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A streamlined platform for analyzing tera-scale
DDA and DIA mass spectrometry data enables
highly sensitive immunopeptidomics
Lei Xin1,3, Rui Qiao1,3, Xin Chen1,3, Hieu Tran 2,3, Shengying Pan1, Sahar Rabinoviz1, Haibo Bian1, Xianliang He1,

Brenton Morse1, Baozhen Shan1✉ & Ming Li 2✉

Integrating data-dependent acquisition (DDA) and data-independent acquisition (DIA)

approaches can enable highly sensitive mass spectrometry, especially for imunnopeptidomics

applications. Here we report a streamlined platform for both DDA and DIA data analysis. The

platform integrates deep learning-based solutions of spectral library search, database search,

and de novo sequencing under a unified framework, which not only boosts the sensitivity but

also accurately controls the specificity of peptide identification. Our platform identifies 5-

30% more peptide precursors than other state-of-the-art systems on multiple benchmark

datasets. When evaluated on immunopeptidomics datasets, we identify 1.7-4.1 and 1.4-2.2

times more peptides from DDA and DIA data, respectively, than previously reported results.

We also discover six T-cell epitopes from SARS-CoV-2 immunopeptidome that might

represent potential targets for COVID-19 vaccine development. The platform supports data

formats from all major instruments and is implemented with the distributed high-

performance computing technology, allowing analysis of tera-scale datasets of thousands

of samples for clinical applications.
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Throughout the three decades-long history of mass spec-
trometry (MS)-based proteomics, improving the sensitivity
of peptide and protein identification has always been one

of the most important research objectives1,2. Numerous efforts
have been made to increase the detection power in different stages
of MS experiments, including sample preparation, instrumenta-
tion, data acquisition strategy, and data analysis. For instance,
data-independent acquisition (DIA) strategy allows the frag-
mentation of all precursor ions within a certain range of m/z and
retention time, thus producing a complete record of all peptides
in a sample3,4. This is in contrast to data-dependent acquisition
(DDA) strategy which only selects a few most intense precursor
ions for fragmentation. Similarly, different analysis approaches
and software tools have been developed for peptide and protein
identification from MS data, including de novo peptide sequen-
cing, protein database search, and spectral library search5–13. The
sensitivity is especially critical for immunopeptidomics applica-
tions due to the difficulty of obtaining sufficient amount of
samples and the complexity of human leukocyte antigen (HLA)
peptidomes in cancer or virus-infected cells14–16. Furthermore,
recent studies of immunopeptidomics-based vaccines against
cancer17,18 or infectious diseases such as COVID-1919,20 have
shown that only a few T-cell epitopes among several thousands of
identified HLA peptides represent effective targets for vaccine
development. Thus, the sensitivity needs to be high enough to
catch all of those relevant T-cell epitopes, otherwise identifying
thousands of HLA peptides is not really meaningful.

While continuous efforts are being made to improve each
component of MS data acquisition and analysis, recent
studies21,22 have suggested that integrating different MS data
acquisition strategies and analysis approaches might significantly
improve the sensitivity of MS-based immunopeptidomics. How-
ever, simply combining different tools or resources may not be an
optimal solution because (i) they were originally developed with
different designs and principles and (ii) they are difficult to scale
up together to simultaneously analyze thousands of datasets for
clinical applications.

Here we propose a platform, PEAKS Online, that seamlessly
integrates two types of data acquisition, DDA and DIA, and three
data analysis approaches, including de novo peptide sequencing,
protein database search, and spectral library search. The platform
is designed to streamline the analysis of DDA and DIA data by
applying consistent algorithms, confidence score calculation, false
discovery rate (FDR) estimation, and visualization across the
board. Moreover, a deep learning-based approach is applied
throughout the platform, from basic tasks such as spectrum or
retention time predictions, to complicated processes such as de
novo sequencing, database or spectral library search. The plat-
form is also implemented with the latest distributed high-
performance computing technology, allowing high-throughput
analysis of tera-scale datasets of thousands of samples for clinical
applications on modern cloud computing platforms. We eval-
uated our platform on multiple benchmark datasets and identi-
fied 5–30% more peptide precursors than current state-of-the-art
systems. When evaluated on three DDA immunopeptidomics
datasets, our standard database search identified 1.7–4.1 times
more peptides, while our rescoring with deep learning-predicted
spectra identified 1.0–1.4 times more peptides than previously
reported results. In another evaluation on a DIA immunopepti-
domics dataset, our integrated workflow of spectral library search,
database search, and de novo sequencing together identified
1.4–2.2 times more peptides than previously reported results. We
also applied our platform to the SARS-CoV-2 HLA immuno-
peptidome and discovered six T-cell epitopes from infected cells
that may represent potential targets for COVID-19 vaccine
development.

Results
An ultra-sensitive and streamlined platform for DDA and DIA
mass spectrometry. Our PEAKS Online platform, an example
integrated workflow for DIA analysis on the platform, and the
performance evaluations are described in Fig. 1. The platform
integrates three main computational approaches, including
spectral library search, database search, and de novo sequencing
for the analysis of both DDA and DIA data. Each of the three
computational approaches can be performed separately or they
can be used together in a workflow. Figure 1b describes an
example workflow where all three computational approaches are
consecutively performed on a DIA dataset to achieve the highest
possible sensitivity. The list of peptides identified by the three
computational approaches are then used to build a spectral
library, and a final search of the whole dataset is performed
against this new library. The final search is meant to re-confirm
the identified peptides and to provide a unified global FDR.

The integration is streamlined under a unified framework that
(i) applies consistent analysis algorithms to both DDA and DIA
data; (ii) systematically controls the FDR of peptides identified
from all three computational approaches; and (iii) follows a deep
learning-based and data-driven principle. For instance, a feature-
based principle is applied across the three computational
approaches and to both DDA and DIA data: precursor features
are first detected from LC-MS map; MS/MS spectra are then
grouped with their corresponding precursors based on their co-
elution profiles; each precursor and its associated MS/MS spectra
are then fed to any of the three computational approaches to
identify the peptide23. The FDR of identified peptide-spectrum
matches (PSMs) is calculated based on a consistent target-decoy
approach, where random decoy peptides and spectra are
generated by randomly permuting the peptide sequences and
the fragment ions, respectively. In the case of de novo sequencing,
de novo peptides can be put into a new database and an
additional database search is performed to estimate the FDR of de
novo peptides. Deep learning applications are employed at
multiple stages throughout the platform, including MS1 isotope
feature detection24,25, de novo sequencing for both DDA and
DIA23,26,27, spectrum, retention time, and collision cross section
predictions28–30 (Supplementary Figs. 1, 2, Supplementary
Table 1). Deep transfer learning is also used to refine a public
spectral library to adapt to a specific MS instrument setting. More
details of our platform are described in the “Methods”.

We evaluated PEAKS Online on three DIA benchmark datasets
from recent studies, including Muntel et al.31, Xuan et al.32, and
Association of Biomolecular Resource Facilities (ABRF) study33.
Muntel et al. attempted to establish an optimal MS instrumenta-
tion and data analysis strategy to identify 10,000 proteins in one
single DIA run. Xuan et al. tried to standardize a robust, sensitive,
and reproducible workflow for DIA data generation and analysis
across eleven international laboratories of the international
Cancer Moonshot consortium34. We compared our platform to
two other state-of-the-art software suites for DIA data analysis,
DIA-NN35 and Spectronaut13. In this evaluation, all three tools
were run using their spectral library search option. As shown in
Fig. 1c, d, our platform identified 5–30% more peptide precursors
than DIA-NN and Spectronaut at 1% FDR on both benchmark
datasets. In addition, our test on the ABRF benchmark dataset
demonstrated that our platform produced consistent identifica-
tion results across different DIA runs (Venn diagram in Fig. 1e).

We also evaluated PEAKS Online on three DDA immuno-
peptidomics datasets, including two HLA monoallelic cell lines
from Sarkizova et al.36 and one native melanoma sample from
Bassani-Sternberg et al.14. Figure 1f shows that, in standard
database search mode, PEAKS Online outperformed MaxQuant8

by 1.7–4.1 times.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30867-7

2 NATURE COMMUNICATIONS |         (2022) 13:3108 | https://doi.org/10.1038/s41467-022-30867-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Last but not least, PEAKS Online is designed to achieve high
parallelism, high scalability, and high stability with the modern
distributed high-performance computing technology (Supple-
mentary Fig. 3). The platform is built on top of the Java Akka
Toolkit. We implemented a master-workers computation
cluster with Akka’s actor based messaging model. Following
the map-reduce pattern, we split larger projects into fractions,
run them in parallel on different worker nodes, and aggregate
the results in the end to present to the user. A distributed data
storage, Apache Cassandra, is integrated in our system for data
persistence. So datasets produced by different worker nodes can
be shared and accessed, which allows us to hand over tasks
between workers and perform data aggregation in the end.
More details of PEAKS Online’s architecture can be found in
the Methods.

Supplementary Table 2 demonstrates the high-performance
computing capability of our platform to perform high-
throughput analysis on a large project of more than four
thousands samples with 3.7 terabytes of data. The analysis was
performed on the Amazon Web Services cloud system with 512
CPU cores and 1 TB RAM, and was completed within just less
than 20% of the time required for the MS experiments. Another
example in Supplementary Fig. 4 demonstrates the scalability of
PEAKS Online, i.e., how the computational time efficiently
decreased with the increasing number of CPU cores.

Applications in cancer immunopeptidomics. MS-based immu-
nopeptidomics has significant clinical impacts in the development
of vaccines against cancer or infectious diseases. Mass spectro-
metry provides direct evidence of HLA peptides displayed on the
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Fig. 1 PEAKS Online: an ultra-sensitive and streamlined platform for DDA and DIA mass spectrometry. a An overview of data acquisition strategies,
analysis approaches, and core algorithms of the platform. b An example integrated workflow for DIA data analysis on the platform. c–e Performance
evaluation of PEAKS Online, DIA-NN, and Spectronaut on three DIA benchmark datasets: Muntel et al.31, Xuan et al.32, and ABRF study33. f Performance
evaluation of PEAKS Online, MaxQuant, Prosit, and MS2Rescore on three DDA immunopeptidomics datasets: Mel-15 from Bassani-Sternberg et al.14;
A*02:04 and A*02:06 from Sarkizova et al.36. (DDA: Data-Dependent Acquisition; DIA: Data-Independent Acquisition; FDR: False Discovery Rate; ALC:
Average of the Local Confidence score; POL: PEAKS Online; ABRF: Association of Biomolecular Resource Facilities).
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surface of cancer or virus-infected cells, which represent potential
targets of vaccines. However, the presentation pathway of HLA
peptides, including their cleavage, is not well-understood, as
opposed to traditional tryptic peptides. Hence, it is important to
assess the ability of a search engine to identify HLA peptides from
DDA and DIA data.

As mentioned earlier, Fig. 1f shows the performance evaluation
of PEAKS Online and MaxQuant on three DDA immunopepti-
domics datasets from refs. 36 and 14. It is important to note that,
since most search engines were not originally designed for HLA
peptides, the application of deep learning-predicted spectra to
rescore database search results can substantially improve the
number of identified peptides22,37. For instance, Wilhelm et al.22

recently proposed Prosit, a deep learning model that was trained
specifically on synthetic HLA peptides to boost the identification.
We show in Fig. 1f that both standard PEAKS Online and its
rescoring results consistently outperformed the results of
MaxQuant and MaxQuant plus Prosit rescoring by 1.7–4.1 and
1.0–1.4 times, respectively, across three datasets. We also
compared PEAKS Online rescoring results to MS2Rescore37 and
found that they were comparable for two datasets Mel-15 and
A*02:06, whereas for dataset A*02:04 MS2Rescore identified 17%
more peptides. More details about our rescoring procedure can be
found in the Methods.

Next, we evaluated the performance of PEAKS Online on a DIA
immunopeptidomics dataset published recently by Pak et al.21.
The dataset includes both DDA and DIA measurements of the
immunopeptidome sample from the human B cell line RA957.
In their study, Pak et al. used MaxQuant8 to analyze DDA data
to build sample-specific spectral libraries and then used
Spectronaut13 to perform spectral library search on DIA data.
We performed the same analysis workflow using our platform and
achieved substantially higher sensitivity without compromising
accuracy.

Figure 2a shows that we identified a total of 26,558 peptides
from three DDA runs, which was 79.6% higher than previously
reported by Pak et al. (14,789 peptides). As a result, our spectral
library had much better coverage and enabled more sensitive DIA
search. Our spectral library search identified a total of 24,290
peptides from two DIA runs, which is 66.4% higher than
previously reported (14,600 peptides). Figure 2b shows the Venn
diagram of our identified peptides, the results from Pak et al.,
and the HLA-I peptides from the Immune Epitope Database
(IEDB)16. There were 10,601 new peptides identified by our
spectral library search but not reported by Pak et al., and among
them, 3809 peptides can be found in the IEDB. Further binding
motif deconvolution analysis by MixMHCp 2.138 shows that the
peptides reported by Pak et al. and by our spectral library search
were clustered into the same set of six binding motifs and with
similar proportions across those motifs (Fig. 2c). We also
investigated the spectra for which our spectral library search
and Pak et al. identified different peptide sequences (Supplemen-
tary Data 1). We found 241 such spectra, and for 195 (80.9%) of
them, the peptides identified by our spectral library search had
stronger binding affinities than the ones by Pak et al., as predicted
by NetMHCpan39. An example PSM comparison is shown in
Supplementary Fig. 5, where we also used an independent
spectrum prediction tool MS2PIP40 to validate the identified
peptides. Both spectrum and binding prediction results show that
our identified peptide was more accurate.

To further increase the sensitivity, we applied the integrated
DIA workflow described in Fig. 1b to the sample RA957. In
particular, spectral library search, database search, and de novo
sequencing were consecutively performed on the DIA data. The
list of peptides identified by the three computational approaches
were used to build a new spectral library. A final search of the

whole dataset was performed against the new library with a
unified global FDR of 1%. As shown in Fig. 3a, the database
search and de novo sequencing identified 6853 and 925 extra
peptides, respectively, on top of the library search results (i.e.,
about 32.1% improvement). In total, the integrated workflow by
PEAKS Online identified 31,984 peptides. When compared to the
results reported by Pak et al., we identified 2.2 times more
peptides than their sample-specific library approach (14,600
peptides) and 1.4 times more peptides than their multi-HLA
BigLib library or the Prosit-predicted library approaches (22,532
peptides)21.

The lengths of both new and previously reported peptides
followed the characteristic length distribution of HLA-I peptides
(Fig. 3b). We also found that the distributions of peptide lengths,
PSM scores, and retention times (RTs) of the peptides identified
by different computational approaches of PEAKS Online were
comparable (Fig. 3b–d). In addition, the predicted RTs were
highly correlated with the experimental RTs. Since this DIA
dataset RA957 is HLA data, we also ran NetMHCpan on all
identified peptides by PEAKS Online and found that about 88%
of them were predicted as weak binders (rank ≤ 2%), 76% as
strong binders (rank ≤ 0.5%). The complete details of all PSMs
identified by PEAKS Online are provided in Supplementary
Data 2. Furthermore, Supplementary Fig. 6 shows the PSM score
distributions of random decoy peptides and target peptides. As
expected for FDR control, the score distribution of the random
decoy peptides was indeed located at the lower end of the score
distribution of the target peptides. We also performed a mass shift
test41, where the precursor masses were shifted by adding 100
Dalton and the database search was repeated with the new
precursor masses. As expected, the target score distribution was
reduced and nearly identical to the decoy one because the target
peptides no longer matched the precursor masses after the
shifting.

It’s worth mentioning that we applied a very stringent control
on the peptides identified by de novo sequencing. First, we only
selected peptides with positional confidence scores of at least 90
(in a scale of 0–100), which means that every amino acid was
supported by both b- and y- ions in our de novo sequencing
algorithm. Second, the selected de novo peptides were further
subjected to the final search with a global FDR of 1% as
mentioned above. As shown in Fig. 3b–d, the de novo peptides
had similar distributions of peptide lengths, PSM scores, and RTs
as those identified by spectral library search or database search.
There was a slightly elevated number of 8-mers in the length
distribution of the de novo peptides. Supplementary Fig. 7 shows
the PSMs of some example de novo peptides together with their
precursor profiles and fragment ion profiles. To validate those de
novo peptides, we also ran an independent spectrum prediction
tool MS2PIP40 and found that the predicted spectra were highly
correlated with the experimental spectra (Supplementary Fig. 7d).
The amino acids at the anchor positions were consistent with the
binding motifs of the sample HLA alleles (Supplementary Fig. 7e).

All of the above results strongly confirmed the validity of the
peptides identified by our integrated DIA workflow using PEAKS
Online. Thus, our platform considerably boosted the sensitivity of
HLA peptide identification while still accurately controlling the
specificity. More details of the analysis of cancer immunopepti-
domics datasets can be found in Supplementary Note 1.

Analysis of SARS-CoV-2 HLA-I immunopeptidome from
COVID-19 infected cells. We applied our platform to analyze the
HLA-I immunopeptidome of SARS-CoV-2-infected A549 cells
and HEK293T cells, which were published recently by ref. 19.
A549 cells are human lung cells that are targeted by SARS-CoV-2,
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whereas HEK293T cells express HLA-A*02:01, B*07:02, and
C*07:02 alleles that have high coverage in the human population.
We identified 6418 and 1932 HLA-I peptides from the infected
A549 and HEK293T cells, respectively. Their characteristic length
distributions and their binding motifs are presented in Supple-
mentary Fig. 8. Notably, more than 2000 peptides had not been
reported in the original study, potentially including new T-cell
epitopes for vaccine targets.

We focused on the HLA-I peptides that are derived from the
SARS-CoV-2 genome. Supplementary Data 3 lists all SARS-CoV-
2 HLA-I peptides that were identified by Spectrum Mill in the
original study and by our platform. First, we noted that our
platform did not report four peptides that were found by
Spectrum Mill. Further investigations showed that these peptides
have low confidence scores (from 5.26 to 9.01) assigned by
Spectrum Mill. For example, Supplementary Fig. 9 shows that the
peptide ELPDEFVVVTV (Spectrum Mill score 9.01) does not
have a good peptide-spectrum match and the experimental
spectrum is not correlated with the predicted spectrum by
Prosit28, where several fragment ions with high intensities cannot
be annotated. Thus, there is not enough evidence to support the
representation of these peptides on the cell surface and they may
not be reliable targets for vaccine development.

More importantly, we identified six SARS-CoV-2 HLA-I
peptides that had not been reported in the original study for
the infected A549 cells and HEK293T cells (Fig. 4). Moreover, five
of them have been confirmed to activate T-cell response in other
studies. For example, the epitope SIIAYTMSL is part of the Spike

glycoprotein of SARS-CoV-2 and has been tested in 13 T-cell
assays in 10 different studies20. Another epitope HLVDFQVTI is
part of the ORF6 protein of SARS-CoV-2 and can also be found
in SARS-CoV-1, it has been tested in 13 T-cell assays in 8
different studies. The peptide-spectrum matches supporting the
identification of these T-cell epitopes are also provided in Fig. 4.

Thus, the analysis results of SARS-CoV-2 HLA-I immunopep-
tidome confirm not only the sensitivity but also the specificity of
our platform. Both of them are crucial for identifying the correct
targets and reducing the number of uncertain candidates for
vaccine development, especially when imunnopeptidomics samples
are limited and signals are weak and noisy. More details of the
analysis of SARS-CoV-2 HLA-I immunopeptidome can be found
in Supplementary Note 2.

Discussion
In this study, we presented PEAKS Online, an ultra-sensitive and
streamlined platform for DDA and DIA mass spectrometry
analysis. The platform integrates deep learning-based solutions of
spectral library search, database search, and de novo sequencing
under a unified framework, which not only boosts the sensitivity
but also accurately controls the specificity of peptide identifica-
tion. Indeed, we showed that our platform was able to double the
number of identified HLA peptides in cancer immunopepti-
domics datasets, while correctly preserving their characteristic
binding motifs. Similarly, we identified six T-cell epitopes that
had not been reported from the SARS-CoV-2-infected A549 cells
and HEK293T cells, and at the same time, we found that a
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previously reported T-cell epitope might be a false positive
identification. Thus, both sensitivity and specificity offered by our
platform are crucial in MS-based immunnopeptidomics for
identifying the correct targets and reducing the number of
uncertain candidates for vaccine development.

While the sensitivity improvement can be expected when
multiple search engines or analysis methods are applied together,
it is important to emphasize on their practicality and scalability,
both of which are crucial for translational research and clinical
applications. With PEAKS Online, one can easily perform com-
plex analysis workflows in one single platform, without having to
worry about which tools need to be used for what tasks, whether
their input/output data are compatible, or how their results
should be combined and interpreted. More importantly, the high-
performance computing technology in PEAKS Online allows the
high-throughput analysis of tera-scale datasets of thousands of
samples for clinical applications on modern cloud computing
platforms. It is very difficult, if not possible, to do such an analysis
in a complex workflow that involves multiple tools from different
sources. Thus, PEAKS Online offers high sensitivity, simplicity,
and scalability. We are pretty confident that our platform will
make a significant contribution to drive the proteomics research
forward.

PEAKS Online uses random decoy peptides and spectra to
estimate FDR. One possible limitation of this random decoy
approach is that random peptides are too random while many
false-positive HLA peptides have the correct anchor residues.

Perhaps a more constrained randomization can be applied so that
anchor residues are fixed and other residues are permuted.
However, a comprehensive evaluation on several benchmark
datasets is needed in order to assess which decoy approach
among randomization, constrained randomization, or two-
species library13,35, is more suitable for HLA peptides.

Currently PEAKS Online DIA supports three common variable
modifications, including N-terminal (Acetylation), M(Oxidation),
and NQ(Deamidation). It may be difficult to configure any
number of post-translational modifications (PTMs) like in the
case of DDA data. This is a common limitation for DIA analysis
tools, because the libraries and the prediction models depend on
the input data that were used to build them. It is difficult to
generalize the models so that they are able to predict for new
types of PTMs that they have not seen in the training data, as
different types of PTMs tend to have different spectrum and RT
distributions. On the other hand, PEAKS Online DDA can handle
any number of fixed and variable PTMs. In fact, the computing
power provided by PEAKS Online shall be tremendously bene-
ficial for PTM search. We hope to provide a comprehensive
assessment of PEAKS Online performance on PTMs in a
future study.

Methods
De novo sequencing. Our deep learning model DeepNovo for de novo sequencing
of both DDA and DIA data was first proposed in refs. 23,26,27. First, precursor
features are detected together with their m/z, charge, retention time, and intensity
profile from the LC-MS map. Next, for each precursor, we collect all MS/MS

Fig. 3 Integrated workflow for DIA analysis of the immunopeptidomics sample RA957. a Venn diagram of the peptides identified by PEAKS Online
spectral library search, database search, and de novo sequencing versus the results reported by Pak et al. 21. b The length distributions of the identified
peptides. c The distributions of the peptide-spectrum match (PSM) identification scores reported by PEAKS Online (named “-10LgP”). d The distributions
of experimental retention times (RTs) versus predicted RTs of the identified peptides. The colors follow the legends in c.
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spectra so that they are within the precursor’s retention-time and m/z ranges. For
DIA data, there may be more than one spectrum and the number of spectra
collected for a precursor may vary, so we select a fixed number of spectra that are
closest to the center of the precursor’s retention time. Then, we feed the precursor
and its associated MS/MS spectra into DeepNovo neural networks to learn (i) the
3D shapes of fragment ions along m/z and retention time dimensions, (ii) the
correlation between the precursor and its fragment ions, and (iii) the peptide
sequence patterns. Our de novo sequencing framework predicts a peptide sequence
by iteratively predicting one amino acid after another. At each iteration, two
classification models are combined to predict the next amino acid by conditioning
on the output of previous steps. The first model uses convolutional neural networks
to learn patterns of the precursor and fragment ions. The second model uses long-
short term memory recurrent neural networks to learn patterns of the peptide
sequence. Finally, de novo peptides can be validated through an augmented
database search with a controlled false discovery rate (FDR) to ensure that they are
supported by significant peptide-spectrum matches.

DDA database search. PEAKS DB database search algorithm uses the state-of-art
“denovo assisted” strategy to achieve both sensitivity and specificity9. Taking
advantage of existing de novo sequencing results, PEAKS DB first performs a tag
search against the protein sequences using the de novo sequencing results from the
previous step. The tag search starts with the seeds constructed from de novo
sequences then tries to extend the seed to the whole peptide sequence matched with
the protein sequences. This method is fast enough allowing us to filter a full fasta
sequence database such as NBCI (billions of proteins) to a set of proteins which is
only related to the data set in a reasonable amount of time. Then a small set of high

quality spectra are searched against the filtered protein set. The match results are
used to calibrate the mass error and train the scoring model. In the last step, all the
spectra are searched against the filtered protein set. The pre-trained LDA model is
used to separate the target and decoy matches. The overlap of the de novo
sequencing result and peptide from the protein database for the same spectrum
gives a good indication whether the peptide is a true match or not. By adding this
as a feature in the LDA model, it significantly boosts the performance of the search
engine.

DIA spectral library search. Initially, we tried the two-species library method
introduced by DIA-NN35 for FDR estimation so that fair comparisons can be made
among different softwares. However, we found that using spectral libraries built
from other species as the decoy might violate the underlying assumptions of target-
decoy search strategy and lead to biased results. This is because peptides identified
from different species tend to have different retention time distribution and amino
acid frequencies. Modern DIA search engines like DIA-NN include the above
features in its on-the-fly-training procedure, which means, information regarding
whether a peptide is decoy is leaked to the classifier. To alleviate this problem, we
propose to generate random decoys. For each spectrum in the target library, a
decoy spectrum is generated by randomly permuting the peptide sequence and its
corresponding fragment ions. The retention time (RT) is randomly sampled from
the target peptides’ RT distribution.

PEAKS DIA first performs feature detection on raw DIA data to find peptide
features and associate their corresponding MS/MS spectra. In the meantime, it also
creates a fake peptide feature for each peptide in the spectral library to enhance
sensitivity. Then for each peptide feature, we can filter the spectral library by

Pep�de Protein Confidence 
score

MHC ligand assays
Posi�ve / All HLA alleles T cell assays

Posi�ve / All IEDB link

QLTPTWRVY S 23.93 1 / 1 C*16:01 1 / 1 h�p://www.iedb.org/epitope/1323406
NAPRITFG N 27.25
APRITFGGP N 19.09 1 / 1 B*07:02 h�p://www.iedb.org/epitope/1330992
SIIAYTMSL S 20.28 6 / 6 A*02:01, C*01:02 7 / 13 h�p://www.iedb.org/epitope/1309137

HLVDFQVTI ORF6 17.57 10 / 10
A*02:01, A*02:02,
A*02:03, A*02:06,

A*68:02
7 / 13 h�p://www.iedb.org/epitope/24313

NLIDSYFVV nsp12 18.27 1 / 1 A*02:01 1 / 1 h�p://www.iedb.org/epitope/1313213

a

b

Fig. 4 New T-cell epitopes identified by our platform from SARS-CoV-2-infected A549 cells and HEK293T cells. a Detailed information of the T cell
epitopes. b Peptide-spectrum matches of the T cell epitopes. (MHC: Major Histocompatibility Complex; HLA: Human Leukocyte Antigen; IEDB: Immune
Epitope Database).
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precursor m/z and charge to find the potential library spectra that match the
feature. Next, PEAKS DIA conducts two rounds of spectral library search. In the
first round search, a rank normalized inner product score is given to each potential
library spectrum and peptide feature pair. The target peptide features identified at
0.1% FDR are then selected to build an RT alignment model between the observed
RT and indexed RT (iRT) stored in the library. The best precursor error tolerance
and fragment ion error tolerance are obtained by a grid search on a small subset of
peptide-feature-library-spectrum. In the second round spectral library search,
PEAKS DIA can further reduce the search space of library spectra by filtering along
the RT dimension. The match between a library spectrum and a peptide feature’s
associating MS/MS spectra is evaluated again in a sliding window fashion, with a
window size of 7. The window slides over the RT dimension, each window
containing seven consecutive MS2 spectra. We use weighted rank normalized inner
product to evaluate the similarity between a window of MS/MS spectra and a
library spectrum. The library spectrum with the best matched window is retained
for each peptide feature. PEAKS DIA then computes 37 hand crafted features for
each peptide-feature-library-spectrum match (Supplementary Table 1). We pass
these features to a feedforward neural network classifier to perform on the fly
training so that PEAKS DIA can better distinguish between target and decoy
matches.

DIA direct database search. For the features that are not identified in the spectral
library search step, PEAKS DIA then performs database search against protein
sequences from a user provided fasta database. A protein sequence is first cleaved
into peptides according to the enzyme/cleavage rules specified by users. Next, the
peptide search space is filtered by peptide features’ m/z and charge, so that only the
peptides that can potentially match to a peptide feature are retained. PEAKS DIA
then applies an internal spectrum prediction model and iRT prediction model on
these peptides and builds a predicted spectral library. Finally, PEAKS DIA conducts
spectral library search on the generated spectral library and the FDR is controlled
using a non-parametric q-value estimation method.

Spectrum and iRT prediction by deep learning. PEAKS DIA adopts a 4-layer
transformer model to predict the theoretical spectrum. Each transformer layer has
256 hidden units. At each possible fragment position, the model will predict the
theoretical intensities for the following eight fragment ions: b, b-H2O, b-NH3,
b2+, y, y-H2O, y-NH3, y2+. The iRT prediction model in PEAKS DIA consists of
three transformer layers followed by three residue convolution layers and a global
maxpooling layer. The spectrum and iRT prediction models are briefly depicted in
Supplementary Fig. 2.

Refine spectral library by deep transfer learning. The performance of library-
based DIA analysis relies largely on the quality of the spectral library being used.
Because being often acquired from different MS instrument settings, the library
spectrum from a public library and the query DIA spectrum display different
fragment ion intensity patterns and iRT values. To alleviate the performance
deterioration using a public spectral library, we use deep transfer learning to
adaptively refine the public library. Specifically, our method consists of two rounds
of library search coupled with deep transfer learning for spectrum prediction. It
starts with training a deep learning model for fragment ion intensity and iRT
prediction using the provided public spectral library. The first-round search is then
conducted to search DIA data against the public library. The resulting high-quality
identifications are used to fine-tune the previously trained deep learning model via
transfer learning. Next, the fine-tuned model is used to predict/refine fragment ion
intensities and iRTs for the precursors in the initial public library. Finally, the
second-round library search is performed with the refined public library, which is
expected to have adapted to the MS instrument setting in which the query DIA
data was measured.

Rescoring database search results with deep learning-predicted spectra.
PEAKS Online originally uses 18 hand-selected features to evaluate the quality of a
peptide-spectrum match (PSM). A pre-trained linear discriminant function is
applied on the 18 features to generate a score for each PSM. The best PSM for each
spectrum is selected and the PSMs are then sorted and filtered with FDR esti-
mation. Alternatively, we can also export all candidate PSMs for each spectrum and
then use Percolator to rescore the PSMs and improve the identification. Previous
studies have shown that, for HLA peptides, adding additional features generated
from deep learning-predicted spectra can significantly increase the number of
identified HLA peptides22,37). Here we include three spectrum similarity features,
namely Pearson correlation, cosine similarity, and spectra angle between the pre-
dicted and the observed spectra to the Percolator rescoring step.

The distributed high-performance computing architecture of PEAKS Online.
Our PEAKS Online platform is built with the Akka Toolkit, which is a general
purpose framework to create reactive, distributed, parallel and resilient software
systems. Akka implements the Actor Model on the JVM, and is widely used in the
industry for cloud computing applications. We built our own distributed com-
puting architecture on top of it utilizing its message-based inter-actor commu-
nication and reactive data streaming capabilities. We designed a single-master

multi-workers computing cluster where the master node takes care of maintaining
system state and scheduling tasks, while workers get the computation done. All
these nodes are Akka actors and the worker nodes communicate with the master
node to synchronize their states, receive tasks, and submit results by exchanging
messages.

To achieve high parallelism and best performance, we divide each analytical
project into computation units by data fractions and multiple fractions can run
concurrently on different worker nodes. Inside each fraction, we also take
advantage of Akka’s reactive data streaming to utilize CPU multi-threading to
speed up computation further. At the end, distributed datasets are merged together
to produce final results presented to users.

Because the amount of data we are dealing with is huge, as well as the
distributed nature of our system, we also integrated a distributed data storage,
Apache Cassandra, in our platform to store both intermediate and final results. We
picked Cassandra for its asynchronous masterless design and linear scalability. So
there’s no performance bottleneck on individual data nodes and low latency and
high throughput can be achieved even with our enormous data size. Because all
nodes are connected to Cassandra and all data is persisted into it, worker nodes can
share and access data created by others. This allows us to hand over tasks among
nodes along the computation process and perform data aggregation in the end.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dataset from Muntel et al. 31 is available in the PRIDE database under accession code
PXD013658. The dataset from Xuan et al. 32 is available in the MassIVE database under
accession code MSV000084976. The dataset from Sarkizova et al. 36 is available in the
MassIVE database under accession code MSV000084172. The dataset from Bassani-
Sternberg et al. 14 is available in the PRIDE database under accession code PXD004894.
The dataset from Pak et al. 21 is available in the PRIDE database under accession code
PXD022950. The dataset from Weingarten-Gabbay et al. 19 is available in the MassIVE
database under accession code MSV000087225.

Code availability
PEAKS Online is available for academic users; the requests can be sent to the
corresponding author, Dr. Ming Li. For public usage, PEAKS Online is provided as a web
service which can be accessed with the following link: https://peaksonline.bioinfor.com.
The source code is publicly available on GitHub42 (https://github.com/lxinbsi/peaks-
online) and Zenodo (https://doi.org/10.5281/zenodo.6529062).
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