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Hippocampal representations switch from errors to
predictions during acquisition of predictive
associations
Fraser Aitken 1,2 & Peter Kok 1✉

We constantly exploit the statistical regularities in our environment to help guide our per-

ception. The hippocampus has been suggested to play a pivotal role in both learning envir-

onmental statistics, as well as exploiting them to generate perceptual predictions. However, it

is unclear how the hippocampus balances encoding new predictive associations with the

retrieval of existing ones. Here, we present the results of two high resolution human fMRI

studies (N= 24 for both experiments) directly investigating this. Participants were exposed

to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity).

Using multivoxel decoding analysis, we find that the hippocampus initially preferentially

represents unexpected shapes (i.e., those that violate the cue regularities), but later switches

to representing the cue-predicted shape regardless of which was actually presented. These

findings demonstrate that the hippocampus is involved both acquiring and exploiting pre-

dictive associations, and is dominated by either errors or predictions depending on whether

learning is ongoing or complete.
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We constantly exploit the statistical regularities in our
environment to help guide our perception1. For
instance, hearing a particular jingle will prime our

sensory systems for the sight (and taste!) of ice cream. But how
does the brain acquire and exploit knowledge about such reg-
ularities in a changing environment?

The hippocampus has been suggested to play a pivotal role in
this process. That is, the hippocampus has been shown to be
involved in learning novel associations between arbitrary
stimuli2–9, especially when stimuli are discontiguous in space and
time10–12, as is the case for many predictive contextual cues. In
fact, learning of such relationships is strongly impaired when the
hippocampus is damaged13–18. At the same time, the hippo-
campus has also been suggested to play a role in exploiting such
predictive associations once learning is complete1,19,20. Specifi-
cally, one of the main computational functions of the hippo-
campus is to retrieve associated items from memory based on
partial information, a process known as pattern completion21–23.
This function has mostly been studied in the context of memory
recall, but is also ideally suited for retrieving perceptual predic-
tions based on contextual cues5,24–28.

This raises the question of how the hippocampus balances the
encoding of new associations with the retrieval of existing
ones29,30. One way to achieve this would be to emphasise pre-
diction errors when an environment is novel, since these can serve
to update one’s internal model of the world31. On the other hand,
once an environment (and its statistical regularities) have become
familiar, prediction errors may be downweighted and predictions
(i.e., retrieval of existing associations) may dominate. That is, once
the statistical regularities of an environment are fully learnt, the
hippocampus becomes more resilient to prediction errors caused
by random fluctuations (i.e., expected uncertainty), since these are
no longer considered model updating (‘newsworthy’) events.
Indeed, many previous studies have reported prediction error
signals (i.e., a response evoked by a mismatch between repre-
sentations retrieved from memory and current sensory inputs) in
the hippocampus32–37, while others have instead revealed pre-
diction signals (i.e., a representation of a predicted stimulus,
regardless of whether it is actually presented)5,26,27,38. Potentially,
this seeming contradiction may arise from the fact that mismatch
signals have mostly been reported in the context of episodic
memory-like paradigms, where individual stimuli are only repe-
ated a few times, whereas studies revealing prediction signals have
generally involved a longer training phase to fully establish pre-
dictive associations before measuring neural signals. That is, when
stimuli or associations are novel, the hippocampus is mainly
driven by sensory signals that provide the opportunity to update
our model of the world, i.e., prediction errors28,39–42. However,
once learning is complete and environmental contingencies are no
longer novel, hippocampal processing is dominated by retrieving
predicted stimuli based on contextual cues to optimally guide
perception1,27,43,44.

In line with this idea, recent work has shown that novel pre-
diction errors can bias the human hippocampus towards
encoding45, increasing sensory processing (i.e., EC to CA1 con-
nectivity) and decreasing mnemonic retrieval (CA3/DG to CA1
connectivity). In addition, behavioural evidence suggests that
expectation violation46 and novelty47 can bias the hippocampus
towards performing pattern separation, proposed to underlie
prediction error computations28. Indeed, in the context of epi-
sodic memory, it has been proposed that the hippocampus
operates in two distinct modes, namely an encoding mode that
prioritises processing of novel sensory signals and promotes
plasticity, and a retrieval mode that prioritises memory retrieval
through pattern completion48,49. The hippocampus is thought to
be biased towards encoding by novelty-induced increases in

neuromodulators such as acetylcholine (ACh) and nor-
epinephrine (NE)50–52 and hippocampal theta phase resets53–55.

However, a proper test of this proposal requires establishing
whether the hippocampus switches from representing errors to
predictions as learning progresses. Here, we present the results of
two high-resolution fMRI studies (N= 24 for both experiments)
directly testing this hypothesis. Participants were exposed to
auditory cues that predicted the identity of an upcoming visual
shape (with 75% validity). To preface our findings, we found that
the hippocampus initially preferentially represented unexpected
shapes, but later switched to representing the cue-predicted shape
regardless of whether it was actually presented. Furthermore, in
this latter phase we observed increased informational connectivity
between the posterior subiculum and early visual cortex (V1), in
line with hippocampal predictions being relayed to the sensory
cortex. These findings demonstrate that hippocampal repre-
sentations switch from being dominated by errors to predictions
as associative learning proceeds.

Results
We present the results of two human fMRI studies (N= 24
participants in both experiments) in which human participants
were exposed to auditory cues that predicted the identity of an
upcoming visual shape (with 75% validity) (Fig. 1a, b). On each
block of trials (n= 32 trials per block in Experiment 1 and
n= 128 in Experiment 2) new auditory cues were presented, such
that novel associations would have to be learnt.

Participants performed a shape discrimination task that was
orthogonal to the predictive cues. Specifically, on each trial, the
first shape (validly predicted, 75% of trials, or invalidly predicted,
25%) was followed by a second shape that was either identical to
the first (50% of trials) or very slightly warped (50%; see
“Methods” for details). Participants’ task was to indicate whether
the two shapes were the same or different. This task was designed
to encourage participants to pay attention to the shapes while
keeping the cue-shape contingencies task-irrelevant. In fact,
participants were not informed that the auditory cues predicted
the identity of the upcoming shape, and debriefing revealed that
they did not become aware of this during the experiments. In
other words, any learning of cue-shape associations was inci-
dental and implicit.

Multivoxel decoding analyses (Supplementary Fig. 1), trained
on data from separate shape-only runs in which no predictive
cues were presented (Fig. 1c, d), were used to reveal hippocampal
shape representations on valid and invalid trials (Fig. 1e). If the
hippocampus were to represent prediction errors, valid trials
should not result in a shape representation, since the predicted
and presented shapes are identical and should cancel each other
out (Fig. 1f, top left). On invalid trials on the other hand, if shape
B is predicted but shape A is presented, unexpected shape A
should be represented in the hippocampus (Fig. 1f, middle left). If
instead, the hippocampus was to represent predictions rather
than errors, on invalid trials where shape B is predicted but shape
A is presented, shape B should be represented in the hippo-
campus (Fig. 1f, middle right). Further, on valid trials, the shape
that is both predicted and presented should be represented
(Fig. 1f, top right).

Both of these types of patterns have been observed in the
hippocampus56, and the aim of the current study was to inves-
tigate how they develop over the course of learning. Note that the
temporal resolution afforded by fMRI did not allow us to
investigate any potential fast within-trial dynamics of these
hypothesised prediction and prediction error signals. Rather, the
shape representations revealed here reflect a temporal integration
of neural signals over the course of a trial. It seems likely that both
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predictions and prediction errors play a role in hippocampal
computations, the question addressed here is whether the relative
weighting of the two is affected by novelty and uncertainty.

The clearest way to dissociate the effects of the predictive cues
from the effects of the presented shapes is to subtract decoding
evidence for the invalidly predicted shapes from evidence for the
validly predicted shapes (Fig. 1e), since the presented shapes were
identical in both types of trials. Under a prediction error
hypothesis, this would result in a negative signal (subtracting a
positive signal on invalid trials from a zero signal on valid trials;
Fig. 1f left column). Under a prediction hypothesis on the
other hand this would result in a positive signal (subtracting a
negative signal on invalid trials from a positive one on valid trials;
Fig. 1f right column). This subtraction, therefore, constitutes our
main effect of interest. In addition, averaging the evidence for
validly and invalidly predicted shapes allowed us to quantify
evidence for the shape as presented on the screen, regardless of
the cues27.

Experiment 1: short blocks. In Experiment 1, participants
completed 16 blocks of 32 trials, with two novel auditory cues
being presented in each block, while the same two visual shapes
were presented throughout. Each auditory cue predicted which of
the two shapes would be presented with 75% validity (Fig. 1b).

Experiment 1—behavioural results. Participants were able to
detect small differences in the shapes, during both the shape-only
runs (67.7 ± 1.7% correct; 29.7 ± 1.8% modulation of the 3.18 Hz
radial frequency component, mean ± SEM) and during the pre-
diction runs (69.0 ± 1.4% correct; 28.7 ± 1.9% modulation).
Accuracy and reaction times (RTs) did not differ significantly
between valid (68.9 ± 1.5% correct; RT= 592 ± 19 ms) and invalid
(69.3 ± 1.6% correct; RT= 595 ± 20 ms; both p > 0.10) trials. Task
accuracy was stable over trials and no difference between valid
and invalid trials emerged over time (Supplementary Fig. 2a).
This is as expected, since the discrimination task was orthogonal
to the prediction manipulation (see “Methods” for details), and in
line with previous results27.

Experiment 1—fMRI decoding results. The dynamics of hip-
pocampal shape representations over trials were investigated using
a sliding window approach (see Methods for details). In the sec-
ond half of the blocks, hippocampal activity patterns started to
reflect unexpected (i.e., invalidly predicted) visual shapes (sig-
nificant cluster from trial 22 to 32, p= 0.024; Fig. 2a, red line).
However, there was no significant representation of validly pre-
dicted shapes (no clusters with p < 0.05; Fig. 2a, green line). In fact,
there was a significant difference between invalidly and validly
predicted shape decoding in the hippocampus (valid–invalid,
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Fig. 1 Experimental paradigm and analysis. a During prediction runs, an auditory cue preceded the presentation of two consecutive shape stimuli. On each
trial, the second shape was either identical to the first or slightly warped with respect to the first along an orthogonal dimension, and participants’ task was
to report whether the two shapes were the same or different. b The auditory cues predicted whether the first shape on a given trial would be shape 2 or
shape 4 (of 5 shapes). The cue was valid on 75% of trials, whereas in the other 25% of (invalid) trials the unpredicted shape was presented. c During
shape-only runs, no auditory cues were presented. As in the prediction runs, two shapes were presented on each trial, and participants’ task was to report
the same or different. d All five shapes appeared with equal (20%) likelihood during shape-only runs. e Subtracting the response evoked by invalidly from
validly predicted shapes isolated the effect of the predictive cues. f Hypothesised shape decoding results if the hippocampus represents either prediction
errors (left column) or predictions (right column).
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Fig. 2 Experiment 1 shape decoding over trials. a Decoding evidence for validly (green) and invalidly (red) predicted shapes in the hippocampus.
b Decoding evidence for predicted (valid–invalid) shapes in the hippocampus. c Decoding evidence for validly (green) and invalidly (red) predicted shapes
in hippocampal subfields. d Decoding evidence for predicted (valid–invalid) shapes in hippocampal subfields. Time courses were temporally smoothed
using a sliding window approach (see “Methods” for details). Horizontal lines indicate significant clusters. N= 24 participants, shaded regions
indicate SEM.
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significant cluster from trial 24 to 32, p= 0.028; Fig. 2a). In other
words, hippocampal activity patterns reflected shapes that were
unexpectedly presented (e.g., decoding evidence for shape A when
shape B was predicted but A was presented) but not shapes that
were presented as expected (e.g., no evidence for shape A when
shape A was predicted and presented). In sum, towards the end of
the blocks, activity patterns in the hippocampus reflected a pre-
diction error-like signal, representing unexpected but not expected
shapes.

Segmenting the hippocampus into its subfields revealed that
this effect was significantly present in CA2-3-DG (significant
cluster for invalidly predicted shapes from trial 20 to 32, p= 0.014;
significant cluster for valid–invalid from 23 to 32, p= 0.045), but
not in CA1 and the subiculum (no clusters with p < 0.05),
suggesting that this effect may have been driven by CA2-3-DG.
However, decoding evidence for the predicted shape (i.e.,
valid–invalid, Fig. 2d) in the last bin was not significantly different
between the different subfields (F2,46= 0.83, p= 0.44). Given the
recent interest in potential functional differences along the long
axis of the hippocampus57–59, we also compared decoding
evidence for the predicted shape in the last bin between the
posterior and anterior hippocampus, but found no significant
difference (t23= 0.91, p= 0.37). However, decoding evidence for
the predicted shape was significant in the posterior (t23=−3.83,
p= 0.00086) but not the anterior (t23=−1.36, p= 0.19) hippo-
campus, suggesting the posterior hippocampus may be driving the
prediction error-like effects.

In order to quantify the emergence of these signals over trials, we
fit sigmoid functions, or S-curves, to the decoding evidence for
predicted shapes in the hippocampus (Fig. 3a; see “Methods” for
details). In line with the results from the non-parametric cluster-
based permutations tests reported earlier, the best fitting sigmoids
had a significantly negative amplitude in the hippocampus
(t23=−2.17, p= 0.041) and CA2-3-DG (t23=−2.90, p= 0.0080),
but not in CA1 (t23=−0.31, p= 0.76) and the subiculum
(t23=−1.38, p= 0.18). Finally, in a control analysis, to quantify
the representational change over time without making any
assumptions about the shape of this change, we calculated the
derivative of the decoding evidence for the predicted shape over
trials. In line with the previous analyses, in hippocampus
(t23=−2.72, p= 0.012) and CA2-3-DG (t23=−2.84, p= 0.0092),
but not in CA1 (t23=−0.58, p= 0.57) and the subiculum

(t23=−1.55, p= 0.13), the average derivative over the course of
the blocks was significantly negative.

It is noteworthy that, visually, an early positive predicted shape
effect seemed to be present in the hippocampus (Fig. 2b),
especially in the subiculum (Fig. 2d). This effect was not
significant according to the cluster-based permutation tests, but
in an exploratory post hoc analysis we investigated whether this
early positivity was significant by fitting two sigmoids, rather than
one, to the predicted shape evidence (see Methods for details).
There was no significantly positive early sigmoid in hippocampus
as a whole (t23= 1.13, p= 0.27), nor in CA1 (t23= 0.77, p= 0.45)
or CA2-3-DG (t23= 0.66, p= 0.52), but there was in the
subiculum (t23= 3.43, p= 0.002; Supplementary Fig. 3).

Based on previous findings of predictive signals in the caudate
nucleus4,27,60, we also tested these effects in the caudate, and
found that like the hippocampus, caudate activity patterns
reflected unexpected (significant cluster from trial 20 to 29,
p= 0.0062) but not expected (no clusters with p < 0.05) shapes
towards the end of the blocks, with a significant difference
between the two conditions (valid–invalid, significant cluster
from trial 20 to 29, p= 0.033; Supplementary Fig. 4).

The fact that the hippocampus displayed a prediction error-like
pattern (cf. Figs. 2a and 1f, left column) is striking given that
several previous studies have reported prediction-like
effects5,26,38. Specifically, a previous study with a virtually
identical design27 revealed evidence for the shape predicted by
the cue, regardless of which shape was actually presented (as in
Fig. 1f, right column). The crucial difference is that in these
previous studies participants were exposed to the predictive
associations for many trials before the fMRI session, whereas here
participants learned novel predictive associations every block.
Based on this, we hypothesised that the hippocampus may switch
from representing prediction errors (early in learning) to
representing predictions (once learning is complete) as learning
progresses (Fig. 4). In order to test this hypothesis, we performed
a second fMRI experiment, in which participants (N= 24) were
exposed to the same cues for longer, and tested for potential
switches in dynamics by fitting sigmoid learning curves to the
decoding evidence over trials.

Experiment 2: long blocks. In Experiment 2, participants were
exposed to 4 blocks of 128 trials (compared to 16 blocks of 32
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trials in Experiment 1), with new auditory predictive cues being
presented in each block. In all other regards, Experiment 2 was
identical to Experiment 1.

Experiment 2—behavioural results. As in Experiment 1, partici-
pants were able to detect small differences in the shapes, during both
the shape-only runs (69.5 ± 1.7% correct; 30.1 ± 2.0% modulation of
the 3.18Hz radial frequency component, mean ± SEM) and during
the prediction runs (68.5 ± 1.8% correct; 24.5 ± 2.0% shape mod-
ulation). Accuracy and reaction times (RTs) again did not differ
significantly between valid (68.6 ± 1.9% correct; RT= 651 ± 18ms)
and invalid (68.2 ± 1.9% correct; RT= 654 ± 18ms; both p > 0.10)
trials. Task accuracy was stable over trials and no difference between
valid and invalid trials emerged over time (Supplementary Fig. 2b).

Experiment 2—fMRI decoding results. As in Experiment 1,
dynamics of hippocampal shape representations over trials were
investigated using a sliding window approach (see Methods for
details). Reflections of validly and invalidly predicted shapes in
hippocampal activity patterns displayed striking of dynamics over
time (Fig. 5a). These dynamics were quantified by fitting two
sigmoid curves to the decoding evidence for predicted shapes
(Fig. 5b), one with an inflection point in the first half of the blocks
(trials 1–64) and the other with an inflection point in the second
half (trials 65–128). This analysis revealed that an initial negative
curve (amplitude parameter of early sigmoid; t23=−2.26,
p= 0.033), reflecting evidence for unexpected but not expected
shapes (i.e., prediction error, as in Experiment 1) was followed by
a positive curve (amplitude parameter of the late sigmoid curve;
t23= 2.45, p= 0.022) about halfway through the blocks. This
switch was most striking for invalidly predicted shapes (Supple-
mentary Fig. 5a). Initially, approximately halfway through the
blocks, the unexpectedly presented shape was represented (Sup-
plementary Fig. 5b). However, at the end of the blocks, the hip-
pocampus instead represented the shape predicted by the
auditory cue, rather than the shape presented on the screen
(Supplementary Fig. 5b).

Segmenting the hippocampus into its subfields revealed that
both the early negative and later positive learning curves were also
significant in CA1 (early: t23=−2.75, p= 0.011; late: t23= 2.96,
p= 0.0070), but not in CA2-3-DG (early: t23=−0.95, p= 0.35;
late: t23= 0.54, p= 0.60), while in the subiculum the early negative

curve was marginal (t23=−2.07, p= 0.05) while the later positive
one was significant (t23= 2.56, p= 0.018).

As in Experiment 1, we performed a control analysis that did
not make any assumptions about the shapes of the learning
curves, in which we calculated the derivative of the decoding
evidence for the predicted shape (Fig. 5b, e), separately for the
first and second half of the blocks. In line with the curve fitting
results, the derivative was significantly different in the first versus
the second halves of the blocks in hippocampus (t23=−2.67,
p= 0.014) and CA1 (t23=−2.41, p= 0.024), while this difference
was marginal in CA2-3-DG (t23=−2.06, p= 0.051) and not
significant in the subiculum (t23=−1.34, p= 0.19). This was
driven by the derivative being significantly positive in the second
half of the blocks in hippocampus (t23= 2.25, p= 0.034) and
CA1 (t23= 2.24, p= 0.035), but marginally negative in the first
half (hippocampus: t23=−2.00, p= 0.057; CA1: t23=−1.98,
p= 0.060). In CA2-3-DG, the derivative was significantly
negative in the first half (t23=−2.73, p= 0.012) but not the
second half (t23= 0.87, p= 0.39), while neither half was
significant in the subiculum (first half: t23=−0.51, p= 0.61;
second half: t23= 1.49, p= 0.15). There was no significant
difference between the hippocampal subfields in terms of the
derivative of the decoding time courses in either the first
(F2,46= 0.58, p= 0.56) or second halves (F2,46= 0.79, p= 0.46)
of the blocks.

However, there was a significant difference between posterior
and anterior hippocampus, with the positive derivative in the
second half of the blocks being stronger in posterior than anterior
hippocampus (t23= 3.00, p= 0.0064; Supplementary Fig. 6). In
fact, the early negative (posterior: t23=−2.43, p= 0.024; anterior:
t23=−0.86, p= 0.40) and late positive (posterior: t23= 2.70,
p= 0.013; anterior: t23= 0.98, p= 0.34) sigmoids, as well as the
difference in the derivative between the first and second halve of
the blocks (posterior: t23= 2.74, p= 0.012; anterior: t23= 1.42,
p= 0.17), were significant in the posterior, but not anterior
hippocampus.

A positive slope in the second half of the blocks might also be
observed if the early prediction error signal simply gradually
disappeared, rather than hippocampal representations switching
to a positive prediction signal. To resolve this, we tested whether
decoding evidence for the predicted shape at the end of the blocks
(i.e., the final bin) was significantly larger than zero. While this
signal was not significantly positive for the hippocampus as a
whole (t23= 1.75, p= 0.094), it was in the posterior hippocampus
(t23= 2.15, p= 0.042), which was also the driver of the results
reported above. In fact, decoding evidence for the predicted shape
at the end of the blocks was stronger in the posterior than the
anterior (t23= 0.31, p= 0.76; posterior vs. anterior: t23= 2.14,
p= 0.043) hippocampus. The significant effect in posterior
hippocampus was reflected by significant evidence for the
predicted shape in the posterior subiculum (t23= 2.55,
p= 0.018) and CA1 (t23= 2.17, p= 0.041), but not CA2-3-DG
(t23= 1.31, p= 0.20). There was no significant evidence for the
presented shape (quantified by averaging evidence for valid and
invalid shapes, thereby averaging out the effect of the cues27;
Fig. 1e) at the end of the blocks in the hippocampus (t23=−1.30,
p= 0.21) or any of its subdivisions (all p > 0.2). In other words,
once predictions were learnt, hippocampal representations were
determined by the predictive cues, not by which shape was
actually presented on screen. Note that this analysis was based on
a relatively small subset of trials (i.e., only those in the last bin of
each block), but the positive evidence for predicted shapes and
absence of evidence for the presented shapes is in line with a
study employing a virtually identical paradigm where participants
learnt the cue-shape predictions before being tested in the
scanner27. There was no significant difference in predicted shape
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evidence between the posterior subfields (F2,46= 1.09, p= 0.34),
but it is worth noting that the effect was numerically largest in the
posterior subiculum (0.13; Supplementary Fig. 7), in line with the
previous work27.

Since the subiculum is a major output relay from the
hippocampus to neocortex61,62, we speculate that this may be
in line with hippocampal prediction signals being communicated
to the sensory cortex, in order to guide perception. If this were the
case, one would expect functional connectivity between hippo-
campus and neocortex to increase as predictive associations are

established63,64. We tested this hypothesis in an exploratory
analysis of informational connectivity between the posterior
subiculum and entorhinal cortex (EC; a major interface between
hippocampus and cortex) as well as the visual cortex (V1, V2 and
LO) (see “Methods” for details). This analysis revealed increased
informational connectivity at the end of the blocks (final bin)
versus at the start of the blocks (first bin) between the posterior
subiculum and EC (t23= 2.40, p= 0.025; Fig. 6) and V1
(t23= 2.88, p= 0.0084), but not V2 (t23= 1.73, p= 0.097) and
LO (t23=−0.28, p= 0.78).

-0.08

-0.04

0.00

0.04

0.08

-0.10

-0.05

0.00

0.05

0.10

Hippocampus

0 20 40 60 80 100 120
Trials

D
ec

od
in

g 
si

gn
al

Validly predicted shape
Invalidly predicted shape

Predicted shape evidence
Double sigmoid fit

-0.10

-0.05

0.00

0.05

0.10

-0.2

-0.1

0.0

0.1

0.2

CA1

0 20 40 60 80 100 120

D
ec

od
in

g 
si

gn
al

CA2-3-DG

0 20 40 60 80 100 120

D
ec

od
in

g 
si

gn
al

-0.2

-0.1

0.0

0.1

0.2

-0.10

-0.05

0.00

0.05

0.10

Subiculum

0 20 40 60 80 100 120
Trials

D
ec

od
in

g 
si

gn
al

-0.2

-0.1

0.0

0.1

0.2

-0.10

-0.05

0.00

0.05

0.10

a b c

Early Late

-0.8

-0.4

0.0

0.4

0.8

Amplitude of sigmoids

Am
pl

itu
de

 p
ar

am
et

er

p = 0.033

p = 0.022

Early Late

-0.8

-0.4

0.0

0.4

0.8

Am
pl

itu
de

 p
ar

am
et

er

p = 0.011

p = 0.0070

Early Late

-0.8

-0.4

0.0

0.4

0.8

Am
pl

itu
de

 p
ar

am
et

er

Early Late

-0.8

-0.4

0.0

0.4

0.8
Am

pl
itu

de
 p

ar
am

et
er

p = 0.05

p = 0.018

d e f

0 20 40 60 80 100 120
Trials

0 20 40 60 80 100 120
Trials

0 20 40 60 80 100 120

0 20 40 60 80 100 120

Fig. 5 Experiment 2 shape decoding over trials. a Decoding evidence for validly (green) and invalidly (red) predicted shapes in the hippocampus.
b Decoding evidence for predicted (valid–invalid) shapes in the hippocampus (yellow) with the double sigmoid fit (grey). c Amplitude parameters of early
(midpoint between trials 1 and 64) and late (midpoint between trials 65 and 128) sigmoid curves in the hippocampus. P value reflects two-sided one-
sample t-test against zero. d Decoding evidence for validly (green) and invalidly (red) predicted shapes in hippocampal subfields. e Decoding evidence for
predicted (valid–invalid) shapes in hippocampal subfields (yellow) with the double sigmoid fit (grey). f Amplitude parameters of early (midpoint between
trials 1 and 64) and late (midpoint between trials 65 and 128) sigmoid curves in hippocampal subfields. Time courses were temporally smoothed using a
sliding window approach (see Methods for details). N= 24 participants in all panels. Shaded regions and error bars indicate SEM. Dots indicate individual
participants. P values reflect two-sided one-sample t-tests (df= 23) against zero. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31040-w ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3294 | https://doi.org/10.1038/s41467-022-31040-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The caudate nucleus displayed a qualitatively similar pattern of
results as the hippocampus, with an initial negative sigmoid curve
(t23=−3.11, p= 0.0049) being followed by a positive curve
(t23= 3.65, p= 0.0013; Supplementary Fig. 8a). The control
analysis also revealed a significant difference in derivative in the
first versus second half of the blocks (t23= 2.90, p= 0.0081),
driven by positive derivative in the second half (t23= 3.94,
p= 0.00066) but not the first half (t23=−0.33, p= 0.74), and a
significantly positive representation of the predicted shape in the
final bin of the blocks (t23= 3.06, p= 0.0055).

To investigate the specificity of these effects, we also analysed
regions in the early visual cortex (Supplementary Fig. 8b–d) and
the amygdala (Supplementary Fig. 8e), a region adjacent to the
hippocampus. These regions did not significantly reflect the
learning of predictive associations (no significantly negative or
positive sigmoid curves, all p > 0.05), indicating that the effects in
the hippocampus and caudate were region-specific27.

Discussion
In two human fMRI experiments, we find that as learning of
associative predictions progresses, the hippocampus switches
from preferentially representing unexpected stimuli (i.e., predic-
tion errors) to representing predicted shapes. These findings
demonstrate that the hippocampus is involved in both acquiring
and exploiting predictive associations, and is dominated by either
errors or predictions depending on whether learning is ongoing
(i.e., when prediction errors are informative28) or complete (only
expected uncertainty remains). Concretely, what this suggests in
the context of the current study is that prediction errors caused by
early cue violations, when learning is still very much ongoing,
dominate processing in the hippocampus, leading to the repre-
sentation of the unexpectedly presented shape. On the other
hand, once the 75–25% cue contingencies are firmly learnt, the
25% cue violations are no longer treated as model updating
(‘newsworthy’) events28, are therefore no longer upweighted, and
the retrieval of the cued shape dominates. Note that we are not
suggesting that this is an all-or-nothing switch; it is likely that the
hippocampus always represents both predictions (through pat-
tern completion in CA321,24,65,66) and errors (potentially through
mismatch comparison in CA134,36,67), but that the balance
between the two depends on contextual factors such as novelty
and unexpected uncertainty. An analogous switch between pre-
diction vs. surprise dominated representations has recently been
proposed in the realm of perception, albeit on a sub-second time-
scale68.

The early bias towards prediction errors is in line with recent
demonstrations of hippocampal mode switches induced by novel
prediction errors in humans45. Mechanistically, this switch may
occur since novelty leads to an increase of neuromodulators like
ACh and NE50–52, which suppress retrieval-related connections
(CA3’s autorecurrence and CA3 -> CA1) relative to encoding-
related ones (EC -> CA1)69–71. Alternatively, novelty may pro-
mote encoding on a faster time-scale by inducing a hippocampal
theta phase reset49,53–55. Further research is needed to determine
whether the switch demonstrated here was indeed driven by
hippocampal mode changes or by a different mechanism that
upweights novel prediction errors, such as attention72–74. For
instance, methods with higher temporal resolution such as EEG/
MEG or invasive electrophysiology could be used to investigate
whether there is a relationship between hippocampal theta phase
and error vs. prediction representations in the hippocampus. In
either case, as learning progresses and novelty diminishes, a bias
towards encoding prediction errors is abolished and retrieval of
predictive associations dominates.

As prediction signals emerged in the hippocampus, functional
connectivity increased between the posterior subiculum and the
entorhinal cortex and the primary visual cortex, demonstrating a
potential route for relaying predictions to the sensory
cortex26,62,63,75,76. This relaying of predictions likely involves the
same mechanisms that are responsible for hippocampus-mediated
cortical reinstatement of memories77–80. Of course, fMRI con-
nectivity analyses cannot determine directionality given the slow
nature of the BOLD signal, so future research using
electrophysiology81,82 or layer-specific fMRI76,83,84 will be required
to test this hypothesis further. Similarly, the slow nature of the
BOLD signal prevents investigating fast within-trial dynamics of
prediction and prediction error signals. For instance, it may be that
prediction signals always precede prediction error signals in the
hippocampus. The hippocampal representations revealed here
reflect a temporal integration of neural signals over the course of a
trial, and thus indicate whether predictions or prediction errors
dominate. Future studies with millisecond temporal resolution are
required9,82 to reveal the dynamic interplay of predictions and
errors within the hippocampus.

An exploratory post hoc analysis of Experiment 1 additionally
revealed early prediction-like signals in the subiculum, before the
prediction error-dominated signals emerged (Supplementary
Fig. 3). This initial positive signal could potentially reflect early,
imprecise predictions, which lead to strong prediction errors on
subsequent invalid trials. This explanation is currently spec-
ulative, especially given the post hoc nature of the analysis. Future
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research is needed to investigate the early build-up of prediction
signals further, for instance using a paradigm with many blocks
with only a few cue repetitions each.

It appears that the prediction error-like signals emerged later in
Experiment 2 than in Experiment 1 (cf. Figs. 2 and 5). This is likely
the result of differences in sliding window length and smoothing
between the two experiments, combined with the fact that the
prediction error signal may still be building by the end of the
blocks in Experiment 1 (Fig. 2b). More speculatively, the later
negative peak in Experiment 2 may also partly have resulted from
averaging together the small early positive peak discussed above
(~trial 16–20) with the subsequent negative signal (~trial 24
onwards) (Supplementary Fig. 3). While the sliding window in
Experiment 1 was short enough to separately resolve these two
signals, the longer sliding window in Experiment 2 was not,
resulting in these two signals cancelling each other out early in the
blocks. At present this explanation is highly speculative since the
initial positive signal in Experiment 1 was detected using post hoc
analyses and needs to be investigated further, as discussed above.

It is noteworthy that the predictive associations studied here
were fully implicit. Participants were not informed that there
were any such associations, the predictions were incidental to the
task, and debriefing indicated that participants did not become
aware of them over the course of the experiments8,44. The fact
that such implicit associations still involved the hippocampus is
in line with theories of hippocampal processing based on the
types of computations required, rather than whether they are
explicit or implicit23,40,85. In fact, it has even been suggested that
the hippocampus may engage in error-driven conjunction
learning specifically when associations are incidental to the task
participants perform86.

Despite the predictive associations being implicit, hippocampal
signals may still have been affected by fluctuations in the level of
attention paid to the cues over the course of the blocks. That is, if
participants pay more (less) attention to the cues over time, this
might increase (decrease) the strength of the prediction signals in
the hippocampus. Future research might dissociate learning
dynamics and attentional fluctuations by changing the reliability
of predictive cues between blocks. More reliable (e.g., 90% valid)
cues would be expected to lead to faster learning rates than less
reliable (e.g., 60% valid) ones, without affecting non-specific
fluctuations in attention due to time spent on task.

In the current study, both prediction error and prediction sig-
nals seem to have been driven by the posterior rather than the
anterior hippocampus. This finding is in line with suggestions that
hippocampal representations increase in complexity and scale
along the long axis57; simple cue-stimulus associations as studied
here may therefore be encoded in the posterior hippocampus58,
whereas more complex representations such as narratives57 and
scenes87–89 are encoded in the anterior hippocampus.

Analysis of the caudate nucleus revealed similar prediction
signals as in the hippocampus, in line with previous work
employing a highly similar experimental design27, as well as other
studies revealing the involvement of the caudate in predictive
processing4,60. Recently, it has been suggested that perceptual
expectation signals in the tail of the striatum play a role in gen-
erating hallucination-like percepts in mice90. Future research is
needed to establish whether the caudate and hippocampus play
different or complementary roles in the processing of predictive
associations91,92.

In the current study, novel predictive cues were introduced on
each block of the experiment. It is an open question whether
similar hippocampal dynamics would occur if the cue identities
remained the same throughout the experiment, but the predictive
contingencies switched. In other words, does the hippocampal
switch observed here depend on the cues themselves being novel,

or is it sufficient for only their predictive values to change, i.e., for
there to be unexpected uncertainty52?

In addition, whether the hippocampus signals predictions or
prediction errors may also depend on the type of predicted sti-
mulus. For instance, in previous work, we reported hippocampal
prediction signals for complex shapes, but prediction error-like
signals for low-level features, i.e., the predicted orientation of a
grating stimulus56. Future work systematically manipulating the
complexity of visual stimuli may shed light on this by exploring
the relationship between hippocampal computations and stimu-
lus complexity93.

In sum, the current findings demonstrate a role for the hip-
pocampus in both acquiring and exploiting predictive associa-
tions, bridging the fields of learning and perception. These fields
have separately made progress in investigating the roles of pre-
diction, novelty and uncertainty1,52, but have until now largely
remained segregated literatures, despite great promise to inform
one another68,94. Ultimately, weighting predictions and errors
according to their reliability is crucial to optimally perceive and
engage with our environment, and the current findings suggest
that the hippocampus plays a crucial role in this process.

Methods
Participants. Both experiments aimed to recruit 24 healthy, right-handed, MR-
compatible participants with normal or corrected-to-normal vision. All partici-
pants provided informed consent through a protocol reviewed by the University
College London (UCL) Research Ethics Committee and were compensated a total
of £27.50 for their time. Twenty-nine individuals completed Experiment 1, of
which five were excluded due to our strict head motion criteria (five or more
movements larger than 1.5 mm in any direction between successive functional
volumes). The final sample consisted of 24 participants (12 female; age 25.6 ± 7.2,
mean ± SD). Twenty-nine individuals completed Experiment 2, of which two were
excluded for not performing the task above chance, and three due to excessive head
motion (see criteria above). The final sample consisted of 24 participants (19
female; age 26.2 ± 7.0, mean ± SD).

Stimuli. Visual and auditory stimuli were generated using MATLAB (Mathworks,
Natick, MA, USA) and the Psychophysics Toolbox95. In the MR scanner, visual
stimuli were displayed on a rear projection screen using a projector (1600 × 1200
resolution, 60 Hz refresh rate) against a grey background. Participants viewed the
visual display through a mirror that was mounted on the head coil. The visual
stimuli consisted of complex shapes defined by radial frequency components
(RFCs)96,97, identical to the shapes used in Kok & Turk-Browne27 (Fig. 1). The
contours of the stimuli were defined by seven RFCs, and a one-dimensional shape
space was created by varying the amplitude of three out of the seven RFCs27.
Specifically, the amplitudes of the 1.11, 1.54 and 4.94 Hz components increased
together, ranging from 0 to 36 (first two components), and from 15.58 to 33.58
(third component). Note that we chose to vary three RFCs simultaneously, rather
than one, to increase the perceptual (and neural) discriminability of the shapes.
Five shapes (Fig. 1d) were selected from this continuum such that they represented
a perceptually symmetrical sample of this shape space (see Kok & Turk-Browne27

for details). In addition, a fourth RFC (the 3.18 Hz component) was used to create
slightly warped versions of the five shapes, to enable the same/different shape
discrimination cover task (see below). Experiments 1 and 2 presented identical
shapes (black, subtending 4.5°), centred on fixation.

In the scanner, auditory stimuli were presented using MR-compatible ear buds
(E-A-RTONE 3 A, 10 Ohm, Etymotic Research, Elk Grove Village, IL, USA). The
auditory stimuli consisted of sequences of pure tones, ranging in frequency from
261.36 Hz (C4) to 987.77 (B5) Hz (set of 14 tones: C4, D4, E4, F4, G4, A4, B4, C5, D5,
E5, F5, G5, A5, B5; duration= 100 ms; 10 ms linear rise and fall ramps). Seventeen
sequences of five tones (500 ms) were created by selecting the least correlated
sequences from all permutations of {1, 2, 3, 4, 5}. These 17 sequences (e.g., 1-2-3-4-
5, 1-5-4-3-2, 3-1-5-4-2, etc.) were further differentiated by assigning them different
starting tones, in the step of 3. For instance, if sequence 1 was 1-2-3-4-5, sequence 2
was 4-8-7-6-5, sequence 3 was 9-7-11-10-8, etc. Since the maximum starting tone
was 10, given the set of 14 tones, every fifth sequence started with starting tone 1
again. For each sequence, a mirrored sequence was generated in order to create 17
pairs of easily distinguishable sequences consisting of the same tones (e.g., sequence
1-2-3-4-5 was paired with 5-4-3-2-1, sequence 4-8-7-6-5 was paired with 8-4-5-6-7,
etc.). In Experiment 1, 16 of these pairs were assigned in random order to the
sixteen blocks, while the seventeenth pair was used during the practice block
outside the scanner (see below). In Experiment 2, only the first four pairs were
used, since this experiment contained only four blocks (see below), while the fifth
pair was used for practice.
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Experimental procedure. The trial structure was identical in both experiments.
The start of each trial was signalled by the presentation of a fixation bullseye
(diameter, 0.7°). During prediction runs, an auditory cue (sequence of five tones;
500 ms) was presented 100 ms after the trial onset (Fig. 1a). Following a 500 ms
delay, two consecutive shapes were presented for 250 ms each, separated by a
500 ms fixation screen. The auditory cues predicted whether the first shape on that
trial would be shape 2 or shape 4 (out of five shapes; Fig. 1b, d). The cue was valid
in 75% of trials, whereas in the other 25% of trials the unpredicted shape would be
presented. For instance, a specific auditory cue might be followed by shape 2 in
75% of trials and by shape 4 in the remaining 25% of trials. On each trial, the
second shape either was identical to the first (50%), or slightly warped (50%), by
modulating the amplitude of the 3.18 Hz RFC component defining the shape. This
modulation could be either positive or negative (counterbalanced over conditions)
and the participants’ task was to indicate whether the two shapes on a given trial
were the same or different, using an MR-compatible button box (750 ms response
interval). This task was designed to encourage participants to attend the visual
shapes, while avoiding a relationship between the perceptual prediction and the
task response. Furthermore, by modulating one of the RFCs that was not used to
define our one-dimensional shape space, we ensured that the shape change on
which the task was performed was orthogonal to the changes that defined the shape
space, and thus orthogonal to the shape features predicted by the auditory cues.
The size of the shape modulation was determined by a staircasing procedure98,
updated after every trial to ensure sufficient task difficulty (~75% correct). The end
of each trial was signalled by replacing the fixation bullseye with a single fixation
dot, encouraging participants to continue to fixate (inter trial interval jittered
between 1.25 and 4.25 s).

Experiment 1 consisted of 16 blocks of 32 trials, presented in four prediction
runs (4 blocks per run, 30 s breaks between runs, ~12 min per run). In each block, a
different pair of cues were presented. For each trial number (1–32) we
counterbalanced (1) which cue was presented, (2) whether the cue was valid (75%)
or invalid (25%), and (3) whether the two shapes were the same or different.

Experiment 2 consisted of 4 blocks of 128 trials (1 block per prediction run, 30 s
break halfway, ~12 min per run), with a different pair of cues presented in each
block. As in Experiment 1, cue validity was counterbalanced for every trial position,
but given the smaller number of blocks, the presented cue and shape modulation
were counterbalanced over groups of four trial positions (trials 1–4, 5–8, etc.)
rather than for every trial position. This was reflected in the analyses by a fourfold
increase in the trial averaging window; see below.

In both experiments, which pair of cues was assigned to which block, as well as
which member of each pair predicted which shape, was counterbalanced across
participants.

In addition to the four prediction runs, both experiments also contained two
shape-only runs, flanking the prediction runs, constituting the first and last (sixth)
runs of the experiments. In these runs (120 trials per run, ~12 min) no auditory
cues were presented (Fig. 1c). As in the prediction runs, each trial started with the
appearance of a fixation bullseye followed 1100 ms later by two shapes (250 ms
each, 500 ms interval). On each trial, one of the five possible shapes was presented,
with equal (20%) likelihood (Fig. 1d). As in the prediction runs, the participants’
task was to indicate whether the two shapes were the same or different. The size of
the shape modulations was controlled by a staircase separate from that of the
prediction runs, to equate task difficulty in these runs with five instead of two
possible initial shapes. The shape-only runs acted as the training data for our shape
decoding model, see below.

Before both experiments, participants completed an instruction and practice
session to acquaint them with the task (~30 min). During practice, participants
completed 100 shape-only trials and 16 prediction trials. The pair of auditory cues
used during the short prediction run was not included in the main experiments.

After the experiments, participants completed a short questionnaire that
indicated whether or not they became aware of the predictive nature of the auditory
cues. The responses to both an open-ended question (“Can you tell us what the
meaning of the sounds was during the experiment?”) as well as a guided one
(“During every block of the experiment, two different sounds were played. These
sounds predicted which shapes would appear. For instance, a series of rising tones
might predict that you’ll see shape A, and falling tones might predict you’ll see
shape B. These predictions were 75% valid, so on 25% of trials they were incorrect.
Did you realise this?”) indicated that the vast majority of participants did not
become aware of the predictions in either experiment (Experiment 1: 1 out of 22
participants indicated that they realised the cues predicted which shape would
appear, no data for 2 participants; Experiment 2: 0 out of 22 participants indicated
that they realised the cues predicted which shape would appear, no data for 2
participants).

MRI acquisition. In both experiments structural and functional MRI data were
collected on a 3 T Siemens Prisma scanner with a 64-channel head coil at the
Wellcome Centre for Human Neuroimaging (WCHN). Note that two different
scanners with identical specifications were used for the two experiments, for
availability reasons. Functional images for both experiments were acquired using a
T2*-weighted multiband echo-planar imaging sequence (TR= 1000ms; TE=
33.0 ms; 60 transverse slices; voxel size= 1.5 × 1.5 × 1.5 mm; flip angle= 55°,

multiband factor= 6). This sequence produced a partial volume for each partici-
pant, which covered the occipital and temporal lobes, including and parallel to the
hippocampus. Field map data were acquired using a Siemens Field Map sequence
(TR= 1020.0 ms; short TE= 10.00 ms; long TE= 12.46 ms; voxel size= 3.0 × 3.0
× 2.0 mm, 64 transverse slices, flip angle= 90°). Anatomical images were acquired
using a T1-weighted Magnetisation Prepared Rapid Gradient Echo (MPRAGE),
using a Generalized Auto calibrating Partially Parallel Acquisition (GRAPPA)
factor of 2 (TR= 2530 ms; TE= 3.34 ms; 176 sagittal slices; voxel size= 1.0 × 1.0
× 1.0 mm; flip angle= 7°). To enable hippocampal segmentation, a T2-weighted
turbo spin-echo (TSE) image (TR= 12650 ms; TE= 45 ms; voxel size= 0.4 × 0.4
× 1.5 mm; 54 coronal slices perpendicular to the long axis of the hippocampus; flip
angle= 122°) was acquired.

fMRI preprocessing. Images for both experiments were preprocessed using Sta-
tistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm, Wellcome
Centre for Human Neuroimaging, London, UK). The first six volumes of each
functional run were discarded to allow T1 equilibration. For each run, the
remaining functional images were spatially realigned to correct for head motion,
and simultaneously supplied to B0 unwarping, using SPM’s realign and unwarp
function. The functional data were temporally high-pass filtered with a 128 s period
cut-off. No spatial smoothing was applied, and all analyses were performed in the
participants’ native space. The T1 and T2-weighted structural scans were co-
registered and subsequently co-registered to the mean functional scan.

Regions of interest. The hippocampus and its subfields, CA1, CA2-3-DG, and the
subiculum, were defined based on the structural T2 and T1 images using the
automatic segmentation of hippocampal subfields (ASHS)99 machine learning
toolbox, in conjunction with a database of manual medial temporal lobe (MTL)
segmentations from a separate set of 51 participants100,101. Consistent with previous
studies, CA2, CA3 and DG were combined into a single region of interest (ROI)
since these subfields are difficult to distinguish at our functional resolution (1.5 mm
isotropic). This method also yielded an entorhinal cortex (EC) ROI for our infor-
mative connectivity analysis (see below). Results of the automated segmentation were
inspected visually for each participant. In addition, a caudate region of interest
(ROI), as well as visual cortex ROIs for our informational connectivity analysis—V1,
V2 lateral occipital cortex (LO)—were automatically defined in each participant’s
T1-weighted anatomical scan using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).
The visual cortex ROIs were restricted to the 500 most active voxels during the
shape-only runs, to ensure that we were measuring responses in the retinotopic
locations corresponding to our visual stimuli. Since no clear retinotopic organization
is present in the other ROIs, cross-validated feature selection was used instead (see
below). All ROIs were collapsed over the left and right hemispheres, as we had no
hypotheses regarding hemispheric differences.

fMRI data modelling. For both experiments, the pattern of activity evoked by
every single trial of the prediction runs, in each ROI, was estimated using the Least-
Squares-Separate method102,103. That is, a separate GLM was created for every trial,
such that each trial is modelled once as a regressor of interest, with all other trials
combined into a single nuisance regressor. Delta functions were inserted at the
onset of the trial of interest (first regressor) and all other trials (second regressor)
and convolved with a double-gamma hemodynamic response function (HRF) and
its temporal derivative104. The voxel-wise parameter estimates for the trial-of-
interest HRF regressor constituted the estimated BOLD activity pattern for each
trial. This method has been shown to improve the estimation of single-trial BOLD
responses, compared with a GLM with one regressor for each trial102. In addition
to these regressors, the GLMs included nuisance regressors consisting of the head
motion parameters resulting from spatial realignment, their derivatives, and the
square of these derivatives (i.e., 18 motion parameters in total). The data from the
shape-only runs were analysed using a more conventional GLM, with one regressor
for each of the five shapes and 18 head motion nuisance regressors.

Shape decoding. In order to probe neural shape representations, a forward
modelling approach was used to decode the shapes from the patterns of BOLD
activity in each ROI27,105. The decoding algorithm was identical to that used in
Kok & Turk-Browne27, and will be outlined here briefly (see Supplementary Fig. 1
for a visual depiction).

The shape selectivity of each voxel was characterised as a weighted sum of five
hypothetical channels, each with an idealised shape tuning curve (or basis
function), consisting of a halfwave-rectified sinusoid raised to the fifth power. In
the first stage of the analysis, the parameter estimates obtained from the two shape-
only runs were used to estimate the weights on the five hypothetical channels
separately for each voxel, using linear regression. Specifically, let k be the number of
channels, m the number of voxels, and n the number of measurements (i.e., the five
shapes). The matrix of estimated response amplitudes for the different shapes
during the shape-only runs (Btrain, m × n) was related to the matrix of hypothetical
channel outputs (Ctrain, k × n) by a weight matrix (W, m × k):

Btrain ¼ WCtrain þN ð1Þ
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The weight matrix was estimated by least squares estimation:

bW ¼ BtrainC
T
trainðCtrainC

T
trainÞ

�1 ð2Þ
Using these weights, the second stage of analysis consisted of reconstructing the
channel outputs associated with the pattern of activity across voxels evoked by each
trial in the prediction runs (Btest), again using linear regression:

bCtest ¼ ð bWT
bWÞ

�1
bW

T
Btest

ð3Þ

where bCtest are the estimated channel outputs. These channel outputs were used to
compute a weighted average of the five basic functions, reflecting a neural shape
tuning curve (Supplementary Fig. 1). Note that, during the main experiment (i.e.,
the prediction runs), only shapes 2 and 4 were presented. Decoding performance
was quantified by subtracting the amplitude of the shape tuning curve at the
presented shape (e.g., shape 2) from the amplitude at the non-presented shape
(shape 4). This procedure yielded a measure of decoding evidence for the presented
shape on each trial, in each ROI.

For all ROIs, voxel selection was based on data from the shape-only runs, in
which no predictions were present, to ensure voxel selection was independent of
the data in which we tested our effects of interest (i.e., the prediction runs). In
visual cortex ROIs, we selected the 500 most active voxels during the shape-only
runs. However, the hippocampus and caudate did not show a clear evoked response
to visual stimuli, as defined by a lack of significant fit of a regressor of stimulus
onset times convolved with a canonical haemodynamic response to the mean
hippocampal time course. Therefore, we applied a different method of voxel
selection for these ROIs. Voxels were first sorted by their informativeness, that is,
how different the weights for the different channels were from each other, as
indexed by the standard deviation of the weights. Second, the decoding model was
trained and tested on different subsets of these voxels (between 10 and 100%, in
10% increments), within the shape-only runs (trained on one run and tested on the
other). For all iterations, decoding performance on shapes 2 and 4 was quantified
as described above, and the number of voxels that yielded the highest performance
was selected. This procedure was used for voxel selection in the hippocampus
(Experiment 1: 1068 voxels selected; Experiment 2: 970 voxels; group average),
CA1 (Experiment 1: 271 voxels; Experiment 2: 313 voxels), CA2-3-DG
(Experiment 1: 374 voxels; Experiment 2: 433 voxels), subiculum (Experiment 1:
273 voxels; Experiment 2: 249 voxels), and caudate (Experiment 1: 1292 voxels;
Experiment 2: 1249 voxels).

Quantifying time courses of shape representations. A sliding window approach
was used to investigate how shape representations evolved over trials. In Experi-
ment 1, this window consisted of 4 trial positions (i.e., trials 1–4 of all 16 blocks,
followed by trials 2–5, trials 3–6, etc.), while for Experiment 2 the window was four
times as wide (16 trial positions; trials 1–16 of all 4 blocks, trials 2–17, trials 3–18,
etc.) to compensate for the fourfold decrease in the number of blocks (i.e. the
number of trials-per-position). Within each window, we averaged the decoding
evidence for validly and invalidly predicted shapes separately. In order to quantify
evidence for the shape predicted by the cue, controlling for the actually presented
shape, evidence for validly and invalidly predicted shapes was subtracted (i.e.,
averaging (1 - evidence) for the invalidly predicted shapes with evidence for the
validly predicted shapes) (Fig. 1e, f). Finally, the decoding time courses were
smoothed by averaging over a sliding window. In Experiment 1 each bin was
averaged with the previous and subsequent 4 bins, yielding a window size of 9 bins.
In Experiment 2 the window size was 33 bins, containing the previous and sub-
sequence 16 bins. Note that the results presented here do not critically depend on
these parameters, as qualitatively identical effects were present when the length of
the sliding window was doubled and subsequent smoothing was omitted. In the
current study, analysing time courses without applying either a sliding window or
temporal smoothing was not feasible, as fMRI responses to individual trials are not
sufficiently robust. Future work could potentially address this by conducting
multiple (e.g., four or more) fMRI sessions per participant, increasing the amount
of data per trial position.

Initially, in Experiment 1, in a fully assumption-free analysis, we performed
non-parametric cluster-based permutation tests106 on the time courses, to test
whether the decoding signals differed significantly from zero at any timepoint.
Specifically, univariate t statistics were calculated for all timepoints, and
neighbouring elements that passed a threshold value corresponding to a p value of
0.05 (two-tailed) were collected into clusters. Cluster-level test statistics consisted of
the sum of t values within each cluster, which were compared to a null distribution
created by drawing 10,000 random permutations of the observed data. A cluster
was considered significant when its p value was below 0.05 (i.e., a cluster of its size
occurred in fewer than 5% of the null distribution clusters). These non-parametric
tests were specifically conceived to test effects in data with non-zero independence
across time (and space), by generating null distributions with the same smoothness
as the original data106.

Subsequently, the obtained time courses of decoding evidence for the predicted
shapes were quantified by fitting sigmoid curves to them. In Experiment 1, this
consisted of a single sigmoid:

A
1þ e�kðx�x0 Þ

ð4Þ

With a midpoint x0 between trials 1 and 32, slope k between 0.01 and 1, and
amplitude A between −1 and 1. These parameters were fitted using Matlab’s
fmincon function, wrapped in GlobalSearch. We ran 100 iterations with random
parameter starting values (within their prescribed ranges), in order to avoid local
minima. The amplitude parameter was submitted to simple t-tests to test whether
learning curves significantly deviated from zero. In Experiment 2, the fitted
curves consisted of a combination of two sigmoids, to test whether dynamics
changed as learning progressed:

Aa

1þ e�kaðx�x0a Þ þ
Ab

1þ e�kb ðx�x0b Þ
ð5Þ

with slopes ka and kb between 0.01 and 1, amplitudes Aa and Ab between −1 and 1.
The first sigmoid had a midpoint x0a between trial 1 and 64, while the second had a
midpoint x0b between trial 65 and 128, allowing them to capture potential
differences between the first and second half of the blocks. Note that both sigmoids’
amplitudes were free to range between −1 and 1, meaning that this analysis
imposed no priors on the signs of the curves. As in Experiment 1, the amplitude
parameters were submitted to simple t-tests to test whether learning curves
significantly deviating from zero. Since Experiment 2 was motivated by a specific
hypothesis on the nature of change of the hippocampal signal over trials (Fig. 4) we
relied on these tests of the dynamics of the signal, rather than cluster-based
permutation tests as in Experiment 1.

In an exploratory post hoc analysis, we also fitted two sigmoids to the data of
Experiment 1. As in the analysis of Experiment 2, the first sigmoid was constrained
to have a midpoint in the first half of the blocks (here, between trial 1 and 16),
while the second had a midpoint in the second half (here, between trial 17 and 32),
allowing them to capture potential differences between the first and second half of
the blocks.

In a control analysis that made no assumptions on the shapes of the time
courses, we calculated the average derivatives of the decoding time courses. For
Experiment 2, this was done separately for the first (trials 1–64) and second (trials
65–128) half of the blocks, to investigate whether dynamics changed as learning
progressed.

All analyses were initially performed on the hippocampus ROI as a whole, and
when significant these were followed up by investigating hippocampal subfields and
comparing the anterior and posterior hippocampi. This hierarchical approach,
where significant effects in the ROI as a whole were followed up with tests of its
subdivisions, rather than simply examining all possible comparisons, helped control
the false positive rate. All statistical tests performed in this paper were two-sided.

Informational connectivity. In an exploratory analysis, we investigated whether
functional connectivity between regions (specifically, between the posterior sub-
iculum and EC, V1, V2, and LO) changed over trials in Experiment 2. Specifically,
the Pearson correlation in decoding evidence over trials between two regions was
calculated107, within the sliding windows described above. This analysis yielded
time courses of correlation values, with a positive value indicating that whenever
region A represents shape 2 (rather than shape 4), region B is likely to do so as well.
Changes in informational connectivity over time were tested by comparing r values
at the end of the blocks (i.e., the final window, containing trials 113–128) with the
start of the blocks (the first window, containing trials 1–16), using paired-sample t-
tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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