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Common genetic variation associated with
Mendelian disease severity revealed through
cryptic phenotype analysis
David R. Blair 1✉, Thomas J. Hoffmann 2,3 & Joseph T. Shieh 1,2✉

Clinical heterogeneity is common in Mendelian disease, but small sample sizes make it difficult

to identify specific contributing factors. However, if a disease represents the severely affected

extreme of a spectrum of phenotypic variation, then modifier effects may be apparent within a

larger subset of the population. Analyses that take advantage of this full spectrum could have

substantially increased power. To test this, we developed cryptic phenotype analysis, a model-

based approach that infers quantitative traits that capture disease-related phenotypic variability

using qualitative symptom data. By applying this approach to 50 Mendelian diseases in two

cohorts, we identify traits that reliably quantify disease severity.We then conduct genome-wide

association analyses for five of the inferred cryptic phenotypes, uncovering common variation

that is predictive of Mendelian disease-related diagnoses and outcomes. Overall, this study

highlights the utility of computationally-derived phenotypes and biobank-scale cohorts for

investigating the complex genetic architecture of Mendelian diseases.
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Advances in sequencing technology, cohort generation, and
data dissemination have enabled the rapid identification
of thousands of rare genetic variants associated with

Mendelian diseases1,2. A great deal of this success can be attrib-
uted to their relatively simple genetic architectures; Mendelian
diseases are predominantly caused by deleterious alleles clustered
within a limited number of genomic loci. Nevertheless, clinical
heterogeneity is commonly observed among diagnosed cases1,3,4.
For example, Marfan Syndrome, an autosomal dominant disorder
caused by mutations in the FBN1 gene, is associated with cardi-
ovascular, ocular, skeletal and even pulmonary abnormalities.
Individuals with pathogenic FBN1 alleles rarely manifest all of the
associated symptoms5, and even individuals within the same
family can display disparate phenotypes6. Some of the clinical
variability observed among Mendelian disease cases is attributable
to allelic heterogeneity1,3, but multiple lines of evidence also
suggest a role for environmental and genetic background
effects4,7–11.

The identification of specific factors that modify Mendelian
disease severity is inherently limited by the low prevalence of
these disorders. Generally, it is difficult (but not impossible12,13)
to construct cohorts of affected cases that are large enough to
identify genetic and environmental modifiers, especially if they
have relatively modest effect sizes. Given this limitation, many
studies that investigate modifier effects have relied on model
organisms14,15 or the integration of orthogonal analyses16,17. As
an alternative approach, we and others hypothesize that some
Mendelian disorders may represent the severely affected extreme
of a spectrum of pathologic variation. For conditions like familial
hypercholesterolemia18, hereditary breast cancer19, and long QT
syndrome20, this relationship is well documented, and large
biobank datasets have recently enabled investigators to examine
the interplay between rare pathogenic variation and common
polymorphisms21,22. In these examples, however, the analyses
were possible because the condition of interest mapped to a
univariate, quantitative phenotype. For Mendelian disorders that
instead map to high-dimensional arrays of disparate symptoms,
investigating the interplay between common and rare genetic
variation becomes substantially more difficult.

In this work, we describe a probabilistic, model-based approach
that infers latent quantitative traits that capture Mendelian dis-
ease severity using their diagnosed symptoms (cryptic phenotype
analysis). We then systematically test the method on 50 different
Mendelian disorders in two independent patient cohorts (UCSF
Clinical Data Warehouse [UCSF], UK Biobank [UKBB]23),
uncovering multiple traits that reliably summarize disease
severity. To validate these results, we use exome-sequencing data
to demonstrate that pathogenic variation in known disease genes
is associated with the inferred traits. Finally, we perform genome-
wide association studies (GWAS) to identify common variation
(summarized using polygenic scores; PGS) that is associated with
cryptic phenotype severity and Mendelian-disease-related out-
comes. This approach replicates the known architecture of a well-
characterized genetic condition (α-1-antitrypsin deficiency
[A1ATD]) while also identifying common variant modifiers for
two Mendelian kidney diseases: Alport syndrome (AS) and
autosomal dominant polycystic kidney disease (ADPKD). Over-
all, our study suggests that phenotype-driven approaches applied
to biobank-scale data represent a powerful method for investi-
gating the complex genetic architecture of rare diseases.

Results
A phenotype-driven approach to identifying Mendelian disease
modifiers. Figure 1 outlines the approach taken to identify
common-variant modifiers of Mendelian disease severity. It

assumes that the Mendelian disorder of interest maps to the
severely affected extreme of a spectrum of phenotypic variation
(Fig. 1a, upper left). This implies that disease-related morbidity is
not limited to the Mendelian cases but is instead spread
throughout a larger subset of the population. Critically, this
spectrum of variation cannot be measured directly. Instead, the
trait is analyzed implicitly by a clinician, who translates their
observations into a set of symptoms (Fig. 1a, lower left). These
symptoms are then documented in the medical record, typically
as a combination of structured and unstructured data. Building
upon previous work9,24, we aligned structured electronic medical
record (EMR) data (i.e. ICD10 diagnostic codes25, see Supple-
mentary Fig. 1 and the “Methods” section) to the symptoms
annotated within the human phenotype ontology26. This enabled
us to construct a symptom matrix that encodes the severity of
specific Mendelian diseases (Fig. 1a, right). This symptom matrix
can then be used to recover cryptic, quantitative traits that
summarize disease variability (Fig. 1b).

The process of decoding an observed symptom matrix into an
underlying cryptic phenotype is equivalent to a form of matrix
decomposition (Fig. 1b). In this scenario, the symptom matrix is
decomposed into a risk function (Fig. 1b, upper right) and
collection of one or more latent phenotypes (Fig. 1b, lower right).
There are numerous ways to perform matrix decomposition.
Using methods developed for machine learning27,28, we designed
a simple probability model for the observed symptom matrix that
preserved its binary nature and enabled accurate, scalable
inference of the desired latent phenotypes (see rge “Methods”
section). Note, the recovery of these phenotypes is inherently
limited by the loss of information that occurs when translating
quantitative traits into binary symptoms. Therefore, inferred
cryptic phenotypes will be inherently noisy (see Fig. 1b, lower
right for example) unless the matrix contains hundreds of distinct
symptoms, which is unrealistic for most diseases.

There is no guarantee that cryptic phenotypes inferred using
this approach capture the severity of the intended Mendelian
diseases, as the method is unsupervised. Therefore, we performed
multiple analyses to ensure that the inferred traits reliably
captured the phenotypic variability of interest (see Fig. 1c, study
overview). We hypothesized that genetic factors associated with
this variability are consistent across the full spectrum of
phenotype severity. As a result, genetic modifiers identified in
more mildly affected individuals should be predictive of outcomes
in Mendelian disease cases. To test this, we used GWAS to
identify common variation associated with each cryptic pheno-
type (Fig. 1c, bottom). Using a withheld sample of unrelated
control and rare-disease affected individuals (as determined by
exome data), we confirmed that the identified common variant
effects were indeed associated with cryptic phenotype severity,
disease-related laboratory measurements, and symptom onset/
progression.

Quantifying disease severity using cryptic phenotype analysis
(CPA). Cryptic phenotype inference relies on fitting a generative
probability model to observed symptom matrices. Due to the
unsupervised nature of this inference, the latent phenotypes
inferred by this approach are not guaranteed to capture the
severity of the desired Mendelian disease. To circumvent this
issue, we performed cryptic phenotype inference only for those
diseases that: (1) mapped to specific diagnoses available in
structured EMR data and (2) had prevalence of at least 10�5 in
the UCSF dataset (to ensure adequate sample size for validation,
see Supplementary Data 1 for complete list). Generative prob-
ability models were fit to the symptom matrices for each of the 50
Mendelian disorders meeting these criteria within both the UCSF
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(N > 1.2 million) and UKBB (N > 500,000) datasets. Consistent
models were recovered for 38 of the 50 disorders (see the
“Methods” section), with the remainder suffering from con-
vergence issues in at least one of the two datasets (Fig. 1c).

To ensure that the inferred cryptic phenotypes captured the
variability of the intended Mendelian disease, we assessed
whether the trait was systematically elevated among withheld,
diagnosed cases (Fig. 2a, exemplar Mendelian disease HHT). For
31 of the 38 disorders, the cryptic phenotypes were significantly
increased among the diagnosed cases in the UCSF dataset
(Bonferroni-corrected bootstrapped P-value < 0.05, Supplemen-
tary Data 4). To verify that the cryptic phenotypes were not
dataset dependent, symptom matrix probability models were
independently inferred using the UKBB, a population with
different ascertainment, demographics, and healthcare
infrastructure23. For 18 of the 31 disorders, the model inferred
within the UKBB reproduced the elevated cryptic phenotypes
among withheld UCSF cases (Bonferroni-corrected bootstrapped
P-value < 0.05, Supplementary Data 4).

Although the UKBB cryptic phenotype models replicated
within UCSF for nearly 40% of the original 50 conditions, their
performance (with respect to increased severity among diagnosed
cases) was systematically worse (Fig. 2a and b for HHT; Fig. 2d
for global comparison; unpaired T-test P-value= 0.003; N= 13,
which includes all diseases successfully captured in the UCSF
dataset with matching UCSF-UKBB cryptic phenotypes and
diagnostic codes available in both datasets, see the “Methods”
section). The source of this decreased performance is likely
multifactorial. For example, the ICD10 encoding used by the
UKBB is less granular (see the “Methods” section). This in turn
decreases the number of symptoms available for model inference,
which can lead to decreased performance. Consistent with this
hypothesis, we note that much of the difference in dataset
performance disappears when models inferred within the UKBB
are applied to the UCSF data (Fig. 2a–c for HHT; see Fig. 2d and

e for a global comparison; unpaired T-test P-value= 0.17; N= 13,
see above). That said, there are many differences between the
clinical datasets in general (sample sizes, population demo-
graphics, data provenance, etc.), and it is difficult to disentangle
all potential factors. Ideally, cryptic phenotypes would be jointly
inferred in the two datasets, allowing their unique information to
be shared systematically. However, because our follow up genetic
analyses could only be performed in the UKBB (UCSF lacks
linked genetic data), all subsequent analyses were performed
using models inferred in the UKBB.

Note, the cryptic phenotypes inferred by the UCSF and UKBB
models showed variable consistency (as assessed using the
coefficient of determination among their predictions within the
UCSF dataset, see Fig. 2f and Supplementary Data 4), even for
diseases that survived our replication filters. Specifically, 10 of the
18 replicating diseases resulted in phenotype models that
generated r2 values among the inferred traits ≥0.2. From this
set of 10 conditions, five had a known genetic mechanism that
could be directly ascertained within UKBB data (autosomal
dominant, X-linked, or phased autosomal recessive); these were
selected for follow up rare and common variant genetic analyses
(Table 1). Among this group of five, there was still variability in
cryptic phenotype consistency (MFS r2= 0.21 vs. A1ATD
r2= 0.89), which may have affected the performance of down-
stream analyses.

Cryptic phenotype validation. To further validate the inferred
cryptic phenotypes, we conducted rare variant association ana-
lyses to ensure that these traits could replicate known mechan-
isms of disease. Because these analyses were conducted for
validation rather than discovery, we focused on rare variants that
were either: (1) annotated as pathogenic/likely pathogenic (P/LP)
in ClinVar2 or (2) predicted29 to be loss-of-function (LoF) alleles
(referred to as P/LP variants subsequently, see Supplementary
Data 6 for full list). Linear regression was performed to assess

Fig. 1 A phenotype-driven approach to identifying common variant modifiers. a Schematic illustrating the assumptions underlying cryptic phenotypes
and the proposed workflow. b Illustration of the model-based approach to symptom matrix decomposition and cryptic phenotype recovery. c Flow diagram
describing the approach to inferring and validating cryptic phenotypes, which were subsequently used to identify common variant modifiers. UCSF: UCSF
Clinical Data Warehouse; UKBB: UK Biobank. a and c were created using Biorender.com.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31030-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3675 | https://doi.org/10.1038/s41467-022-31030-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


whether variants were significantly associated with the corre-
sponding cryptic phenotype (see the “Methods” section). For all
five disorders in Table 1, carriers of pathogenic, disease-causing
variants tended to have more severe cryptic phenotypes (Fig. 3a–c
and Supplementary Fig. 6a, b). However, significant variability
was observed among P/LP variant carriers, and many of these
subjects had few if any apparent symptoms (i.e. cryptic pheno-
types= 0, see Fig. 3a–c, insets).

There are multiple factors that may contribute to the
phenotypic variability seen among P/LP carriers. First, EMR data
is an imperfect proxy for an individual’s true symptoms, and it is
certainly possible that missing information accounts for a
significant fraction of this variability. Second, some of the P/LP
variants may be misclassified. Consistent with this hypothesis, we
note that variants that were flagged due to annotation issues (see
the “Methods” section) tended to have smaller effect sizes (see
Fig. 3a–c). Third, confirmation bias could result in the
documentation of symptoms that would otherwise be left out of
the EMR (ex: epistaxis in a known case of HHT), resulting in
inflated cryptic phenotypes among diagnosed cases (see Fig. 3a–c,
inset and Fig. 3d, top).

Alternatively, inflated cryptic phenotypes would also be
observed if only the most severely affected individuals receive a
rare disease diagnosis. In other words, the inflation of cryptic

phenotypes seen among diagnosed pathogenic variant carriers
could instead be driven by ascertainment bias at the level of
disease diagnosis (Fig. 3d, bottom). The identification of specific
genetic modifiers could help differentiate between these two
models (Fig. 3e). Since it is impossible for a disease diagnosis to
alter an individual’s genotype, an association between common
variation that modifies disease expressivity and the diagnosis itself
is only consistent with a model in which symptom severity affects
disease ascertainment (Fig. 3e, bottom). Therefore, investigating a
role for common variation in cryptic phenotype severity can serve
two purposes. It can identify background genetic variation that
may modify symptom severity, and it can also help distinguish
different types of bias that may be present within EMR data.

Common variation is associated with cryptic phenotype
variability. To identify potential common variant modifiers of
cryptic phenotype severity, we first divided the UKBB into two
subsets for each disease–trait pair, which we refer to as the
training and target cohorts. The training cohorts included unre-
lated subjects of similar genetic ancestry (Caucasian). P/LP car-
riers, diagnosed rare disease cases, and all their 3rd degree or
closer relatives were specifically excluded from these subsets (see
the “Methods” section). The training cohorts were used for
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Fig. 2 Cryptic phenotype inference in the UCSF and UKBB datasets. a Distribution of HHT cryptic phenotype severity among the subjects in the UCSF
testing dataset, stratified by their HHT diagnostic status (green: controls; purple: HHT cases). a (inset) Precision-recall curve for the prediction of HHT
diagnoses using the cryptic phenotype. The approximate performance of a random classifier is shown in red. Panel b displays the same information for the
UKBB dataset, which was generated using an independently inferred phenotype model. Panel c displays the same information as (a), except that the UKBB
phenotype model is used to generate the cryptic phenotypes in the UCSF dataset. d, e The increase in cryptic phenotype severity among diagnosed cases is
displayed jointly for the UCSF and UKBB models/datasets (N= 13 diseases, see main text and Supplementary Data 4). Panel d compares the results of the
UCSF model (applied to the UCSF dataset; x-axis) with those generated by the UKBB model (applied to the UKBB dataset; y-axis). Panel e instead
compares the results of the UKBB model after applying it to both the UCSF (x-axis) and UKBB (y-axis) datasets. Error bars in panels d and e represent 95%
confidence intervals for the severity statistics (estimated using bootstrapped re-sampling, N= 105). Panel f Coefficients of determination (r2) among the
cryptic phenotypes inferred by the UCSF and UKBB models were estimated using the UCSF dataset. The resulting distribution over this statistic is displayed
for the 38 diseases where model fitting was successful in both datasets.

Table 1 Diseases selected for molecular validation and genomic analysis.

Disease name Abbreviation Mode of inheritance Causal genes Variants analyzed

Alpha-1-antitrypsin deficiency A1ATD Autosomal recessive SERPINA1 rs28929474 (E342K; Z-allele)
Hereditary hemorrhagic telangiectasia HHT Autosomal dominant ACVRL1; ENG; SMAD4 P/LP ClinVar variants;novel loss-of-function
Marfan syndrome MFS Autosomal dominant FBN1 P/LP ClinVar variants;novel loss-of-function
Alport syndrome AS Autosomal dominant, X-linked COL4A3; COL4A4; COL4A5 P/LP ClinVar Variants;novel loss-of-function
Autosomal dominant polycystic kidney Disease ADPKD Autosomal dominant PKD1; PKD2 P/LP ClinVar variants;novel loss-of-function
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genome-wide association analyses and polygenic prediction
model inference (N= 294,133–308,381). Alternatively, the target
cohorts contained subsets of unaffected and unrelated subjects of
similar ancestry (to provide power for replication;
N= 32,682–34,265) plus all the individuals affected by the
monogenic disease of interest (after removing any 3rd degree or
closer relatives among this subset; N= 166–17,163).

The results of the genome-wide association analyses conducted
on the training cohorts are summarized using Quantile–Quantile
plots in Fig. 4. For three of the five disorders (A1ATD, AS, and
ADPKD, Fig. 4a, d, and e), the common variant heritability was
significantly increased from zero, consistent with a role for
genetic background effects in phenotypic variability. For two
disorders (HHT and MFS), the heritability was indistinguishable
from zero, even though there was evidence for test-statistic
inflation at low minor allele frequencies. The etiology of this test-
statistic inflation is unclear. It may be driven by the non-Gaussian
nature of the cryptic phenotype distribution. Alternatively,
residual population structure exacerbated by large sample
sizes30,31 could also result in test statistic inflation (see
Supplementary Table 2 for genomic inflation factors re-scaled
for a smaller sample size). Regardless, these results do not exclude
a role for common variants in the phenotypic heterogeneity of
these traits. The cryptic phenotype models for both HHT and
MFS showed reduced consistency across datasets (r2= 0.23 and
r2= 0.21 for HHT and MFS), suggesting that improved modeling
may be able to infer cryptic phenotypes with better performance.

Ultimately, polygenic prediction models were inferred (using
individual level data32, see the “Methods” section) for the cryptic
phenotypes with non-zero heritability, specifically those belong-
ing to A1ATD, AS, and ADPKD (models provided in
Supplementary Data 7–9). These models were then used to
impute polygenic scores (PGS) into the target cohorts so that the
detected genetic effects could be replicated and validated.

CPA identifies common variation associated with A1ATD
severity. Alpha-1-antitrypsin deficiency (A1ATD) is a relatively
common genetic disorder that leads to early-onset emphysema,
liver disease, and auto-inflammatory symptoms33. The Pi*Z allele
(rs28929474) in SERPINA1 is the most common cause of severe
A1ATD, although the penetrance of this variant is incomplete.
The clinical manifestations associated with the Pi*Z allele are
known to depend heavily on genotype (the A1ATD phenotype is
much more severe among Pi*ZZ homozygotes vs. Pi*MZ het-
erozygotes) and environmental background effects (smoking,
alcohol use, etc.)34. Common variant modifiers likely also play a
significant role35. Using the cryptic phenotype approach, we
aimed to further investigate the potential effects of background
genetic variation on A1ATD severity.

The GWAS conducted on the A1ATD cryptic phenotype
(Fig. 5a, Manhattan plot) detected three genome-wide significant
loci. Not surprisingly, they have all been previously linked to
chronic pulmonary disease, lung function, and smoking36

(Supplementary Table 3). These results are consistent with the
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Fig. 3 Exome-sequencing validation of the inferred cryptic phenotypes. Panels a–c Histograms depicting the distribution of cryptic phenotype severity
across three different genotypes in the UKBB: reference (gray), P/LP Carrier (purple), and Flagged P/LP Carrier (green). The marginal P/LP cryptic
phenotype effect sizes (includes flagged and unflagged variants) are provided at the top of each panel. The decomposed baseline and unflagged variant
effects are displayed below the marginal effects. Parentheses contain the standard errors and P-values for the effects. These statistics were estimated using
linear regression and two-sided T-tests (see the “Methods” section). The insets display the cryptic phenotype severity estimates among the P/LP carriers
for each condition, stratified by whether the rare disease diagnosis is absent (Abs.) or present (Pres.). Gray bars represent the mean values within each
diagnostic class, and P-values were computed using linear regression (with Clinical Diagnosis included as a predictor) and two-sided T-tests. No
adjustments were made for multiple testing. a Hereditary hemorrhagic telangiectasia (HHT; N= 153,182 independent subjects). b Marfan syndrome (MFS;
N= 153,182 independent subjects). c Autosomal dominant polycystic kidney disease (ADPKD; N= 153,182 independent subjects). d Illustration of the two
biases that could lead to increased cryptic phenotypes among diagnosed carriers. Top: post-diagnosis confirmation bias. Bottom: pre-diagnosis
ascertainment bias. e Common variant modifiers could be used to distinguish between these competing models, as common variation would only be
correlated with disease diagnosis under the ascertainment bias scenario.
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strong effects that smoking is known to have on A1ATD
severity34. To further investigate, we examined the interaction
between smoking history (measured as reported pack-years;
UKBB Data Field: 20161) and the Pi*Z allele using the inferred
cryptic phenotype. Symptom severity was substantially elevated
among heavy smokers, both within and across the pathogenic
genotypes (Fig. 5b and b inset for Pi*MZ and Pi*ZZ genotypes,
respectively). The cryptic phenotype polygenic score (PGS) was
strongly associated with smoking history (Fig. 5c), and after
regressing out the effects of smoking, the PGS remained
associated with phenotypic severity (βPGS= 0.02; P-value=
1:6 ´ 10�11). This suggests that the PGS may capture back-
ground effects that are independent of smoking history. However,
it is important to note that the relationship among smoking
history, SERPINA1 genotype, and polygenic load is likely
complex. For example, Fig. 5e depicts the PGS effects on cryptic
phenotype severity among pathogenic variant carriers, stratified
by smoking history and genotype. Notably, the PGS effect varies
considerably depending on whether an individual has ever
smoked, particularly among Pi*ZZ carriers (βPGSxPi*ZZ= 0.41
among smokers vs. βPGSxPi*ZZ=−0.13 among non-smokers; LR
test for smoking-by-PGS interaction effects: P-value=
2:1 ´ 10�9). The source of this variability is uncertain, but we
hypothesize that it may be partially driven by smoking cessation/

abstinence among more severely affected pathogenic variant
carriers (Supplementary Fig. 7b).

To further validate the inferred PGS, we tested whether
polygenic load was significantly associated with A1ATD diag-
noses. Unfortunately, structured diagnostic data for A1ATD is
not available in the UKBB medical records, but A1ATD diagnoses
(as provided by a physician) were ascertained as part of a survey
that was conducted among the study participants (UKBB Data
Field: 22152). Consistent with ascertainment bias at the level of
disease diagnosis (see Fig. 3d and e), the cryptic phenotype PGS
was significantly associated with the risk for A1ATD diagnosis
(Firth-corrected logistic regression LR test; βPGS= 0.50; P-
value= 0.01), which was compounded by the large (and
expected) effects of the pathogenic genotypes themselves (βPiZZ=
8.98; P-value= 1:5 ´ 10�26; βPiMZ= 4.75; P-value= 2:3 ´ 10�15).
To determine if increased polygenic load translated to other

outcomes, we examined the variability in age-of-onset for chronic
obstructive pulmonary disease (COPD; Data Field: 42016) among
the different genotypes within our target cohort. Consistent
with prior knowledge, both the Pi*MZ and Pi*ZZ genotypes
resulted in more frequent and earlier onset COPD (βPiZZ= 2.8
± 0.2, P-value= 2:2 ´ 10�25; βPiMZ= 0.16 ± 0.06, P-value= 0.02;
Cox-Proportional Hazards regression, see the “Methods” section).
Furthermore, smoking history (in pack-years) had a profound

a b c

d e

A1ATD HHT MFS

AS ADPKD

Fig. 4 Common variation associated with cryptic phenotype severity. a–e Each panel displays the observed versus expected P-value quantiles for the
cryptic phenotype genome-wide association statistics, stratified by allele frequency (purple: 0.01≤AF < 0.05; blue 0.05≤AF≤ 0.50). Genomic inflation
factors (λIF) are provided in addition to the common variant heritability estimates (h2 ± std errors; estimated using the LDAK toolkit76, see the “Methods”
section). The dashed red lines indicate the expected quantile–quantile relationship under the null model of no association between the variants and the
phenotype. The shaded gray areas represent the 95% confidence interval for this expected relationship. a α-1-Antitrypsin deficiency (A1ATD; N= 294,133
independent subjects). b Hereditary hemorrhagic telangiectasia (HHT; N= 308,381 independent subjects). c Marfan syndrome (MFS; N= 308,350
independent subjects). d Alport Syndrome (MFS; N= 308,088 independent subjects). e Autosomal-dominant polycystic kidney disease (ADPKD;
N= 308,095 independent subjects).
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effect on COPD onset (βSmoke= 0.47 ± 0.01; P-value=
6:8 ´ 10�239), which included significant smoking-by-genotype
interaction effects (LR test P-value= 1:9´ 10�5). After correcting
for smoking history, the cryptic phenotype PGS had a significant,
additive effect (β= 0.20 ± 0.03; P-value= 2:5 ´ 10�15, Fig. 5e),
which persisted even when limiting the analyses to only those

individuals that carry the Pi*MZ/Pi*ZZ genotypes (βPGS= 0.19
± 0.04; P-value= 4:7 ´ 10�6; see Fig. 5f). This additive PGS effect
also replicated in spirometry measurements (Supplementary
Fig. 7c). Note, we performed this analysis using only those
subjects with the Pi*ZZ genotype, but the sample size (N= 102)
was likely too small to detect a significant effect (βPGS= 0.17 ±
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0.24; P-value= 0.46, see Supplementary Fig. 7d). In total, these
results indicate that the cryptic phenotype for A1ATD replicates
much of the known architecture for A1ATD34 while also
identifying common genetic variation that modifies symptom
expression and severity.

CPA identifies putative modifiers of monogenic kidney disease.
Alport syndrome and autosomal-dominant polycystic kidney
disease represent two of the most common forms of hereditary
kidney disease37,38, although their underlying molecular patho-
physiology is distinct. Alport syndrome is a genetically hetero-
genous Type IV collagenopathy linked to the COL4A3, COL4A4,
and COL4A5 genes. The collagen isoforms produced by these
genes play an integral role in maintaining basement membrane
integrity within the glomerulus39, cochlea40, and eye41. In its
mildest form (often referred thin basement membrane
nephropathy42), the disorder is associated with persistent hema-
turia that uncommonly progresses to chronic kidney disease. In
these cases, the disease is typically caused by heterozygous
pathogenic variants located within any of the three causative
genes. In the severe form, the disease is characterized by end-
stage renal disease, hearing loss, and vision abnormalities. Such
individuals typically harbor hemizygous variants in COL4A5 (X-
linked) or biallelic pathogenic variants in COL4A3/COL4A437.
Alternatively, ADPKD is linked to the PKD1 and PKD2 genes,
which encode two integral membrane proteins that play complex
roles in Ca2+ regulation and ciliary functioning38. Phenotypically,
ADPKD leads to chronic kidney disease more consistently,
although there is again a great deal of variability in age of onset
and rate of progression43. Moreover, extra-renal manifestations
are present in a significant fraction of ADPKD patients, and such
symptoms include other organ cysts, vascular aneurysms, hernias,
and bronchiectasis44.

To investigate a role for common genetic variation in AS and
ADPKD variability, we conducted GWAS on their respective
cryptic phenotypes. The results are displayed in Fig. 6a and d. For
AS, three loci reached genome-wide significance (see Supple-
mentary Table 4). Interestingly, the locus on chromosome 19 has
previously been linked to hematuria45, and the locus on
chromosome 13 is located within the intron of another Type
IV collagen isoform (COL4A2). This locus has also been linked to
neurovascular phenotypes36. The third locus is proximal to the
MHC region on chromosome 6, and due to complex linkage
disequilibrium, it has been associated with many disparate
phenotypes36. The GWAS for ADPKD uncovered 30 indepen-
dently associated loci (see Fig. 6d and Supplementary Table 5),
most of which have been previously linked to kidney disease and
blood pressure regulation36.

After performing the genome-wide association analyses,
prediction models were constructed to capture the global effects
of polygenic load on cryptic phenotype severity. With respect to
AS, the inferred PGS had a significant marginal effect in the
withheld target cohort (βPGS= 0.03 ± 0.00; P-value= 9:8 ´ 10�14),
which was more pronounced among the P/LP carriers (βPGSxP/
LP= 0.09 ± 0.03; P-value= 0.002). Diagnostic data for AS is not
available within the UKBB, so we instead focused on two critical
outcomes related to the disease: recurrent and persistent
hematuria (UKBB Data Field: 132002) and end-stage renal
disease (ESRD; UKBB Data Field: 42026). P/LP variants in AS
genes were significantly associated with both outcomes (persistent
hematuria: βP/LP= 1.06, P-value= 0.04; ESRD: βP/LP= 1.70, P-
value= 3:7 ´ 10�4; Firth-corrected logistic regression), although
these effects were less apparent within the age-of-onset data (see
Supplementary Fig. 8d, e). The cryptic phenotype PGS was
marginally associated with persistent hematuria (βPGS= 0.31; P-
value= 0.007; Firth-corrected logistic regression), an effect that
was also apparent when modeling the age-of-onset (βPGS= 0.31
± 0.12; P-value= 0.03; Cox proportional hazards model, see
Fig. 6c). Unfortunately, there were too few persistent hematuria
cases to determine if there was a significant interaction effect
between the polygenic background and P/LP variants (βPGSxP/
LP=−0.00 ± 0.62; P-value= 0.86). Note, there was no evidence
that the cryptic phenotype PGS for AS was associated with ESRD
(βPGS= 0.03; P-value= 0.82; Firth-corrected logistic regression).
However, it was significantly predictive of urine microalbumi-
nuria (βPGS= 3.10 ± 1.36; P-value= 0.023; Supplementary
Fig. 8c), suggesting that the PGS correlates with glomerular
dysfunction.

As was the case for AS, the PGS constructed using the cryptic
phenotype for ADPKD was again strongly associated with the
trait in the target cohort (βPGS= 0.06 ± 0.00; P-value=
3:5´ 10�134), and like before, the effect was more pronounced
among the P/LP carriers (βPGSxP/LP= 0.15 ± 0.05; P-value=
0.003; see Fig. 6e). In contrast to AS, diagnostic data for ADPKD
is available within the UKBB. As expected, P/LP carrier status was
strongly associated with Mendelian disease diagnoses (Firth-
corrected logistic regression; βP/LP= 4.47; P-value= 3:5 ´ 10�31),
but the inferred PGS had no discernable marginal (βPGS= 0.02;
P-value= 0.67) or interaction (βPGSxP/LP= 0.37; P-value= 0.13)
effects. A substantial fraction of P/LP carriers in the UKBB were
diagnosed with ADPKD (specifically, 35% with polycystic kidney
disease and 48% with cystic kidney disease in general), so it is
possible that these diagnoses lacked the variability needed to
detect interaction effects. Therefore, we also examined if the
cryptic phenotype PGS affected ADPKD onset and rate-of-
progression.

Fig. 5 Cryptic phenotype-associated genetic variation modifies A1ATD severity. aManhattan plot displaying the genome-wide association statistics as a
function of chromosomal position. Genes were assigned to loci using FUMA75. The 5 ´ 10�8 significance threshold is displayed as a dashed red line, and
significant loci are highlighted with red stars. b Cryptic phenotype (CP) residuals are stratified by the Pi*MZ/Pi*MM genotypes and plotted as function of
pack-year quantiles. Inset: CP residuals plotted against pack-year quantiles, now stratified by the Pi*ZZ/Pi*MM genotypes. In both panels, the points
represent the mean value within each quantile, and the error bars represent the 95% confidence intervals (CIs) for the mean (obtained through
bootstrapped re-sampling, N= 1000). The association statistics for the genotype x smoking interaction terms are included below the inset (estimated
using linear regression and two-sided T-tests). c Smoking history (expressed as pack-years) is plotted against PGS quantiles (points/error bars indicate
quantile means/95% CIs). d CP residuals, after adjusting for baseline covariates, genotype, and smoking history, are plotted against PGS quantiles and
stratified by the Pi*MZ/Pi*MM genotypes. The inset displays the same information but now stratified by the Pi*ZZ/Pi*MM genotypes. Both panels depict
the quantile means and their associated 95% CIs. The association statistics for the PGS effects (estimated using linear regression and two-sided T-tests)
are included below the inset. e CP residuals within the upper and lower 50th percentiles of the PGS distribution are stratified by both genotype and
smoking history (points/error bars represent subset means/95% CIs). f Kaplan–Meier curves for COPD onset after stratifying the target cohort according
PGS quintiles. g Same as in f, except only subjects with the Pi*MZ/Pi*ZZ genotypes are included. The PGS effect size and association statistics (computed
using a Cox Proportional-Hazards model, see the “Methods” section) are provided for the subjects depicted in f and g. The shaded regions represent the
95% CIs for the survival curves. The summary statistics reported in this figure were not adjusted for multiple testing.
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Cystic kidney disease onset (UKBB Data Field: 132533) was
modeled as a function of both P/LP carrier status and polygenic
load. As expected, ADPKD P/LP carriers were at high risk for
early-onset cystic kidney disease (Cox proportional-hazards
regression model; βP/LP= 3.73 ± 0.29; P-value= 3:2´ 10�36),
consistent with the known pathophysiology of the disorder.
Interestingly, there was a significant interaction effect between the
cryptic phenotype PGS and P/LP carrier status (βPGSxP/LP= 0.50
± 0.16; P-value= 0.002; see Fig. 6f), consistent with a model in
which polygenic load modulates ADPKD severity. Because ESRD
is the downstream effect of severe cystic kidney disease, we used

the onset of this phenotype as a proxy for ADPKD progression.
Once again, P/LP carrier status had a profound effect on ESRD
onset (β

P/LP
= 3.91 ± 0.37; P-value= 7:0 ´ 10�19, see Supplemen-

tary Fig. 9d), and there was again a significant interaction effect
between P/LP carrier status and polygenic load (βPGSxP/LP= 0.50
± 0.21; P-value= 0.02; see Supplementary Fig. 9e). To further
verify this effect, we estimated46 the glomerular filtration rate
(eGFR) within our target cohort. P/LP carriers had significantly
lower eGFR values (β

P/LP
=−15.2 ± 2.0; P-value= 7:2 ´ 10�15),

and there was again a significant interaction effect between carrier
status and the inferred PGS (βPGSxP/LP=−3.8 ± 1.3; P-value=
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0.005; see Supplementary Fig. 9c). Overall, these results suggest
that polygenic burden is associated with worse outcomes among
P/LP carriers, consistent with a role for common variant effects in
modifying ADPKD disease severity.

Discussion
Cryptic phenotype analysis (CPA) uses statistical modeling to
infer quantitative traits that summarize disease-related pheno-
typic variability. These traits are estimated using symptoms
documented in the electronic medical record (EMR). In the
current study, we used cryptic phenotypes to identify common
genetic variants putatively associated with Mendelian disease
severity. Our approach relies on two assumptions. First, the dis-
ease of interest must represent the severely affected extreme of a
spectrum of phenotypic variation. Second, shared genetic factors
must drive this variability within the mildly and severely affected
individuals. If true, then modifier effects should be detectable
within a subset of the population that extends beyond the rare
disease cases. Consistent with this hypothesis, we used CPA to
identify common genetic variation associated with Mendelian
disease severity, even though our initial association analyses were
conducted in populations that were specifically depleted for the
rare disease cases. The results suggest that shared genetic factors
drive variability across the full range of cryptic phenotype severity
and predict a specific role for common variation in the genetic
architecture of Mendelian disease-associated traits. Nevertheless,
there are multiple avenues for further investigation.

CPA has several attractive properties. First, it performs latent
phenotype inference using an unsupervised generative model (see
the “Methods” section), thereby directly estimating quantitative
traits that summarize symptom variability. Second, its model-
based nature allows cryptic phenotypes to be directly imputed
into new datasets, albeit only if the observed data is encoded in
the same format. Third, the probability model underlying CPA is
modular (i.e. composed of conditionally independent compo-
nents), so it can be easily extended to incorporate new data types
and assumptions. For example, our study used structured EMR
data (ICD10 diagnostic codes) to capture disease-related pheno-
typic variability. However, these data likely provide an incomplete
view of clinical heterogeneity. Because CPA is performed using a
fully generative model, additional datatypes such as laboratory
results or even unstructured clinical data could be incorporated
into the framework by specifying new data-generating functions.
The inclusion of such datatypes could in turn result in more
accurate latent phenotypes, ultimately increasing power for
downstream analyses. That said, simpler heuristic9 and
discriminative47 approaches also exist for quantifying disease-

related variability, and additional work is needed to determine if
and/or when such indirect approaches can be used to perform the
types of analyses described in this study.

The results from the common variant association analyses
demonstrate that polygenic load likely plays a role in Mendelian
disease variability. These polygenic effects were detected at the
level of the cryptic phenotypes themselves (Figs. 5d, e, 6b, and e),
but they were also apparent when examining outcomes known to
be associated Mendelian disease severity (spirometry measure-
ments, glomerular filtration rate, symptom age-of-onset, etc.).
Although the results replicated across Mendelian diseases (i.e.
polygenic load was consistently associated with more severe
outcomes), it is difficult to replicate the results across datasets, as
a unique combination of information (structured EMR data,
genome-wide common variation, and exome sequencing data) is
required. Biobanks with linked medical and genetic data are
becoming increasingly common48–52, so the types analyses
described here will soon become easier to perform and replicate.
In addition, these new biobanks will contain a wealth of genetic
and phenotypic diversity. Although this information will certainly
improve our understanding of human genetics, it will come at the
cost of increased phenotypic complexity, particularly as more
types of clinical information (laboratory results, unstructured
notes, imaging, etc.) become available. We anticipate that meth-
ods like CPA, which summarize and simplify high-dimensional
phenotypes, will play an important role in analyzing these
expanding datasets.

The current study uses CPA to identify common genetic var-
iation associated with Mendelian disease severity and outcomes.
The general approach, however, could be applied to diseases with
even more complex genetic architectures, provided that they are
associated with a diverse array of clinical findings (e.g. systemic
lupus erythematosus). In addition, the analyses presented here
focus on distilling disease heterogeneity into a single quantitative
trait. However, it is also possible to use a method like CPA to
decompose disease-related variability into multiple sub-pheno-
types, an approach that is already being leveraged to investigate
the genetic architecture of conditions like Type 2 diabetes53,
psychiatric illness54, and asthma55. We also note cryptic quanti-
tative traits likely have applications outside of genetic association
analyses. For example, they could be used to assist with rare
variant annotation (see Fig. 3a–c for examples) or identify
environmental modifiers (Fig. 5b).

In summary, cryptic phenotype analysis systematically esti-
mates quantitative traits that capture spectrums of phenotypic
variation using qualitative symptom data. By applying this
approach to Mendelian diseases, we were able to identify putative

Fig. 6 Common variant modifiers of monogenic kidney disease revealed through cryptic phenotype analysis. a Manhattan plot displaying the genome-
wide association statistics for the AS cryptic phenotype as a function of chromosomal position. Genes were assigned to loci using FUMA75. The 5 ´ 10�8

significance threshold is displayed as a dashed red line, and significant loci are highlighted with red stars. b AS cryptic phenotype (CP) residuals, after
adjusting for baseline covariates, P/LP genotype, and pack-years, are plotted against PGS quantiles and stratified by the P/LP carrier status. The points
represent the mean value within each quantile, and the error bars represent the 95% confidence intervals (CIs) for the mean (obtained through
bootstrapped re-sampling, N= 1000). The association statistics for the P/LP variants, the PGS, and their interaction effects are included to the right
(estimated using linear regression and two-sided T-tests). c Kaplan–Meier curve for Persistent Hematuria (see the “Methods” section) is stratified by PGS
quintile. The shaded regions represent the 95% CIs for the survival curves. The marginal PGS effect and summary statistics were estimated using Cox
proportional-hazards regression (see the “Methods” section). d Manhattan plot displaying the genome-wide association statistics for the ADPKD cryptic
phenotype as a function of chromosomal position. e ADPKD cryptic phenotype (CP) residuals, after adjusting for baseline covariates, P/LP genotype, and
smoking status (see the “Methods” section), are plotted against PGS quantiles and stratified by the P/LP carrier status. The points and error bars represent
the mean value within each quantile and the 95% CIs, respectively. The association statistics for the P/LP variants, the PGS, and their interaction effects
are included to the right (estimated using linear regression and two-sided T-tests). f Kaplan–Meier curve for cystic kidney disease onset stratified by PGS
quintile. Note, only the P/LP carriers are depicted; however, the PGSxP/LP interaction effects were computed using the complete target cohort (effect size
and summary statistics estimated using Cox proportional-hazards regression). The summary statistics reported in this figure were not adjusted for multiple
testing.
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modifiers of disease severity. The work described here builds
upon a growing number of studies9,56,57 that demonstrate the
utility of applying statistical models of human phenotypes to
population-scale medical record and genetic datasets. However,
the wider adoption of CPA and similar methods will require the
development of flexible and robust statistical models that can
reliably summarize high-dimensional phenotypes isolated from
increasingly complex clinical datasets. In addition, more work is
needed to explore the utility and limitations of these approaches,
particularly across diverse diseases and populations. Nevertheless,
as biobank-scale datasets become more common, we anticipate
that CPA and similar methods will continue to shed light onto the
genetic complexity of high-dimensional human phenotypes.

Methods
Clinical datasets. Phenotypic analyses were conducted using the University of
California San Francisco De-Identified Clinical Data Warehouse (UCSF-CDW)58,
a database of structured health information that is made available to UCSF
researchers free-of-charge. The data was captured for use on 31 May 2019 and
includes roughly 8 years of clinic visits and inpatient hospitalizations (see Sup-
plementary Methods). Following capture, patient demographic data was aligned to
the International Classification of Disease, Tenth Revision, Clinical Modification
(ICD10-CM) diagnostic codes available within the medical encounters. The indi-
vidual diagnostic codes were simplified by collapsing multiple appearances of each
code into a single value (at-least-one binarization), enabling the full set of diag-
nostic codes specific to each patient to be stored as a sparse, binary array. The
ICD10-CM codes were filtered according to multiple criteria, which are described
in the Supplementary Methods. This generated a dataset containing 10,483 ICD10-
CM codes aligned to 1,204,212 patients. This is subsequently referred to as the
UCSF-ICD10-CM dataset.

The UCSF-ICD10-CM was further processed in two ways. First, the ICD10-CM
codes were transformed into human phenotype ontology (HPO)26 terms using a
customized mapping, the construction of which is outlined below and in the
Supplementary Methods (resulting dataset denoted UCSF-HPO). This alignment
resulted in a global diagnostic matrix encoding 1674 HPO symptoms. Second, we
translated the ICD10-CM codes into the ICD10 terminology utilized by the UK
Biobank (ICD10-UKBB), taking advantage of the fact that the UKBB encoding is a
less granular subset of the ICD10-CM (details regarding the precise translation can
be found within our vLPI software package available on Github59). This processed
dataset is subsequently referred to as UCSF-ICD10-UKBB. The UCSF-ICD10-
UKBB dataset was also translated into HPO terms (denoted UCSF-HPO-UKBB).
These less granular datasets contained 4933 and 1423 diagnostic terms respectively.

The UK Biobank (UKBB) is a collection of ≈500,000 middle-aged British adults
who have received extensive genotyping and phenotyping23. The bulk UKBB
dataset was downloaded on 22 January 2020 using the software provided by the
organization. Following download, the raw data file was parsed, isolating
demographic variables of interest and collapsing main/secondary inpatient
summary diagnoses into a single data value (using at-least-one binarization). The
resulting diagnostic codes were filtered according to multiple criteria (see
Supplementary Methods), resulting in a 1:1 correspondence between the diagnostic
codes available within the UKBB and the UCSF-ICD10-UKBB datasets. These
ICD10 codes were then translated into HPO terms. The full UKBB dataset (after
removing withdrawn subjects; N= 502,488) was used for cryptic phenotype
inference, but the subjects were also filtered according to recommended best
practices for genetic analyses23,60. Filtering resulted in the following two subsets:
(1) 485,014 subjects (with exome data, N= 199,234) that remained after removing
individuals whose genetic data is likely to be confounded by artifact (UKBB-Full),
and 2) 342,796 unrelated subjects (with exome data, N= 153,182) of likely Western
European (Caucasian) ancestry (UKBB-Unrelated). Further details regarding this
processing can be found in the Supplementary Methods.

Because the UCSF-CDW and UKBB were both used for phenotype model
inference and evaluation, the datasets were a priori divided each into training and
testing subsets. To ensure that the testing datasets contained positive cases for each
rare disease included in our analysis, distinct training and testing subsets were
generated for every disorder. The subsets were constructed by randomly
subsampling 75% of the data for training and 25% for testing while maintaining an
equal ratio of diagnosed rare disease cases in each. All model inference and
preliminary analyses were performed using the training datasets, while the testing
datasets were only used for the final evaluation of cryptic phenotypes (see below,
Fig. 2d and e, and Supplementary Methods).

Aligning rare diseases to structured medical data. Based on previous
work9,61–63, we integrated multiple biomedical ontologies and terminologies to
map rare diseases and their symptoms to structured medical data (i.e. diagnostic
billing codes). To generate a set of rare diseases for analysis, we first used the
Human Disease Ontology64 to obtain mappings between the Online Mendelian
Inheritance in Man (OMIM) database65 and the ICD10-CM terminologies.

Building on previous work62, we curated the OMIM-to-ICD10-CM alignments,
selecting and grouping ICD10-CM codes that reliably mapped to a single or
homogenous set of OMIM diseases, ensuring that the disorders were also anno-
tated within the Human Phenotype Ontology26. This resulted in 166 rare, Men-
delian conditions that were aligned to both the HPO and ICD10 terminologies
(Supplementary Fig. 1). The 166 diseases were sorted according to their diagnostic
prevalence in the UCSF-CDW; 50 disorders were selected for follow up testing (see
Supplementary Methods; listed in Supplementary Data 1).

The HPO symptoms themselves were aligned to the ICD10-CM terminology in
an automated fashion by integrating the information contained within multiple
biomedical ontologies66–69. Details regarding the alignment are provided in the
Supplementary Methods. This resulted in 1674 unique alignments between HPO
terms and ICD10-CM codes (Supplementary Data 2). We assessed their
performance by using them as features in a rare disease diagnosis prediction task
(Supplementary Fig. 2). We found that prediction models constructed from the
annotated26, ICD10-CM-aligned HPO terms had performances that were similar to
models constructed using the complete ICD10-CM codebook (see Supplementary
Table 1).

Cryptic phenotype analysis. Cryptic phenotype analysis (CPA) refers to the
process by which a set of symptoms is used to infer a univariate, quantitative trait
that captures the clinical heterogeneity observed within a disease of interest. This
quantitative but cryptic phenotype can be used to assess clinical variability in both
the diagnosed cases and the more general population, enabling the types of analyses
described above. CPA consists of two stages. In the first, the symptoms annotated
to a particular disease are decomposed into a low-dimensional set of quantitative,
latent phenotypes. In the second stage, the trait that best captures disease morbidity
(i.e. its symptom expressivity) is identified, since multiple latent traits are often
recovered from a single symptom matrix. Below, we briefly outline the two stages of
CPA. A more detailed description is provided in the Supplementary Methods.

Latent phenotype inference. Consider the set of K symptoms that are associated
with some rare disease of interest, and furthermore, assume that these symptoms
are binary (present/absent) and permanent (i.e. once diagnosed, they do not
resolve). Let Si;j denote the status of the jth symptom in the ith subject such that
Si;j ¼ 1 indicates that the patient has been diagnosed with this symptom. Fur-
thermore, let S denote an N ´K-dimensional matrix of symptom diagnoses such
that the ith row of the matrix (denoted Si) contains the diagnoses for subject i.
Finally, let Z denote an N ´ L-dimensional matrix of latent phenotypes, where each
column represents the magnitude (i.e. severity) of an independent latent pheno-
type. We modeled the joint likelihood of the disease symptoms and latent phe-
notypes according to

P S;Zjθð Þ ¼ f Z;θð Þ ´PðZÞ ð1Þ
where f Z; θð Þ is the symptom risk function (defined by the parameter set θ) that
maps the latent phenotypes onto the matrix of symptom probabilities (i.e.
f Z; θð Þ 2 0; 1½ �N ´K � P SjZ; θð Þ) and P Zð Þ is a generative model for the latent
phenotypes themselves. Additional details regarding f Z; θð Þ and P Zð Þ are provided
in the Supplementary Methods.

Given an observed symptom matrix (denoted S ¼ s), we obtained estimates for
the symptom risk function parameters (denoted θ̂) by optimizing a lower bound
approximation to the model marginal likelihood (i.e. P(s|θ)= ∫P(s,Z|θ)dZ) using an
amortized, variational inference algorithm27,28. Model inference was conducted
using the training subsets only. Estimates for the latent phenotypes of interest
(denoted Ẑ) were obtained as a direct by-product of this optimization process (see
Supplementary Methods). In practice, the observed symptom matrices for each rare
disease were constructed from the UCSF-HPO, the UKBB-HPO, and the UCSF-
HPO-UKBB datasets using the annotations available on the HPO website (see
Supplementary Data 3 for the complete disease-to-symptom mappings). However,
some of the aligned symptoms were manually curated to resolve convergence issues
(see Supplementary Methods); Supplementary Data 5 contains the final disease-to-
symptom mappings used to infer the cryptic phenotypes for the 10 diseases that
passed all our filters (see below). Additional details concerning our model inference
and evaluation procedures are provided in the Supplementary Methods.

Cryptic phenotype identification and evaluation. Following inference, we assigned
each rare disease a single cryptic phenotype, which we define as the latent trait that
best captures the symptom frequency intrinsic to the rare disease of interest (i.e. its
morbidity). By default, all our models were initialized with a total of 10 possible
latent phenotype components, as multiple pathologic processes can contribute to
the correlation structure observed among some set of symptoms (see Supple-
mentary Methods for more information). Although this meant that many of our
models were initially overdetermined, we found that our inference algorithm was
able to automatically remove unnecessary components by zeroing out their para-
meters in the symptom risk function. The number of latent components that
remained following model inference was termed the model’s effective rank (Leff ,
see Supplementary Methods for precise definition), which was typically much less
than the number of components used to initialize the model (Supplementary
Fig. 4). When Leff ¼ 1, then this single component was automatically selected to
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be the disease’s cryptic phenotype. When Leff > 1, then each inferred latent phe-
notype was used separately as a classifier to predict rare disease diagnoses in the
training dataset, noting that the component that best captures the morbidity of a
disease should be most predictive of its diagnostic status (see Fig. 3a–c, inset for
examples). This top-performing latent component (assessed using the average
precision score implemented in scikit-learn70) was then selected as the disease’s
cryptic phenotype.

Note, the model fitting described above was completed in both the UCSF and
UKBB datasets, with the caveat that not all the Mendelian diseases in
Supplementary Data 1 map to specific ICD10 diagnostic codes in the UKBB dataset
(the encoding for this dataset is more limited, see above). Therefore, all cryptic
phenotype models inferred in the UKBB dataset were also applied to the UCSF
dataset (using UCSF-HPO-UKBB, see Fig. 2e for results). To ensure the assigned
cryptic phenotypes were in fact capturing Mendelian-disease related morbidity, we
compared the average cryptic phenotype severity among diagnosed cases to their
undiagnosed controls (using the test datasets only). For a cryptic phenotype to
successfully capture disease morbidity, the average symptom severity among
Mendelian disease cases had to be significantly higher in both the UCSF and UKBB
datasets (significance assessed through bootstrapped re-sampling71 after
performing Bonferroni corrections, see Fig. 2d and e for results). If Mendelian
disease diagnostic codes were not available in the UKBB, then this increase in
cryptic phenotype severity only needed to occur in the UCSF dataset.

Beyond capture, we also wanted to ensure that models inferred within the two
independent datasets were consistent, meaning that they generated similar results
when applied to the same dataset. Therefore, the phenotype models inferred within
the UKBB were directly applied to the UCSF-HPO-UKBB dataset. Consistency was
then assessed in three ways. First, the same latent component had to be assigned as
the cryptic phenotype in both datasets (see above). Second, the UKBB model had to
reproduce the increase in phenotype severity observed among the Mendelian
disease cases within this new dataset. Third, the cryptic phenotypes produced by
the UCSF and UKBB models needed to be correlated (as assessed through the
coefficient of determination, r2). Using an r2 cutoff of 0.2, ten of the original fifty
Mendelian disorders survived our capture, replication, and consistency filters.
However, it is entirely plausible that replicable and consistent cryptic phenotypes
could have been inferred for the other disorders through careful curation of
annotated symptoms, larger sample sizes, and more focused adjustment of
inference algorithm parameters (see Supplementary Methods).

Cryptic phenotype validation. The cryptic phenotypes for the five diseases listed
in Table 1 were further validated through rare variant association studies. This
required identifying pathogenic variant carriers within the UKBB. For A1ATD, the
causal Pi*Z allele (rs28929474) was directly ascertained through array-based gen-
otyping, so carriers of the Pi*MZ and Pi*ZZ genotypes were identified in the call/
imputation files (see UKBB Data Category 263). For the remaining diseases, we
downloaded the VCF files that contained the known causal genes (see Table 1). We
then used the ClinVar database VCF (available at https://ftp.ncbi.nlm.nih.gov/pub/
clinvar/) to identify all variants in the UKBB that have pathogenic/likely patho-
genic annotations (accomplished using bcftools72). Because heterozygous loss-
of-function (LoF) is an established molecular mechanism for each of diseases in
Table 1 (except for A1ATD), we also identified LoF variants that were not listed in
ClinVar. These were annotated using the LOFTEE plugin29 for the ensembl variant
effect predictor73. Not all the variants isolated in this manner have equivalent levels
of evidence for pathogenicity. Therefore, we added a flag to each variant to indicate
if: (1) it had conflicting annotations, (2) it was annotated by a single submitter, or
(3) it was located within a non-canonical transcript (LoF variants only). Supple-
mentary Data 6 contains a complete list of the P/LP variants analyzed in this study.

Using the VCF and genotype call files, we then identified all carriers of the P/LP
variants described above. To assess whether the variants were associated with
cryptic phenotype severity, we estimated their average genetic effect using the
following linear model:

CPi ¼ β0 þ βP=LP ´Gi þ a ´XT ð2Þ
where CPi denotes the cryptic phenotype of the ith subject, β0 is an intercept
parameter, βP=LP is the average effect parameter for the P/LP variants, Gi is the

carrier status of the ith patient, and XT denotes a vector of covariates (with their
corresponding parameter vector given by a). Sex, age (inverse rank-transformed to
remove skew), UKBB array platform, and the first 10 principal components of the
genetic relatedness matrix were used as covariates. The analysis was limited to
unrelated individuals of similar ancestry (Caucasian) to reduce the risk for
population structure confounding (N= 153,182). Estimates for the parameters
were produced using ordinary least squares, and per-parameter significance was
assessed using a two-sided T-test. To account for effects related to variant
annotation, we also fit the following linear model:

CPi ¼ β0 þ βP=LP ´Gi þ βUnflagged P=LP ´Gi ´Ui þ a ´XT ð3Þ
where Ui is a binary variable that indicates if the ith patient carries a variant
without any annotation flags (see above). This enabled us to decompose the
phenotypic contributions of P/LP variants into baseline ðβP=LPÞ and unflagged
(βUnflaggedP=LP) effects, which are displayed at the top of the panels in Fig. 3a–c and

Supplementary Fig. 6b. Note, the AS phenotype is known to be more severe among
hemizygous male carriers of COL4A5 pathogenic variants, consistent with X-linked
inheritance. Therefore, we included an interaction term between sex and COL4A5
carrier status during our molecular validation of the AS cryptic phenotype. This
interaction effect did not reach statistical significance (βCOL4A5xSex= 0.09 ± 0.15; P-
value= 0:56), likely due to the small number of male P/LP COL4A5 carriers in the
dataset (N= 12 in UKBB-Unrelated). As a result, sex-specific interaction effects
were not included in downstream analyses.

Common variant genome-wide association analyses. Genome-wide association
studies were performed to identify common genetic variants associated with the
cryptic phenotypes assigned to the diseases in Table 1. To reduce the risk of
confounding, the association analyses were conducted using a subset of patients
isolated from UKBB-Unrelated (N ¼ 342; 796) that met the following criteria: (1)
did not possess a P/LP variant in a gene linked to the disease of interest, (2) were
never diagnosed with this disease, and (3) were not a 3rd degree or closer relative of
any of these subjects. From this training cohort, a random subset of 10% were
removed and added to the Mendelian disease P/LP carriers. This second dataset is
called the target cohort, and it was used to perform polygenic score replication and
validation. All SNPs meeting the following criteria were in included into the
analyses: directly genotyped by the UKBB, minor allele frequency (MAF) ≥ 1%,
missing genotype fraction ≤5%, and Hardy–Weinberg equilibrium (HWE) P-
value ≥ 10−12. Note, a relatively limited number of genetic markers (579,429 SNPs)
met these criteria, but this smaller set of features enabled us construct individual-
level prediction models for polygenic score inference (see below).

Genome-wide association studies (GWAS) were conducted by fitting the
following linear model to each cryptic phenotype:

CPi ¼ β0 þ βSNPj ´Gi;j þ a ´XT ð4Þ
where CPi indicates the cryptic phenotype in the ith patient, βSNPj represents the
average effect of the jth SNP, Gi;j encodes the minor allele count (Gi 2 f0; 1; 2g;
additive model), and XT/a denote covariates/effect parameters respectively. Sex, age
(rank-normalized), UKBB array platform, and the first 10 principal components of
the genetic relatedness matrix were used as covariates. Association statistics were
estimated using the Plink274 software package (--glm command). Lead SNPs
and their corresponding annotations were obtained using the FUMA75 platform.
The loci identified for the three diseases with genome-wide significant effects are
provided as Supplementary Tables 2–4 (A1ATD, AS, and ADPKD, respectively).

SumHer (available within the LDAK toolkit76) was used to produce estimates
for the fraction of the additive variance explained by the genotyped SNPs (narrow-
sense heritability, denoted h2). This required the specification of an underlying
heritability model76. Based on recommended best-practices, we used the LDAK-
Thin model given its simplicity and portability to individual-level prediction. This
required computing a tagging file, which was constructed using a random subset
(N= 10,000) of UKBB-Unrelated. First, duplicate SNPs were identified using the
ldak—thin command with the following options:--window-prune .98--
window-kb 100. Next, the tagging file itself was constructed using the ldak --
calc-tagging command (with options --power -.25—window-cm 1 --
save-matrix YES). Finally, narrow-sense heritability estimates were produced
from the GWAS summary statistics using the ldak --sum-hers command
(while also storing the per-SNP heritability estimates for downstream analyses).

Polygenic prediction models summarizing the common variant association
statistics were inferred for the three diseases in Table 1 that had cryptic phenotype
h2 estimates significantly >0 (A1ATD, AS, and ADPKD). These models were
estimated using the individual-level genotype data available for each training
cohort. More specifically, we used LDAK-Bolt-Predict32 (ldak --bolt
command) to estimate effect sizes for every SNP included in the cryptic phenotype
association analyses (while conditioning on the covariates included in the initial
linear model, see above). This required access to the per-SNP heritability estimates,
which were produced by SumHer (see above). Note, 10% of the training data was
withheld during model inference (using the --cv-proportion .1 flag) to
estimate prior parameters. After model fitting was complete, polygenic scores were
imputed into the target cohort using the --calc-scores command (with --
power flag set to 0). The per-SNP effect size estimates produced by the predictor
models are included as Supplementary Data 7–9 (A1ATD, AS, and ADPKD
respectively).

Estimating the effects of polygenic load on Mendelian disease severity and
outcomes. Polygenic scores (PGS) were imputed into the target cohorts for each
rare disease in order to: (1) replicate the PGS-cryptic phenotype relationships, (2)
assess for interaction effects between the PGS and P/LP variants, and (3) determine
if high polygenic load was associated with established Mendelian disease outcomes.

The first two analyses were accomplished by fitting the following linear model
within the target cohort constructed for each cryptic phenotype:

CPi ¼ β0 þ βPGS ´ ξi þ βPnLP ´Gi þ βPGSxPnLP ´Gi ´ ξi þ a ´XT ð5Þ
where ξi represents the PGS for the ith patient, βPGS represents its average
phenotypic effect, and βPGSxPnLP ´Gi ´ ξi models the interaction between the PGS
and the P/LP variants. In the case of A1ATD, the two pathogenic genotypes (Pi*ZZ
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and Pi*MZ) were modeled as separate genetic effects, each with their own PGS
interaction terms. For AS, both flagged and unflagged P/LP variants were included
into the analysis, as they were both shown to influence cryptic phenotype severity
(see Supplementary Fig. 6b). For ADPKD, only the unflagged variants were
included, as there was no detectable phenotypic effect for the flagged variants,
suggesting that they most likely represent annotation noise (see Fig. 3c). The
previous model was fit using ordinary least squares, and association statistics were
computed using two-sided T-tests.

Regarding covariates (i.e. a ´XT), sex, age, UKBB array platform, and the first
10 principal components of the genetic relatedness matrix were included in every
model. Smoking history was also included into each model, although its
incorporation varied across diseases. For A1ATD and AS, self-reported pack-years
(defined by Data Field: 20161) were used to quantify smoking history. Note, there
was a significant interaction effect between the Pi*Z allele and smoking history (as
expected), so interaction terms between pack-years and the pathogenic genotypes
were included into the regression model for this disease (see Fig. 5b). There was no
significant interaction effect between pack-years and P/LP carrier status for AS
(βPack-years x P/LP= 0.03 ± 0.05; P-value= 0.55), so smoking interaction terms were
not included for this disorder.

Regarding ADPKD, smoking had a strong protective effect on cryptic
phenotype severity such that those P/LP carriers with a history of ever-smoking
(provided by Data Field: 20160) had systematically lower cryptic phenotype scores
(βSmoke x P/LP=−0.41 ± 0.11; P-value= 1:2 ´ 10�4). This result is clearly at odds
with the known pathophysiology of smoking and renal disease, and it likely stems
from the fact that subjects with moderate-to-severe ADPKD are often diagnosed at
a young age, prior to when smoking behavior is established (see Supplementary
Fig. 9d for Kaplan–Meier curve of ESRD among P/LP carriers). Consistent with
this hypothesis, significantly fewer P/LP carriers reported ever-smoking when
compared to the general population (see Supplementary Fig. 9b). Based on these
results, the relationship between smoking history and ADPKD severity is likely to
be confounded by multiple unmeasured factors (specifically, medical intervention
and counseling). Given our inability to adequately adjust for such complex
confounding, smoking history in ADPKD was modeled using a simple binary
variable (UKBB Data Field: 20160), which was included along with a P/LP
interaction term. Note, similar confounding likely plays a role in the interaction
effects between smoking and genotype for the other disorders (see Fig. 5e and
Supplementary Fig. 7b for examples), but it was only significant enough to reverse
the established morbidity relationship for ADPKD.

To confirm a role for polygenic load on Mendelian disease outcomes, we
examined its effect on quantitative measurements that capture established
pathophysiology but are distinct from the symptoms used to construct the cryptic
phenotype. For A1ATD, we used the FEV1/FVC ratio (UKBB Data Field: 20258), a
measurement derived from spirometry that quantifies the severity of obstructive
lung disease (see Supplementary Fig. 7c). For AS, we examined urine microalbumin
level (UKBB Data Field: 30500), which correlates with renal health and glomerular
barrier function (see Supplementary Fig. 8c). Finally, for ADPKD, we computed an
estimate46 of the glomerular filtration rate (eGFR) from the serum creatinine level
(UKBB Data Field: 30700), which is often used as a proxy for overall renal function
(see Supplementary Fig. 9c). The regression models themselves incorporated the
same genetic and covariate effects that were used for the cryptic phenotypes, and
they were again fit using ordinary least squares with association statistics computed
using two-sided T-tests.

Finally, the effect of polygenic load on Mendelian disease severity was assessed by
estimating its association with: (1) the rare disease diagnosis itself (when available)
and (2) the onset of clinically important outcomes. The effect of the PGS on
Mendelian disease diagnostic risk was modeled using logistic regression according to

Log-Odds Di

� � ¼ β0 þ βPGS ´ ξi þ βPnLP ´Gi þ βPGSxPnLP ´Gi ´ ξi þ a ´XT ð6Þ
where Di is in a binary variable indicating whether a disease diagnosis is present or
absent. The covariates included were sex, age, UKBB array platform, the first 10
principal components of the genetic relatedness matrix, and smoking history (plus
interaction terms where relevant, see above). Model fitting was performed using the
maximum-likelihoodmethod with a Firth penalty term, which was included given the
risk for Type I error rate inflation in the setting of unbalanced samples and rare
predictors77. Significance for a given association was assessed using a likelihood-ratio
χ2 test78.

The age-of-onset for clinically important Mendelian disease outcomes was also
used to assess the effects of polygenic load on disease severity. The outcomes
included in this study were: end-stage renal disease (ESRD; UKBB Data Field:
42026), chronic obstructive pulmonary disease (COPD; UKBB Data Field: 42016),
recurrent and persistent hematuria (UKBB Data Field: 132002), and cystic kidney
disease (UKBB Data Field: 132532). Details concerning the construction of these
data fields are available through the UKBB. For each outcome, age-of-onset was
modeled using Cox proportional hazards (CPH) regression:

λi ¼ βPGS ´ ξi þ βPnLP ´Gi þ βPGSxPnLP ´Gi ´ ξi þ a ´XT ð7Þ
where λi represents the logarithm of the partial hazard function for the ith subject.
The following covariates were included into the model: sex, UKBB array platform,
the first 10 principal components of the genetic relatedness matrix, and smoking
history (with interaction terms as described above). Model fitting was performed by

maximizing the partial likelihood (using the lifelines software package79), and
significance was assessed using a likelihood-ratio χ2 test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The clinical and genetic datasets used in the analyses presented in this manuscript cannot be
shared directly with third parties, as both have specific provisions against open data sharing
outside of their usual application processes. Information regarding third party access to the
UCSF De-Identified Clinical Data Warehouse can be found through UCSF Data Resources:
https://data.ucsf.edu/cdrp/research, and the application process for access to the UK
Biobank is outlined on their website: https://www.ukbiobank.ac.uk/register-apply. The
ClinVar2 (downloaded 24 March 2021), Human Disease Ontology64 (downloaded 21
August 2019), and Human Phenotype Ontology26 (downloaded 8 August 2019) databases
are freely available online (https://www.ncbi.nlm.nih.gov/clinvar/, https://obofoundry.org/
ontology/doid.html, and https://hpo.jax.org/app/, respectively). Additional databases used
to align diseases and symptoms to structured medical data (along with their associated
URLs for access) are provided in the Supplementary Methods (see Section 1.2.2). Datasets
that were generated to conduct the analyses described in this manuscript are provided as
Supplementary Data 1–9. The summary statistics for the cryptic phenotype genome-wide
association studies were submitted to the GWAS catalog36 at https://www.ebi.ac.uk/gwas/
(accession IDs: GCST90101825, GCST90101826, GCST90101827, GCST90101828, and
GCST90101829 for A1ATD, HHT, MFS, AS, and ADPKD, respectively). The cryptic
phenotypes for A1ATD, HHT, MFS, AS, and ADPKDwere returned to the UK Biobank for
third-party use (under Application ID 53312).

Code availability
We have deposited the software developed for this study. Latent phenotype model
inference was performed using the vLPI software package, which was specifically
designed to perform the analyses presented in this manuscript. It is written in Python
and relies heavily upon the Pyro80 (version 1.3.1) and PyTorch81 (version 1.5.1)
software libraries. The vLPI software package is available via Github59. To facilitate
replication, a software package that automatically imputes the cryptic phenotypes
analyzed in this study into new structured clinical datasets (CrypticPhenoImpute)
is available via Github82. Finally, the scripts used to perform the analyses described in
this manuscript are also available on Github83. A script for building a singularity
container with the vLPI software package installed is available as well: https://github.
com/daverblair/singularity_vlpi.
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