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Observation of non-Hermitian topological
Anderson insulator in quantum dynamics
Quan Lin1,4, Tianyu Li2,3,4, Lei Xiao1, Kunkun Wang1, Wei Yi 2,3✉ & Peng Xue 1✉

Disorder and non-Hermiticity dramatically impact the topological and localization properties

of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of

disorder, non-Hermiticity, and topology is epitomized by the recently proposed non-

Hermitian topological Anderson insulator that hosts a plethora of exotic phenomena. Here we

experimentally simulate the non-Hermitian topological Anderson insulator using disordered

photonic quantum walks, and characterize its localization and topological properties. In

particular, we focus on the competition between Anderson localization induced by random

disorder, and the non-Hermitian skin effect under which all eigenstates are squeezed toward

the boundary. The two distinct localization mechanisms prompt a non-monotonous change in

profile of the Lyapunov exponent, which we experimentally reveal through dynamic obser-

vables. We then probe the disorder-induced topological phase transitions, and demonstrate

their biorthogonal criticality. Our experiment further advances the frontier of synthetic

topology in open systems.
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Topological edge states in topological materials are robust
against weak perturbations, an ability originating from the
global geometry of eigen wave functions in the Hilbert

space1,2. Such an intrinsic geometric feature is captured by global
topological invariants that are related to edge states through the
bulk-boundary correspondence. However, this conventional
paradigm is challenged by localization under disorder3–6 or non-
Hermiticity7–24, which have become the focus of study of late,
particularly in light of recent experimental progress in synthetic
topological systems25–35. On one hand, despite its gap-closing
tendency, the disorder can induce topology from a trivial insu-
lator. In the resulting topological Anderson insulator, the global
topology emerges in a bulk with localized states, in the absence of
translational symmetry3–6. On the other hand, in a broad class of
non-Hermitian topological systems, the nominal bulk states are
exponentially localized toward boundaries under the non-
Hermitian skin effect8–22. The deviation of the bulk-state wave
functions from the extended Bloch waves invalidates the con-
ventional bulk-boundary correspondence, necessitating the
introduction of non-Bloch topological invariants8–11. While the
two localization mechanisms differ in origin and manifestation,
the topology of the underlying system gets fundamentally mod-
ified in either case. Remarkably, in the recently proposed non-
Hermitian topological Anderson insulator36–39, the two distinct
localization mechanisms are pitted against each other, wherein
the interplay of disorder, non-Hermiticity, and topology leads to
exotic phenomena such as the non-monotonous localization,
disorder-induced non-Bloch topological phase transitions, and
biorthogonal critical behaviors.

In this work, we report the experimental observation of non-
Hermitian topological Anderson insulators in single-photon
quantum-walk dynamics. Driven by a non-unitary topological
Floquet operator, the quantum walk undergoes polarization-
dependent photon loss and acquires the non-Hermitian skin
effect. In contrast to previously implemented quantum walks with
the non-Hermitian skin effect30,35, our current experiment resorts
to the time-multiplexed configuration, with the spatial degrees of
freedom encoded in the discrete arrival time of photons at the
detector40. This enables us to implement quantum walks with a
larger number of time steps, which is pivotal for the current
experiment. We introduce static random disorder through para-
meters of the optical elements41, which would result in a com-
plete localization of bulk states in the large-disorder limit. In the
intermediate regime with moderate loss and disorder, the com-
petition between the non-Hermitian skin effect and Anderson
localization yields non-monotonic localization features which we
characterize by measuring the Lyapunov exponent20. Using the
biorthogonal chiral displacement, we then probe the topological
phase transition, which is in qualitatively agreement with theo-
retical predictions. At the measured topological phase boundary,
the biorthogonal localization length diverges, consistent with the
biorthogonal critical nature of the phase transition36–38. We
further measure topological edge states from dynamics close to
the boundary of the non-Hermitian topological Anderson
insulator.

Results
A time-multiplexed non-unitary quantum walk. We implement
a one-dimensional photonic quantum walk governed by the
Floquet operator

U ¼ Rðθ2ÞMSRðθ1ÞMSRðθ2Þ: ð1Þ

Here the shift operator is given by S ¼ ∑x x � 1j i xh j � Hj i Hh jþ
x þ 1j i xh j � Vj i Vh j, with Hj i ( Vj i) the horizontally (vertically)

polarized state. The non-unitary operator M ¼ ∑x xj i xh j ��
eγ

0
0
e�γ

�
with γ the gain-loss parameter. The coin operator

RðθÞ ¼ ∑x xj i xh j � �
cos θ
sin θ

� sin θ
cos θ

�
, where the matrix is in the basis

f Hj i; Vj ig. For the quantum-walk dynamics, U is repeatedly acted
upon the walker state, giving rise to discrete-time Floquet
dynamics. The quantum walk governed by U features the non-
Hermitian skin effect (see Supplemental Material), which origi-
nates from a non-vanishing bulk probability flow that we confirm
later with dynamic measurements.

For the experimental implementation, we adopt a time-
multiplexed scheme, as illustrated in Fig. 1. Photons are sent
through an interferometric network consisting of optical elements
for a half step of the discrete-time quantum walk in Eq. (1). The
shift operator is implemented by separating the two polarization
components and routing them through fibers of different lengths
to introduce a polarization-dependent time delay, such that the
walker position is mapped to the time domain. For instance, a
superposition of multiple spatial positions at a given time step is
translated into the superposition of multiple well-resolved
pulses within the same discrete-time step. A pair of wave
plates are introduced into each of the paths, to realize a
polarization-dependent loss operation ME ¼ ∑x xj i xh j�
Hj i Hh j þ e�2γ Vj i Vh j� �

, which is related to M through M=
eγME. We, therefore, read out the time-evolved state driven by U
by adding a time-dependent factor eγt to our experimental
measurement. To implement the coin operator, an electro-optical
modulator (EOM) is inserted into the main interferometric cycle,
in combination with wave plates, to provide a carefully time-
sequenced control over θ. Importantly, the EOM enables an
individual-pulse-resolved coin operation, providing the basis for
the implementation of a walker-position-dependent disorder. The
disorder is introduced to the operator R(θ1) in Eq. (1), where the
actual rotation angle is modulated by a small position-dependent
δθ(x), with δθ(x) randomly taking values within the range of
�W;W½ �. Here W indicates the disorder strength. We implement
only static disorder for our experiments, such that δθ(x) does not
change with time steps.

For the input and out-coupling of the interferometric network,
a beam splitter (BS) with a reflectivity of 5% is introduced,
corresponding to a low coupling rate of photons into the network,
but also enabling the out-coupling of photons for measurement.
For that purpose, two avalanche photodiodes (APDs) are
employed to record the out-coupled photons’ temporal and
polarization properties, yielding information regarding the
number of time steps, as well as the spatial and coin states of
the walker.

Non-Hermitian skin effect. Whereas the non-Hermitian skin
effect is typically associated with non-reciprocity8, it can also occur
in systems with on-site loss7,30. Here the non-Hermitian skin effect
is a result of the interplay of an on-site, polarization-dependent loss
(ME operator) and an effective coupling between the polarization
and spatial modes (S operator). While a defining signal of the non-
Hermitian skin effect is the accumulation of Eigen wave functions
at the boundary, it also impacts dynamics in the bulk, leaving
unique signatures in the Lyapunov exponent. Here the Lyapunov
exponent is defined as λðvÞ ¼ lim

t!1
1
t logjψðx ¼ vt; tÞj20, where v is

the shift velocity, and ψ(x, t) is the wave-function component at
position x and time step t. Remarkably, for a system with the non-
Hermitian skin effect, λ(v) takes a maximum value at v ≠ 0 for bulk
dynamics far away from any boundary20. By contrast, in the
absence of the non-Hermitian skin effect, λ(v) acquires a symmetric
profile with respect to its peak at v= 0. Intuitively, from the
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definition of the Lyapunov exponent, it is understood that, if λ(v)
peaks at a shift velocity vm at time t, the time-evolved wave function
must peak at x= vmt. A finite peak shift velocity thus reflects a
directional wave function propagation in the bulk (or equivalently,
a persistent bulk current), which lies at the origin of the non-
Hermitian skin effect. Alternatively, the non-Hermitian skin effect
can also be confirmed by dynamics close to a boundary (see Sup-
plemental Material).

For our experiment, we implement ten-step quantum walks
without imposing any boundary or domain and measure the
polarization-averaged growth rate

�λðvÞ ¼ λHðvÞ þ λV ðvÞ
2

: ð2Þ

Here the additional average over polarization enables us to
qualitatively capture the distinctive features of the Lyapunov
exponent using a relatively small number of time steps (t= 10).
In Eq. (2), the polarization-resolved growth rates are defined as
λiðvÞ ¼ 1

t log jψðiÞ
x¼vtj. To construct ψðiÞ

x¼vt ¼ ih j � xh jUt 0j i � ij i
(i=H, V), we initialize the walker in the state 0j i � ij i, and
projectively measure the probability distribution of photons in the
polarization state ij i of the spatial mode xj i, following the last
time step (t= 10). Note that the average over polarization in Eq.
(2) is taken for faster convergence of the growth rate at a finite
evolution time to the Lyapunov exponent.

In Fig. 2, we show the measured polarization-averaged growth
rates as functions of the shift velocity, for a, c the unitary, and b, d
the non-unitary cases, both without the disorder. Apparently,
under the non-Hermitian skin effect (γ ≠ 0), the peak of the

growth rate lies with a finite v (Fig. 2b), in contrast to the more
symmetric profile without skin effect (Fig. 2a). Such a growth-rate
profile directly originates from the directional propagation of
probability in the bulk, as clearly indicated in the measured
polarization-resolved probability distributions after the final
time step (Fig. 2c, d). In the presence of open boundaries, the
directional probability propagation naturally leads to the accu-
mulation of population at the boundaries. Note that the ability to
infer the existence of the non-Hermitian skin effect from bulk
dynamics confirms that the non-Hermitian skin effect is not
merely a finite-size effect, but has a profound impact even within
the thermodynamic limit.

Competition with Anderson localization. We now switch on
disorder and investigate the interplay between the non-Hermitian
skin effect and disorder36,37. In Fig. 3, we show the measured �λðvÞ
for increasing disorder strength W, under a fixed non-Hermitian
parameter γ. When W is small, the asymmetric profile persists
(see Fig. 3a, d), indicating the dominance of the non-Hermitian
skin effect. A careful comparison between Fig. 2b and Fig. 3a
suggests the emergence of another peak at v= 0, though only just
visible in Fig. 3a. The peak at v= 0 rapidly rises with increasing
W. This leads to the twin-peak structure under an intermediate
W, as shown in Fig. 3b and e. This is a direct evidence for the
competition between the disorder-induced Anderson localization
and the non-Hermitian skin effect. Finally, for sufficiently large
W, �λðvÞ again peaks at v= 0, as Anderson localization completely
suppresses probability flow in the bulk that leads to the non-
Hermitian skin effect. Such a competition as revealed by our

Fig. 1 Experimental setup for observing non-Hermitian topological Anderson insulator. a Photons are coupled in and out of an interferometric network
through a low-reflectivity beam splitter (BS, reflectivity 5%). The coin operation is carried out with wave plates and a dynamic electro-optic modulator
(EOM). The shift operator is realized by splitting the light, using a polarizing beam splitter (PBS), into two single-mode fibers of length of 160,000 and
167,034m, respectively. As such, the spatial modes are encoded into the polarization-dependent temporal shift within a time step. The out-coupled
photons are detected using the avalanche photodiodes (APDs), in a time- and polarization-resolved fashion. An optical switch acousto-optic modulator
(AOM) is used to protect the APDs such that photons are only allowed to reach the APDs at the time of measurement. b Illustration of the operation
sequence of the time-multiplexed quantum walk. Here V(θi) is the control voltage applied to the EOM for generating rotations with the coin parameter θi.
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experiment is consistent with the non-monotonous localization
predicted in ref. 36, where the inverse participation ratio is used to
characterize the competition (see Supplemental Material).

Disorder-induced topology. The Floquet operator U is topolo-
gical, protected by the chiral symmetry with ΓUΓ=U−1, where
Γ ¼ ∑x xj i xh j � σx . While the topology of U generally persists
under small random disorder, the disorder can also induce non-
trivial topology from a topologically trivial state, similar to
the case with the topological Anderson insulator in Hermitian
systems3–6. We emphasize that the topology discussed here is to
be differentiated from the spectral topology of the non-Hermitian
skin effect, with the latter indicating closed-loop structures of the
eigenenergy spectra on the complex plane17,18.

In Fig. 4a, we plot the theoretical phase diagram, characterized
through the disorder-averaged local marker under the non-Bloch
band theory (see Supplemental Material). The yellow (blue)
region corresponds to the topologically non-trivial (trivial) phase,
thus the non-Hermitian topological Anderson insulator state
corresponds to the yellow region with the finite disorder (W > 0).
Here the biorthogonal local marker, calculated over a unit cell
deep in the bulk, plays the role of a topological invariant in the
presence of disorder and converges to the non-Hermitian
winding number for W= 0 (see Methods). Incidentally, for our
choice of U, the topological phase boundary is insensitive to γ,
despite the presence of the non-Hermitian skin effect and the
application of the non-Bloch band theory. Nevertheless, the
biorthogonal localization length, rather than the conventional
localization length, diverges at the topological phase boundary

Fig. 2 Lyapunov exponent from bulk dynamics.Measured polarization-averaged growth rates �λðvÞ for a unitary quantum walk with γ= 0 in (a) and a non-
unitary quantum walk with γ= 0.1 in (b). Red triangles with error bars are the experimental data and blue triangles are from numerical simulations. The
horizontal dashed line indicates the threshold values below which experimental data were no longer reliable due to photon loss. To construct �λ, we initialize
the walker in the state 0j i � Hj i ( 0j i � Vj i), evolve it up to ten steps under the parameters (θ1= 4.3, θ2= 2.175,W= 0), and projectively measure
the horizontally (vertically) polarized photon distribution following the last time step. Note that the system is in a topologically non-trivial phase under the
chosen parameters. We construct λH and λV from these polarization-resolved distributions, from which �λ is calculated. c, d The polarization-resolved
photon distribution after the last time step t= 10, for the dynamics in a and b, respectively. For each bar, the blue (top) and red (bottom) portions are
respectively the numerical results for the horizontal-polarization-resolved and vertical-polarization-resolved photon distributions, initialized in 0j i � Hj i
and 0j i � Vj i, respectively. The white dots are the experimental measurements for the vertical-polarization-resolved photon distribution, and black dots
are the experimental results for the sum of the polarization-resolved distributions. Error bars are due to the statistical uncertainty in photon-number-
counting.
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(solid black curve in Fig. 4a)37, suggesting a unique non-
Hermitian criticality. From our observation in previous sections,
a non-Hermitian topological Anderson insulator with persistent
signatures of the non-Hermitian skin effect is expected in the
yellow region of Fig. 4a with W≲ 0.4, where the disorder has not
become dominant.

Here we focus on the impact of the disorder on the topological
phase boundary, which we experimentally probe through the time
and disorder-averaged biorthogonal chiral displacement, defined
for a t-step quantum walk as26,37

�C ¼ 1
N

∑
N

n¼1
∑
t

t0¼1

1
t

χnðt0Þ
� ��ΓX ψnðt0Þ

�� �
; ð3Þ

where ψnðtÞ
�� � ¼ Ut ψð0Þ

�� �
and χnðtÞ

�� � ¼ ðU�1Þy
h it

ψð0Þ
�� �

,

ψð0Þ
�� � ¼ 0j i � Vj i, the subscript n indicates the nth disorder
configuration (with a total of N configurations), and X is the
position operator. Experimentally, we prepare ψnðtÞ

�� �
and χnðtÞ

�� �

by separately evolving the initial state with U and ðU�1Þy,
followed by state tomography to reconstruct ψnðtÞ

�� �
and χnðtÞ

�� �
,

respectively, before calculating �C according to Eq. (3).
In Fig. 4b, we plot the measured �C. Similar to ref. 26, while the

measured chiral displacement varies smoothly across the
topological phase boundaries due to the limited number of time
steps amenable to our experiment, it does show a tendency

consistent with the theoretically predicted phase boundaries.
Numerically, it is found that �C approaches the topological
invariants given by the local marker (dashed line) at much larger
time steps. The measured �C is insensitive to γ, consistent with
theoretical predictions using the local marker.

To provide direct evidence for the topological nature of the non-
Hermitian topological Anderson insulating state, in Fig. 4c, d, we
show the spatial probability distributions following ten-step
quantum-walk dynamics close to a domain-wall configuration,
where the left (x ≤−1) and right (x ≥ 0) regions feature different
parameters (θ2 in our experiment). When the two regions belong to
different topological phases, the time-evolved probability shows a
prominent peak at the boundary, indicating the presence of
topological edge states (Fig. 4c). This is in sharp contrast to Fig. 4d,
where both regions are in the same topological phase. Note that to
minimize the impact of the non-Hermitian skin effect, we choose a
parameter regime where the non-Hermitian skin effect leads to a
directional probability flow through the boundary (corresponding
to the probability peaks in the region x ≤−1 in Fig. 4c, d), such that
the probability accumulation at the boundary in Fig. 4c is
unambiguously associated with edge states.

Discussion. We report the first experimental observation of a
non-Hermitian topological Anderson insulator, achieved by
introducing disorder to a discrete-time non-unitary quantum

Fig. 3 Competition between the non-Hermitian skin effect and Anderson localization. a–c The measured �λðvÞ with increasing W, under the parameters
θ1= 4.3, θ2= 2.175, and γ= 0.1. Note that the system is topologically non-trivial under the parameters of a and c, and is topologically trivial in b. d–f The
experimental data (symbols) and numerical results (bars) for the polarization-resolved photon distribution after the final step t= 10. In a–c we average
over 20 disorder configurations. The symbols used are the same as those in Fig. 2. Error bars are due to the statistical uncertainty in photon-number-
counting.
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walk with topology and non-Hermitian skin effect. Using
dynamic observables, we demonstrate the two competing locali-
zation mechanisms inherent in the system and reveal a disorder-
induced topological phase transition. Our experiment lays the
foundation for interesting theoretical questions as to the fate of
localized states in a non-Hermitian many-body system with skin
effect, as well as the interplay of non-Hermiticity, disorder, and
many-body interactions therein. On the application side, disorder
and non-Hermiticity provide convenient control over key prop-
erties of non-Hermitian Anderson insulators, opening routes
toward the design of a tunable optical device for engineered
quantum transport.

For future studies, it is hopeful to further increase the evolution
time of the quantum-walk dynamics based on the time-multiplexed
configuration, such that a more accurate determination of the

Lyapunov exponent can be achieved. It would also be interesting to
explore similar competitions for higher dimensional non-Hermitian
topological Anderson insulators.

Methods
Experimental setup. To implement quantum walks governed by the Floquet
operator U in Eq. (1), we adopt a time-multiplexed configuration, encoding the
internal coin-state degrees of freedom in the photonic polarization, and the
external spatial modes in the discretized temporal shift within a time step40. The
overall experimental configuration is illustrated in Fig. 1.

The wave packets of photons are generated by a pulsed laser source with a
central wavelength of 808 nm, a pulse width of 88 ps, and a repetition rate of
31.25 kHz. The pulses are attenuated to the single-photon level using neutral
density filters at the detection stage. For a unitary quantum walk, the probability
that a photon undergoes a full round-trip without getting lost or detected is about
0.59 per step and the detection efficiency is 0.03 per step (taking into account the
efficiency of APDs and the reflectivity of BSs). We ensure the average photon
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Fig. 4 Characterizing topology. a Theoretical phase diagram in terms of the color contour of the numerically evaluated biorthogonal local marker, with
θ1= 4.3+ δθ(x), and γ= 0.1. The yellow (blue) region corresponds to the topologically non-trivial (trivial) phase, thus the non-Hermitian topological
Anderson insulator state corresponds to the yellow region with W > 0 (labeled NHTAI in a). b Measured averaged chiral displacement for 9-step quantum
walks with θ2= 2.175 (vertical dashed line in a), averaged over ten different configurations of δθ(x), with δθ(x) taking random values within the range
�W;W½ �. Experimental data were represented by blue and red dots for γ= 0 and γ= 0.1, respectively. Error bars are due to the statistical uncertainty in
photon-number-counting. Blue and red dashed lines are numerically evaluated chiral displacements for nine-step quantum walks, averaged over 2000
random-disorder configurations, for γ= 0 and γ= 0.1, respectively. Blue and red solid lines are numerically evaluated chiral displacement for 400-step
quantum walks, averaged over 200 random-disorder configurations, for γ= 0 and γ= 0.1, respectively. For all cases, the initial state is 0j i � Vj i. c, d are
the measured probability distributions after the last time step of ten-step quantum walks close to a boundary (indicated by the vertical dashed lines). In
c, we set θ2= 1.915 for x≤−1 (red triangle in a), and θ2= 2.3 for x≥ 0 (black dot in a). In d, θ2= 2.175 for x≤−1 (red dot in a), and θ2= 2.3 for x≥ 0
(black dot in a). In c, d, red (black) bars correspond to experimental measurements (numerical simulations), both averaged over ten disorder
configurations. The walker is initialized at 1j i � Vj i, and we fix W= 0.25.
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number per pulse at the detection stage to be less than 2 × 10−4 so that there is a
negligible probability of a multi-photon event.

To implement U with a fiber loop configuration, we rewrite the t-step time-
evolution operator as Ut ¼ e2γtUt

E, where

Ut
E ¼ Rðθ2ÞMESRðθ1ÞMESRðθ2Þ

� �t
¼ Rðθ2ÞUt

loopRð�θ2Þ;
ð4Þ

and

U loop ¼ MESRðθ1ÞMESRð2θ2Þ: ð5Þ
Here the coin operator R(θi) and the shift operator S are the same as those in Eq.
(1) and the ensuing discussions. The polarization-dependent loss operator
ME ¼ ∑x xj i xh j � Hj i Hh j þ e�2γ Vj i Vh j� �

, which is related to M through
M= eγME. For each cycle in the interferometric network, the walker state is subject
to the operation MESR(θ), where θ is alternatingly modulated to be 2θ2 or θ1 for
odd or even cycles. As such, one cycle in the network roughly corresponds to a half
step of the quantum walk. The coin operators R(θ2) and R(−θ2) are implemented at
the input and out-coupling stage, respectively.

More specifically, the operator R(−θ2) [R(θ2)] in Eq. (1) is implemented using
two half-wave plates (HWPs) with setting angles −θ2/2 (θ2/2) and 0, respectively,
before (after) the photon is sent into (coupled out of) the network. For the input,
photons are reflected by a low-reflectivity BS with a reflectivity of 5%, such that
there is a 5% probability to couple a photon into the network. The same BS is
subsequently used as the out-coupler, where photons, after completing cycles in the
interferometer, have a 5% probability of being reflected out of the cycle and into the
detection module.

Within each interferometer cycle, the photon is first sent through a sandwich-
type, QWP(0)-EOM(4θ2)-QWP(90∘) configuration42, which is used to implement
the coin operator R(2θ2) or R(θ1) in Eq. (5). Here QWP is the abbreviation for
quarter-wave plates. The birefringent crystal inside the EOM is set at 45∘ to the x/y
axis so that the EOM acts on the photon polarization as ~REOMðϑÞ ¼

�
1
�1

1
1

�
�
ei
ϑ
2

0
0

e�iϑ2

��
1
1

�1
1

� ¼ � cosϑ2
i sinϑ2

i sinϑ2
cosϑ2

�
. The properties impose that ϕV(x)/ϕH(x)=−1.

Thus, in combination with a pair of wave plates, an EOM can be used to modify the
polarization of each pulse individually, providing the basis for realizing position-
dependent coin operations RðϑÞ ¼ �

1
0

0
�i

�
~REOMð2ϑÞ

�
1
0

0
i

� ¼ �
cos ϑ
sin ϑ

� sin ϑ
cos ϑ

�
. For a

disorder-free quantum walk, we sequence the EOM such that ϑ= 2θ2 for odd cycles
and ϑ= θ1 for even cycles.

The shift operator S is implemented by separating different polarization
components of a photon using polarizing beam splitters (PBSs) and routing
them through fibers of different lengths to introduce a well-defined time delay
in between. Specifically, horizontally polarized photons traverse the fiber loop
in 751.680 ns, while vertical ones take 33.046 ns longer to complete the trip.
The resulting temporal difference corresponds to a step in the spatial
domain of x ± 1. As such, each position in each time step is represented by a
unique discrete-time bin, i.e., the position information is mapped into the time
domain.

To implement the loss operator ME, a pair of HWPs are inserted into each fiber
loop, one at the entrance and one near the exit. Since the operator ME induces a
loss in the polarization state Vj i with a probability 1− e−4γ, we adjust the setting
angles of the HWPs, such that only the desired components are reflected
(transmitted) by the PBS at the exit of the short (long) fiber loop into the blocker,
rendering the dynamic within the main cycle non-unitary. We, therefore, read out
the evolved states from our experiment with ME by adding a factor eγt.

At the output of the shift operator, the two paths are coherently recombined,
and photons are sent back to the input BS for the next split-step. In order to realize
a full time step, two cycles in the interferometer network are required, with the
setting angle of the EOM alternating between 2θ2 (odd cycle) and θ1 (even cycle).
We introduce static disorder to the coin operator R(θ1) for odd cycles. This is
achieved by modulating the setting of EOM by a small random amount δθ 2
�W;W½ � around θ1. Here δθ is position-dependent but time-independent. Such
static disorder preserves the chiral symmetry of U.

Finally, after a photon has completed multiple cycles and is coupled out of the
network by the BS (with a probability of 5%), the coin operator R(θ2) is applied,
and the photon registers a click at an APD with a time jitter 350 ps for detection.

State tomography. For the detection of the time-averaged chiral displacement,

we reconstruct the final state ψðtÞ
�� � ¼ Ut ψð0Þ

�� �
and its left vector χðtÞ

�� � ¼
ðU�1Þy
h it

ψð0Þ
�� �

for each time step. Here we take the reconstruction of ψðtÞ
�� �

as an

example. Since U and the initial state ψð0Þ
�� � ¼ 0j i � Vj i are purely real in the

polarization basis f Hj i; Vj ig, we have the expansion

ψðtÞ
�� � ¼ ∑x pH ðt; xÞ xj i � Hj i þ pV ðt; xÞ xj i � Vj i� �

; ð6Þ
where the coefficients pμ(t, x) (μ=H, V) are also real. Based on these, we perform
three distinct measurements Mi (i= 1, 2, 3) to reconstruct ψðtÞ

�� �
in the basis

f Hj i; Vj ig. This amounts to measuring the absolute values and the r signs of the
real coefficients pμ(t, x), as we detail in the following.

First, we measure the absolute values pμðt; xÞ
���

���. After the tth time step, photons

in position x are sent to a detection unit M1, which consists of PBS and APDs. M1

applies a projective measurement of the observable σz on the polarization of
photons. The counts of the horizontally polarized photons NH(t, x) and vertically
polarized ones NV(t, x) are registered by the coincidences between one of the APDs
in the detection unit, and the APD for the trigger photon. The measured
probability distributions are

Pμðt; xÞ ¼
e2γcðtÞNμðt; xÞ

∑x NH ðt; xÞ þ NV ðt; xÞ
� � ; ð7Þ

where cðtÞ ¼ Tr Ut
Ejψð0Þ

� �
ψð0ÞjðUy

EÞ
t

D i
. The square root of the probability

distribution Pμ(t, x) corresponds to pμðt; xÞ
���

���.
Second, we determine the relative sign between the amplitudes pH(t, x) and pV(t,

x) via the detection unit M2, which consists of an HWP at 22.5∘, a PBS, and APDs.
The only difference between M2 and M1 is the HWP at 22.5∘, i.e., a projective
measurement of the observable σx on the polarization components of photons. The
difference between the probability distributions of the horizontally and vertically
polarized photons is given by

PHðt; xÞ � PV ðt; xÞ ¼ 2pH ðt; xÞpV ðt; xÞ; ð8Þ
which determines the relative sign between pH(t, x) and pV(t, x).

Third, we probe the relative sign between the amplitudes pH(t, x) and pV ðt; x0Þ,
which is necessary to calculate the summation of wave functions in different
positions at each time step. We take the relative sign between the amplitudes in the
positions x and x− 2 as an example. To this end, a detection unit M3 is introduced,
consisting of an extra loop, an HWP at 22.5∘, a PBS, and APDs. In the extra loop,
the EOM is set to realize a rotation R(θ2+ 3π/4). The horizontally polarized
photons at both x and x− 2 are combined at the end of the loop. The projective
measurement of the observable σx is applied to the polarization components of
photons via an HWP at 22.5∘, a PBS, and APDs. The difference between the
probability distributions of the horizontally and vertically polarized photons is
given by

PHðt; xÞ � PV ðt; xÞ ¼ � pHðt; xÞ þ pV ðt; xÞ
� �

´ pH ðt; x � 2Þ � pV ðt; x � 2Þ� �
:

ð9Þ

As we have determined the relative sign between pH(t, x) and pV(t, x) [between
pH(t, x− 2) and pV(t, x− 2)] with M2, we determine, using M3, the relative sign
between pμ(t, x) and pμ(t, x− 2) for arbitrary x.

Note that, as the purpose of reconstructing the final state is to calculate the
expectation value of the averaged chiral displacement, the global sign of pμ(x, t) is
unimportant.

Biorthogonal local marker and chiral displacement. Following refs. 26,37, the
biorthogonal local marker is defined as

νðmÞ ¼ 1
4
∑
s
m; sh jQΓ X;Q½ � m; sj i þ h:c:; ð10Þ

where m; sj i is the sublattice state s of the mth unit cell, and X is the unit-cell
position operator. The biorthogonal projection operator Q= P+− P−, with

P ± ¼ ∑n ϕðnÞ±
���

E
χðnÞ±

D ���. Where ϕðnÞ±
���

E
is the nth right eigenstate of U, satisfying

U ϕðnÞ±
���

E
¼ λðnÞ± ϕðnÞ±

���
E
; and χðnÞ±

D ��� is the nth left eigenstate, with Uy χðnÞ±
���

E
¼

λ�n;± χðnÞ±
���

E
. Here λn,+ (λn,−) lies in the lower (upper) half of the complex plane.

Similar to the analysis in refs. 26,37, the biorthogonal local marker serves as the
topological invariant in a disordered system, and is reflected in the disorder- and
time-averaged chiral displacement defined in Eq. (3).

Data availability
All other data, any related experimental background information not mentioned in the
text, and other findings of this study are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
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