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Structures of a mammalian TRPM8 in closed state
Cheng Zhao1,11, Yuan Xie 2,11✉, Lizhen Xu3,11, Fan Ye 1, Ximing Xu4, Wei Yang1,5, Fan Yang 3,5,6,7✉ &

Jiangtao Guo 1,5,7,8,9,10✉

Transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable non-

selective cation channel that acts as the primary cold sensor in humans. TRPM8 is also

activated by ligands such as menthol, icilin, and phosphatidylinositol 4,5-bisphosphate (PIP2),

and desensitized by Ca2+. Here we have determined electron cryo-microscopy structures of

mouse TRPM8 in the absence of ligand, and in the presence of Ca2+ and icilin at 2.5–3.2 Å

resolution. The ligand-free state TRPM8 structure represents the full-length structure of

mammalian TRPM8 channels with a canonical S4-S5 linker and the clearly resolved selec-

tivity filter and outer pore loop. TRPM8 has a short but wide selectivity filter which may

account for its permeability to hydrated Ca2+. Ca2+ and icilin bind in the cytosolic-facing

cavity of the voltage-sensing-like domain of TRPM8 but induce little conformational change.

All the ligand-bound TRPM8 structures adopt the same closed conformation as the ligand-

free structure. This study reveals the overall architecture of mouse TRPM8 and the structural

basis for its ligand recognition.
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Transient receptor potential melastatin 8 (TRPM8) channel,
a member of the TRP channel superfamily, is a cold-
activated nonselective cation channel that acts as a primary

cold receptor in humans in response to moderately cool tempera-
tures (15–28 °C)1–7. In addition, TRPM8 is regulated by intracellular
signal molecules. For example, intracellular Ca2+ desensitizes
TRPM8 (ref. 1) and phosphatidylinositol 4,5-bisphosphate (PIP2)
potentiates the activation of TRPM8 (ref. 8). TRPM8 can also be
activated by both natural and synthetic cooling compounds such as
menthol and icilin6,7,9. TRPM8 has been reported to play essential
roles in oxaliplatin or nerve injury-induced cold allodynia, migraine,
as well as inflammation-caused cold hypersensitivity10–13. Therefore,
revealing the structural basis of the ligand modulation of TRPM8
will contribute to rational drug design against cold-related pain14.

Recently, structures of TRPM8 from two birds, namely Fice-
dula albicollis (FaTRPM8) and Parus major (PmTRPM8), which
both share 82% sequence identity and 91% sequence similarity to
mouse TRPM8 (MmTRPM8) (Supplementary Fig. 1), have been
determined in both ligand-free and agonist- or antagonist-bound
states15–17. These studies provide a glimpse of the overall archi-
tectures of TRPM8. FaTRPM8 and PmTRPM8 have two
features that differ from those of other mammalian TRPM
channels such as TRPM4, TRPM5, and TRPM7 whose structures
have been reported18–22. First, in the ligand-free states of
bird TRPM8 structures (FaTRPM8ligand-free, PDB: 6BPQ;
PmTRPM8ligand-free, PBD: 6O6A), the linker helix (S4-S5 linker)
that connects transmembrane helices S4 and S5 forms a single
straight helix with S5; in addition, the pore helices are resolved in
low resolution, and selectivity filters and outer pore loops are
invisible, likely due to their dynamics (Supplementary Fig. 2a, b).
Second, in the Ca2+-bound (PmTRPM8Ca, PDB: 6O77) or Ca2+-
icilin-phosphatidylinositol 4,5-bisphosphate (PIP2)-bound state
(FaTRPM8Ca-icilin-PIP2, PDB: 6NR3), the S4-S5 linker and S5
helices are restored to the canonical conformation, along with
concerted structural rearrangement involving all transmembrane
helices, including voltage-sensing-like domain (VSLD), S5, pore
helix, S6, and TRP helix, and in PmTRPM8Ca with the recon-
struction of filter and outer pore loop (Supplementary Fig. 2c–f).
Based on these structures of bird TRPM8 in ligand-free and
ligand-bound states, molecular mechanisms of icilin-PIP2-

induced activation and Ca2+-induced desensitization of TRPM8
were proposed16,17. Since these bird TRPM8 structures display
different features from those of other mammalian TRPM chan-
nels, whether these structures and the proposed ligand modula-
tion mechanisms are conserved in the TRPM8 family across
vertebrates including mammals needs further validation.

To reveal ligand modulation mechanisms of TRPM8, here
we have performed a systematic structural analysis of mouse
TRPM8 (MmTRPM8) and determined cryo-EM structures of
MmTRPM8 in the absence of ligand, and in the presence of Ca2+

and icilin.

Results
Structure determination of MmTRPM8 in detergent and lipid
nanodisc. We first determined MmTRPM8 structures in the
detergent Lauryl Maltose Neopentyl Glycol (LMNG) in the absence
of ligand at 3.0 Å resolution (MmTRPM8LMNG-ligand-free, Supple-
mentary Fig. 3), and in the presence of Ca2+ at 2.9 Å resolution
(MmTRPM8LMNG-Ca, Supplementary Fig. 4), Ca2++ icilin at 3.0 Å
resolution (MmTRPM8LMNG-Ca-icilin, Supplementary Fig. 5), and
Ca2++ icilin+ PIP2 at 3.2 Å resolution (MmTRPM8LMNG-Ca-icilin-

PIP2, Supplementary Fig. 6). The ligand-free MmTRPM8 sample
was obtained by adding 2mM EGTA to chelate the trace amount
of free Ca2+. To mimic the lipid environment of TRPM8 in the
membrane, we prepared the MmTRPM8 nanodisc sample by
reconstituting MmTRPM8 with MSP1 and the mixed lipid (POPC:
POPG: POPE= 3: 1: 1, molar ratio) at a final molar ratio of 1: 2.5:
15. For the nanodisc sample with PIP2, PIP2 was first added to the
mixed lipid with a mass ratio of 1: 1, and the molar ratio of
MmTRPM8: MSP1: lipid was changed to 1: 2.5: 30. We then
determined the 2.5 Å-resolution structure of MmTRPM8 in
nanodisc in the presence of Ca2++ icilin (MmTRPM8nanodisc-Ca-
icilin, Supplementary Fig. 7) and the 3.0 Å-resolution structure of
MmTRPM8 in nanodisc in the presence of Ca2++ icilin + PIP2
(MmTRPM8nanodisc-Ca-icilin-PIP2, Supplementary Fig. 8).

For all six MmTRPM8 structures, the cryo-EM density maps
are of high quality, particularly in the transmembrane region,
allowing us to build the model of major parts of MmTRPM8
(Fig. 1a, b). The S1–S6 transmembrane helices, pore helix,
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Fig. 1 Structure determinations of MmTRPM8. a The 3D reconstructions of MmTRPM8 colored by local resolutions in Å. b The Gold standard Fourier
Shell Correlation (FSC) curves of the final 3D reconstructions of MmTRPM8 in different ligand-bound states. Source data are provided as a Source Data
file. c Local maps of MmTRPM8 structures in the regions of pore helix, selectivity filter, and outer pore loop at the contour level of 3.5 σ.
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selectivity filter, outer pore loop, and TRP helix are all well
resolved (Fig. 1c). The ligands Ca2+ and icilin are clearly assigned
in the corresponding structures of TRPM8, whereas no PIP2
molecule is unambiguously identified in the structures of either
MmTRPM8LMNG-Ca-icilin-PIP2 or MmTRPM8nanodisc-Ca-icilin-PIP2,
as discussed below. Table 1 summarized major information of
the six MmTRPM8 structures (Table 1; Supplementary Table 1).
In the following analyses, unless otherwise mentioned, we will
focus on the ligand-free structure MmTRPM8LMNG-ligand-free.

The overall structure. MmTRPM8 is a homotetramer with
dimensions of 140 × 110 × 110 Å. Four subunits assemble into a
functional channel, with all the N-terminal region, the trans-
membrane domain, and the C-terminal region involved in the
tetrameric assembly (Fig. 2). Each MmTRPM8 subunit contains
multiple domains, including the N-terminal four TRPM homol-
ogy repeats (MHR1 to MHR4), S1–S6 six transmembrane helices
in a domain swap configuration, TRP helix, and C-terminal
coiled-coil (Fig. 2c, d). This MmTRPM8 structure largely
resembles structures of other mammalian TRPM channels such
as TRPM4, TRPM5, and TRPM7 (refs. 18–22).

The ion conduction pore. The whole ion conduction pore of
MmTRPM8, consisting of S5, pore helix, selectivity filter, outer
pore loop, and S6, is resolved at the highest resolution (Fig. 1a).
The long outer pore loop (Val915–Pro952) between the filter and
S6 forms an extracellular turret and encircles a deep vestibule at
the external entrance of the channel (Fig. 3a, b). Multiple nega-
tively charged residues reside on the inner surface of the vestibule
thus favoring the recruitment of cations to the pore (Fig. 3a, b).
The architecture of the outer pore loop is stabilized by extensive
interactions with the S5 C-terminal end, pore helix, and S6
N-terminal end, as well as one disulfide bond within the outer
pore loop (Fig. 3a).

In MmTRPM8, the selectivity filter is lined by residues
912FGQ914 (Fig. 3c). The backbone carbonyls of Phe912 and
Gly913 along with the Gln914 side chain, build the ion
conduction pathway with a minimum atom-to-atom diameter
of ~9 Å between both Phe912 and Gly913 carbonyl oxygen atoms,
suggesting the passage of hydrated ions during ion conduction
(Fig. 3c). In the maps of MmTRPM8LMNG-ligand-free and
MmTRPM8nanodisc-Ca-icilin-PIP2, but not others, sphere-shaped
density peaks were clearly visible in the center of the selectivity
and tentatively modeled as Na+ ions, the cation at the highest
concentration in the sample (Fig. 3d). Distances between the
putative Na+ and Gly913 carbonyl oxygens are ~4.5 Å, too far for
direct ion coordination, supporting the passage of hydrated ions
in the filter.

MmTRPM8 shares high sequence and structure similarity
with mouse TRPM4 (MmTRPM4) at the filter (Fig. 3e)18.
However, TRPM8 is permeable to Ca2+ with the PCa/PNa of ~3
(ref. 5), while TRPM4 is a monovalent-selective channel and is
impermeable to Ca2+ (refs. 18,23). In the MmTRPM4 filter, the
Gln973 side chain forms a strong hydrogen bond with the

carbonyl of Gly972 from its neighboring subunit, stabilizing the
filter configuration with a minimum atom-to-atom diameter of
7.5–8 Å (Fig. 3e). In comparison, in the MmTRPM8 filter, the
Gln914 side chain does not form a similar hydrogen bond with
Gly913 carbonyl from its neighboring subunit and the atom-to-
atom diameter is 1 Å larger than that in MmTRPM4 (Fig. 3c).
As Ca2+ has a larger hydration radius than K+ and Na+, the
different filter diameters between MmTRPM8LMNG-ligand-free

and MmTRPM4 may partially account for their difference in
ion selectivity.

The voltage-sensing-like domain (VSLD) and TRP helix. The
transmembrane helices S1–S4 comprise the VSLD, which main-
tains a cytosolic-facing hydrophilic cavity and provides potential
ligand-binding sites15. VSLD interacts with the pore domain in
three ways. First, S4 forms extensive hydrophobic packing with S5
from the adjacent subunit (Fig. 4a). Second, VSLD is covalently
connected to the pore domain by the S4-S5 linker, which forms a
~150° smooth turn with S5 at the residue Met863 (Fig. 4b). Third,
the TRP helix, which extends from the C-terminal end of S6 with
a ~120° turn at the residue Val986 and runs underneath the S4-S5
linker towards the cytosolic-facing cavity in VSLD, also links
VSLD and the pore domain (Fig. 4c). The TRP helix is tightly
coupled to the S4–S5 linker through hydrophobic packing. Two
polar residues in the C-terminal end of the TRP helix, namely
Glu1004 and Try1005, point to this cytosolic-facing cavity of
VSLD with their side chains. In addition, S4 adopts a 310 helical
conformation at residues 841LRL843, among which Arg842 pro-
vides positive charges for the cytosolic-facing cavity (Fig. 4b).
Thus, ligands binding at this cytosolic-facing cavity may induce a
local conformational change of C-terminal ends of S4 and (or)
TRP helix, which is then transferred to the pore domain and
regulates the gating of MmTRPM8 via S4-S5 linker and the TRP
helix.

Structural basis for the Ca2+ recognition. In the map of
MmTRPM8LMNG-Ca, strong density shows that a Ca2+ ion is
harbored by the cytosolic-facing cavity in the VSLD (Fig. 5a). In
comparison, no density is observed at an equivalent site in the
structure of MmTRPM8LMNG-ligand-free (Fig. 5b). The Ca2+ is
coordinated by side chains of residues Glu782, Gln785, Asn799,
and Asp802 from S2 and S3 (Fig. 5a). In addition, the side chain
of Tyr793 from the S2-S3 linker is positioned in proximity
(Fig. 5a). The essential role of these Ca2+ coordinating residues in
Ca2+-induced desensitization has been confirmed in PmTRPM8
(ref. 16). This Ca2+ binding site, initially revealed in human
TRPM4 structure20, is conserved in a subgroup of TRPM chan-
nels consisting of TRPM2 (ref. 24), TRPM4 (ref. 20), TRPM5
(ref. 22), and TRPM8 (ref. 16,17).

To confirm this Ca2+ binding site in MmTRPM8, we
performed all-atom molecular dynamic (MD) simulations using
the Ca2+-bound structure MmTRPM8LMNG-Ca as an initial
model. Throughout 250 ns simulations, the Ca2+ binds stably at
this site, with a Root Mean Square Deviation (RMSD) within 3 Å

Table 1 Major information of six MmTRPM8 structures reported in this study.

Structures TRPM8LMNG-

ligand-free

TRPM8LMNG-

Ca

TRPM8LMNG-Ca-

icilin

TRPM8LMNG-Ca-

icilin-PIP2

TRPM8nanodisc-Ca-
icilin

TRPM8nanodisc-Ca-
icilin-PIP2

Resolution (Å) 3.0 2.9 3.0 3.2 2.5 3.1
Ligands in the sample None Ca2+ Ca2+, icilin Ca2+, icilin, PIP2 Ca2+, icilin Ca2+, icilin, PIP2
Ligands modeled in the
structure

None Ca2+ Ca2+, icilin Ca2+, icilin Ca2+, icilin Ca2+, icilin

Gate conformation Closed Closed Closed Closed Closed Closed
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(Fig. 5c). The distances between Ca2+ and CG atoms of its
coordinating residues Glu782, Asn799, and Asp802 remain 2–5 Å
in most time of the simulations (Fig. 5d–f). Thus, the simulation
results support the binding of one Ca2+ ion in this cytosolic-
facing cavity in the VSLD of MmTRPM8.

Ca2+ potentiates the icilin activation on TRPM8 (ref. 9). To
functionally validate this Ca2+ binding site, we tested the Ca2+

effect on the icilin-induced currents of WT and Ca2+-coordinat-
ing residue mutants of MmTRPM8 using a whole-cell patch-
clamp recording. Among the 19 mutants we tested, five
maintained the icilin sensitivity (Fig. 5g). While the Ca2+

amplified the icilin-evoked current of WT MmTRPM8 by 2-fold,
it did not increase the currents of the five mutants, namely
Q785K, Q785Y, N799R, N799L, and D802K (Fig. 5h, Supple-
mentary Fig. 9a), likely due to the loss of Ca2+-interacting
residues. These electrophysiological data further confirm the
assignment of Ca2+ in the VSLD of MmTRPM8.

Structural basis for the icilin recognition. In the structure of
MmTRPM8LMNG-Ca-icilin, well-defined bulky density in the
cytosolic-facing cavity of VSLD allows us to confidently model
the icilin molecule (Fig. 6a, b). The orientation of icilin is assigned
based on the shape of the nitro group, which forms interaction
with the Phe839 side chain (Fig. 6b, c). Icilin is also stabilized by
anion-π interaction between the Asp802 side chain and the aro-
matic ring of the nitrophenyl moiety, as well as the hydrogen
bond between the Arg842 side chain and the hydroxyl group in
the hydroxyphenyl moiety (Fig. 6c).

In the structure of MmTRPM8LMNG-Ca-icilin, the Ca2+ resides
in the vicinity but does not directly interact with icilin. Instead, its
coordinating residue Asp802 stabilizes the icilin by anion-π
interaction. In addition, Asp802 helps fix the orientation of
Arg842 side chain by forming salt bridges (Fig. 6c). Upon icilin
binding, the Arg842 side chain goes down towards the
hydroxyphenyl moiety, making space for the nitrophenyl and
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pyrimidine moieties, and meanwhile forms a hydrogen bond with
the hydroxyl group in the hydroxyphenyl moiety (Fig. 6c, d).
Therefore, Ca2+ potentiates the icilin activation through the
Asp802 and Asp802-Arg842 interaction networks.

To confirm the pose of icilin modeled in the structure of
MmTRPM8LMNG-Ca-icilin, we performed all-atom MD simulations
using the structure of MmTRPM8LMNG-Ca-icilin as an initial
model. Throughout the 250 ns simulation, the icilin binds stably
at its original site, with an RMSD within 4 Å (Fig. 6e), and a

distance of 3–7 Å between the N21 atom of icilin and the CG
atom of Phe839 (Fig. 6f). Meanwhile, the Ca2+ also binds stably
at its original site, with an RMSD of within 3 Å (Fig. 6g), and a
distance of 3–4 Å between the Ca2+ and the CG atom of Asp802
in most time of the simulations (Fig. 6h). These computational
data provide additional support for our assignment of icilin based
on the map density.

To validate the icilin binding pocket in MmTRPM8, we
performed a whole-cell patch-clamp recording. Icilin activated
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wild type (WT) MmTRPM8 with an EC50 value of
401.0 ± 43.9 nM (Fig. 6i; Supplementary Fig. 9b; Supplementary
Table 2), similar to the previous reports5. Introducing point
mutations at residues Asp802, Phe839, and Arg842 within the
icilin binding pocket largely perturbed the icilin activation,
resulting in an increased EC50, reduced current amplitude, or loss
of activation effect (Fig. 6i–k). As a control, these MmTRPM8
mutants were able to be activated by menthol, indicating that they
were still functional (Supplementary Fig. 9b; Supplementary
Table 2). These observations demonstrate that residues within the
binding pocket revealed by our cryo-EM structure are critical for
icilin activation.

All mouse TRPM8 structures are in the same closed state. To
reveal the ligand-induced conformational change of MmTRPM8,
we performed structural alignments of MmTRPM8LMNG-ligand-free

with all MmTRPM8 structures in ligand-bound states, which
yields an RMSD of 0.47–0.75 Å over 930 Cα atoms within
one subunit (Supplementary Fig. 10). Therefore, all the six
MmTRPM8 structures are essentially in the same conformation.
Moreover, the consistency of MmTRPM8 structures determined
in detergent micelle and lipid nanodisc indicates that these
MmTRPM8 structures adopt a stable conformation.

To reveal in what states MmTRPM8 structures are, we calculated
the pore radii of these MmTRPM8 structures along the ion
conduction pathway using the program HOLE25. The activation
gates of all MmTRPM8 structures are closed by the hydrophobic
residue Val976, which forms the only constriction along ion
conduction pore with a Van Der Waals radius less than 1 Å (Fig. 7a,
b). To further analyze the conformation of the activation gate in
MmTRPM8 structures, we align the MmTRPM8LMNG-ligand-free

structure with mouse TRPM4 (MmTRPM4) and TRPM7
(MmTRPM7) whose pore domains have been unambiguously
resolved, at S6 (refs. 18,21). MmTRPM8LMNG-ligand-free is super-
imposed well with closed MmTRPM4 (PDB: 6BCJ) and closed
MmTRPM7 (PDB: 5ZX5), suggesting they adopt similar

conformations at the activation gate (Fig. 7c, d). In MmTRPM4
and MmTRPM7, the constrictions are formed by two layers of
residues, namely Ile1036 and Ser1040, and Ile1093 and Asn1097,
respectively, whereas in MmTRPM8LMNG-ligand-free, equivalent
residues are Val976 and Gly980 (Fig. 7e–g). Because of the loss
of side chain in Gly980, MmTRPM8LMNG-ligand-free has only
one layer of constriction. Therefore, we propose that these six
MmTRPM8 structures are all in the same closed state, similar to the
closed states of MmTRPM4 and MmTRPM7 (refs. 18,21).

Discussion
In this report, we present the structures of a mammalian TRPM8
in ligand-free, Ca2+-bound, and Ca2+-icilin-bound states either
in LMNG detergent or lipid nanodisc condition. All these six
structures maintain clearly resolved S1–S6, pore helix, selectivity
filter, outer pore loop, and TRP helix (Fig. 1c, Supplementary
Figs. 3–8), and adopt the same closed conformation (Fig. 7).
TRPM8 is desensitized by Ca2+ and activated by Ca2+-icilin-
PIP21,8. Although the Ca2+ and icilin are well defined in the map,
no PIP2 molecule is unambiguously resolved. Since we are unable
to capture the desensitized state and the open state, how Ca2+

desensitizes and Ca2+-icilin-PIP2 activates TRPM8 remains
unknown. We suspect that the current closed state is a low-energy
stable state, which is easy to be achieved but difficult to be crossed
over in vitro. In addition, the low open probability of TRPM8 at
0 mV (~0.2 to 0.5) further reduces the possibility to obtain the
open-state structure3. Similarly, ligand-free and Ca2+-bound
structures of human TRPM4 are also captured in the same closed
state20. In the future, determination of the agonist-bound open-
state structure of TRPM8 will elucidate its ligand activation
mechanism.

Nevertheless, our high-resolution MmTRPM8 structures clar-
ify four key facts of TRPM8 in structures and mechanisms.

First, structurally MmTRPM8 is similar to other mammalian
TRPM channels such as TRPM4, TRPM5, and TRPM7 in the
transmembrane domain. In the ligand-free state, they all maintain
the canonical S4-S5 linker and ordered pore helix, selectivity filter,
and outer pore loop. The previously reported structure features in
bird TRPM8 structures in the ligand-free state, such as low-
resolution pore helix, invisible selectivity filter and outer pore loop,
and one single straight helix formed by S4-S5 linker and S5 (Sup-
plementary Fig. 2a, b), are not observed in the MmTRPM8 struc-
ture in the ligand-free state. Whether these structure features are
unique in bird TRPM8 awaits further study. Obviously, they are not
universal in the TRPM8 family, at least in MmTRPM8. A strict
comparison of MmTRPM8LMNG-ligand-free with PmTRPM8ligand-free
reveals structure differences distributed throughout the transmem-
brane domain (Supplementary Fig. 11a–f). In fact, an ion channel
with stable selectivity tends to maintain a relatively rigid archi-
tecture of the filter, as revealed by the structures of potassium
channel MthK26, sodium channel NavAb27, and calcium channel
Cav1.1 (ref. 28). The collapse of the selectivity filter in some chan-
nels such as potassium channel KcsA29 and sodium channel
NavRh30 results in inactivation. Under this circumstance, our
MmTRPM8LMNG-ligand-free structure with a clearly resolved filter
may represent a physiologically-relevant state.

Second, MmTRPM8 essentially does not undergo conforma-
tional change upon the binding of Ca2+ and icilin under our
structure determination conditions in vitro. Previously, structure
comparisons of PmTRPM8ligand-free and PmTRPM8Ca attributed
the conformational difference to the desensitization induced
by the Ca2+ binding16. However, structural alignments show that
the Ca2+-bound PmTRPM8Ca, instead of PmTRPM8ligand-free,
displays a similar conformation as MmTRPM8LMNG-ligand-free,
with an RMSD of 2.24 Å over 930 Cα atoms within one
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subunit (Supplementary Fig. 11a, g). As analyzed above, all
MmTRPM8 structures are in the same closed state, similar to the
closed states of MmTRPM4 and MmTRPM7. Therefore, it is
likely that PmTRPM8Ca is also in the closed state (Supplementary

Fig. 11h), similar to the Ca2+-bound MmTRPM8LMNG-Ca struc-
ture. Ca2+ binding at the VSLD in PmTRPM8 seems to stabilize
the intact structure of the transmembrane domain. Without
Ca2+, the selectivity filter and outer pore loop of PmTRPM8
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become disordered, along with structural rearrangement of
VSLD, S4-S5 linker, S6, and the TRP helix (Supplementary
Fig. 2a, c, e).

Third, our higher-resolution structure of MmTRPM8LMNG-Ca-icilin

confirms the binding configuration of icilin in MmTRPM8. In
FaTRPM8Ca-icilin-PIP2, the icilin was modeled at the same position,
but in the opposite orientation, likely due to the resolution limit
(Supplementary Fig. 12a, b)17. To further validate the orientation
of icilin within its binding pocket in MmTRPM8, we mutated
Tyr1005 to a Phe residue and measured icilin-induced current. If
icilin binds to TRPM8 in the orientation as shown in the
FaTRPM8Ca-icilin-PIP2 structure (Supplementary Fig. 12c)17,
Tyr1005 would form a strong hydrogen bond with the nitro
group of icilin, and the Y1005F mutation would disrupt this
hydrogen bond and largely affect icilin activation. However,
we observed that icilin robustly activated the Y1005F mutant
of MmTRPM8 with a concentration-response curve virtually
identical to that of the WT channel (Supplementary Fig. 12d, e;
Supplementary Table 2). Therefore, we believe that icilin does not
form a strong interaction with Tyr1005 as suggested by the
structure of FaTRPM8Ca-icilin-PIP2.

Fourth, we do not observe PIP2 bound in the structure of either
MmTRPM8LMNG-Ca-icilin-PIP2 or MmTRPM8nanodisc-Ca-icilin-PIP2.
Like many other TRP channels, TRPM8 is activated by PIP2. To
capture an open-state structure, we added PIP2 in the

MmTRPM8 sample in both detergent and nanodisc conditions,
with the presence of Ca2+ and icilin. Yet the identification of PIP2
in the maps of both structures was unsuccessful. Previous struc-
tures of PIP2-bound FaTRPM8 show that the PIP2 binds at the
cavity formed by the pre-S1 domain, S1, the junction of S4 and S5,
and the TRP helix (Supplementary Fig. 13a). In the structures of
MmTRPM8LMNG-Ca-icilin-PIP2 or MmTRPM8nanodisc-Ca-icilin-PIP2,
bulk density corresponding to hydrophobic tails of lipid or
detergent occupies the equivalent site of hydrophobic tails of
PIP2, but no density accounts for the inositol 1,4,5-trisphosphate
head group (Supplementary Fig. 13b, c). The PIP2 in
MmTRPM8 seems very dynamic and is difficult to be observed
under our structure determination conditions.

Methods
Protein expression and purification. The full-length mouse TRPM8 cDNA was
synthesized and cloned into a modified pEZT-BM vector in frame with a
C-terminal GGSSGG linker followed by a strep tag II. Human Embryonic Kidney
(HEK) 293 F suspension cells (Life Technologies) for heterologous TRPM8
expression were maintained at 37 °C in SMM 293-TI complete medium (Sino
Biological Inc.) supplemented with 2% fetal bovine serum (FBS, Yeasen Bio-
technology (Shanghai) Co., Ltd.). The P3 baculovirus was generated via the Bac-
Mam system (Thermo Fisher Scientific) and used to transduce HEK293F cells at a
cell density of 4 × 106 cells/mL. For induction, 10 mM sodium butyrate was added
12 h post-transduction, and cells were maintained at 30 °C to boost protein
expression. Cells were harvested after 48 h, then flash-frozen in liquid nitrogen and
stored at −80 °C.
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A cell pellet from a 2 L culture was lysed by re-suspending in 40 mL buffer
containing 20 mM Tris-HCl, pH 8.0, and a protease inhibitor cocktail (2 μg/mL
DNase I, 0.5 μg/mL pepstatin, 2 μg/mL leupeptin, 1 μg/mL aprotinin, and 1 mM
PMSF) for 1 h at room temperature. The lysate was supplemented with 150 mM
NaCl and rotated for 20 min before being solubilized with 1% lauryl maltose
neopentyl glycol (LMNG, Anatrace) and 0.2% cholesteryl hemisuccinate tris salt
(CHS, Anatrace) for 2 h at room temperature. The insoluble cell fragment was
removed by centrifugation at 48,000 g for 50 min at 18 °C. The supernatant was
incubated with 0.8 mL Strep-Tactin Sepharose resin (IBA) for 2 h at room
temperature with gentle rotation. Beads were loaded onto a gravity column and
washed with wash buffer containing 20 mM Tris-HCl, pH 8.0, 150 mM NaCl,
0.005% LMNG, and 0.001% CHS for 20 column volumes. The protein was then
eluted with wash buffer containing 10 mM d-Desthiobiotin (Sigma) and further
purified in a Superose 6 gel filtration column (GE Healthcare) in 20 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 0.0025% LMNG, and 0.0005% CHS. The peak fraction of
TRPM8 was collected and concentrated in a 100-kDa concentrator (Amicon Ultra,
Millipore Sigma) to about 4 mg/mL for cryo-EM sample preparation. For the
ligand-free sample, 2 mM EGTA was added into the protein sample to chelate
endogenous Ca2+. For the Ca2+-bound sample, no exogenous Ca2+ was added and
the bound Ca2+ is from endogenous Ca2+ or a trace amount of Ca2+ in solution.

For the Ca2+-icilin-bound sample, 200 μM icilin and 0.5 mM CaCl2 were added
and the mixture was incubated at room temperature for 30 min before grid
preparation. For the TRPM8LMNG-Ca-icilin-PIP2 sample, 1 mM CaCl2 was added
throughout the purification procedure. Protein was mixed with 200 μM icilin and
0.5 mM diC8-PIP2 (Avanti) and incubated at room temperature for 30 min before
grid preparation.

For nanodisc sample preparation, mouse TRPM8 was fusion-expressed with an
N-terminal maltose-binding protein (MBP) followed by a TEV protease cleavage
sequence. Baculovirus preparation, protein expression, and affinity purification
procedures were the same as previously mentioned. The protein eluted from Strep-
Tactin Sepharose resin was concentrated and mixed with MSP1 and lipid (POPC:
POPE: POPG= 3: 1: 1, molar ratio) at a molar ratio of 1: 2.5: 15. For the sample of
MmTRPM8nanodisc-Ca-icilin-PIP2, PIP2 was pre-mixed with lipid at a mass ratio of 1:
1, and the molar ratio of MmTRPM8: MSP1: lipid was adjusted to 1: 2.5: 30.
Detergents were removed by incubating the mixture of TRPM8, lipid, and MSP1
with Bio-Beads SM2 (Bio-Rad) at a concentration of 200 mg/mL by gentle
agitation. Bio-Beads were replaced with fresh ones every 6 h for 2 times. TEV
protease was added during the third time Bio-Beads incubation to remove MBP.
After the removal of detergent, the protein was concentrated and injected into a
Superose 6 gel filtration column (GE Healthcare) in 20 mM Tris-HCl, pH 8.0,
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150 mM NaCl. Peak fraction was collected, concentrated, and mixed with 0.5 mM
CaCl2 and 200 μM icilin before grid preparation.

Cryo-EM sample preparation and data acquisition. For grids preparation, 3 μL
TRPM8 protein was loaded onto glow-discharged R1.2/1.3 Quantifoil grids. Grids were
blotted for 4.5 s at 4 °C under 100% humidity and plunge-frozen in liquid ethane using a
Vitrobot Mark IV (FEI). Micrographs were acquired on a Titan Krios microscope (FEI)
operated at a voltage of 300 kV with a K2 summit direct electron detector (Gatan) via
SerialEM software following standard procedure. A calibratedmagnification of 49,310 ×
was used for imaging, yielding a pixel size of 1.014 Å. Micrographs were dose-
fractionated to 40 frames with a dose rate of 8 e − /pixel/s and a total exposure time of
8 s, corresponding to a total dose of ~62 e− /Å2.

Image processing. The MotionCorr2 (ref. 31) and the GCTF32 programs were
utilized for motion correction and CTF parameters estimation, respectively. All
image processing steps were carried out with RELION 3.0 (ref. 33).

For MmTRPM8LMNG-ligand-free, 1,432 micrographs were collected and 324,027
particles were auto-picked and extracted with a binning factor of 3 before 2D
classification. A total of 291,586 particles were selected for 2 rounds of 3D
classification using the map of PmTRPM8Ca (PDB: 6O77) as the reference. Particles
from five 3D classes were selected, combined, and re-extracted to the pixel size of
1.014 Å, followed by 3D refinement with C4 symmetry and particle polishing via
RELION 3.0. The final 3D reconstruction of MmTRPM8LMNG-ligand-free from 40,653
particles yielded an EM map with a resolution of 2.98 Å.

For MmTRPM8LMNG-Ca, 1884 micrographs were collected and 428,292 particles
were auto-picked and extracted with a binning factor of 3 before 2D classification.
A total of 403,154 particles were selected for 2 rounds of 3D classification using the
MmTRPM8LMNG-ligand-free map as the reference. Particles from six 3D classes were
selected, combined, and reextracted to the pixel size of 1.014 Å, followed by 3D
refinement with C4 symmetry and particle polishing via RELION 3.0. The final 3D
reconstruction of MmTRPM8LMNG-Ca from 53,900 particles yielded an EM map
with a resolution of 2.88 Å.

For MmTRPM8LMNG-Ca-icilin, 2079 micrographs were collected and 469,791
particles were auto-picked and extracted with a binning factor of 3 before 2D
classification. A total of 435,438 particles were selected for 2 rounds of 3D
classification using the MmTRPM8LMNG-ligand-free map as the reference. Particles
from six 3D classes were selected, combined, and reextracted to the pixel size of
1.014 Å, followed by 3D refinement with C4 symmetry and particle polishing via
RELION 3.0. The final 3D reconstruction of MmTRPM8LMNG-ca-icilin from 69,436
particles yielded an EM map with a resolution of 2.98 Å.

For MmTRPM8LMNG-Ca-icilin-PIP2, 3082 micrographs were collected and
1,081,783 particles were auto-picked and extracted with a binning factor of 3 before
2D classification. A total of 1,032,605 particles were selected for 2 rounds of 3D
classification using the MmTRPM8LMNG-ligand-free map as the reference. Particles
from two 3D classes were selected, combined, and reextracted to the pixel size of
1.014 Å, followed by 3D refinement with C4 symmetry and particle polishing via
RELION 3.0. The final 3D reconstruction of MmTRPM8LMNG-Ca-icilin-PIP2 from
57,439 particles yielded an EM map with a resolution of 3.21 Å.

For MmTRPM8nanodisc-Ca-icilin, 1600 micrographs were collected and 830,781
particles were auto-picked and extracted with a binning factor of 3 before 2D
classification. A total of 533,327 particles were selected for 2 rounds of 3D
classification using the MmTRPM8LMNG-ligand-free map as the reference. Particles
from three 3D classes were selected, combined, and reextracted to the pixel size of
1.014 Å, followed by 3D refinement with C4 symmetry and particle polishing via
RELION 3.0. The final 3D reconstruction of MmTRPM8nanodisc-Ca-icilin from
131,232 particles yielded an EM map with a resolution of 2.52 Å.

For MmTRPM8nanodisc-Ca-icilin-PIP2, 1602 micrographs were collected and
685,406 particles were auto-picked and extracted with a binning factor of 3 before
2D classification. A total of 412,376 particles were selected for 2 rounds of 3D
classification using the MmTRPM8LMNG-ligand-free map as the reference. Particles
from two 3D classes were selected, combined, and reextracted to the pixel size of
1.014 Å, followed by 3D refinement with C4 symmetry and particle polishing via
RELION 3.0. The final 3D reconstruction of MmTRPM8nanodisc-Ca-icilin-PIP2 from
62,791 particles yielded an EM map with a resolution of 3.04 Å.

The resolution was estimated by applying a soft mask around the protein
density and the gold-standard Fourier shell correlation (FSC)= 0.143 criterion.
Local resolution maps were calculated with RELION 3.0.

Model building, refinement, and validation. De novo atomic models were built
based on the 2.88 Å resolution MmTRPM8LMNG-Ca density map in Coot34. The
amino acid assignment was achieved on the basis of the clearly defined density for
bulky residues (Phe, Trp, Tyr, and Arg) and the model of PmTRPM8Ca (PDB: 6O77)
was used as a reference. Models were refined against cryo-EM maps using real-space
refinement in PHENIX35, with secondary structure and non-crystallography sym-
metry restraints applied. The initial cryo-EM density map allowed us to build an
MmTRPM8LMNG-Ca model covering about 85% of the entire sequence. The models of
MmTRPM8LMNG-ligand-free, MmTRPM8LMNG-Ca-icilin, MmTRPM8LMNG-Ca-icilin-PIP2,
MmTRPM8nanodisc-Ca-icilin and MmTRPM8nanodisc-Ca-icilin-PIP2 were built using the

model of MmTRPM8LMNG-Ca as a template. The geometry statistics for models were
generated using MolProbity36. All figures were prepared in PyMoL37 or Chimera38.

Electrophysiology. Patch-clamp recordings were performed with a HEKA EPC10
amplifier controlled by PatchMaster software (HEKA) in the whole-cell config-
uration. The membrane potential was held at 0 mV and the currents were elicited
by two steps, 300 ms to +80 mV and followed by 300 ms to −80 mV. For whole-
cell recording, serial resistance was compensated by 60%. The current was sampled
at 10 kHz and filtered at 2.9 kHz. Patch pipettes were prepared from borosilicate
glass and fire-polished to resistance of ~4MΩ. Whole-cell patch-clamp measure-
ments were performed 24–36 h after transfection at room temperature. A solution
with 130 mM NaCl, 10 mM glucose, 0.5 mM CaCl2, and 3 mM HEPES, pH 7.2 was
used in both bath and pipette for whole-cell recordings.

The pipette with a whole-cell patch was placed in front of the perfusion tube outlet
to ensure adequate perfusion. Ligands were perfused to membrane patch by a gravity-
driven system (RSC-200, Bio-Logic). Bath and ligand solutions were delivered
through separate tubes to minimize the mixing of solutions. Patch pipette with a
membrane patch was placed directly in front of the perfusion tube outlet. Each
membrane patch was recorded only once. All data points are mean ± s.e.m. (n= 3–5).

All-atom molecular dynamic simulation. The tetramer of the transmembrane
domain of MmTRPM8LMNG-Ca or MmTRPM8LMNG-Ca-icilin (residues 722–1030) is
embedded into the POPC lipid bilayer by using the CHARMM-GUI software
packages39. The system is then solved in water. A periodic rectangular box with
approximate dimensions of 140 × 140 × 110 Å was applied, which contains
~200,000 atoms. The parameters of protein, lipid, ligand, and ions are taken from
CHARM36m force field40. The TIP3P model is chosen for water molecules41.
150 mM Na+ and Cl- were added to neutralize the system. The energy of the
system was minimized with protein position restraints of the backbone (4000 kJ/
mol/nm2) and side chains (2000 kJ/mol/nm2), as well as lipid position and dihedral
restraints (1000 kJ/mol/nm2) using 5000 steps of the steepest descent. The simu-
lation system was then pre-equilibrated using multi-step isothermal-isovolumetric
(NVT) and isothermal-isobaric (NPT) conditions while decreasing the restraints at
each step. Production simulations without restraints were generated with 2 fs time
integration steps. The system temperature and pressure are controlled using the
Nose-Hoover thermostat and Parrinello-Rahman barostat respectively. The LINCS
algorithm is adopted to constrain the bond vibrations involving hydrogen atoms.
Four independent simulation trajectories are carried out using the GROMACS
2021.4 package42 Analyses were performed using GROMACS 2021.4 package and
the visual molecular dynamics (VMD) program43.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. The cryo-EM density maps have been deposited in the Electron
Microscopy Data Bank (EMDB) under accession numbers EMD-32720
(MmTRPM8LMNG-ligand-free), EMD-32721 (MmTRPM8LMNG-Ca), EMD-32723
(MmTRPM8LMNG-Ca-icilin), EMD-32722 (MmTRPM8LMNG-Ca-icilin-PIP2), EMD-32724
(MmTRPM8nanodisc-Ca-icilin), and EMD-32725 (MmTRPM8nanodisc-Ca-icilin-PIP2). The
coordinates have been in the RCSB Protein Data Bank (PDB) under accession codes
7WRA (MmTRPM8LMNG-ligand-free), 7WRB (MmTRPM8LMNG-Ca), 7WRD
(MmTRPM8LMNG-Ca-icilin), 7WRC (MmTRPM8LMNG-Ca-icilin-PIP2), 7WRE
(MmTRPM8nanodisc-Ca-icilin), and 7WRF (MmTRPM8nanodisc-Ca-icilin-PIP2). Source data are
provided with this paper.
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