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The 3D mutational constraint on amino acid sites
in the human proteome
Bian Li 1,2✉, Dan M. Roden2,3 & John A. Capra1,4✉

Quantification of the tolerance of protein sites to genetic variation has become a cornerstone

of variant interpretation. We hypothesize that the constraint on missense variation at indi-

vidual amino acid sites is largely shaped by direct interactions with 3D neighboring sites.

To quantify this constraint, we introduce a framework called COntact Set MISsense tolerance

(or COSMIS) and comprehensively map the landscape of 3D mutational constraint on

6.1 million amino acid sites covering 16,533 human proteins. We show that 3D mutational

constraint is pervasive and that the level of constraint is strongly associated with disease

relevance both at the site and the protein level. We demonstrate that COSMIS performs

significantly better at variant interpretation tasks than other population-based constraint

metrics while also providing structural insight into the functional roles of constrained sites.

We anticipate that COSMIS will facilitate the interpretation of protein-coding variation in

evolution and prioritization of sites for mechanistic investigation.
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The human proteome harbors millions of missense variants
that could alter protein structure and function and con-
tribute to disease risk1. Strong evolutionary constraint is a

hallmark of sites critical to a protein’s structure or function. A
common approach to identifying constrained sites in human
proteins has been to align the human protein sequence to those
from other species and locate amino acid sites that are conserved
across multiple species2–5. When combined with protein struc-
tures, this approach can facilitate generation of testable hypoth-
eses about the structural mechanisms underlying the evolutionary
constraint6–9. Such interspecific comparisons of sequences are
powerful in detecting sequence conservation over long evolu-
tionary timescales. Similarly, patterns of intraspecific coding
variation in humans, especially low-frequency variants, also carry
information about the functional importance of proteins and
variants in human development and disease1.

Leveraging ever growing human genetic variation data
resources1,10–12, several methods have been developed to estimate
gene- or region-specific constraint based on tolerance to missense
or loss-of-function variants in humans1,12–18. These gene-level
and region-level measures of constraint have been effective in
identifying Mendelian disease genes, genes under strong negative
selection, and genes involved in severe neurodevelopmental dis-
orders. However, some protein sites are critical for maintaining
the integrity of protein structure or function, while others can be
replaced with no or only minor impact on protein structure or
function19. Metrics that yield a single score for an entire gene or a
subregion do not capture the site-level variability in constraint
that is essential for tasks such as interpreting the effects of specific
variants of uncertain significance (VUS). To this end, the site-
specific missense tolerance ratio (MTR), which compares the
observed fraction of missense variation to the expectation under a
null model within a sliding window of sites, was developed and
shown to improve variant interpretation in epilepsy genes20.

Recent analyses of the spatial distribution of missense variants
in proteins have shown that population-level human standing
variation can be analyzed in the context of 3D protein structures
to identify specific regions and domains relevant to protein
function and disease21–26. For example, analyses of tumor-
derived somatic mutations within the context of protein structure
indicate that variants tend to form spatial clusters and that these
clusters often overlap functional domains in oncoproteins and
tumor suppressors23,27–30. Analysis of 3D spatial patterns of both
human germline and somatic variation also highlighted sig-
nificant differences in the spatial mutational constraint on dif-
ferent classes of mutations in protein structure21. Recently, amino
acid residue sites that are intolerant to missense variation have
been characterized by incorporating protein structures and
human genetic variation from large sequencing cohorts22,25,26,31.
These studies suggest that missense variant analysis at the 3D
level can identify functional sites and aid in variant interpretation.
However, these previous analyses are limited by the availability of
high-quality protein 3D structures and generally covered less than
half of the proteins in the human reference proteome. In addition,
while it is well-recognized that the mutability of individual amino
acid sites is influenced by nucleotide sequence context1,12,14,32–35

and that inter-residue spatial interactions are essential to main-
taining structural and functional integrity of proteins19, the
consideration of the mutation spectrum at the resolution of native
3D interactions remains largely unexplored.

We hypothesize that connected functional sets of 3D neigh-
boring amino acid sites, “contact sets”, collectively shape the level
of constraint on each site (e.g., as quantified by the depletion of
missense variation compared to the amount expected under
neutral evolution). We introduce the COntact Set MISsense tol-
erance (COSMIS) framework, to quantify the level of observed vs.

expected missense variation in a 3D structural context while
correcting for nucleotide sequence context-dependent mutability
of amino acid sites. We applied the framework to analyze the 3D
spatial distribution patterns of 4.1 million unique missense var-
iants at 6.1 million amino acid sites in their 3D structural context.
We integrated high-quality protein 3D structures from three large
resources, i.e., the Protein Data Bank (PDB)36, the SWISS-
MODEL repository37, and the recently released, comprehensive
database of protein 3D structures predicted by the AlphaFold2
algorithm38,39. Collectively, our framework covers 16,533 (80.3%)
of all proteins in the human reference proteome. We show that
our framework captures broad missense variant intolerance at the
3D spatial level across the human proteome. We demonstrate the
utility of COSMIS in variant interpretation and in revealing
structural insights into the pathogenic mechanisms of disease-
causing variants. We further demonstrate the flexibility of the
framework to work with custom-built homology models of
potassium channels and with proteins in their oligomeric states.
We propose that our COSMIS framework will have broad
applicability in answering diverse questions about variant effect
and to discover new genotype-phenotype relationships.

Results
The COSMIS framework maps 3D mutational constraint on
proteins in high resolution. We developed the COSMIS frame-
work to quantify the 3D mutational constraint at each site in a
protein structure by analyzing the patterns of genetic variants
from large-scale sequencing projects in the context of protein
structures (Fig. 1 and Methods). Our framework estimates the
constraint on a site of interest (index site) as the depletion of
missense variants in its 3D spatial neighborhood (i.e., contact set,
see definition below) compared to the number expected if sites
were evolving neutrally. We quantify this as the deviation of
observed count of missense variants (mo) from the expected count
(me, accounting for transcript and codon missense mutability),
divided by the standard deviation of the expected distribution
(mσ). We designate this Z score as the COSMIS score and assign it
to the index site. We obtain the observed variant count in each
contact set by mapping variants cataloged by the Genome
Aggregation Database (gnomAD, v2.1.1)1 onto protein structures.
To obtain the expected variant count distribution, we use a
procedure that simulates mutation under neutral evolution based
on a 64 by 3 sequence-context-dependent mutability matrix
derived from the 1000 Genomes Project variant set11. We also
compute an empirical p value for each COSMIS score based on
the simulation procedure and the resulting expected count dis-
tribution (Methods). According to our formulation of the score, a
lower value indicates a greater depletion of missense variants in
the spatial neighborhood and hence lower missense variation
tolerance.

3D structural context differs from 1D sequence context.
COSMIS scores are based on the 3D interaction context of
protein-coding sites. We quantify this context using contact sets,
defined as the set of amino acid residues that are in contact with
the residue located at the index site (Fig. 2a). A pair of residues
are considered to be in contact when the distance between their
Cβ atoms (or Cα atoms in the case of glycines) is less than 8 Å, a
threshold commonly used to define residue contact40. To com-
pute contact sets, we collected high-quality protein 3D structures
(Methods and Supplementary Fig. 1) that collectively cover 80.3%
of all proteins in the human reference proteome (UP000005640,
UniProt release 2021_03) from the PDB36, SWISS-MODEL
repository37, or the AlphaFold database of highly accurate pre-
dicted structures (AF2)38,39 (Fig. 2b) (Supplementary Data 1).
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Our framework also has high residue-level coverage. Structures
from PDB, SWISS-MODEL, and AF2 have a median residue-level
coverage of 78.0%, 70.9%, and 76.7%, respectively (Supplemen-
tary Fig. 1). Collectively, we computed contact sets for each of 6.1
million unique index sites in the human reference proteome
(Fig. 2b). For simplicity, we report results for experimental
structures and computational models together, since patterns
were similar when we analyzed them separately (Supplementary
Figs. 2 and 3).

Conceptually, a contact set captures residues that are close in
3D space, even when they are far apart in sequence. Our analysis
shows that contact sets include critical “long-range” (defined here
as >15 residues apart along 1D sequence) residue-residue
interactions that would be missed by 1D sequence-based metrics
that only consider a window around the index site. For example,
for 17.9% of all 6.1 million amino acid sites, at least 50% of the 3D
contacts they make are long-range, and 66.3% of all sites make at
least 10% long-range 3D contacts (Fig. 2c). On the other hand,
windows based on sequence context alone contain many sites that
are not in 3D contact with the index site. For example, all of the
6.1 million sites in this study have at least 50% of their 30 1D
sequence neighbors (15 sites on each side) not in 3D contact, and
nearly half (47.5%) of all sites have least 80% of sequence
neighbors not in 3D contact (Fig. 2d). Thus, long-range 3D
contacts are common, as are sites that are nearby in sequence but
distant in 3D. (Additional statistics about long-range 3D contacts
at 6 Å and 10 Å distance thresholds are available in Supplemen-
tary Fig. 4.) Residues in 3D contact are likely to be essential for
the structural stability and functional integrity of the residue at

the index site; thus, 3D structure-based residue contact sets give a
more sensitive representation of the structural and function
context of coding sites than sequence-based windows.

COSMIS captures constraint at both protein and site levels.
Consistent with our expectation and previous observations at the
gene level, our framework identifies broad constraint on missense
variants at the protein level and little constraint on synonymous
variants1,12. We computed the deviation from the expected count
(observed - expected) at the protein level for both synonymous and
missense variants across the entire dataset. Supporting our approach
for estimating the expected variant count distributions (Methods),
the deviation between the observed and expected synonymous var-
iant count is low and centered near zero (Fig. 3a; median 1.9, stan-
dard deviation 39.4). In contrast, the difference between observed
and expected is significantly shifted toward negative values for
missense variants (Fig. 3a; median −29.1, standard deviation 104.8,
p < 2.2 × 10−308, two-sided Mann–Whitney U test).

We next computed COSMIS scores for the 6.1 million unique
amino acid sites across 16,533 proteins in the human reference
proteome with sufficient data (Fig. 3b and Supplementary Fig. 5).
As expected, the distribution of scores spans a wide range from
negative (constrained) to positive (unconstrained) values, with a
significant shift toward constraint (median −0.47, standard
deviation 1.2). Proteins with experimentally determined structures
in the PDB have a significantly lower median COSMIS score than
those currently only have computationally predicted structures in
SWISS-MODEL and AF2 databases (median −0.62 vs. −0.42 and

Single nucleotide 
variants in coding regions

gnomAD v2.1.1

Synonymous Missense

Compute
COSMIS score

Expected number of missense variants
in each contact set ( )

Simulation

Map variants to protein 3D structures
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protein sequences
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UniProt reference protein sequences

Observed number of missense variants
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Fig. 1 Schematic of the COSMIS 3D mutational constraint quantification framework. The COSMIS framework consists of mapping single nucleotide
variants (SNVs) from gnomAD to human reference protein sequences and protein 3D structures, the computation of 3D contact sets, tallying of unique
missense variants observed in contact sets, and comparison of observed missense variant counts to a null distribution simulated based on a mutation-
spectrum-aware statistical model. We quantify the constraint on the index amino acid site with the Z score of the observed missense variant count (mo)
compared to the null distribution. gnomAD Genome Aggregation Database, PDB Protein Data Bank, AF2 AlphaFold2.
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Fig. 2 Protein 3D context differs from 1D sequence context. a To quantify the 3D spatial context of each amino acid site (i), our framework defines its
contact set as the amino acid residues that are in contact (Cβ < 8 Å) with the residue. For the example index site (i), the contact set is (i, j1, j3, j4, j6).
Numbers below the 1D sequence schematic represent residue sequence positions and illustrate that contact set residues may be distant in sequence from
the index site. b The COSMIS framework covers 80.3% of the reference human proteome. Defining the contact set of an amino acid site requires protein
3D structures. We used PDB and SWISS-MODEL as our primary sources of protein 3D structures. For proteins with no structure in the PDB or SWISS-
MODEL that meet our criteria (Methods), we analyze models from the AlphaFold2 structure database. Numbers inside the pie chart represent fractions of
the human reference proteome (20,600 proteins) for which we used the corresponding protein structure resource to compute COSMIS scores
(Supplementary Data 1). c Contact sets capture long-range sites (separated by more than 15 residues along the 1D sequence) that interact in 3D. For
example, residues j1 and j6 in panel a are not neighbors in 1D sequence, but nevertheless form long-range contacts with the index site i. The bar plot shows
the fraction of all 6.1 million sites with at least a certain fraction of long-range 3D contacts in their contact sets. dMany neighboring sites in 1D sequence do
not form 3D contacts with an index site. Defining the contact set eliminates these sites from consideration. For example, residues j2 and j4 in panel a are 1D
sequence neighbors (within 15 residues) of the index site i but do not form 3D contacts with it. The bar plot shows the fraction of all 6.1 million sites that
have at least a certain fraction of 1D sequence neighbors that do not form 3D contacts. PDB Protein Data Bank, AF2 AlphaFold2. Source data are provided
as a Source Data file.
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Fig. 3 The COSMIS score quantifies depletion of missense variants in contact sets. a Distribution of the deviation of the observed from the expected
number of synonymous (blue) and missense (red) variants per-transcript computed from the mutability-aware model (Methods). The median of the
deviation is roughly centered at zero (1.9) for synonymous variants but is significantly shifted towards negative values (more constraint) for missense
variants (median −29.1, p< 2:2´ 10�308, two-sided Mann–Whitney U test). b Distribution of the COSMIS scores for 6.1 million unique amino acid sites of
the reference human proteome. As expected, an average amino acid site in the human proteome is depleted of missense variants in its contact set (median
COSMIS score −0.47) due to structural and/or functional constraint. c Distribution of per-protein fraction of high-confidence constrained sites (empirical
p < 0.01). Source data are provided as a Source Data file.
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0.44, respectively, p < 2.2 × 10−308, two-sided Mann–Whitney U
test) (Supplementary Fig. 6), suggesting that proteins with greater
functional importance have historically been selected for structural
characterization. In contrast, a similarly constructed score based on
synonymous variants (i.e., contact set synonymous tolerance score)
is centered at 0, regardless of the sources of protein 3D structures
(Supplementary Fig. 6), consistent with overall results and the
hypothesis that synonymous variants are not subject to 3D
mutational constraint in protein structures.

We consider sites with a COSMIS score for which the empirical
p value obtained from simulation is <0.01 as high-confidence
(this is approximately equivalent to COSMIS score <−2.33).
Overall, we find 313,204 sites (5.1%) with high-confidence
constraint scores from 10,955 proteins (66.3%), with an average
of 28.6 high-confidence constrained sites per protein (Fig. 3c,
Supplementary Data 2). These sites are generally clustered in 3D
space. The average pairwise distance between high-confidence
constrained sites is on median only 66% of the distance expected
from random permutations (Supplementary Fig. 7), suggesting
that high-confidence constrained sites identified by COSMIS
likely represent functionally important domains. Overall, these
findings suggest that the COSMIS score captures the depletion of
missense variants in 3D structure-based contact sets resulting
from varying functional constraint over protein space.

COSMIS refines gene-level constraint estimates. With the
growth of large human genetic variation datasets, methods have
been developed to quantify constraint on individual sites,
sequence windows, and genes. Given the connection between
constraint and function, constraint scores are critical components
of many gene and variant interpretation tasks. For example, gene-
level metrics, like pLI12, have been extensively used to prioritize
genes in which variants are likely to contribute disease risk.
However, gene-level metrics do not identify amino acid sites
within each gene that are under constraint. pLI accurately iden-
tifies gene-level constraint, but frequently classifies genes that
harbor known disease-associated mutations as loss-of-function
(LoF) tolerant41. This is not surprising, and illustrates a weakness
of gene- and region-level metrics. Site- and window-based
intraspecies constraint metrics provide a higher resolution view,
but as demonstrated above, sequence context is often very dif-
ferent from 3D structural interaction context. Since COSMIS
quantifies constraint at the contact set level for each amino acid
site, we hypothesized that it would provide a higher-resolution
view of the clinical importance of protein regions, in addition to
capturing broad constraint at the protein level.

To explore this hypothesis, we computed the distribution of
per-protein COSMIS scores for 16,260 proteins stratified into the
three pLI classes (Intolerant (n= 2566), Unsure (n= 2900),
Tolerant (n= 10794)). (We were not able to obtain the pLI scores
for 273 proteins with COSMIS scores.) As expected, on average
LoF intolerant genes (pLI ≥ 0.9) have significantly lower COSMIS
scores than LoF tolerant genes (pLI ≤ 0.1) (−1.1 vs. −0.12,
p < 2.2 × 10−308, two-sided Mann–Whitney U test, Fig. 4a),
indicating that sites in LoF intolerant genes are on average more
constrained than LoF tolerant genes. Genes that have medium
pLI scores (0.1 < pLI < 0.9) also have medium COSMIS score on
average (−0.80).

While LoF tolerant genes have less evidence of 3D mutational
constraint overall, we found that 1888 (40.4%) LoF tolerant genes
have at least one high confidence constrained site (COSMIS
score <−2.33), with 13.6 on average. For example, the ubiquitin-
like modifier-activating enzyme 5 (UBA5) is considered LoF
tolerant (pLI score of 2.5 × 10−4). However, our analysis indicates
that UBA5 has many constrained sites in interfaces of UBA5

dimerization, UBA5-UFM1 binding, and UBA5-ATP interaction
(Fig. 4b, c). Specifically, of the 30 (10%) most constrained sites in
UBA5, 13 sites are located at the UBA5 dimerization interface,
four sites interact with ATP, and another three are involved in
UFM1 binding (Fig. 4c). This is consistent with UBA5’s
involvement in severe epileptic encephalopathy42. Indeed, the
three constrained sites with the strongest constraint according to
COSMIS (amino acid residues 54, 57, and 58) include M57V,
which was found in a patient cohort to drastically reduce UBA5’s
catalytic activity42. Thus, the COSMIS scores of UBA5 identify
amino acid sites relevant to UBA5’s functions and known disease
associations. This illustrates how considering constraint in spatial
neighborhoods can identify genes predicted to be LoF tolerant
(low pLI) that are clinically important and suggests that COSMIS
can guide further investigation before discarding genes from
clinical consideration.

COSMIS highlights pathogenic variants and essential proteins.
To quantify the ability of COSMIS to contribute to identification
of disease-associated protein variants, we compared the COSMIS
scores for a total of 19,346 unique sites harboring benign and
14,824 unique sites harboring pathogenic missense variants with
unambiguous annotations of clinical significance and 115,172
VUS sites from ClinVar (Methods, Supplementary Data 3).
Pathogenic variants have a significantly lower COSMIS score
distribution than benign variants (median −1.1 vs. 0.0, respec-
tively; p < 2.2 × 10−308, two-sided Mann–Whitney U test; Fig. 5a).
The median COSMIS score of the VUS set is −0.31, consistent
with the expectation that it is a mixture of variants of various
functional effects. The distance threshold for defining residue
contact has little effect on the score distributions of these variant
sets relative to each other (Supplementary Fig. 8). Further divi-
sion of variants into four subgroups, i.e., benign, likely benign,
likely pathogenic, and pathogenic, shows that the median score of
likely benign variants is slightly lower than that of benign variants
(−0.12 vs. 0.07; p= 3.3 × 10−23, two-sided Mann–Whitney U
test), whereas pathogenic and likely pathogenic variants both
have lower scores (median −1.12 vs. −1.17, respectively; p= 0.01,
two-sided Mann–Whitney U test) (Supplementary Fig. 9). Col-
lectively, the significant negative shift for pathogenic variants
suggests strong constraint in their spatial neighborhoods, while
the average neutral COSMIS score of benign variants suggests less
constraint on missense variants in their contact sets.

Across the COSMIS score range, the magnitude of the score
correlates with enrichment for pathogenic over benign variants.
High-confidence constrained sites are 13.5-fold enriched for
pathogenic variants. However, only 1706 out of the 10,955
proteins that have at least one high-confidence site have
unambiguously annotated pathogenic variants in ClinVar (Sup-
plementary Data 4), suggesting that many pathogenic variants are
yet to be uncovered. Moving down the constraint spectrum, the
top 10% most constrained COSMIS sites (equivalent to COSMIS
score <−1.85) are 10.6-fold enriched for pathogenic variants, and
the bottom 10% are 3.3-fold depleted (Fig. 5b). Our analysis
suggests that constraint on missense variation in a site’s 3D
interaction context (as quantified by COSMIS) is strongly
correlated with variant pathogenicity.

To evaluate the relationship between 3D mutational constraint
as quantified by COSMIS and function and disease associations at
the protein level, we compared the COSMIS score distributions of
amino acid sites in six groups of proteins encoded by genes
expected to be under various levels of constraint (and the dataset
as a whole). In general, proteins with essential functions and
disease associations have lower COSMIS scores than proteins
without (Fig. 5c) and as the essentiality of a gene increases, amino
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acid sites in the encoded protein have more negative COSMIS
scores on average. Haploinsufficient genes (a single-copy of the
functional allele is insufficient to produce the expected
phenotype)43, genes essential in cell culture, and genes associated
with dominant diseases encode proteins that have the lowest
COSMIS score distributions among all evaluated categories. In
contrast, constrained sites are much less frequently found in
proteins encoded by nonessential genes. Not surprisingly,
olfactory receptors44 have the least 3D mutational constraint of
any protein groups considered. The abundance of high-
confidence constrained sites in each protein follows the same
general trend (Supplementary Fig. 10). Our analysis identifies 72
proteins with more than 50% high-confidence constrained sites
(Supplementary Data 5). These proteins are likely to be under
extreme purifying selection. In fact, it has been suggested that 10
of these proteins are either essential45 or harbor variants that are
haploinsufficient43 or associated with diseases that follow
dominant inheritance46,47 (Supplementary Data 5). Overall, our
analysis indicates that the COSMIS score strongly reflects
functional constraint and is predictive of variant pathogenicity.

COSMIS complements existing quantifications of intra- and
inter-species constraint. To assess the relationship between
COSMIS and other intra- and interspecies constraint metrics, we
first compared COSMIS to four commonly used intraspecies
constraint metrics that do not consider structural context (MTR,
RVIS, pLI, and Missense_Z). We compared these other metrics to
COSMIS in their ability to identify pathogenic variants using a
total of 8063 benign and 7257 pathogenic missense variants from
ClinVar for which all scores could be computed (Supplementary
Data 6). COSMIS achieved a significantly higher area under the
receiver operating characteristic curve (AUROC) than the other
intraspecies constraint metrics (e.g., 0.733 vs. 0.653 for COSMIS
vs. MTR, p ¼ 1:0 ´ 10�65, two-sided DeLong’s test, Fig. 6a). To
illustrate these patterns, analysis of the COSMIS scores for a set of

functionally characterized VUS in the SCN5A sodium channel48

shows that COSMIS “rescues” pathogenic variants that would be
misclassified by MTR (Supplementary Fig. 11; Supplementary
Data 7). These results suggest that 3D neighboring residues
contribute critical information about the functional importance of
index sites. We additionally compared COSMIS to a recently
developed version of MTR that considers missense variants in 3D
neighborhoods (MTR3D), but does not account for sequence
context-dependent mutability25,26. COSMIS also performs
significantly better than MTR3D (i.e., 0.733 vs. 0.665,
p ¼ 2:5´ 10�50, two-sided DeLong’s test, Fig. 6a), suggesting that
accounting for the variability of mutability is essential to esti-
mating constraint.

We then compiled a subset of 3.6 million amino acid sites for
which the five commonly used intraspecies constraint metrics
(MTR, MTR3D, RVIS, pLI, and Missense_Z) could also be
computed. To summarize the relationships between these
constraint scores, we computed their pairwise Spearman correla-
tions across sites (Fig. 6b). As expected, pLI and Missense_Z have
the highest Spearman’s ρ (0.63), given that they both quantify
gene-level constraint and were derived with similar approaches12.
Similarly, MTR and MTR3D are well correlated (Spearman’s ρ
0.53). The COSMIS score has a comparable level of correlation
with both MTR and MTR3D (0.41 and 0.39). The intermediate
correlations suggest that the metrics capture constraint at
different scales, as expected.

To illustrate the differences between the intraspecies constraint
scores and interspecies phylogenetic conservation metrics, we
additionally computed the correlations for four common
interspecies phylogenetic conservation metrics (GERP++, phy-
loP, phastCons, ConSurf). Phylogenetic conservation metrics are
generally more correlated with each other than with any of the
intraspecies constraint scores (Fig. 6b). For example, the lowest
Spearman’s ρ between any pair of the four phylogenetic
conservation metrics is 0.47 (GERP++ vs. phyloP), higher than
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acid sites in intolerant genes differ from those in tolerant genes (median −1.1 vs −0.12). Statistic test: two-sided Mann–Whitney U test. In boxplot graphs
center line indicates median, bounds of box indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum. b COSMIS scores of
UBA5 sites mapped to structure of one subunit of a dimerized UBA5 bound with the UFM1 target protein (PDB ID: 6H77). UBA5 is predicted to be LoF
tolerant, but it exhibits substantial constraint on specific spatial regions. Structures of all subunits of the complex are rendered in surface. c Locations of the
top 10% most constrained sites in UBA5 ranked by COSMIS score. Sites are rendered in spheres and colored according to their likely functional roles.
Location of variant M57V implicated in early-onset encephalopathy is indicated. Proteins are rendered in cartoons. We note that because the COSMIS
score of a site is directly informed by the genetic variability of its contact set, it comes as natural to interpret the scores in the context of a 3D structure. pLI
probability of loss-of-function intolerant, UBA5 ubiquitin-like modifier-activating enzyme 5, UFM1 ubiquitin-fold modifier 1, ATP adenosine triphosphate.
Source data are provided as a Source Data file.
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the highest Spearman’s ρ between a phylogenetic metric and an
intraspecies constraint score (i.e., 0.38, ConSurf vs. RVIS and
Missense_Z). This is consistent with previous finding that
intraspecies constraint metrics are only modestly correlated with
phylogenetic conservation16,17. Together with the observation

that both groups of metrics demonstrated predictive ability for
variant pathogenicity (Fig. 6a and Supplementary Fig. 12), this
suggests that these two groups of metrics contain complementary
information that, when combined, could improve performance in
predicting variant pathogenicity.
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Fig. 5 The COSMIS score is strongly correlated with both pathogenicity and gene constraint level. a COSMIS score distributions for 19,346 benign,
14,824 pathogenic, and 115,172 VUS sites from ClinVar (Methods). Pathogenic variants have significantly more constrained 3D spatial neighborhoods
(COSMIS score median −1.1) than benign variants (median score 0.0) (p< 2:2´ 10�308, two-sided Mann–Whitney U test). In boxplot graphs center line
indicates median, bounds of box indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum. b Odds ratio of ClinVar pathogenic
variants versus benign variants for different COSMIS score percentile bins (lower bins correspond to more constrained COSMIS scores). Amino acid sites
with lower COSMIS scores are enriched for pathogenic variants whereas sites with higher scores are depleted of pathogenic variants. Error bars indicate
95% confidence intervals. The horizontal dashed line indicates OR= 1. The values for each cell of the contingency table used for the OR calculation in each
percentile bin were reported in Supplementary Data 14. c COSMIS score distributions of amino acid sites in six groups of proteins encoded by genes with
different functional annotations (and the dataset as a whole). As the anticipated functional constraint on each category increases (top-to-bottom), amino
acid sites in proteins in the category have more constrained COSMIS scores on average. In boxplot graphs center line indicates median, bounds of box
indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum. OR odds ratio, VUS variants of uncertain significance. Source data are
provided as a Source Data file.
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Given this, we hypothesized that integrating interspecies
scores with COSMIS could provide additional information for
pathogenicity prediction. To test this hypothesis, we combined
COSMIS with ConSurf (the best-performing interspecies metric
on our dataset, Supplementary Fig. 12) using a logistic regression
model and evaluated the resulting performances with five-fold
cross validation (Methods). Our evaluation shows that integrat-
ing COSMIS and ConSurf outperformed the AUROC of both
ConSurf and COSMIS alone (0.860 vs. 0.847 and 0.733, p ¼
0:002 and p ¼ 6:3 ´ 10�145, respectively, two-sided DeLong’s
test, Fig. 6c). In particular, the improvement from adding

COSMIS to ConSurf over ConSurf alone is mainly due to better
performance in the high-confidence region (Fig. 6d). However,
we note that ConSurf alone outperforms COSMIS alone (0.847
vs. 0.733) (Fig. 6c). Combining all 10 scores and relative solvent
accessibility in a logistic regression model resulted in additional
AUROC improvement (0.884 vs. 0.860, p ¼ 6:0 ´ 10�10, two-
sided DeLong’s test, Fig. 6c). Our results suggest that COSMIS
score contributes additional information to phylogenetic con-
servation for pathogenicity prediction and that adding intras-
pecies constraint can improve the performance of even the best
phylogenetic conservation scores.

Fig. 6 The COSMIS score is more predictive of variant pathogenicity than other constraint metrics. a Comparison of the performance of COSMIS with five
other constraint scores in predicting the pathogenicity of a total of 8063 benign and 7257 pathogenic missense variants from ClinVar for which all scores are
available. COSMIS significantly outperforms the other methods (AUROC 0.733 vs. 0.665 for MTR3D, the next best-performing method, p ¼ 2:5 ´ 10�50, two-
sided DeLong’s test). b A heatmap of Spearman rank correlations (absolute values) between four phylogenetic conservation scores (GERP++, phyloP, phastCons,
ConSurf) and six constraint scores (COSMIS, MTR, MTR3D, RVIS, pLI, Missense Z) that are constructed based on human population genetic variants. cCOSMIS is
complementary to phylogenetic constraint methods. ROC curves of logistic regression models integrating different combinations of the ten methods in panel b at
predicting the pathogenicity of the variants from ClinVar. Model 1: MTR+MTR3D+ RVIS+ pLI+Missense Z; Model 2: COSMIS+ConSurf; Model 3: all
scores+ relative solvent accessibility. d A zoomed-in view of the high-confidence region of ROC space (bounded by the dashed lines in c. The improvement from
adding COSMIS to ConSurf over ConSurf alone is mainly due to better performance in this high-confidence region. AUROC area under the receiver operating
characteristic. Source data are provided as a Source Data file.
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COSMIS distinguishes de novo variants in neurodevelop-
mental disease cases and controls. De novo variants are often
clinically relevant and are more likely to be pathogenic than
inherited variation49; however, they are difficult to interpret. De
novo variants play a prominent role in rare and common forms of
neurodevelopmental disorders50, and de novo variants in neu-
rodevelopmental disease cohorts have been used previously to
benchmark the utility of constraint metrics for variant
interpretation14. To test if considering 3D mutational constraint
could contribute to the interpretation of de novo variants, we
compared the COSMIS distributions for 2271 de novo missense
variants from neurodevelopmental disorder probands (case var-
iants) versus 541 de novo missense variants from unaffected
siblings of autism spectrum disorder probands51 for which
COSMIS scores can be computed (Supplementary Data 8).
Control variants had a median COSMIS score significantly higher
than the median COSMIS score of case variants (−0.39 vs. −0.83,
p ¼ 3:0 ´ 10�13, two-sided Mann–Whitney U test) (Fig. 7a).

For context, we compared the ability of COSMIS to enrich for
case variants with the other inter- and intraspecies metrics
considered previously. We did this analysis using 1,506 case and
306 control variants for which all 10 scores are available
(Supplementary Data 9). For COSMIS, 24.2% case and 8.2%
control variants fall within the 10th percentile of most constrained
sites (i.e., COSMIS score <−1.85), corresponding to an odds ratio
(OR) of 3.6 (p ¼ 2:6 ´ 10�11, two-sided Fisher’s exact test)
(Fig. 7b). Both MTR and pLI achieved the next highest OR of
2.6 at the 10th percentile of most constrained sites, while being
lower than COSMIS. Except for MTR3D, which has an OR of 2.1,
the ORs of all other metrics are below 2 (Fig. 7b). COSMIS also
has the highest ORs at other thresholds (5th and 20th percentiles)
(Supplementary Fig. 13). The modest performance of all
evaluated metrics (including COSMIS) is not surprising as we
do not expect all de novo variants in cases to be causal/
pathogenic52. To more accurately benchmark the ability of these
metrics to predict the pathogenicity of specific de novo variants, a
well-established set of de novo variants with clinically validated
disease associations is needed. Nevertheless, our analysis indicates

that reliably prioritizing de novo variants for further investigation
is still a challenging problem for contemporary metrics, as has
been previously suggested17,53.

Applying COSMIS to custom-built oligomeric potassium
channel structures. While we have precomputed COSMIS scores
for >80% human proteins using publicly available structures, it is
conceivable that the structure of a protein of interest might not be
available in public databases. To demonstrate the flexibility of our
framework to work with protein 3D structures built using mac-
romolecular modeling tools and to investigate whether COSMIS
score could capture constraint imposed by protein-protein
oligomerization54–56, we compiled a set of 41 potassium ion
channel (KCN) genes (Supplementary Data 10) for which var-
iants have been annotated in ClinVar. KCN genes encode pro-
teins that function in obligate homo-oligomeric states57, so we
expected interface sites to be under stronger constraint than non-
interface sites. We obtained structures for these KCN proteins in
their homo-oligomeric states either from the PDB or through
homology modeling using the SWISS-MODEL interactive
workspace37. Collectively, we structure-mapped and computed
two sets of COSMIS scores, based on monomers and oligomers,
respectively, for 4762 interface and 14,331 non-interface sites in
these potassium channels. As expected, we found that on average
interface sites are significantly more constrained than non-
interface sites (median COSMIS score −1.3 vs. −1.1,
p ¼ 1:3´ 10�16, two-sided Mann–Whitney U test; Fig. 8a). When
computed based on oligomer structures, the scores of interface
sites shift significantly to more negative values (median difference
−0.13, p ¼ 8:1 ´ 10�8, two-sided Mann–Whitney U test; Fig. 8b).
This was further confirmed by analyzing the scores of a larger set
of 1678 diverse human homodimers from the PDB (median
difference −0.11, p ¼ 3:1 ´ 10�12, two-sided Mann–Whitney U
test; Methods; Supplementary Fig. 14), suggesting that COSMIS
captures additional constraint on interface sites contributed by
sites in neighboring subunits.

We next evaluated the performance of COSMIS in predicting
the pathogenicity of missense variants in KCN oligomers.

Fig. 7 COSMIS score improves interpretation of de novo missense mutations from neurodevelopmental disorders. a COSMIS score distributions for de
novo missense mutations from neurodevelopmental disorder cases (Case) and from unaffected siblings of autism spectrum disorder probands (Control).
Case variants (n = 2271) have a significantly more constrained spatial neighborhoods than control variants (n = 571) (median COSMIS −0.83 vs. −0.39,
p ¼ 3:0´ 10�13, two-sided Mann–Whitney U test). b Case variant enrichment analysis for intra- and inter-species constraint metrics at the 10th percentile
of most constrained sites. COSMIS has the highest enrichment for cases (OR 3.6, 95% confidence interval [2.3, 5.7]). Error bars are 95% confidence
intervals of ORs. Results of this OR analysis are consistent across thresholds other than the 10th percentile (Supplementary Fig. 9). The values for each cell
of the contingency table used for the OR calculation in each percentile bin were reported in Supplementary Data 15. OR odds ratio. Source data are
provided as a Source Data file.
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Establishing the pathogenicity of variants in KCN genes is
clinically significant, because they have been associated with
multiple severe neurological, psychiatric, and cardiac disorders
such as epileptic encephalopathy, schizophrenia, and long QT
syndrome58. We compiled a subset of 111 and 489 unambigu-
ously annotated benign and pathogenic KCN missense variants
from ClinVar. On this variant set, COSMIS as a single metric
showed strong performance (AUROC 0.854) (Fig. 8c). These
results illustrate how COSMIS can be further applied to provide
constraint maps in custom use cases and oligomeric structures
beyond the precomputed scores we provide for 80.3% of proteins
in the human proteome.

Discussion
Establishing the clinical relevance of VUS is one of the biggest
challenges to genomics-enabled precision medicine59–63. In this
work, we hypothesized that patterns of genetic variation at
neighboring sites in 3D space collectively reflect levels of func-
tional constraint and that quantifying this constraint could aid
VUS interpretation. We developed the COSMIS framework and

analyzed the distribution patterns of human genetic variants in
the context of 3D protein structures. Our framework enabled us
to map 3D mutational constraint at the resolution of individual
sites in 80.3% of proteins in the human proteome. We further
showed that our COSMIS score is accurate in predicting gene
essentiality and variant pathogenicity and in aiding in the
prioritization of de novo variants. Furthermore, it complements
information provided by other commonly used metrics like
phylogenetic conservation between species. The COSMIS frame-
work is flexible and easily expanded to various applications as
illustrated by our detection of constrained sites and pathogenicity
predictions in ion channels using custom-built oligomeric
homology models. We expect that our framework can be applied
to a wider set of genes than analyzed in this work as the structural
coverage of the human proteome and other species continue to
expand.

Compared to existing constraint quantification approaches, our
framework has several features that are particularly valuable for
variant interpretation. First, our site-specific COSMIS score
quantifies the variation in constraint at a finer scale than methods
that generate a single score for an entire gene or subregions of a

Fig. 8 Applying COSMIS to custom-built oligomeric structural models facilitates interpretation of potassium channel variants. a COSMIS score
distributions for interface and non-interface amino acid sites in 41 oligomeric potassium ion channels. Overall, interface sites (n = 4762) involved in
oligomerization (making more 3D contacts in oligomers than in monomers) have a significantly lower COSMIS scores than non-interface sites (n = 14,331)
(median −1.3 vs. −1.1, p ¼ 1:3 ´ 10�16, two-sided Mann–Whitney U test). b COSMIS scores of interface sites computed based on oligomers are generally
lower than those computed based on monomers (median difference −0.13, p ¼ 8:1 ´ 10�8, two-sided Mann–Whitney U test). c COSMIS score performs
well (AUROC 0.854) at predicting the pathogenicity of 111 benign and 489 pathogenic potassium channel missense variants curated from ClinVar. AUROC
area under the receiver operating characteristic. Source data are provided as a Source Data file.
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gene. The COSMIS score is thus more precise and specific for
interpreting missense variants than many common approaches.
Second, our framework quantifies the constraint of sites in their
3D structural context. Compared to metrics that are based on 1D
sequences, 3D structural context enabled the COSMIS score to
capture native 3D interactions between residues that are far apart
in sequence yet important for maintaining structural stability and
functional integrity of the index site. In addition, the contact set
filters out residues that are close in sequence but less likely to
make contribution to the constraint of the site because they are
distant in 3D. In fact, our 3D structure-based COSMIS score
performed significantly better than the 1D sequence-based MTR
score in predicting variant pathogenicity, while also providing
important structural insights into the potential functional roles of
constrained sites (Fig. 4b, c, and Supplementary Fig. 15). Third,
our approach accounts for variation in mutation rates in the
neutral model. This led to significantly better performance than a
recent 3D-aware metric (MTR3D). Fourth, COSMIS provides
scores for more than 80% of the human proteome by incorpor-
ating high-quality structural models from AlphaFold2, sig-
nificantly more than previous structure-based analyses. Fifth,
COSMIS can easily be applied to structures for new proteins or
complexes, as illustrated on KCN genes. (COSMIS’s strong per-
formance on the KCN variants, suggests that it may be particu-
larly well suited to pathogenicity prediction in ion channels.)
Finally, COSMIS is complementary to other metrics. Combining
the COSMIS score with phylogenetic conservation metrics
yielded significantly higher performance than either approach
alone in predicting variant pathogenicity. This suggests that
future ensemble variant pathogenicity predictors may benefit
from integrating 3D mutational constraint as quantified by the
COSMIS score.

Our approach nevertheless has several limitations. First, the
missense burden analysis and statistical identification of con-
strained contact sets is highly dependent upon the number and
quality of variants used as references for the standing variation
dataset. Current gnomAD samples carry only an average 6.3%
and 10.3% of all possible missense and synonymous variants per
contact set, respectively (Supplementary Fig. 16). As larger and
more diverse reference genetic variation cohorts continue to
increase the number of observed variants in each gene, even more
accurate estimates of constraint on contact sets will be possible. It
may also be possible to decrease the contact set distance threshold
to capture more specific 3D interactions. Second, the COSMIS
score does not directly consider the physicochemical severity of
amino acid substitutions. While these substitution patterns likely
contributed to the landscape of observed genetic variation and
nucleotide mutability, explicit consideration of the severity of
amino acid substitution could further improve estimates of site
constraint. For instance, sites tolerant to both conservative and
non-conservative substitutions are likely to be under less con-
straint than sites that are only tolerant to conservative substitu-
tions. Third, while it is known that sites harboring variants with
lower minor allele frequencies (MAFs) are likely under stronger
selection pressure64, as with previous approaches1,12,14,16,17,20, we
counted the number of unique variants observed at each site and
did not explicitly account for their MAFs. Incorporation of MAFs
and demographic structure into the formulation of scores such as
the pLI12, MTR20, and COSMIS remains a promising topic.
Finally, our analysis of the COSMIS scores of protein complexes
is far from comprehensive, due to the lack of a proteome-wide
structural database for human protein-protein interactions.
Given the rapid advances in structure prediction for protein
complexes65–67, applying COSMIS to protein complexes at
proteome-scale will soon be feasible. Together, we anticipate
that our framework can be further improved in the future by

including larger human variation datasets, consideration of
additional amino acid properties, and accounting for MAF and
protein-protein interactions.

Looking forward, we anticipate that the structural landscape of
constrained sites provided by COSMIS will facilitate prioritization
of sites for mechanistic or functional investigation, especially
those that have not been previously associated with clinically
relevant phenotypes. For example, we have demonstrated that
high-confidence constrained sites have a > 10-fold enrichment for
pathogenic variants, yet 9404 out of the 10,955 proteins (85.8%)
harboring at least one high-confidence constrained site lack any
unambiguously annotated pathogenic variants in ClinVar. Var-
iants at the constrained sites of some of these proteins are likely to
be embryonic lethal, but many likely have pathogenic potential.
Using COSMIS to guide investigation of the effects of variation at
these sites on protein function will contribute useful insights into
human health and disease.

Methods
Estimating mutability using the 1000 Genomes Project variant set. We esti-
mated sequence-context-dependent trinucleotide synonymous and missense mut-
ability following previous procedures12,14. Briefly, we retrieved all single nucleotide
variants from the 1000 Genomes Project Phase 3 variant set (2504 individual
genomes)11. We filtered this initial set of variants to include only single nucleotide
variants and excluded multiallelic variants, indels, and any variants with a filter tag
other than “PASS”. We focused on variants in intergenic regions obtained by
excluding regions of the genome spanned by genes as annotated in GENCODE
release 3468. We did not consider variants in the coding genome since they are
enriched for purifying selection. For the entire intergenic genome, we counted
every instance of each of the 64 trinucleotide sequences. We then identified all
variable sites in the 1000 Genomes data with an annotated ancestral allele and
assumed that each variable site represents a single ancestral mutation. To compute
the probability of a trinucleotide XYZ mutating to XY′Z, we divided the number of
Y→Y′ mutations in the context of XYZ by the total number of occurrences of XYZ.
As described in previous work12,14, we scaled the probability by a proportionality
constant32 to derive the probability for one generation. In the end, we obtained a 64
by 3 matrix in which each row contains the probability of each of the three possible
mutations of the central nucleotide of a given trinucleotide context. Protein-level
mutability estimates obtained using our matrix agreed well with previous estimates
(Supplementary Fig. 17). Our mutability table is available in the source code at our
GitHub repository: https://github.com/CapraLab/cosmis. Our framework also
enables the use of a custom mutation matrix.

Mapping human reference proteome to Ensembl transcripts. We started with
the human reference proteome (UP000005640, UniProt release 2021_03), con-
taining the reference amino acid sequences for a total of 20,600 proteins69. To
determine whether the COSMIS scores for a protein can be computed, we first
obtained the Ensembl stable transcript IDs for the protein through programmatic
access of the UniProt database identifier mapping service (https://www.uniprot.
org/help/api_idmapping). We used the transcript IDs as keys to extract coding
sequence (CDS) from Ensembl CDS database. A valid CDS is necessary for the
computation of COSMIS score because it is the basis for our mutation-probability-
aware variant simulation procedure. A CDS is valid only if it begins with ATG,
ends with a stop codon, and its translated amino acid sequence matches the
UniProt reference sequence. We then used the transcript ID corresponding to the
valid CDS as key to extract variant statistics from GRCh38-lifted gnomAD v.2.1.1.
We used vcftools to remove all sites with a FILTER flag other than PASS
from gnomAD v.2.1.1 and only kept single nucleotide variants. Completing this
procedure for each reference protein resulted in a total of 16,533 proteins for which
a “high-quality” protein 3D structure is also available in PDB, SWISS-MODEL
repository, or AF2 database (see below).

Per amino acid site synonymous and missense mutability of reference protein
sequence. We estimated the synonymous and missense mutability of each amino
acid in the matched transcript of the protein in a nucleotide sequence context-
dependent manner. In brief, the local trinucleotide sequence context was used to
determine the mutability of each base in the coding region mutating to each other
possible base and to determine the coding impact of each possible mutation. These
mutability values were summed across the codon to determine its synonymous
missense mutability. Specifically, for a given base in the codon, the trinucleotide
sequence context is determined according to the coding sequence of the transcript
as provided by the Ensembl CDS resource. The probability of the middle base
mutating to one of the three other bases is queried in the mutation probability table
and the type of change it would create is determined. The mutability is added to a
running total for the type of mutation it would cause. This is repeated for the two
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other possible mutations for every base in the codon. In the end, we obtained a pair
of per-codon synonymous and missense mutability for each codon in each
transcript.

Estimating the per-transcript expected number of synonymous and missense
variants. We estimated the per-protein expected number of synonymous and
missense variants through a fitted linear regression equation of per-protein total
variant count on mutability. We first extracted 50,456 Ensembl transcripts for
which SNVs were reported in gnomAD and whose CDS also met our criteria. For
each of these transcripts, we then computed the synonymous and missense mut-
ability of all codons and summed them to produce per-transcript total synonymous
and missense mutability (Supplementary Data 11). Our transcript-level mutability
estimates correlated strongly with previous estimates (Pearson’s R of 0.94 and 0.95
for synonymous and missense, respectively; Supplementary Fig. 17)14. In parallel,
we also tallied the total synonymous and missense variant counts reported in
gnomAD for each of these transcripts. The total numbers of unique synonymous
and missense variants from the 16,533 proteins studied in this work are 2.0 million
and 4.1 million, respectively (these proteins are a subset of Supplementary
Data 11). To establish the relationship between mutability and expected variant
count under the null hypothesis of minimal constraint, we regressed the number of
synonymous variants on the total synonymous mutability per transcript. As
expected, and consistent with previous observations, we found that the total
synonymous variant count can be accurately predicted by total synonymous
mutability with a simple linear regression model (ŷ ¼ 6:42 ´ 106 ´ μ� 0:18, where
μ is per-transcript total synonymous mutability, R= 0.95, Supplementary Fig. 18).
As most synonymous variation is under minimal selective pressure, this model
represents the relationship between mutability and observed variation when
selection pressure is minimal. We thus estimated the expected count of missense
variants te under minimal selection for each of the transcripts by plugging the
respective missense mutability into this regression model.

Mapping transcripts to protein structures. Computing the COSMIS score
requires projecting missense variants onto 3D protein structures. We used the
PDB as our primary source of protein structures. We used a summary table pro-
cessed by SIFTS (https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html,
pdb_chain_uniprot.tsv.gz)70 to obtain an one-on-one mapping between PDB
chains and UniProt accession numbers. The PDB contains many cases where
multiple PDB chains map to a single UniProt accession number. In these cases, we
selected the PDB structure that has the most amino acid residues resolved. We also
required PDB structures to have a resolution better than 5 Å and to cover as least
one third of the reference amino acid sequence. If multiple PDB structures cover a
protein sequence equally well, we selected the one that has the best resolution. We
excluded structures for which sidechain coordinates are not resolved. For proteins
for which no experimental structure in the PDB meets our criteria, we searched and
retrieved structural models from the SWISS-MODEL repository (July 2021
release)71 and the AlphaFold protein structure database (AF2)38. The SWISS-
MODEL Repository is a database of annotated 3D protein structure models gen-
erated by the SWISS-MODEL homology-modeling pipeline37. The AF2 database is
a collection of 3D protein structures for the human reference proteome predicted
using the highly accurate AlphaFold2 method39. We first searched the SWISS-
MODEL repository for models that have a sequence identity of at least 25% and
cover at least one third of the amino acid sequence of the target sequence, in
consideration of increasing the number of covered proteins and maintaining a
reliable level of homology model quality72. In cases where multiple models satisfied
these criteria, we selected the model with the highest sequence coverage to max-
imize the set of structure-mappable variants. For proteins with no homology
models that meet our criteria, we relied on the AF2 structure database. In these
cases, COSMIS scores were computed only if the AF2 predicted structure has at
least one third of all residues predicted with a pLDDT > 5039, and only such
predicted residues were included in the computation of contact sets.

Residue-level mapping between Ensembl transcript and protein structure. The
sequence of the experimental construct of a protein often does not match that of
the reference sequence given in UniProt; e.g., the amino acid at position i in the
PDB file might be shifted by a few positions relative to its position in the translated
peptide sequence of the corresponding transcript. We thus employed the SIFTS
residue-level mapping resource70 to maintain consistency between the UniProt and
PDB residue numbering for each PDB chain-UniProt sequence pair. Specifically,
for each PDB entry that was used as the 3D structure for a reference amino
acid sequence, we downloaded the residue-level cross-reference data in XML for-
mat. Each of these XML file serve as the reference to ensure the accuracy of the
mapping of each individual variant observed in gnomAD onto its location in the
protein structure. Variants at positions that were not covered by protein structures
were dropped.

Construction of the COSMIS score. For a protein sequence, the COSMIS score
quantifies the constraint on a spatial region centered on each site of the sequence
based on a reference protein structure. Construction of COSMIS is based on the
concept of a contact set S. The contact set of site r, Sr, includes all sites in the

reference structure whose Cβ atoms (or Cα atoms in the case of glycines) are within
8 Å of the Cβ atom of r and site r itself. Conceptually, Sr encloses the 3D spatial
neighborhood surrounding site r in the reference structure and typically
also includes 2–3 residues that are sequence neighbors of site r and important for
determining the local secondary structure of r. But more importantly, Sr also
captures sites that are far apart in sequence but close in 3D space and most likely to
contribute to the structural and functional integrity of r. For a protein that has L
amino acid sites, we thus have L contact sets, one for each site. The 3D mutational
constraint is quantified for each contact set and assigned to the site represented by
the contact set.

We derived the COSMIS score numerically as follows. First, the site-level
mapping between reference amino acid sequences and protein structures enables us
to count the observed number of missense variants within each contact set. We
designate this count mo. Second, as the COSMIS score quantifies the deviation of
mo from a null distribution of the number of missense variants within the contact
set, we implemented a permutation-based simulation procedure to derive the null
distribution. The simulation procedure starts with the computation of a normalized
missense mutability of each codon in the transcript, that is

pj ¼
uj

∑
L

i¼1
ui

ð1Þ

where pj is the missense mutability of codon j normalized to the total missense
mutability of the transcript, uj is the sequence context-dependent, unnormalized
missense mutability of codon j described in a previous section, and L is the total
number of amino acid sites in the protein sequence.

In each permutation, we then drew the missense variants from a multinomial
distribution, where the number of trials is the total expected number of missense
variants, te, for the protein and the probability for each amino acid site is pj. We
repeated this for N= 10,000 times. After each permutation, we count the number
of missense variants sampled for each contact set. We denote the mean and
standard deviation of this null distribution as me and mσ, respectively. The
COSMIS score assigned to site j is then computed as

COSMIS ¼ mo �me

mσ
ð2Þ

We also count the number of times out of the N permutations the permuted
count of missense variants in the contact set is less than or equal to the observed
number mo. We designate this count K. We calculated the empirical permutation p
value using the following formula:

p ¼ ðK þ 1Þ
ðN þ 1Þ ð3Þ

Gene lists. We obtained the lists of genes of different levels of essentiality from
https://github.com/macarthur-lab/gene_lists. These include: 294 haploinsufficient
genes with sufficient evidence for dosage pathogenicity (level 3) as determined by
the ClinGen Dosage Sensitivity Map as of Sep 13, 201843, 683 essential genes
deemed essential in multiple cultured cell lines based on CRISPR/Cas screen data45,
709 autosomal dominant disease genes from OMIM46,47, 1183 autosomal recessive
disease genes from OMIM46,47, 913 nonessential genes deemed nonessential in
multiple cultured cell lines based on CRISPR/Cas screen data45, and 284 olfactory
receptors44. Several of these lists were also previously used to benchmark the pLI
metric that quantifies intolerance to functional variation12. Genes in these lists are
identified by their HGNC symbols. To link with COSMIS scores (indexed by
UniProt access numbers), we mapped HGNC symbols to UniProt accession
numbers through programmatic access of the UniProt database identifier mapping
service (https://www.uniprot.org/help/api_idmapping). Collectively, our frame-
work provides scores for 213 haploinsufficient, 622 essential, 584 dominant, 999
recessive, 721 nonessential, and 284 olfactory genes. These gene lists are available at
our GitHub repository and also as Source Data files for Fig. 5c.

Intra- and inter-species constraint metrics. We focused our comparison of
COSMIS with other evolutionary constraint metrics rather than ensemble variant
effect prediction methods derived through machine-learning or score aggregation.
In particular, our primary interest was to compare COSMIS with recently devel-
oped human-variation-based constraint metrics, i.e., the residual variation intol-
erance score (RVIS)13, the missense Z score12,14, the probability of loss-of-function
intolerance metric (pLI)12, missense tolerance ratio (MTR)20, and missense toler-
ance ratio 3D (MTR3D)26. Additionally, we compared COSMIS with GERP++73,
phyloP74, phastCons75, and ConSurf76 to investigate the potential synergistic
effects of combining intra- and inter-species metrics for predicting variant
pathogenicity. We computed the ConSurf scores using the Rate4Site program3

with default parameters and no branch length optimization. We obtained the
100-way multiple sequence alignment for each of the proteins and the tree
file (hg38.100way.nh [http://hgdownload.cse.ucsc.edu/goldenpath/hg38/
multiz100way/hg38.100way.nh]) from the UCSC Genome Browser. We computed
relative solvent accessibility using DSSP 3.077 within the Biopython framework78.
The sources of other scores were listed in Supplementary Data 12. The subset of
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amino acid sites in the human reference proteome for which all scores are available
can be found at our GitHub repository and also as Source Data files for Fig. 6b.

COSMIS score distribution of ClinVar variants. We evaluated the ability of
COSMIS to predict pathogenicity of missense variants using the ClinVar variant
resource79 (retrieved in August 2021) as an evaluation set. Our evaluation set
consisted of solely ClinVar missense variants that were labeled as “Pathogenic”,
“Likely pathogenic”, or “Pathogenic/Likely pathogenic” for true positive (patho-
genic) variants and “Benign”, “Likely benign”, or “Benign/Likely benign” for true
negative (benign) variants. The VUS set consisted of variants labeled as “Uncertain
significance”. All variants were required to have a review status of at least one star
and no conflicting interpretation. Due to the dependency of COSMIS score on 3D
structures, we also required variants in the evaluation set to be mappable to our 3D
structure sets. Any ClinVar variant designated as “no assertion criteria provided”,
“no assertion provided”, “no interpretation for the single variant”, or not covered
by protein structures was excluded from the evaluation set. Collectively, these
restrictions resulted in 19,346 benign, 14,824 pathogenic, and 115,172 VUS sites for
which the COSMIS score can be computed. The actual number of variants is higher
than the respective number of unique sites because some sites can be hotspots
where multiple variants have been reported. These variants and their COSMIS
scores are available in Supplementary Data 3. By removing the proteins with
pathogenic variants in this dataset from the list of 10,955 proteins with at least
one high-confidence constrained site, we obtained 9404 proteins for which no
unambiguous pathogenic variants have been reported in ClinVar. For variant
labeling, we also note that in the analysis of score distributions for sub-
groups (Supplementary Fig. 9), variants labeled “Pathogenic/Likely pathogenic” or
“Benign/Likely benign” were excluded. ORs for each percentile bin were calculated

by OR ¼ a=b
c=d, where a is the number of pathogenic variants in a bin, b is the number

of pathogenic variants not in the bin, c is the number of benign variants in the bin,
and d is the number of benign variants not in the bin. We calculated 95% percent

CIs from the standard error, s:e: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a þ 1

b þ 1
c þ 1

d

q

. The lower bound of the CI is

calculated using the expression eln[OR] − 1.96 × s.e., and the upper bound of the CI is
calculated by eln[OR]+ 1.96 × s.e..

COSMIS score distribution of de novo missense variants. The set of de novo
missense variants was obtained from a previous analysis51. This set consists of 5113
de novo missense variants in 5620 neurodevelopmental disorder probands (“case”
variants) and 1269 de novo missense variants in 2078 unaffected siblings of autism
spectrum disorder probands (“control” variants). Following the procedure of
residue-level mapping, we were able to map 2271 case variants and 541 control
variants to protein 3D structures and compute the COSMIS scores for these var-
iants. These variants and their COSMIS scores are available in Supplementary
Data 8. ORs and CIs for each percentile bin were calculated in a similar manner as
with ClinVar variants, where a is the number of case variants in a bin, b is the
number of case variants not in the bin, c is the number of control variants in the
bin, and d is the number of control variants not in the bin.

Application of COSMIS to potassium ion channels. We selected a set of 41
clinically relevant potassium ion channels for which missense variants have been
unambiguously annotated in ClinVar following the same procedure as stated in the
previous section on curating ClinVar variants. Experimental structures were
available in the PDB (as of Dec. 2020) for ion channels encoded by the KCNH2,
KCNJ11, KCNQ1, KCNQ2, and KCNQ4 genes. For the remaining 36 potassium
channels, we leveraged their high sequence identity (mean sequence identities
between template and target ion channels are 56.6%) to the potassium channels
with available structures and constructed homology models in their oligomeric
states using the SWISS-MODEL interactive workspace37. We removed residues
with a QMEAN score of <0.3 in the intracellular intrinsically disordered regions of
these ion channels. More information about templates used in our homology
modeling and evaluations of model qualities can be found in Supplementary
Data 9. Using these potassium channel 3D structures, we computed two sets of
COSMIS scores, based on monomers and oligomers, respectively, for 4762 interface
and 14,331 non-interface sites. A site is considered part of the interface if the
number of sites in its contact set is larger in the oligomer than in the mono-
mer. Collectively, we were able to map and compute the COSMIS scores for a total
of 111 and 489 unambiguously annotated benign and pathogenic KCN missense
variants from ClinVar. Our ion channel variant dataset, together with their pre-
computed COSMIS scores, are available at our GitHub repository and also as
Source Data files for Fig. 8.

Application of COSMIS to homodimeric structures from the PDB. We obtained
a set of homodimeric proteins from the Interactome INSIDER resource80. Briefly, we
first retrieved all “highest-confidence” protein-protein interfaces in human from
http://interactomeinsider.yulab.org (accessed in Jan. 2022). We then excluded
interfaces that were not calculated from PDB structures or consist of two different
protein subunits. For the remaining homodimeric interfaces, we mapped their
UniProt accession numbers to PDB chains using a summary table processed by SIFTS
(https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html, pdb_chain_uniprot.tsv.gz)70.

We retained proteins that were mapped to PDB files consisting of two and only
two identical subunits. This step excluded homodimeric interfaces that are part of
higher-order protein complexes. In summary, we computed the COSMIS scores for
1678 proteins (Supplementary Data 13) using both monomeric and homodimeric
structures from the PDB.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper, i.e., the code and source data for reproducing
all graphs in the main text figures and supplementary figures (except Fig. 1, which is a
schematic with no source data) are available in the Source Data file [https://figshare.com/
articles/dataset/Source_Data/19742404]. Precomputed COSMIS scores for 16,533
proteins from the UniProt human reference proteome can be downloaded at https://
github.com/CapraLab/cosmis. We have also created a web application for interactive
exploration of COSMIS scores in the context of protein 3D structures. The web
application is available at https://cosmis-app.herokuapp.com/.

The following publicly available datasets and databases were used:
1000 Genomes phase 3: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
AlphaFold2: https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000005640_9606_

HUMAN_v2.tar
ClinVar (retrieved in August 2021): https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_

GRCh38/
GECODE (release 34): http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/
Gene lists: https://github.com/macarthur-lab/gene_lists
gnomAD v2.1.1: https://gnomad.broadinstitute.org/
INSIDER (accessed in Jan. 2022): http://interactomeinsider.yulab.org
PDB: https://www.rcsb.org/
SIFTS: https://www.ebi.ac.uk/pdbe/docs/sifts/quick.html
SWISS-MODEL: https://swissmodel.expasy.org/repository/species/9606
UniProt: https://www.uniprot.org/help/uniprotkb
UniProt human reference proteome (release 2021_03): https://www.uniprot.org/

proteomes/UP000005640.

Code availability
In addition to the precomputed scores, COSMIS can also be downloaded and run as a
standalone application locally. The source code of COSMIS is publicly and freely
available at https://github.com/CapraLab/cosmis. The source code for reproducing all
graphs in the main text figures and supplementary figures (except Fig. 1, which is a
schematic with no associated source code) is available at https://figshare.com/articles/
dataset/Source_Data/19742404.
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