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Excited state non-adiabatic dynamics of large
photoswitchable molecules using a chemically
transferable machine learning potential
Simon Axelrod1,2, Eugene Shakhnovich1 & Rafael Gómez-Bombarelli 2✉

Light-induced chemical processes are ubiquitous in nature and have widespread technolo-

gical applications. For example, photoisomerization can allow a drug with a photo-switchable

scaffold such as azobenzene to be activated with light. In principle, photoswitches with

desired photophysical properties like high isomerization quantum yields can be identified

through virtual screening with reactive simulations. In practice, these simulations are rarely

used for screening, since they require hundreds of trajectories and expensive quantum

chemical methods to account for non-adiabatic excited state effects. Here we introduce a

diabatic artificial neural network (DANN), based on diabatic states, to accelerate such simu-

lations for azobenzene derivatives. The network is six orders of magnitude faster than the

quantum chemistry method used for training. DANN is transferable to azobenzene molecules

outside the training set, predicting quantum yields for unseen species that are correlated with

experiment. We use the model to virtually screen 3100 hypothetical molecules, and identify

novel species with high predicted quantum yields. The model predictions are confirmed using

high-accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual

screening of photoactive compounds.

https://doi.org/10.1038/s41467-022-30999-w OPEN

1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. 2Department of Materials Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ✉email: rafagb@mit.edu

NATURE COMMUNICATIONS |         (2022) 13:3440 | https://doi.org/10.1038/s41467-022-30999-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30999-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30999-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30999-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30999-w&domain=pdf
http://orcid.org/0000-0002-9495-8599
http://orcid.org/0000-0002-9495-8599
http://orcid.org/0000-0002-9495-8599
http://orcid.org/0000-0002-9495-8599
http://orcid.org/0000-0002-9495-8599
mailto:rafagb@mit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Light is a powerful tool for manipulating molecular systems.
It can be controlled with high spatial, spectral and temporal
precision to facilitate a variety of processes, including energy

transfer, intermolecular reactions, and photoisomerization1.
These processes are used in areas as diverse as synthesis, energy
storage, display technology, biological imaging, diagnostics and
medicine1–3. Photoactive drugs, for instance, are photoswitchable
compounds whose bioactivity can be toggled through light-
induced isomerization. Precise spatiotemporal control of bioac-
tivity allows photoactive drugs to be delivered in high doses with
minimal off-target activity and side effects. Such therapeutics are
a promising path for the treatment of cancer, neurodegenerative
diseases, bacterial infections, diabetes, and blindness4,5.

Theory plays a key role in explaining and predicting photo-
chemistry because empirical heuristics learned from thermally
activated ground state processes typically do not apply to excited
states3. Computer simulations based on quantum mechanics can
achieve impressive accuracy in the prediction of experimental
observables. These include the isomerization efficiency and
absorption spectrum of photoswitchable compounds6, which are
key quantities in the design of photoactive drugs.

However, ab initio methods in photochemistry are severely
limited by their computational cost7. In order to gather mean-
ingful statistics for one molecule, hundreds of replicate simula-
tions are needed, each of which involves thousands of electronic
structure calculations performed in series with sub-femtosecond
timesteps. The individual quantum chemical calculations are
particularly demanding, requiring excited state gradients and
some treatment of multireference effects. In some cases, both the
ground and excited state gradients are required at each time
step8,9. Using ab initio methods to compute photochemical
properties of tens or hundreds molecules is impractical, and
photodynamic simulations have not yet been used for large-scale
virtual screening.

Among the most accurate and expensive electronic structure
methods are multireference perturbation techniques10–15, but
their cost and requirement for manual active space selection limit
their use in virtual screening. The photochemistry community
has made exciting developments over several years to overcome
both of these hurdles. For example, reduced scaling
techniques16,17 and graphics processing units18 can significantly
accelerate multi-reference calculations. The density matrix
renormalization group (DMRG)19,20 and multi-reference density
functional theory (DFT) methods21–23 have expanded the size of
systems that can be treated with high accuracy. DMRG has also
been used to automate the selection of active spaces for multi-
reference methods24,25. Less accurate but more affordable black-
box methods include spin-flip time-dependent DFT (SF-
TDDFT)26 and hole-hole Tamm-Dancoff DFT27, among
others28–33. Despite these developments, the cost of non-adiabatic
simulations remains high. As discussed below, even SF-TDDFT is
prohibitively expensive for virtual screening. Semi-empirical
methods34–36 are currently the only affordable approach for
large-scale screening. They provide qualitatively correct results
across many systems, but are ultimately bounded by their
approximations, with average energy errors of 15 kcal/mol35.

A different approach is to use data-driven models in place of
quantum chemistry (QC) calculations. Machine learning (ML)
models trained on quantum chemical data can now routinely
predict ground state energies and forces with sub-chemical
accuracy37–39, and take only milliseconds to make predictions.
These models have been successfully used in a variety of ground
state simulations38,40,41. They have also been used to accelerate
non-adiabatic simulations in a number of model systems42–48.
However, excited state ML has not yet offered affordable pho-
todynamics for hundreds of molecules of realistic size, which is

the ultimate goal for predictive simulation in photo-
pharmacology. Further, no excited state interatomic potentials
have been developed that are transferable to different compounds.
They therefore require thousands of QC calculations for every
new species to serve as training data.

Here we make significant progress toward affordable, large-
scale photochemical simulations and virtual screening with ML.
To develop a transferable potential we focus on molecules from
the same chemical family, studying derivatives of azobenzene, a
prototypical photoswitch. The derivatives studied here contain up
to 100 atoms, making them the largest systems fit with excited
state ML potentials to date. Combining an equivariant neural
network38 and a physics-informed diabatic model, together with
data generated by combinatorial exploration of chemical space,
and configurational sampling through active learning, we produce
a model that is transferable to large, unseen derivatives of azo-
benzene. This yields computational savings in excess of six orders
of magnitude. Predicted isomerization quantum yields of unseen
species are correlated with experimental values. The model is
used to predict the quantum yield for over 3100 hypothetical
species, revealing rare molecules with high cis-to-trans and trans-
to-cis quantum yields.

Results
Azobenzene photoswitches. This work focuses on the photo-
switching of azobenzene derivatives, but the methods are general
and can be applied to other chemistries and other excited
state processes. Azobenzene derivatives can exist as cis or trans
isomers. The conformations are local minima in the ground state,
but not in the excited state. Photoexcitation of either can there-
fore induce isomerization into the other (see the potential energy
schematics in Figs. 1(a) and 2(b)). A key experimental observable
is the quantum yield, defined as the probability that excitation
leads to isomerization. The yield depends critically on the
dynamics near conical intersections (CIs), configurations in
which the excitation energy is zero. In these regions the electrons
can return to the ground state with non-zero probability.

Many approaches have been developed over several decades to
model such non-adiabatic transitions. These include ab initio
multiple spawning49 and cloning50; Ehrenfest dynamics8,9; coherent
switching with decay of mixing51; the variantional multi-
configurational Gaussian method52; exact factorization53–57; the
multi-configuration time-dependent Hartree (MCTDH) method58,59;
Gaussian MCTDH60; and trajectory surface hopping61. A recent
review of these methods can be found in ref. 3. Surface hopping is a
popular approach because of its simplicity and efficiency. In this
method, independent trajectories are simulated with stochastic hops

Fig. 1 Depiction of the potential energy surfaces in azobenzene
derivatives. a S0 and S1 adiabatic energies, with the CI region shaded in
gray. Initial excitation is shown with a vertical zigzag line. Trajectories prior
to hopping are shown in black. Reactive and unreactive trajectories after
hopping are shown in green and yellow, respectively. b Diabatic energies
dnm � ðHdÞnm. The diagonal diabatic elements cross and become re-ordered
along the isomerization coordinate. A CI occurs when the diagonal diabatic
elements cross and the off-diagonal element becomes zero.
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between potential energy surfaces (PESs). Depending on the
curvature of the PESs and the location of the hop, a trajectory can
end in the original isomer or in a new isomer (Figs. 1(a) and 2(b)).
The quantum yield is the proportion of trajectories that end in a new
isomer. Our goal is to predict the quantum yield of azobenzene
derivatives after excitation from the singlet ground state (S0) to the
first singlet excited state (S1). This can be accomplished with the
surface hopping approach described above, using a fast surrogate ML
model to generate the PESs. The impact of considering only the first
excited state is discussed in Supplementary Note 3.

ML architecture and training. Our model is based on the PaiNN
neural network38, which uses equivariant message-passing to
predict molecular properties. In this approach, an initial feature
vector is generated for each atom using its atomic number. The
vector is then updated through a set of neural network operations
involving “messages”, which incorporate the distance, orientation,
and features of atoms within a cutoff distance. A series of updates
leads to information being aggregated from increasingly distant
atoms. Once the updates are complete, the atomic features are
mapped to molecular energies using a neural network.

This architecture can be used to predict energies and, through
automatic differentiation, the forces for each state. However,
models that predict adiabatic energies have a basic shortcoming
for non-adiabatic molecular dynamics (NAMD). Since surface
hopping is largely controlled by the energy gap when it is close to
zero, small errors in the energies can lead to exponentially large
errors in the hopping probability62,63. This in turn can cause large
errors in observable quantities like the quantum yield. This point
is discussed in further detail in Supplementary Methods A.
Further, since CIs are non-differentiable cusps in the energy gap,
they are difficult to fit with neural networks. For N atoms in a
molecule, the network must predict two different energies that are
exactly equal in 3N− 8 dimensions. We found this to be
particularly challenging for trans species that are outside the
training set. As shown in Supplementary Note 6, small errors in
the gap lead to the incorrect prediction that many species never
hop to the ground state.

To remedy this issue we introduce a model based on diabatic
states, which we call DANN (diabatic artificial neural network;
Fig. 2(a)). The approach builds on previous work using neural
networks for diabatization64–66. Much of the previous work could
only be used for specific system types, such as semi-rigid
molecules65 and coupled monomers, and is thus not applicable to
azobenzene. None of the methods have been used for large
systems with significant conformational changes64,66, such as
azobenzene derivatives. Further, our work uses diabatization to
ease the fitting of adiabatic states across chemical space. In
particular, it addresses the issue of gap overestimation near
conical intersections of unseen species, as described in Supple-
mentary Notes 1 and 6. Our work uses diabatization to address
this problem, whereas previous work only used diabatization in
single, model species. We also note that gap overestimation in
unseen species is both a newly-identified and newly-addressed
problem, as previous work in ML-NAMD focused on single
species only42–48.

The diabatic energies form a non-diagonal Hamiltonian
matrix, Hd , which is diagonalized to yield adiabatic energies.
When a 2 × 2 sub-block of Hd has diagonal elements that cross,
and off-diagonal elements that pass through zero, a CI cusp is
generated (Fig. 1). The diabatic energies that generate the cusp are
smooth, which makes them easier to fit with an interpolating
function than the adiabatic energies. In the DANN architecture,
smoothness is imposed through a loss function related to the
non-adiabatic coupling vector (NACV). The loss minimizes the
value that the NACV takes when it is rotated from the adiabatic
basis (Eq. (3)) into the diabatic basis. The NACV measures the
change in overlap between two wavefunctions after a small
nuclear displacement. If the NACV between two states is zero,
then their wavefunctions must change slowly in response to a
nuclear perturbation. Therefore, their energies cannot form the
cusp in Fig. 1(a), and must instead resemble the smooth energies
in Fig. 1(b).

The DANN model was trained on SF-TDDFT26 calculations
for 567,037 geometries, using the 6-31G* basis67 and BHHLYP68

exchange-correlation functional. Unlike traditional TDDFT69,

Fig. 2 Neural network architecture and active learning loop. a Schematic of the DANN architecture, which is based on the PaiNN model. Scalar atomic
features si and vectorial atomic features v!i are updated through messages from neighboring atoms. The si are then mapped to atomic energies, which are
summed to produce the diabatic Hamiltonian Hd. The diabatic matrix is diagonalized to produce adiabatic quantities. b Schematic of the active learning
loop. Geometries and QC data are first generated through ab initio NAMD, normal mode sampling, and inversion/rotation about the central N=N double
bond. Two neural networks are then trained on the data and used to perform DANN-NAMD. Newly generated geometries with high committee variance
and/or low predicted gaps receive QC calculations. The new calculations are added to the training data, the networks are retrained, and the cycle is
repeated until convergence.
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SF-TDDFT provides an accurate description of the CI region70,
and, unlike multi-reference methods, is fairly fast and requires no
manual parameter selection. The configurations were sampled
from 8,269 azobenzene derivatives, of which 164 were taken from
the experimental literature. The remaining molecules were
generated from combinatorial substitution using common
literature patterns (Supplementary Tables X and XI).

The data generation process is shown in Fig. 2. Initial data was
generated through ab initio NAMD with 164 species from the
literature, together with normal-mode sampling and distortions
of the combinatorial species to near-CI regions. The remaining
data was generated through active learning. In each cycle we
trained a committee of models, used one model to perform NN-
NAMD, and used the committee variance and energy gap to
choose NAMD geometries for new quantum chemistry calcula-
tions. The cycle was repeated five times in total; further details
can be found in the Methods section.

Validation. To test whether the model could reproduce experi-
mental results for unseen molecules, we evaluated it on species
that were outside the training set. The test set contained 40 spe-
cies (20 cis/trans pairs), including 33 with experimental S1
quantum yields in non-polar solution. Non-polar solution was
chosen because it is the closest to the gas-phase conditions
simulated here. Solvent effects can be easily incorporated into the
model through transfer learning to implicit solvent calculations.
This was previously shown to require new calculations for only a
small proportion of the training set40.

The performance of the model is summarized in Table 1.
Statistics are shown for both seen and unseen species. The former
contains species that are in the training set, but geometries that
are outside of it. The geometries were selected with the balanced
sampling criteria described in Supplementary Note 9. Geometries
from unseen species were generated with DANN-NAMD using
the final trained model. Half of the DANN-NAMD geometries
were selected randomly from the full trajectory and half by
proximity to a CI (Supplementary Eq. (13)). 100 configurations
were chosen for each molecule.

For species in the training set, all quantities are accurate to
within approximately 1 kcal/mol(/Å). Apart from the NACV, all
quantities have R2 correlation coefficients close to 1. The R2 of the
NACV is 0.84. This may be somewhat low because diabatization
cannot remove the curl component of the NACV in the diabatic
basis71,72. This would also explain the low R2 value for the NACV
in ref. 45, which computed it as the gradient of a scalar. For
molecules outside the training set, all quantities apart from the
energies have an error below 3 kcal/mol(/Å). The energy gaps and
ground state forces have R2 correlation coefficients near 1. The
gap error of 1.89 kcal/mol should be contrasted with the error of
15 kcal/mol for the semi-empirical method in ref. 35. The errors
in the excited state forces are slightly larger, but still quite low.

The correlation coefficient for the force NACV h
!

01 is rather

poor. As described in Supplementary Note 6, the yields of trans
derivatives are better correlated with experiment when using
Zhu-Nakamura surface hopping than Tully’s method. The latter
uses the NACV and the former does not, so part of the difference
may be explained by the high error in the force NACV.
Nevertheless, there is still reasonable agreement between Tully’s
method and experiment, suggesting that errors in the force
NACV do not spoil the dynamics.

Figure 3(a) shows snapshots from an example DANN-NAMD
trajectory, and panel (b) shows random samples of the hopping
geometries. Reactive hopping geometries are shown on top, and
non-reactive ones are shown below. The molecule is the
(aminomethyl)pyridine derivative 26, with the species numbering
given in Supplementary Data 2 and 3. The overlays show cis-trans
isomerization proceeding through inversion-assisted rotation,
consistent with previous work73. The dominant motion is
rotation, with the CNNC dihedral angle increasing in magnitude
from −10∘ at equilibrium to −86∘ at the hopping points.
Significant changes also occur in the CNN and NNC angles, with
each transitioning from 123∘ to either 113∘ or 135∘.

The predicted PES in the branching space ð g!; h
!Þ is shown

beside the geometries. h
!

is the direction of the force NACV and
g!/ ∇RðΔE01Þ is the direction of the gap gradient. Each vector
was computed with automatic differentiation using Eq. (1). The
diabatic energies, adiabatic energies, and gap are shown from top
to bottom. We see that the model generates a true CI, in which
the S0 and S1 energies are exactly equal. Further, the degeneracy is

lifted in both the g!- and h
!

-directions, so that the S1 energy and
gap each form a characteristic cone. These hallmarks of CIs are
built into the model because the adiabatic energies are eigenvalues
of a diabatic matrix. For example, the cone emerges from the fact
that d11− d00 and d01 each pass linearly through zero in different
directions74.

Figure 3(c) indicates that the predicted and experimental
quantum yields of unseen species are correlated. The yields are
for the 33 cis and trans species with experimental data in
Supplementary Data 1. The R2 value is 0.42, and the Spearman
rank correlation coefficient ρ is 0.74. While the R2 value is
somewhat low, the Spearman rank correlation is high. The
Spearman coefficient measures the accuracy with which the
model ranks species by quantum yield. ρ only compares
orderings, while R2 compares the model error to the error of a
mean predictor. This means that ρ is a more forgiving metric, and
also a more relevant metric for virtual screening. Since cis isomers
have yields two to three times higher than trans isomers, the high
value of ρ means that the model properly separates the isomers
into low- and high-yield groups.

Further, as shown in Supplementary Figs. 5 and 7, the model
produces meaningful rankings among trans species. The correla-
tion coefficients are ρ= 0.32 using Tully’s method61 and ρ= 0.57
using the Zhu-Nakamura approach75. The model is largely able to
differentiate between high- and low-yield trans derivatives.

Table 1 MAE and coefficient of determination (R2) of the DANN model for various quantities.

E0 E1 ΔE01 ðΔE01Þsmall
a f

!
0 f

!
1 h

!
01

Seen species MAE (↓) 0.86 1.01 0.75 0.47 1.00 1.17 0.87
R2 (↑) 1.00 1.00 1.00 0.97 0.99 0.99 0.84

Unseen species MAE (↓) 3.06 3.77 1.89 0.97 1.72 2.31 1.36
R2 (↑) 0.99 0.98 0.98 0.95 0.97 0.86 0.50

aFor these R2 calculations, we computed the total sum of squares using mean{ΔE01} instead of meanfðΔE01Þsmallg. The mean predictor should not know a priori which gaps are small, and hence should
predict the mean of all gaps.
Units are kcal/mol for energies and kcal/mol/Å for forces and force couplings. Ei are energies, f

!
i are forces, ΔE01 is the energy gap, and h

!
01 is the force NACV. ðΔE01Þsmall denotes the energy gap when

it is under 4.6 kcal/mol (0.2 eV).
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Several such molecules are of interest. They are color-coded in the
plots, with the legend given below. A full list of predictions is
given in Supplementary Data 1. We see, for example, that the
(aminomethyl)pyridine derivatives 1 and 35 are both predicted to
have near-zero yields. These species do not isomerize from trans
to cis, because strong N-H hydrogen bonds lock the planar trans
conformation in place76. Replacing the NH group in 1 with N -
CH3 gives species 25. This molecule isomerizes because there is
no hydrogen bonding. This, too, is predicted by the model.
Further, the hepta-tert-butyl derivative 17 has an experimental
and predicted yield of zero. This is likely because of steric
interactions among the bulky tert-butyl groups. While able to
account for these two different mechanisms, the model fails to
predict the subtle electronic effects in species 11 and 29.
Resonance interactions between oxygen lone pairs and the azo
group modify the PES, such that there is no rotational CI77. There
is instead a concerted inversion CI, which occurs too early along
the path between trans and cis to allow for isomerization. The
changes in the PES may either be too small or too specific to the
substituents for the model to predict without fine tuning. Finally,
derivatives with high yields are partly distinguished from those
with low but non-zero yields. An example is 21, whose
experimental yield of 10% is half that of trans-azobenzene. The
model properly identifies this molecule as having a low yield, but
also mistakenly does the same for several high-yield species. The
accuracy for unseen species could always be improved with
transfer learning, in which the model is fine-tuned with a small
number of calculations from a single molecule (discussed below).
This would increase the computational cost, but would still be
orders of magnitude less expensive than ab initio NAMD.

While meaningful correlations are produced for trans species,
the same is not true of cis molecules (ρ= 0.02). This may be
because there are no cis derivatives with zero yield. Nevertheless,
the model properly identifies 20 as having the highest yield.
Further, it does not mistakenly assign a zero yield to any
derivative. This is noteworthy because, as shown in Fig. 4(a) and
(b), some hypothetical cis species are predicted to have zero yield.
Synthesis of non-switching cis derivatives and comparison to
predictions could therefore be of interest in the future.

Overall, we observe moderate correlation between predicted
and experimental yields. The Spearman correlation is high when
including both isomers, moderate for trans isomers, and low for
cis isomers. The R2 value, a measure of numerical error compared
to that of a mean predictor, is moderate when including both
isomers and near-zero when separating them. Indeed, the MAEs
of the mean predictor are 9.5%, 10.3%, and 17.7% for trans, cis,
and all species, respectively. The model MAEs before (after)
subtracting the mean signed error are 14.4% (13.5%), 11.5%
(11.2%) and 13.2% (13.0%). In addition to model error, sources of
error include inaccuracies in SF-TDDFT, approximations in
surface hopping, solvent effects, and experimental uncertainty.
These are discussed in depth in Supplementary Note 3. Each
source of error affects both R2 and ρ, but is expected to have a
larger effect on R2. The rank correlation with experiment is
encouraging given the difficulty of the task, as captured by the
sensitivity of the yield to model errors in the PES75, and given the
sources of error outside the model. Further, as discussed below,
DANN provides an excellent starting point for fine-tuned,
molecule-specific models that can be used for high-accuracy
simulations of single species.

Figure 3(d) shows that DANN-NAMD is extremely fast. The
plot shows the node time, defined as tcalc/ncalc, where tcalc is the
calculation time per geometry, and ncalc is the number of parallel
calculations that can be performed on a single node. We see that
ML speeds up calculations by five to six orders of magnitude. The
direct comparison of the pre-trained model node times and QC
node times is appropriate because the model generalizes to
unseen species. This means that it incurs no extra QC cost for any
future simulations. The minimum speedup corresponds to the
smallest molecules (14 heavy atoms or 24 total atoms), and the
maximum to the largest molecules (70 heavy atoms or 99 total
atoms). This reflects the different scaling of the QC and ML
calculations. Empirically we see that DANN scales as N0.49 for N
heavy atoms, while SF-TDDFT scales as N2.8. These values come
from fitting the timings to t=A ⋅Nx, where t is the computa-
tional time, A and x are fitted constants, and N is the number of
heavy atoms. DANN’s apparent sub-linear scaling is an artifact of
diagonalizing Hd ; when the diagonalization is removed, the

Fig. 3 Speed and accuracy of DANN-NAMD. a Selected trajectory frames for a molecule outside the training set. The top panels show the S0 and S1 energy
as a function of time. A yellow dot indicates the time at which the snapshot below was taken. b Left: Overlay of selected hopping geometries from reactive
(top) and unreactive (bottom) trajectories. Right: PES as a function of branching plane coordinates at one of the reactive hopping geometries. Diabatic
energies, adiabatic energies, and adiabatic gaps are shown from top to bottom. The diabatic coupling is shown in gray. c Predicted vs. experimental
quantum yield for 33 species outside the training set. The R2 value and Spearman rank correlation ρ are both shown. Color-coded data points are defined
below. Prediction error bars represent one standard deviation of 1000 bootstrapped samples. Experimental error bars represent reported uncertainties or
standard deviations from multiple observations, when applicable. d Node time for QC and ML calculations.
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scaling becomes linear. This is the expected scaling for a message-
passing neural network with a fixed cutoff radius. Evidently
diagonalizing Hd introduces a large overhead with weak
dependence on system size. Nevertheless, we see that DANN is
still quite fast.

Virtual screening. Having shown that the model is fast and gen-
eralizes in the chemical and configurational space of azobenzenes,
we next used it for virtual screening of hypothetical compounds.
We first retrained the network on all available data, including
species that were originally held out, for a total of 631,367 geo-
metries in the training set. We then predicted the quantum yields of
3100 combinatorial species generated through literature-informed
substitution patterns, as in ref. 78. This screen served two purposes.
The first was to gather statistics about the distribution of photo-
physical properties of azobenzenes at a scale not accessible to
experiments or traditional simulations. The second was to identify
molecules with rare desirable properties. In particular, we sought to
find molecules with high c→ t or t→ c quantum yields and red-
shifted absorption spectra. The former is important because
increasing the ratio QYa→b/QYb→a, where QY is the quantum yield,
can lead to more complete a→ b transformation under steady state
illumination. This is critical for precise spatial control of drug
activity when the two isomers have different biological effects79.
Redshifting is a crucial requirement for photo-active drugs, since
human tissue is transparent only in the near-IR79.

The results are shown in Fig. 4. Panels (a) and (c) show the
predicted yield vs. mean gap. For each species we averaged the
gap over the configurations sampled during neural network
ground state MD. The thermal averaging led to a typical blueshift
of 0.2–0.3 eV relative to the gaps of single equilibrium
geometries. The mean excitation energies are 2.95 eV for cis
derivatives and 2.84 eV for trans species; the gaps are 2.98 eV
and 2.97 eV for the respective unsubstituted compounds. The
average gaps and their differences are similar to experimental
measurements for azobenzene80. The average c→ t and t→ c
yields are 54% and 24%, respectively, while those of the
unsubstituted species are 59% and 37%. These are consistent
with experimental results in non-polar solution, for which the
base compound has yields of 44–55% and 23–28%80; the former
is closer to 55% on average. However, the yield of the base trans
compound is overestimated with respect to both theory and

experiment6,75,80. The mean (median) proportion of trajectories
ending in the ground state after 2 ps are 92% (100%) for cis
species and 31% (17%) for trans species. The standard deviations
are 25% and 30%, respectively.

Panels (b) and (d) show the yield plotted against the isomeric
stability, defined as Etrans− Ecis for trans isomers and Ecis− Etrans
for cis isomers. The energy E is the median value of the
configurations sampled in the ground state; we used the median
to reduce the effect of outlier geometries. On average the trans
isomers are more stable than the cis isomers by 0.66 eV (15.3
kcal/mol), which is similar to experimental values over 10 kcal/
mol for azobenzene81. The stability is of interest for three reasons.
First, a large absolute value indicates that one isomer is dominant
at room temperature. This is essential for photoactive drugs, and
is the case for regular azobenzene. Second, an inverted stability, in
which cis is more stable than trans, allows for stronger absorption
at longer wavelengths. This is because the dipole-forbidden
n− π* (S1) transition is significantly stronger for cis than for
trans80. Third, in photopharmacology, one often wants to deliver
a drug in inactive form, and activate it with light in a localized
region. If trans happens to be active and cis inactive, then
localized activation is only possible if cis is more stable.

Several species of interest are shown in Fig. 4. The molecules 165
and 166 have predicted c→ t yields of 75 ± 6% and 72 ± 6%,
respectively, which are well above the cis average of 55%. The
species 169 and 170 have predicted t→ c yields of 66 ± 7% and
63 ± 10%, respectively, which are three times the average trans yield.
Molecule 167 is highly redshifted, with a mean predicted gap of
2.26 eV (548 nm), and a standard deviation of 0.87 eV. QC
calculations on the geometries sampled with DANN gave a gap of
2.26 ± 0.61 eV, in good agreement with predictions. The mean gap
is lower than the median of 2.52 eV, which reflects the presence of
several ultra-low gap structures. The low gap and large variance
mean that 167may be able to absorb in the near IR. The redshifting
is likely because of the six electron donating groups, which increase
the HOMO energy, together with the crowding of the four ortho
substituents. The latter distorts the molecule, leading to twisted
configurations with smaller gaps. Finally, species 168 is more stable
in cis form than trans form. The predicted cis stability is− 0.79 eV
(−18 kcal/mol), in good agreement with the QC prediction of
−0.92 eV (−21 kcal/mol). As mentioned above, this inverted
stability can be a desirable property for photopharmacology.

Fig. 4 Results of virtual screening. Species of interest are circled in gray and shown below the plots. a Predicted yield vs. excitation energy for cis
derivatives. b Predicted yield vs. stability for cis derivatives. c-d As in (a-b), but for trans derivatives.
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To validate the yield results, we performed DANN-NAMD
using highly accurate species-specific models. As described in
Supplementary Note 13 B, we generated a model for each species
by refining the base network with data from that species alone.
The data was generated through several active learning cycles,
resulting in 1200–2500 training geometries for each compound.
We used this approach in place of ab initio NAMD because of the
latter’s prohibitive cost for large molecules. The QC computa-
tional cost for fine-tuning was at most 3% of that of an ab initio
simulation, and hence far less demanding. The average gradient
calculation for a molecule with 50 atoms took 58 min for two
surfaces using 8 cores, and the average NACV calculation took
55 min. Fine-tuning with 2000 geometries for a medium-sized
molecule would thus take 30,000 core hours. For ab initio
NAMD, a conservative estimate of 100 trajectories run for 1 ps
each, with only one gradient computed per frame, would take
780,000 core hours.

We also computed the yields of cis and trans azobenzene for
comparison. For these species we used full ab initio simulations,
because of the central role of the unsubstituted compound as a
reference point and because simulations were fairly affordable for
such small molecules. Issues with spin contamination also
hampered the fine-tuning process for these compounds (see
Supplementary Note 13 B).

Initially we generated refined models for species 165, 166, 169
and 170. It became clear early on that only 165 and 169 had high
yields, and so we focused on those molecules thereafter. Using
molecule-specific models, we computed the quantum yields of
165 and 169 to be 66 ± 1% and 37 ± 1%, respectively. The
computed yields for cis and trans azobenzene are 60 ± 4% and
26 ± 3%, respectively, which are in excellent agreement with
experiment80. Both of the new molecules have higher quantum
yields than the associated base compounds. The improvement is
particularly large for species 169: its yield is 11 points higher than
trans azobenzene, which is a relative enhancement of 42 percent.
We show below that that this significant increase has an intuitive
physical explanation.

The dynamics of the four molecules are shown in Fig. 5. Panels
(a) and (b) show the CNNC dihedral angle vs. time for
azobenzene, and panels (d) and (e) show the same for the
derivatives. Both the substituted and unsubstituted cis isomers
rapidly proceed through a rotational CI, but the derivative rotates
much more quickly. Indeed, we see that the isomerization of the
derivative is complete within 75 fs, while the base compound
takes nearly 130 fs. The excited state lifetimes are 34.2 ± 0.3 fs and
63 ± 3 fs for the derivative and base compound, respectively,
indicating that the former reaches the CI earlier than the latter.
These observations may explain the enhanced yield, since a
higher rotational velocity leads to more efficient isomerization82.
We also note that the derivative rotates in only the counter-
clockwise direction, while cis azobenzene rotates in both
directions, but this is not expected to affect the yield.

The two trans molecules behave in qualitatively different ways.
In trans azobenzene, the distribution of dihedral angles slowly
widens with time (Fig. 5(b)). This is consistent with a rotational
barrier6,75, as different trajectories overcome the barrier at
different times, and so the torsion angle becomes uniformly
distributed. Additionally, as seen in the marginal dihedral
distribution of Fig. 5(c), many of the geometries hop near 180∘.
This agrees with ref. 6, which identified a non-reactive planar CI
and a reactive twisted CI as the main hopping points for trans
azobenzene. The non-reactive CI leads exclusively back to trans,
while the reactive CI leads to cis and trans in different
proportions. Using the method described in Supplementary
Note 13 C, we found that 26% of the trajectories proceed through
the planar CI and 74% through the rotational CI. This is similar

to the distribution reported in ref. 75. Approximately 36% of the
rotational trajectories generate cis azobenzene, giving an overall
yield of 26%. This is in good agreement with previous
computational and experimental values6.

By contrast, nearly all trajectories of 169, including non-reactive
trajectories, rotate significantly. This can be seen in the marginal
dihedral distribution in Fig. 5(f), in which the hops are tightly
localized around 180 ± 77∘. Only 5% of the trajectories hop at the
planar CI, which is five times lower than the base compound.
Additionally, the yield of the rotational trajectories increases from
36 to 40%. The inhibition of the planar CI pathway, together with
the enhancement of the rotational yield, leads to an overall yield
increase from 26 to 37%. While the enhanced reactive yield does
not have a simple explanation, the reason for the planar pathway
inhibition can be clearly seen in Fig. 5(e). Whereas the rotation of
51 is stochastic, leading to a uniform distribution of angles, the
rotation of 169 is initially concerted. Nearly all trajectories rotate in
unison to a dihedral angle of 180 ± 45∘ at 300 fs. Past 300 fs,
hopping begins and the trajectories separate from each other. Hence
they proceed through the rotational reactive CI, and become
distributed between 0∘ and 360∘ after hopping. The planar non-
reactive CI is avoided because of the molecule’s initial rotation. This
explanation is consistent with the presence of bulky ortho groups,
which twist the equilibrium structure and hence weaken the N=N
double bond. This lowers the excited state barrier to rotation, which
leads to an initial torsion and hence increases the yield.

Discussion
The DANN model shows high accuracy and transferability
among azobenzene derivatives. One limitation is that the unseen
species contained functional groups that were present to some
degree in the training set. Model performance was generally
higher for more highly represented functional groups, though
some groups were highly represented yet difficult to fit, while
others were weakly represented and well-fit (Supplementary
Note 4). Moreover, the model cannot be applied to other che-
mical families without additional training data. Further, as shown
in Supplementary Note 6, it substantially overestimates the
excited state lifetime for a number of trans derivatives. On the
other hand, semi-empirical methods provide qualitatively correct
predictions across a variety of chemistries, but cannot match
DANN’s in-domain accuracy, and cannot be improved with more
reference data. Adding features from semi-empirical calculations,
as done in the OrbNet model83, may therefore prove useful in the
future. Recent developments accounting for non-local effects and
spin states have improved neural network transferability39, and
could also be beneficial for excited states. The model could be
further improved with high-accuracy multi-reference calcula-
tions, solvent effects, and the inclusion of the bright S2 state. The
use of spin-complete methods in particular is of crucial impor-
tance, since spin contamination prevented fine-tuning the model
for the base compounds. It may also have affected the accuracy of
the DANN model in general. Thus spin-complete, affordable
alternatives are of particular interest27. Active learning could be
accelerated through differentiable sampling with adversarial
uncertainty attacks84, which would improve the excited state
lifetimes. Transfer learning could also be used to improve per-
formance for specific molecules. Only a small number of ab initio
calculations would be required to fine-tune the model for an
individual species.

Diabatization may also prove to be useful for reactive ground
states. Reaction barriers can often be understood as transitions
from one diabatic state to another85. The diabatic basis may make
reactive surfaces easier to fit with neural networks.
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In conclusion, we have introduced a diabatic multi-state neural
network potential trained on over 630,000 geometries at the SF-
TDDFT BHHLYP/6-31G* level of theory, covering over 8000
unique azobenzene molecules. We used DANN-NAMD to pre-
dict the isomerization quantum yields of derivatives outside the
training set, and the results were correlated with experiment. We
also identified several hypothetical compounds with high quan-
tum yields, redshifted excitation energies, and inverted stabilities.
The network architecture, diabatization approach, and chemical
and configurational diversity of the training data allowed us to
produce a robust and transferable potential. The model can be
applied off-the-shelf to new molecules, producing results that
approximate those of SF-TDDFT at orders of magnitude lower
computational cost.

Methods
Network and training. As explained in Supplementary Methods A, a unique
challenge for non-adiabatic simulations is their sensitivity to the energy difference
between states. Using a typical neural network to predict energies and forces for
NAMD leads to some molecules becoming incorrectly trapped in the excited state.
This is partly caused by overestimation of the gap and/or an incorrectly shaped PES
in the vicinity of the CI. To address this issue we introduce an architecture based
on diabatic states, whose smooth variation leads to more accurate neural network
fitting (Fig. 1(b)).

In general diabatic states must satisfy86

Uy ∇RHd

� �
U

� �
nm ¼ � f

!
n; if n ¼ m

h
!

nm; if n≠m:

8
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:
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where ∇R is the gradient with respect to R
!

, U diagonalizes the diabatic
Hamiltonian through
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where Ĥð r!; R
!Þ is the clamped nucleus Hamiltonian, ψnð r!; R

!Þ is the nth

adiabatic wavefunction, and the matrix element is an integral over the electronic
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!Þ is the derivative coupling:
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Combined with the following reference geometry conditions (Supplementary
Methods C),

ðE0; E1Þ ¼
ðd00; d11Þ; if R

!2 trans

ðd22; d00Þ; if R
!2 cis;

(

ð5Þ

we arrive at three sets of constraints, Eqs. (1), (2), and (5). In principle only Eqs. (1)
and (2) are required for the states to be diabatic. However, we found the reference
loss to provide a minor improvement in the gap near CIs (Supplementary Table I).

We use a neural network to map the nuclear positions R
!

i and charges Zi to the
diabatic matrix elements dnm, and a loss function to impose Eqs. (1), (2) and (5).
The adiabatic energies En are generated by diagonalizing Hd , and the forces and
couplings by applying Eq. (1) and using automatic differentiation. The design of
the network is shown schematically in Fig. 2(a). The general form of the diabatic
loss function is

L ¼ Lcore þ Lref þ Lnacv : ð6Þ
Here Lcore penalizes errors in the adiabatic energies, forces, and gaps, Lref

imposes Eq. (5) and Lnacv imposes Eq. (1) for n ≠m. The terms are defined
explicitly in Supplementary Eqs. (1)–(3).

For the network itself we adopt the PaiNN equivariant architecture38. In this
approach a set of scalar and vector features for each atom are iteratively updated
through a series of convolutions (Fig. 2(a)). In the message block, the features of
each atom gather information from atoms within a cutoff distance, using the
interatomic displacements. The scalar and vector features for each atom are then
mixed in the update phase. Hyperparameters can be found in Supplementary
Table IV. Most were taken from ref. 38, but some were modified based on
experiments with azobenzene geometries. Further details of the PaiNN model can
be found in ref. 38. Once the elements of Hd are generated, the diabatic matrix is
diagonalized to yield the transformation matrix U and the adiabatic energies En.

The vector quantities f
!

n and h
!

nm are given by Eq. (1). When non-adiabatic

couplings are not required, the f
!

n can be calculated by directly differentiating the
En. This is more efficient than Eq. (1), since it requires only Mad= 2 <Md(Md+ 1)/
2= 6 gradient calculations. This approach was used for NAMD runs, which
required only diabatic energies, adiabatic energies, and adiabatic forces, while Eq.
(1) was used for training.

Fig. 5 Visualization of high-accuracy non-adiabatic dynamics for several compounds of interest. a-b, d–e Violin plots showing the CNNC dihedral angle
vs. time. Reactive and non-reactive NAMD trajectories are shown in red and blue, respectively. The violin width at a given dihedral angle indicates the
density of trajectories with that angle. The yield of each compound is shown above the plots. For ease of visualization we have used the range [−180, 180]
for cis dihedral angles and [0, 360] for trans dihedral angles. c Distribution of hopping geometries for trans azobenzene. f As in (c), but for the derivative
169. The density is visualized with kernel density estimation as a function of the CNNC dihedral and maxðαCNN; αNNCÞ, where α is an angle. Yellow
corresponds to the highest density and blue to the lowest. The marginal distributions over single coordinates are shown above and to the right of each plot.
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Data generation and active learning. Data was generated in two different ways.
First, we searched the literature for azobenzene derivatives that had been synthe-
sized and tested experimentally. This yielded 164 species (82 cis and 82 trans). For
these species we performed ab initio NAMD, yielding geometries that densely
sampled configurational space. Second, to enhance chemical diversity, we gener-
ated nearly 10,000 species through combinatorial azobenzene substitution. This
was done using 48 common literature substituents and four common substitution
patterns (Supplementary Tables X and XI). We then performed geometry opti-
mizations, normal mode sampling, and inversion/rotation about the central N=N
bond to generate configurations. QC calculations were performed on 25,212
combinatorial geometries. All calculations were performed with Q-Chem 5.387,
using SF-TDDFT26 with the BHHLYP functional68 and 6-31G* basis67.

Two neural networks were trained on the initial data and used to perform
DANN-NAMD. Initial positions and velocities for DANN-NAMD were generated
from classical MD with the Nosé-Hoover thermostat88,89. The initial trajectories
were unstable because the networks had not been trained on high-energy
configurations. To address this issue we used active learning40,41 to iteratively
improve the network predictions (Fig. 2(b)). After each trajectory we performed
new QC calculations on a sample of the generated geometries. For all but the last
two rounds of active learning, geometries were selected according to the variance in
predictions of two different networks, where the networks were initialized with
different parameters and trained with different random batches. In the last two
rounds, half the geometries were selected by network variance, and half by
proximity to a CI. Further details are given in Supplementary Note 12. The new
data was then added to the training set and used to retrain the networks. The cycle
was repeated three times with all species and another two times with azobenzene
alone. In all, we computed ground state gradients, excited state gradients, and
NACVs with SF-TDDFT for 641,367 geometries. 96% of the geometries were from
the 164 literature species. In total, 88% were generated through ab initio NAMD
and 8% through active learning. The remaining 4% were from the combinatorial
species. 1.5% were generated through geometry optimizations, 1.5% through
inversion/rotation, and 1% through normal-mode sampling.

We initially set out to train a model using energies and forces alone. Since analytic
NACVs are unavailable for many ab initio methods, an adiabatic architecture could
have been used with a wider variety of methods. NACVs also add computational
overhead, and so generating training data for an adiabatic model would have taken
less time. To this end we initially used the Zhu-Nakamura (ZN) surface hopping
method82, which only requires adiabatic energies and forces. However, the issues with
adiabatic models described in Supplementary Note 6 led us to develop the diabatic
approach. Since diabatic states can be used with any surface hopping method, we used
the diabatic model to perform Tully’s fewest switches (FS) surface hopping61 after the
last round of active learning. All results in the main text use the FS method. A
comparison of FS and ZN results is given in Supplementary Note 6.

Data availability
The quantum chemistry data generated in this study has been deposited in the Materials
Data Facility database at https://doi.org/10.18126/unc8-336t. A detailed description of
how to load and interpret the data is given in the README file. Source data of
experimental and predicted quantum yields are provided in the Supplementary
Information/Source Data file.

Code availability
Trained models and computer code are available in the Neural Force Field repository at
https://github.com/learningmatter-mit/NeuralForceField. Notebook tutorials explain
how to train the models and perform DANN-NAMD.
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