4/6) (Fig. 5a). We next examined the enrichment
of regional differential expressed genes (DEG; FDR < 0.05, |
log2(FC)| > 0.3; see “Methods”) between ASD-CTL in DC genes.
We explored whether any of the developmental gene clusters were
enriched for specific regional DEG. Interestingly, we found the
highest enrichment of Adult and EarlyDev cluster genes in cortical
areas associated with vision and proprioception (BA17 and BA7)
(Fig. 5b). Taken together, these results support the emergent role
of the visual cortex in ASD pathophysiology57,58.

Discussion
Assessing gene expression in the brain permits a relevant exam-
ination of how biological pathways might be altered in the tissue
of interest and connected to genetic predispositions. Moreover,
functional imaging provides an important window into pheno-
types associated with mental illness. Combining these approaches
can help begin to bridge the gap between genes and behavior.
Indeed, previous work has demonstrated a correspondence
between human brain gene expression and functional con-
nectivity as measured by fMRI14,15,30. However, the studies using
brain gene expression only used neurotypical populations. Local
brain activity measures such as ReHo and fALFF can assess
neuronal connectivity and activity. When restricted to a specific
image acquisition site and age range (e.g., children or adoles-
cents), previous studies using ReHo and fALFF have found

significant differences between CTL and individuals with ASD in
cortical regions but in different brain regions and directions59–63.
However, protocol variability across sites can induce inconsistent
findings in functional connectivity64. A quantitative meta-analysis
indicated that only connectivity between the dorsal posterior
cingulate cortex and the right medial paracentral lobule con-
sistently differs between individuals with ASD and CTL subjects
across sites and ages;65 however, these regions were not available
for tissue sampling in this study. Structural imaging studies have
also indicated the difficulty in finding differences between indi-
viduals with ASD and CTL subjects when no age restriction is
imposed66–68. In contrast to these age and site-restricted reports,
our study includes ages from 5 to 64 years and data from 37 sites
whose differences are retrospectively normalized and such dif-
ferences with previous studies likely underlie our finding of few
significant differences in brain activity between cases and
controls.

We speculated that the expression of genes and their associa-
tion with brain activity may underscore their potential relevance
for any functional brain activity that is disrupted in ASD. In line
with this, our results suggest that genes typically associated with
rs-fMRI lose their association when ASD genomics are included.
These genes are important for brain development, regional dif-
ferences, and excitatory/inhibitory identity. As previously repor-
ted, GABAergic signaling is disrupted across mouse models of
ASD69 and GABA interneurons have a key role for cortical cir-
cuitry and plasticity70–72. Interestingly, genes highly expressed in
the Adult gene cluster that are significantly associated with brain
activity are overrepresented in a subpopulation of inhibitory
interneurons expressing parvalbumin. In contrast, genes highly
expressed in early development are overrepresented in excitatory
neurons. In line with the role of parvalbumin neurons in normal
brain circuitry and oscillations70,73,74, this distinct association
might underscore the excitation-to-inhibition ratio imbalance in
autism. Moreover, the relative abundance explained by the Adult
genes of PVALB+ interneurons is significantly decreased in
individuals with ASD. Because spatial PVALB+ expression cov-
aries with rs-fMRI across regions47, we hypothesized that the
relative increased abundance of these interneurons in the visual
cortices and conversely the reduction shown in individuals with
ASD explains the differential correlation in the specific subset of
Adult genes. Therefore, these results further underscore the
important role of parvalbumin interneurons in autism.

We hypothesize that genes severely dysregulated in autism
such as SCN1B, KCNAB3, FMN1, or VAMP1 might additionally
contribute to the excitation-to-inhibition ratio affecting normal
network function and circuitry. Moreover, previous studies have
shown that inhibitory neurons control visual response precision
with increased activity leading to a sharpening of feature selec-
tivity in mouse primary visual cortex58. Additionally, multiple
lines of evidence have indicated that individuals with ASD show
slower switching between images in binocular rivalry57,75–77.
Here, we provide evidence that regional brain expression influ-
ences the association between rs-fMRI values and gene expres-
sion, with the visual cortex as the major contributor to the
variance explaining the rs-fMRI—gene association. Therefore,
these results contribute to a consistent emerging role of the visual
cortex in ASD pathology. However, because subjects who
underwent fMRI measurements might not have had uniform
instructions (or resultant behavioral compliance) to keep their
eyes open or closed, it is possible that the visual cortex data could
be influenced by such behavior.

Finally, any functional interpretation of the genes identified
should be made with caution. Here, we assessed the relationship
between gene expression and rs-fMRI across cortical areas based
on correlation, which is not necessarily evidence of causation.
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Moreover, functional imaging analysis of the ROIs used does not
show large differences between neurotypical and individuals with
autism. The primary limiting factor in spatial resolution and
brain coverage is driven by the restricted tissue sampling/avail-
ability from postmortem disease cohorts. Larger sample sizes may
in the future allow for a more detailed investigation of these genes
at the regional level increasing both specificity and sensitivity.
Additionally, candidate genes should be further analyzed in vivo
using model systems to provide a basic understanding of their
effects on brain activity. In conclusion, we have established that
autism pathology significantly impacts the relationship between
gene expression and functional brain activity. Our results
uncovered genes that are important for excitation-to-inhibition
ratio balance and visual cortex function. These results provide
molecular mechanisms for future studies relevant to under-
standing brain activity in individuals with autism.

Methods
All research in this manuscript complies with all relevant ethical regulations. This
study was approved by the UT Southwestern Medical Center Institutional
Review Board.

fALFF and ReHo. To provide image-derived phenotypes (IDPs) for each subject in
the ABIDE cohort, regional measures of brain function were computed including
the fractional amplitude of low-frequency fluctuation (fALFF; https://fcp-indi.
github.io/docs/latest/user/alff.html?highlight=falff) and regional homogeneity
(ReHo; https://fcp-indi.github.io/docs/latest/user/reho). Supplementary Fig. 1
illustrates the main processing steps of the image analysis pipeline.

Imaging materials. This study used resting-state fMRI from the 916 ASD and
1067 CTL subjects of both ABIDE I and ABIDE II32,78. Details of the pulse
sequence parameters used in this data acquisition are provided in Supplementary
Data 1. After the removal of subjects with image artifacts, high head movement, or
poor MNI152 coregistration, we analyzed the data from the remaining 710 ASD
(79% male), and 606 CTL (87% male) subjects, whose age ranges from 5 to
64 years.

fMRI preprocessing. All data from each subject were preprocessed consistently—
as described below—and are illustrated in Supplementary Fig. 1. The 3dSkullStrip
method from the brain extraction tool (BET) was applied to remove skull and non-
brain tissue79. The first 5 volumes were censored to allow for MRI scanner dynamic
instability to settle. To correct for head movement, volume realignment was
applied frame by frame, to register each volume to the mean volume with an affine
transformation. Slice timing correction was applied to ensure volume slices align
temporally.

Images were processed with a generalized linear model (GLM) to regress out:
(1) global signal fluctuation, (2) physiological noise represented by white matter
and CSF fluctuation, (3) fluctuation correlated with the 6 original affine head
motion parameters (X/Y/Z/pitch/roll/yaw), (4) their first derivatives, squares, and
squared derivatives, and 5) noise fluctuations captured from five components from
aCompCor80. Scrubbing was applied to remove frames with a Jenkinson framewise
displacement (FWD) > 0.5 mm, and subsequently replaced with an interpolated
frame. ReHo was calculated with scrubbed data; however, ALFF and fALFF were
not calculated with scrubbed data because the framewise removal and alteration
disrupts the temporal structure precluding Fourier transform-based approaches81.

For subjects with multiple fMRI scans, the scan with the lowest head motion,
measured by mean FWD, was selected for analysis. For each resulting subject scan,
a subject was excluded if their scan had excessive head motion. Specifically, scans
meeting at least one of these three requirements were removed: (1) mean
FWD > 0.30 mm, (2) greater than 50% of frames being scrubbed, or (3) scans with
outlier mean, 1st, 2nd, or 3rd quantile DVARS values. DVARS was defined as the
root mean square of the temporal change of the fMRI voxel-wise signal at each
time point82,83. The package CPAC v1.8.0 was used for fMRI pre-processing
including head motion correction, scrubbing, and nuisance regression.

Calculation of fALFF and ReHo. We computed fALFF and ReHo from the resting-
state fMRI using C-PAC (v1.8.0)84 in native subject space, resulting in a volumetric
map of fALFF and a map of ReHo for each subject. fALFF34 quantifies the slow
oscillations in brain activity that form a fundamental feature of the resting brain.
ALFF is defined as the total power within the low-frequency range (0.01–0.1 Hz)
and forms an index of the intensity of the low-frequency oscillations. The nor-
malized ALFF known as fALFF is defined as the power within that low-frequency
range normalized by the total power in the entire detectable frequency range.
fALFF characterizes the contribution of specific low-frequency oscillations to the
entire frequency range34. To increase the signal to noise ratio by removing high-
frequency information, we spatially smoothed each derivative map with a Gaussian
kernel. ReHo35 aims to detect complementary brain activity manifest by clusters of
voxels rather than single voxels as in fALFF. ReHo evaluates the similarity of the
activity time courses of a given voxel to those of neighboring voxels using Kendall’s
coefficient of concordance (KCC)85 as the index of time series similarity. This
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measure requires the cluster size as an input to define the size of the neighborhood.
In this study, we used a cluster size of 27 voxels. The 26 neighbors of a voxel, x, are
those within a 3 x 3 x 3 voxel cube centered on voxel x. The similarity of the
activation time courses between each voxel, x, and its 26 nearest neighbors was
calculated using:Wx ¼ ð∑ðRiÞ2 � nð�RÞ2Þ= 1

12K
2ðn3 � nÞ� �

.Wx is the KCC for voxel
x and ranges from 0 to 1, representing no concordance to complete concordance. Ri
is the rank sum of the ith time point. R is the mean value over the Ri’s. K is the
cluster size for the voxel time series (here K= 27). n is the total number of ranks.

Registration. The mean processed fMRI image was nonlinearly registered directly
to an EPI template in MNI152 space using the symmetric normalization (SyN)
non-linear registration method of the ANTs (v2.3.5) package86,87. The resulting
composite transform was then applied to both the fALFF and ReHo maps to
provide derivative maps in normalized MNI152 space. We used EPInorm-based
registration as it better accounts for nonlinear B0 field inhomogeneities at the air to
tissue interfaces88,89. Supplementary Figure 7 illustrates the improvement
EPInorm-based registration has over more the commonly applied T1norm based
registration. In this study, EPInorm registration yielded more accurate spatial
normalization of the brains to the standard atlas space in which regional values are
computed. Regions of improved registration included the sinuses which present
air/tissue interfaces that induce non-linear distortions which are properly handled
through EPInorm co-registration. EPInorm registration also had a substantially
lower standard deviation around the brain periphery across the 1316 subjects
assessed.

Lastly, subjects with poor EPInorm registration88 (discussed below) were
removed. Specifically, mis-registration was identified through a combination of
manual inspection and through the detection of scans with an outlier number of
misaligned brain-masked voxels using the interquartile range (IQR) outlier test90.

Segmentation. In this study, we adapted the Brodmann atlas publicly available
through MRICron (v1.0.9) to form the 11 multi-area regions from which tissue
samples were drawn from matched donor brains. Supplementary Data 1 illustrates
how we combined Brodmann areas to generate 11 regions that correspond with the
RNA sequence data. We used the resulting 11 region atlas to assign a region label
(parcellate) to each voxel in the fALFF and ReHo maps to enable computation of
the mean regional fALFF and ReHo values for all subjects.

Site correction. We accessed publicly available ABIDE data across 30 different
sites. These sites used MRI devices from different manufacturers (Siemens, Philips,
GE) and used different MRI pulse sequences and participant protocols, which can
cause differences in the absolute value of the fMRI acquired and can affect fALFF
and ReHo values (Supplementary Data 1). As the mean fALFF and ReHo varied
between sites, we applied a correction to minimize site differences. To suppress site
differences, the difference between the cohorts mean regional value and each site’s
mean regional value was calculated. This regional difference was then subtracted
from each region value for all subjects belonging to the corresponding site.

Derivative map normalization. To provide better inter-subject comparisons, we
normalized regional fALFF and ReHo values to the weighted mean, weighted by
the number of voxels for each region, over all of the regional values for each
subject. To reduce the impact of confounders, we regressed out age, site, and sex
using a linear model.

RNA-seq processing and analysis. Quality control was performed using FastQC
(v.0.11.9). Reads were aligned to the human hg38 reference genome using STAR91

(v.2.5.2b). Picard tool was implemented to refine the quality control metrics (http://
broadinstitute.github.io/picard/) and to calculate sequencing statistics. Gencode
annotation for hg38 (v.25) was used for reference alignment annotation and
downstream quantification. Gene level expression was calculated using RSEM92.
Dup15q individuals were removed from the initial data33. Technical replicates were
collapsed by the maximum expression value and maximum RNA integrity value. A
total of 302 Control and 360 ASD were used for the final analysis. Supplementary
Figure 8 represents the pairwise comparison of demographics from the RNA-seq
and rsfMRI datasets. Supplementary Data 1 provides details on all the covariates.
Only protein-coding genes were considered. Counts were normalized using counts
per million reads (CPM) with the edgeR (v3.32.0) package in R93. Normalized data
were log2 scaled with an offset of 1. Genes were considered expressed with
log2(CPM+ 1) > 0.5 in at least 80% of the subjects. Normalized data were assessed
for effects from known biological covariates (Sex, Age, Ancestry, and PMI), tech-
nical variables related to sample processing (Batch, BrainBank, RNA Integrity value
(RIN)) and technical variables related to sequencing processing based on PICARD
statistics (https://broadinstitute.github.io/picard/).

We used the following sequencing covariates:
picard_gcbias.AT_DROPOUT, star.deletion_length, picard_rnaseq.PCT_
INTERGENIC_BASES,
picard_insert.MEDIAN_INSERT_SIZE, picard_alignment.PCT_CHIMERA
Spicard_alignment.PCT_PF_READS_ALIGNED, star.multimapped_percent,
picard_rnaseq.MEDIAN_5PRIME_BIAS, star.unmapped_other_percent,

picard_rnaseq.PCT_USABLE_BASES, star.uniquely_mapped_percent.
Residualization was applied using a linear model. All covariates except

Diagnosis, Subjects and Regions were taken into account:
mod <- lm(gene expression ~ Sex+Age+Ancestry+ PMI+ Batch+ BrainBank+

RIN+ seqCovs).
This method allowed us to remove variation explained by biological and

technical covariates.
Adjusted expression was calculated by extracting the residuals per each gene and

adding the mean of the gene expression: adjusted gene expression <− residuals(mod) +
mean(gene expression)

Adjusted CPM values were used for rs-fMRI—gene expression correlation and
resultant visualization.

fMRI-gene expression correlation analysis. We performed Spearman’s rank
correlation between the mean regional values of fALFF and ReHo and the regional
gene expression across the 11 cortical areas analyzed. To define fMRI-gene
expression relationships, we used random subsampling (200 times) of neurotypical
individuals from the ABIDE I and II datasets. We matched the number of subjects
per each cortical area (e.g., 25 ASD subjects for BA17). We performed correlation
across the regions using all 11 areas matching with the gene expression dataset and
averaged Spearman’s rank statistics over the 200 subsamples. P-values from
Spearman’s rank statistics were adjusted by Benjamini–Hochberg FDR. Differential
Correlation analysis was performed comparing the resulting Rho from neurotypical
individuals to individuals with ASD for each gene using the psych (v2.0.12) package
in R. We combined the resultant Differential Correlation p-values and effect sizes
using a Fischer’s combination test in R. Significant results are reported at FDR <
0.05 for neurotypical individuals’ statistics and P-value of combined differential
correlation at p < 0.01.

Leave-one-region out (LoRo) analysis. We performed the same subsampling
approach followed by differential correlation analysis as described above leaving
one region out at the time. This method allowed us to determine the effect of each
region in the resultant z from the differential correlation analysis between healthy
individuals and autistic individuals. Next, we calculated the contribution of each
region based on a principal component analysis using the resultant z-values. We
visualized resultant contributions in a multi-dimensional plot.

Developmental analysis. The identification of gene clusters with different
developmental trajectories was performed on DC genes using all subjects except for
individuals above 60 yr as they were represented only in the ASD group.

We applied residualization as previously described removing the age from the
covariates.

mod <− lm(gene expression ~ Sex+ Ancestry+ PMI+ Batch+ BrainBank+
RIN+ seqCovs).

Then, we scaled gene expression and divided genes into three clusters according
to the scaled expression values of healthy subjects only, using the Kmeans function
from the amap (v0.8) package in R. We plotted the developmental trajectories
using the loess regression and ggplot2 (v3.3.2) package in R. To make loess
regression computationally possible, 8000 data points were randomly sampled.
Repeated samplings yielded very similar patterns. We made no adjustments for
developmental time points and the x-axis directly represents the age of the subjects.
We annotated clusters based on visual inspection of their trajectory. To subsample
diagnosis-region groups (e.g., ASD BA17 samples), we determined the diagnosis-
region group with minimum number of samples and randomly subset other groups
to that number. Then we plotted expression values with loess regression as before.

To assess the significance of trajectories, we compared gene expression between
age brackets of 5 years using t-test (One-tailed. Greater expression for Adult (e.g
Ha: 0–5 < 5–10) and less expression for EarlyDev (Ha: 0–5 > 5–10) with
increasing age).

The BrainSpan dataset48 was downloaded from www.brainspan.org
(normalized matrix: “RNA-Seq Gencode v10 summarized to genes”). Data were
then log2 transformed (log2(data+ 1)). To match with the current study, the
following brain regions were removed: AMY, OFC, Ocx, URL, DTH, CB, CBC,
MD, STR, and HIP. For each gene, the expression values were z-transformed across
samples. To understand expression pattern across ages, samples were divided into
age groups per 5 years. Only postnatal samples were kept to match with the
current study.

Allen single nuclei RNA-seq analysis. Multi-Region snRNA-seq41 (MTG, V1C,
M1C, CgGr, S1C, A1C) was from the Allen Brain Map portal (https://portal.brain-
map.org/atlases-and-data/rnaseq). Briefly, data was analyzed using Seurat94

(v3.9.9). Data was subsetted by removing nuclei with >10,000 UMI and >5% of
mitochondrial gene expressed. Published cell-type annotations included in the
metadata were used for downstream analyses. We identified cell-type markers
using FindMarkers function based on Wilcoxon-rank sum test statistics. Markers
were defined by Percentage of Cells expressing the gene in the cluster >0.5,
FDR < 0.05 and |log2(FC)| > 0.3.
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Functional enrichment. We performed the functional annotation of differentially
expressed and co-expressed genes using ToppGene95. We used the GO and KEGG
databases. Pathways containing between 5 and 2000 genes were retained. We
applied a Benjamini–Hochberg FDR (P < 0.05) as a multiple comparisons adjust-
ment. Brain expressed genes (Brainspan, N= 15585) were used as background.

Gene set enrichment. We performed gene set enrichment for neuropsychiatric
DGE55, neuropsychiatric modules55, and cell-type markers41 using a Fisher’s exact
test in R with the following parameters: alternative = “greater”, conf.level= 0.95.
We reported odds ratios (OR) and Benjamini–Hochberg adjusted P-value (FDR).
Brain expressed genes (Brainspan, N= 15585) were used as background.

Deconvolution. Deconvolution was performed by MuSiC (v0.1.1)53 in R. This
method leverages transcriptomic signatures of cell-types considering cross-subject
heterogeneity and gene expression stochasticity. Bulk RNA-seq data is deconvo-
luted to obtain proportions of cell-types in each sample. We used single-cell data
that was downloaded from the Allen Brain Map portal (https://portal.brain-map.
org/atlases-and-data/rnaseq). Published cell-type annotations included in the
metadata were used as reference for cell-type abundance inference.

Statistical analysis and reproducibility. No statistical methods were used to pre-
determine sample sizes. Nevertheless, the data here reported is in line with the
sample size of previous studies96,97. Samples were not randomized. ASD subjects
with Chromosome 15q Duplication were excluded from the downstream analysis.
Data collection and analysis were not performed blind to the conditions of the
experiments. Findings were not replicated due to the limitation of the multi-region
ASD transcriptome data. Nevertheless, we used two independent rs-fMRI mea-
surement to refine and increase the confidence of our findings. For fALFF/ReHo rs-
fMRI values and bulk RNA-seq transcriptomic data, distribution was assumed to
be normal but this was not formally tested. Non-parametric tests have been used to
avoid uncertainty when possible. Data collection and analysis were not performed
blind to the conditions of the experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data from ABIDE I and II are available to approved investigators who
register with the NITRC (Neuroimaging Informatics Tools and Resources Clearinghouse)
and 1000 Functional Connectomes Project to gain access. Details and access information
are provided here: http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html and here:
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html.
The source bulk RNA-seq data generated in this manuscript are available via the

PsychENCODE Knowledge Portal (https://psychencode.synapse.org/). The
PsychENCODE Knowledge Portal is a platform for accessing data, analyses, and tools
generated through grants funded by the National Institute of Mental Health (NIMH)
PsychENCODE program. Data is available for general research use according to the
following requirements for data access and data attribution: (https://psychencode.
synapse.org/DataAccess). For access to content described in this manuscript see: https://
doi.org/10.7303/syn4587615.

Code availability
Custom R code and data to support the data correction, correlation analysis, visualizations,
functional, and gene set enrichments are available at https://github.com/konopkalab/
AUTISM_rsFMRI_GeneExpressionCorrelations and https://github.com/DeepLearning
ForPrecisionHealthLab/AUTISM_rsfMRI_ProcessingConnectivityExtractionAndSubject
Matching.
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