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Altered predictive control during memory
suppression in PTSD
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Pierre Gagnepain 1✉

Aberrant predictions of future threat lead to maladaptive avoidance in individuals with post-

traumatic stress disorder (PTSD). How this disruption in prediction influences the control of

memory states orchestrated by the dorsolateral prefrontal cortex is unknown. We combined

computational modeling and brain connectivity analyses to reveal how individuals exposed

and nonexposed to the 2015 Paris terrorist attacks formed and controlled beliefs about future

intrusive re-experiencing implemented in the laboratory during a memory suppression task.

Exposed individuals with PTSD used beliefs excessively to control hippocampal activity during

the task. When this predictive control failed, the prediction-error associated with unwanted

intrusions was poorly downregulated by reactive mechanisms. This imbalance was linked to

higher severity of avoidance symptoms, but not to general disturbances such as anxiety or

negative affect. Conversely, trauma-exposed participants without PTSD and nonexposed

individuals were able to optimally balance predictive and reactive control during the memory

suppression task. These findings highlight a potential pathological mechanism occurring in

individuals with PTSD rooted in the relationship between the brain’s predictive and control

mechanisms.
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Individuals with post-traumatic stress disorder (PTSD) avoid
traumatic reminders in order to anticipate threat1,2 and reduce
distress. Their perception of the future may have changed in

the aftermath of the traumatic experience3,4. Bayesian models of
the brain5 provide a solution to understand this impairment in
predictive processing6. More specifically, aberrant associations
may arise between safe environmental cues and threatening
outcomes5,7, thereby compromising their ability to accurately
predict aversive events8. This disruption in prediction exacerbates
the avoidance of trauma reminders1, which may prevent the
extinction or updating of the traumatic engram. The impact of
this disruption in prediction on the control of the re-experiencing
of unintentional flashbacks or intrusive memories (i.e., cardinal
symptom of PTSD9), however, is unknown.

In a recent study, we suggested that the persistence of intrusive
memories in individuals with PTSD may be rooted in a gen-
eralized dysfunction of the inhibitory control system that nor-
mally regulates unwanted memories10. In this study, 102
participants who had been exposed to the November 2015 Paris
terrorist attacks, as well as 73 nonexposed individuals, learned a
series of neutral words paired with images of objects, and were
later instructed to suppress the unwanted re-experiencing of
intrusive memory images involuntarily triggered by the word
reminder cue. During this suppression phase, we recorded brain
activity using functional magnetic resonance imaging (fMRI), and
participants were asked to report the presence or absence of
intrusions at each trial. Exposed participants were divided into
two subgroups: individuals with PTSD symptoms, and resilient
individuals who did not develop PTSD. Resilient individuals
exhibited a decrease in functional coupling between control and
memory brain networks during the experiencing of intrusive
memories, compared with both nonintrusive and resting-state
conditions. This pattern is consistent with an increase in inhibi-
tory (i.e. negative) coupling during suppression of intrusive
memories. Dynamic causal modeling (DCM) analyses confirmed
that this decrease in coupling reflected top-down mechanisms
orchestrated by the right dorsolateral prefrontal cortex
(DLPFC)11. In memory regions involved in the persistence of the
trauma, such as the hippocampus and precuneus (PC)12, this
controlled down-regulation of intrusive memories was severely
compromised in individuals with PTSD, whose brain dynamics
did not differ between the intrusive and nonintrusive conditions.

These findings highlight a fundamental role of memory control
mechanisms in the development of PTSD in response to trauma,
but tell us nothing about the origin of their disruption and the
potential contribution of hidden computations underlying pre-
dictions of intrusive memories. Cognition, motor responses and
memories can be controlled by an early proactive mechanism that
biases attention according to goals, and additionally corrected
during a late reactive process13,14. Interestingly, these processes
are captured well by Bayesian models that incorporate the
dynamic adjustment of predictions based on previous experiences
and the use of prediction error (PE) to modulate the future need
for control and its correction15. The prediction-based dynamic
adjustment of the forthcoming need for control reflects a form of
predictive control that critically depends on the DLPFC16. We
hypothesized that the inhibitory control of memories also relies
on predictive inferences, and that the interaction between pre-
dictive and control processes is central to understanding the
pathogenesis of PTSD.

We can assume that estimated probabilities of intrusive re-
experiencing based on prior encounters (i.e., beliefs) are aber-
rantly prioritized in individuals with PTSD17, such that control
resources are allocated to a form of predictive avoidance that
overrides online memory signals. For instance, individuals with
PTSD may not only avoid situations for which they anticipate

flashbacks, such as certain places or times of the day, but may also
use this expectation to proactively alter conscious thoughts18.
Alternatively, the reduced inhibitory control in individuals with
PTSD may be limited to reactive processes targeting the online
emergence of intrusive memories, given their hypersensitivity to
PE5 which may reduce the control resources available and inhi-
bitory coupling. In the context of a memory suppression task, like
other situations requiring flexible cognitive control, prior expo-
sure to successive reminders influences the belief that an unde-
sired memory will emerge into consciousness while processing
the upcoming cue15. Critically, exaggerated predictive control,
reduced reactive control, or a combination of the two may explain
our previous observation that the brain connectivity markers of
memory suppression are disrupted in individuals with PTSD (see
Fig. 1b)10.

In the current study, we tracked these hidden computations
during the think/no-think (TNT) memory suppression task using
meta-Bayesian modeling19 and analyzed their impact on the
underlying connectivity markers of memory control. We applied
this analysis to the same subgroups with (PTSD+; n= 55) or
without (PTSD−; n= 47) PTSD following exposure to the ter-
rorist attacks in Paris on 13 November 2015, and the same
nonexposed participants (n= 73)10 (see the “Methods” section).
We submitted trial-by-trial computations of beliefs about
upcoming intrusions and resulting PE to a DCM analysis to
explore their influence on the effective connectivity between the
inhibitory control system and memory target regions. We focused
this analysis on the right anterior and posterior middle frontal
gyrus (MFG)10,20, two core nodes of the inhibitory control sys-
tem, and tested their relative contribution to belief-driven and
PE-driven control. We tested the influence of these two distinct
control hubs on two memory regions that are central to the
establishment of traumatic memory: the hippocampus, distin-
guishing between its rostral and caudal parts10 and the PC.

Results
Computational modeling. To track beliefs about upcoming
intrusive memories, we applied three distinct models of increas-
ing complexity (Fig. 1c): (1) the Rescorla–Wagner (RW)21, which
postulates that trial-by-trial PE updates beliefs at a fixed learning
rate; (2) the Kalman filter (KF)22, in which the updating of beliefs
relies on a dynamic (i.e., not fixed) learning rate, shaped by
additional trial-by-trial uncertainty weighting of PE, assuming
that such uncertainty is constant and the learned environment
not volatile; and (3) the two-level hierarchical Gaussian filter
(HGF)23 which, like the KF, assumes that the learning underlying
belief updating is a dynamic process based on uncertainty, but
further assumes that the environment is volatile, and which
involves the hierarchical embedding of beliefs. Note, however,
that the two-level HGF model can also be interpreted as a Kalman
filter operating at the (logit-transformed) contingency level as
opposed to simply the outcome level like our current imple-
mentation of the KF model.

We built three distinct source models to map intrusion beliefs
onto outcome probabilities. Each of these models assumed
different sources of beliefs, in order to establish their accuracy
in predicting the outcome. The state source model assumed that
participants formed beliefs based solely on the trial history. The
item source model assumed that beliefs were based solely on the
history of each specific word–object pair (see Fig. 2a), disregard-
ing overall trial-by-trial history. The combined source model
assumed that the combination of state and item (precision-
weighted) beliefs improves prediction accuracy (see Eq. (14) and
Fig. 2a). These three source models mapped beliefs onto binary
ratings through a beta function, with a free parameter estimating
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the accuracy of this mapping (see the “Methods” section). Model
accuracy was computed using the negative log-likelihood of the
choice probability for each of the nine computational models
(HFG-state, HFG-item, HFG-combined, RW-state, RW-item,
RW-combined, KF-state, KF-item, KF-combined).

Model validation. We performed different simulations to deter-
mine whether our model produced valid and reliable outputs.
Intrusion ratings decreased across blocks of trials in the TNT
task10. We first performed model falsification24 to evaluate
whether our computational models could generate this expected
pattern of behavioral responses across a wide range of simulated
model parameters. This analysis is reported in detail in the
“Methods” section, but briefly, consisted in simulated synthetic
beliefs from 200 virtual participants using the above-mentioned
models, and repeated the virtual experiment 100 times using
perceptual parameter randomly drawn from a Gaussian priors
distribution tailored to match our own data (to sample plausible
parameters), resulting in 20,000 simulations for each of the nine
computational models. Then, synthetic beliefs were mapped into
binary ratings which were averaged across repeated sampling
and summarized as intrusion proportion across the four artifi-
cial TNT sessions (see Fig. 2a). Second, we tested for each model
whether we could recover the simulated trajectories of beliefs,

and whether these trajectories were distinguishable among
competing source models. We fit synthetic binary data generated
with the same, as well as competing, source models (i.e. state,
item, and combined), and compared the resulting trajectories to
simulated ones using correlation. Results revealed we could
confidently recover the true generated trajectories among com-
petitor source models for HGF, but not for RW or KF models
(see Fig. 2b). Third, we use the same logic to verify the reliability
of the model selection criterion for identifying the true gen-
erative model within a set of competitive source models, and
ensure that this selection is not biased in favor of one particular
model24,25. This procedure, known as model recovery, consists
in simulating data with one specific model and then comparing
the predictive performances (i.e. model accuracy) of a set of
different models. This analysis confirmed that the comparison
between these three source models was not biased for HGF
(Fig. 2c). However, the probability of recovering the true model
was confounded with competing source models for RW and KF
(Fig. 2c). Fourth, we performed parameter recovery analyses25,
to ensure the reliability and meaningfulness of estimated model
perceptual parameters. Results of these analyses, reported in
detail in the “Methods” section (see also Fig. 2d), indicated that
parameter recovery was modest for the HGF model and poor for
RW or KF.

Fig. 1 Design and computational models. a After learning word–object pairs, participants performed a memory suppression task in which they were asked
to prevent the memory of the images associated with the cue words from entering awareness. They then rated the presence or absence of intrusive
memories during suppression attempts. The estimation that an upcoming cue will trigger an intrusive memory (i.e., belief) can be inferred from previous
encounters, providing an adaptive advantage in the form of the deployment of optimum memory control and proactive prevention of memory retrieval (i.e.,
predictive control). Reactive control is engaged when intrusive memories unexpectedly cross the proactive gate, resulting in a prediction error (PE) that
triggers additional inhibition and updating of future expectations. It should be noted that recall cues (i.e., think items) are not displayed here (see the
“Methods” section). The apple and the chair items are selected from the Bank Of Standardized Stimuli (BOSS) and published under CC BY SA license
(https://creativecommons.org/licenses/by-sa/3.0/)55. b Toy example. Standard contrast analyses of intrusive and nonintrusive cues cannot identify the
contribution of these critical computational quantities on the disruption of the connectivity markers of inhibitory control. c Computational model space.
Binary intrusion ratings across the suppression task were fed into computational models to track belief formation across the suppression task. In the two-
level hierarchical Gaussian filter (HGF; pale blue panel), beliefs are hierarchical and dynamically weighted by uncertainty. The perceptual parameter ω
regulates the speed of belief adjustment throughout the task. The Kalman filter (KF; pale orange) also includes dynamic belief updating, which is regulated
by two free perceptual parameters, π and ω, encoding belief reliability and uncertainty, but it does not assume hierarchical beliefs. The Rescorla–Wagner
model (RW; pale yellow) is a simpler non-hierarchical model with a fixed, participant-specific learning rate α. The response model describes the log-
probability of the behavioral outcomes (i.e., intrusion or nonintrusion rating) given beliefs through a beta density function. These trial-wise log-probabilities
are used to compute model accuracy.
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In summary, in the current experimental setting, only the HGF
model produced valid trajectories of intrusion beliefs, which
accurately simulate the behavioral pattern, and reliably and
truthfully distinguished beliefs formed on the basis of the trial or
item history, or a combination of both memory sources. We
therefore used the HGF to track trial-by-trial variations in beliefs
about the potential re-experiencing of upcoming intrusive
memories attached to a cue word and the resulting PE, and
investigate the influence of these estimates on brain control
mechanisms using connectivity analysis. The perceptual para-
meter (ω) for this model is a participant-specific constant
indicating the speed at which these beliefs are changing. We
then tested whether our model was sufficiently powered to detect
changes in this parameter. To test this, we simulated and
recovered parameters for two distinct synthetic groups using an
effect size in a range of our data (i.e. the average difference in
perceptual parameter between groups) and then performed
statistical tests to detect group differences in this simulated data
set. The statistical power to detect group difference on the model
perceptual parameter (corresponding to the frequency of

significant test in this simulated data sets) was 90% for HGF-
item, 10% for HGF-state. This suggests that this perceptual
parameter can be confidently recovered from intrusion beliefs
and compared between groups when it is derived from the item
structure, but not from the task state (note, however, that the
outcomes of the following analysis of connectivity are indepen-
dent, and not related to this perceptual parameter; see
Supplementary Fig. 1). Regarding the ω parameter computed
for item beliefs, the PTSD+ group expressed significantly slower
beliefs updating than the nonexposed group, t(122)=−2.10,
p= 0.037, bootstrapped 95% CI [−0.59, 0.06], and a trend
compared with the PTSD− group, t(99)= 1.82, p= 0.072,
bootstrapped 95% CI= [−0.58, −0.04]; although this effect was
significant when the bootstrapping of the mean is considered). No
differences in item belief updating were found between the
nonexposed and PTSD− groups, t(113)= 0.15, p= 0.880, boot-
strapped 95% CI [−0.22, 0.27]. Compared to nonexposed
controls and participants without PTSD, individual with PTSD
were less prone to shift their beliefs about a particular item after
they failed to control it and suppress the associated intrusion.
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Fig. 2 Validation of computational models. a Model falsification. In order to test the models’ generative performance (i.e., the model ability to generate
plausible data), we generated synthetic intrusion data for each model, simulating 200 virtual participants for which we repeated the simulations 100 times
(so 20,000 simulations in total). We reported the session-wise mean trajectories of real intrusions rating (empty red circles) and simulated intrusions
data, under HGF, RW and KF models, for both state (black squares), item (gray triangles), and combined (blue stars) sources model versions. Error bar
represents 95% confidence intervals of the virtual participants’ distribution. b Belief recovery. Inversion matrix reflecting the confidence that the beliefs
fitted by a given model was the model that most likely has generated those beliefs. c Model recovery. Inversion matrix reflecting the confidence that the
best fitting model has generated the data. d Parameter recovery. Correlation between fitted and simulated model parameter for each virtual participant and
each model. The large dot at the right of each distribution represents the mean correlation across virtual participants. e Summary of simulation outcomes.
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Source of intrusion beliefs. To determine the memory source of
intrusion beliefs (i.e. state, item, or combined), we performed
Bayesian model selection (BMS) and compared the accuracy of
the three source models at the population level. This analysis
revealed that the combined model (protected exceedance prob-
ability, PXP= 0.999) outperformed the other two source models
(Bayesian omnibus risk; see the “Methods” section, BOR= 0).
The probability that the same model would optimally explain
data in all three groups PðHF¼jyÞ was 0.996 (see the “Methods”
section).

Taken together, these findings suggest that, in all three groups,
beliefs about the experiencing of memory intrusions across
suppression attempts (1) spread according to a two-level
hierarchy that took volatility of beliefs uncertainty into account,
(2) were driven by a flexible and dynamic learning process
updated by PE, and (3) originated from the merging of recent
meta-memories about their control performance that derived
from both trial history and item-specific memories, as observed in
other forms of cognitive control26.

Computational dynamic causal modeling. For each cue word,
our combined HGF2 computational model provided an estimate
of the participant’s hidden belief that the cue would trigger an
intrusive memory, as well as an estimate of the discrepancy (i.e.,
PE) between the expected and experienced outcome (see Figs. 1c
and 2a). We then investigated the influence of these estimates on
brain control mechanisms, using DCM. We distinguished pre-
dictive mechanisms engaged to suppress intrusion beliefs from
reactive mechanisms related to the additional demand of con-
trolling the error induced by intrusive memories. For instance, if a
cue was associated with an intrusion belief ðμ̂ðtÞ1 Þ of 0.3, then the
presence of an intrusion ðyðtÞ ¼ 1Þ would require additional PE
control of 0.7 ðPEðtÞ ¼ yðtÞ � μ̂ðtÞ1 Þ, see Fig. 1a. These quantities
were used as parametric modulators of the inputs (i.e., stick
function) modulating the top-down coupling between control
and memory systems. It should be noted that we focused this
analysis on positive PE (PE+) to specifically isolate reactive
control associated with suppression, and discarded negative PE
associated with the absence of control demands during non-
intrusive cues. However, parametric modulation of belief was
performed for all cues.

We built 42 DCM models, which could be divided into three
families expressing different hypotheses on the involvement of
these computations. The first family, corresponding to our main
hypothesis, assumed that these computations influenced top-
down control. A second family tested the influence of these
computations on bottom-up connections. A third family, in
which the modulatory stick function of suppression trials was not
parametrically modulated, tested the absence of influence of these
computations on top-down control (i.e., no-computation mod-
els). Each of these families included reciprocal hypotheses about
the role of the anterior MFG (aMFG) and posterior MFG
(pMFG) in predictive and reactive control (see Fig. 3a). Half the
models were assigned to the predictive or reactive influence of the
pMFG and aMFG, and the other half to the opposite relationship.
These six subfamilies therefore each contained seven models
describing the possible combinations of modulation pathways
between the MFG and the target regions (see Fig. 3b). Target
regions included the rostral hippocampus (rHIP) and caudal
hippocampus (cHIP), as well as the ventral portion of the PC (see
the “Methods” section for the definition of volumes of interest
and timecourse extraction). In addition to these 42 models testing
our main hypotheses, we included a null model family
hypothesizing an absence of controlled modulation (see Fig. 3a).

Combined influence of anterior and posterior MFG during control.
First, we investigated whether beliefs and PE+ effectively
modulated the causal influence of MFG on memory regions
across all groups. In other words, we wanted to know whether
predictive and reactive control mechanisms could explain the
top-down coupling between these regions during motivated for-
getting. Accordingly, the 14 models assuming a top-down mod-
ulation of control by belief and PE+ (i.e., first family), were
compared with the models belonging to the bottom-up, no-
computation and null families. We found overwhelming evidence
(PXP= 0.886) that these computational quantities influenced
top-down modulation, whereas the bottom-up (PXP= 0), no-
computation (PXP= 0.113), and null (PXP= 0) hypotheses
(fBOR= 0) were not validated. The probability that the model
frequency in favor of top-down computational models was the
same for all three groups in our sample was equal to
PðHF¼jyÞ= 0.968.

After showing the top-down controlled modulation of belief
and PE+, we asked whether the aMFG and pMFG were
differentially involved in these two distinct mechanisms. BMS
revealed no clear evidence in favor of one family over the other
(PXP= 0.343 and PXP= 0.657, fBOR= 0.677). Further between-
group comparisons revealed that the probability that there were
no underlying differences in model architecture was equal to
PðHF¼jyÞ= 0.828 when PTSD+ and PTSD− groups were
compared, and PðHF¼jyÞ= 0.796 when PTSD+ and nonexposed
groups were compared.

Excessive belief suppression and alteration of reactive control in
PTSD. To compare reactive and predictive control mechanisms
between groups, we performed Bayesian model averaging (BMA)
of the 14 models included in the computational top-down family
for each group separately. This was possible because the DCM
architecture that best explained our data was the same across all
three groups. However, given that no differences were observed
within the combined family, we summed the coupling parameters
from aMFG and pMFG to reflect the coordinate action of the core
control network. BMA provides both individual- and group-
specific posterior distribution of coupling parameters, weighted
for posterior evidence across all models in a family (see the
“Methods” section).

Our main hypothesis was that individuals with PTSD prioritize
belief of intrusive memories over online re-experiencing (PE+),
to proactively suppress memory processing (i.e., imbalance
hypothesis). A marker of suppression has been associated with
more pronounced top-down negative coupling11,27. We therefore
expected the imbalance in individuals with PTSD to be associated
with more negative coupling during predictive versus reactive
control. We computed the interaction between control (i.e.,
predictive vs. reactive) and group (PTSD+ vs. PTSD− or
nonexposed). We found disproportionate negative coupling with
the rHIP during predictive versus reactive control in the PTSD+
group, compared with the nonexposed group, t(125)=−2.81,
pfalse discovery rate, FDR= 0.007, posterior probability (Pp)= 0.999,
95% CI [−0.99, −0.17], and PTSD-, t(99) = −2.17, pFDR = 0.009,
Pp = 0.999, 95% CI [−1.01 −0.01]. We found a similar Control
*Group interaction for the cHIP, when we compared PTSD+
with PTSD−, t(99)=−3.23, pFDR= 0.006, Pp= 1, 95% CI
[−1.20, −0.29], and a trend toward significance when we
compared PTSD+ with the nonexposed group, t(125)=−1.62,
pFDR= 0.071, Pp= 0.995, 95% CI [−0.73, 0.07]. The same
pattern emerged when we combined the two parts of the
hippocampus (i.e., wHIP), with PTSD+ showing a greater
imbalance between predictive and reactive control than the
nonexposed, t(125)=−2.49, pFDR= 0.014, Pp= 0.992, 95%
CI [−0.81, −0.09], and PTSD−, t(99)=−2.91, pFDR= 0.007,
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Pp= 0.998, 95% CI [−1.06, −0.19], groups. No differences were
found in the PC when the PTSD+ group was compared with the
PTSD−, t(99)=−0.05, pFDR= 0.477, Pp= 0.540, 95% CI [−0.48,
0.50], and nonexposed, t(125)= 0.13, pFDR= 0.477, Pp= 0.586,
95% CI [−0.42, 0.37], groups.

To further characterize these interactions, we explored the
main effect of control and the simple effects of coupling
parameters, running t tests for each group and each target
region. Statistical details of these analyses are reported in Table 1,
as well as in Fig. 4. In summary, we observed significant negative
coupling during reactive control of the hippocampus in both the
nonexposed and PTSD− groups, but not in the PTSD+ group. By
contrast, predictive control over the hippocampus was observed
in all three groups. When we compared predictive and reactive

control within each group, we found significant higher inhibitory
control of beliefs compared with PE, but only for the PTSD+
group in the rHIP, cHIP and wHIP. No differences were found in
the other two groups (see Fig. 4 and Table 1). The PC was
controlled proactively, but not reactively, in all three groups.

Excessive predictive control is related to re-experiencing and
avoidance dimensions of PTSD but not transdiagnostic symptoms.
We then examined whether the excessive of predictive control
observed in individuals with PTSD could be specifically related to
re-experiencing and avoidance symptoms, the two dimensions of
PTSD presumably associated with such disruption, rather than to
the general alteration of mental health. While intrusion and
avoidance are two cardinal features of PTSD related to the

Fig. 3 DCM models. a DCM model families expressing different hypotheses on the involvement of intrusion beliefs and PE+ computations in
the modulation of the coupling between control regions (anterior and posterior middle frontal gyrus, MFG) and memory target regions, including the rostral
hippocampus (rHIP), caudal hippocampus (cHIP), and precuneus (PC). It should be noted that null models were also estimated, but are not shown here.
b Pathways capturing the seven possible connections between control and target regions. c Left panel shows the regions of interest used for DCM analysis.
Right panel provides an illustration of the modularity inputs influencing the connectivity between brain regions.
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Fig. 4 BMA of top-down coupling parameters during belief- and PE-
driven suppression. Red and blue circles represent the modulation of PE+
and beliefs on the top-down coupling between the MFG and the target
regions, respectively, in non-exposed (n sample size= 72), PTSD− (n
sample size= 46) and PTSD+ (n sample size= 55). Lines represent group
average coupling parameters ± bootstrapped 95% CI of the group mean,
and small circles represent individual participant coupling parameters. ‘*’
indicates significant interaction between groups and the balance in belief-
driven predictive and PE-driven reactive control as shown by one-tailed t-
tests at pFDR < 0.05. See Table 1 for statistical details.
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traumatic memory, other symptoms associated with PTSD cross-
diagnostic boundaries. A recent study28 examining trauma,
anxiety and mood disorders found three transdiagnostic anxiety-
related dimensions: anxious arousal, dysphoric arousal (i.e. ten-
sion), and general anxiety, and three transdiagnostic affect-related
dimensions: anhedonia, mood and depression. We investigated
the relationship between re-experiencing, avoidance, anxiety-
related dimension, and affect-related dimension on one hand, and
the imbalance of memory control mechanisms regulating the
hippocampal activity on the other hand, in both the PTSD+ and
PTSD− groups. We tested the hypotheses that excessive pre-
dictive control in the PTSD+ group was related to an increase in
avoidance and intrusion, and that such negative relationship was
significantly stronger than the relationship observed for anxiety-
or affect-related dimensions, or the relationship observed in the
same dimension but in the PTSD− group. Intrusion, avoidance,
mood, anhedonia, dysphoric arousal, and anxious arousal
symptoms were obtained from the PTSD checklist for DSM-5
(PCL-5)29 and were adjusted for total symptom severity to ensure
that the correlation with these dimensions were not confounded
with PTSD severity. Depression and general anxiety dimensions
were obtained using the Beck Depression Inventory and State
Anxiety Inventory, respectively. After computing correlation
between control imbalance in the wHIP and each of these
symptoms, dysphoric arousal, anxious arousal, and general
anxiety were summarized to reflect an anxiety-related dimension,
while anhedonia, mood, and depression were summarized to
reflect affect-related dimension.

In the PTSD+ group, we found that excessive predictive memory
control significantly correlated with higher severity of avoidance
(R-spearman=−0.32; 95% CI= [−0.52 −0.09]; Z-val= 2.27; pFDR=
0.047) and marginally to intrusion symptoms after FDR correction
(R-spearman=−0.26; 95% CI= [−0.47 −0.03]; Z-val= 1.84; pFDR=
0.065). On the opposite, there was no significant relationship
with the severity of both anxiety-related (R-spearman= 0.04; 95%
CI= [−0.08 0.16]; Z-val= 0.55; pFDR= 0.30) and affect-related
(R-spearman= 0.09; 95% CI= [−0.04 0.23]; Z-val= 1.09; pFDR=
0.18) transdiagnostic symptoms (see Fig. 5). Crucially, we
statistically compared the relationship that predictive control
entertains with avoidance and intrusion in the PTSD+ group, to
those entertain with trans-diagnostic symptoms (anxiety-related
and affect-related dimensions). We used a boostrapping approach
to obtain the confidence interval of the correlation difference and
the p-value, respectively. Excessive predictive control was

significantly more strongly related to re-experiencing symptoms
than with anxiety-related (correlation difference 90% CI [−0.62,
−0.14], Z-val= 3.09; pFDR= 0.004) or affect-related (correlation
difference 90% CI [−0.49, −0.04], Z-val= 2.36; pFDR= 0.018)
transdiagnostic clinical features. A similar pattern was observed for
avoidance compared with anxiety-related (correlation difference
90% CI [−0.66, −0.22], Z-val= 3.6; pFDR= 0.001) or affect-related
(correlation difference 90% CI [−0.52, −0.13], Z-val= 2.82;
pFDR= 0.006) dimensions. Furthermore, excessive predictive con-
trol was significantly more strongly related to avoidance symptoms
(correlation difference 90% CI [−0.63, −0.04], Z-val= 2.12;
p= 0.034) in the PTSD+ than in the PTSD− group, although
such difference in correlation between groups was not observed for
re-experiencing symptoms (correlation difference 90% CI [−0.51,
0.05], Z-val= 1.52; p= 0.13).

Imbalance between predictive and reactive control in PTSD reflects
independent processes. Taken together, these findings suggest that
individuals with PTSD cannot harmoniously balance predictive and
reactive control in the hippocampus, unlike individuals without
PTSD. This imbalance might reflect exaggerated predictive control
applied in anticipation that prevents the deployment of reactive
control. Contradicting this idea, however, predictive regulation
of the hippocampus in PTSD+ was not related to reactive control
(R-spearman= 0.01, 95% bootstrapped CI [−0.26, 0.30]).

Alternatively, despite serving the same down-regulation function
of memory processes, predictive and reactive control can be
conceptualized as two independent, yet downward forces, jointly
mitigating hippocampal activity. These two directional forces can
be projected on two distinct orthogonal axes (i.e., separated by a
90° angle) in a two-dimensional circular space (see Fig. 6, on the left).
In this framework, the imbalance is reflected in the direction of the
resultant vector combining the two forces. We fixed the 0° position at
the bottom of the y-axis, and computed the direction of the resultant
vector with respect to this optimally balanced position (see the
“Methods” section). The angle of the resultant vector reflected an
imbalance in favor of either predictive control (from 0° to 180°,
moving anticlockwise) or reactive control (from 0° to −180°, moving
clockwise).

In the hippocampus, we found a significant imbalance in favor of
predictive control in the PTSD+ group (M= 33.35°; 95% CI [20.2°,
46.2°]) and the nonexposed group (M= 15.33°, 95% CI [4.55°,
26.51°]), but not in the PTSD− group (M= 6.86°; 95% CI [−9.17°,
23.8; see Fig. 6). When we compared the groups using circular
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affect-related transdiagnostic features included anhedonia, mood, and depression. Right panel: relationship between control imbalance in the whole
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statistics30 (see the “Methods” section), we observed that the
imbalance toward predictive control in the hippocampus increased
significantly for PTSD+ compared with both the PTSD−,
t(99)= 2.10, p= 0.018, 95% CI [−46.8°, −4.2°], and nonexposed,
t(125)= 1.74, p= 0.042, 95% CI [−35.77°, −0.86°], groups. No
differences were found between the nonexposed and PTSD−
groups, t(114)= 0.72, p= 0.235, 95% CI= [−11.3°, 27.86°].

Discussion
To explain the persistence of intrusive traumatic memories and
their avoidance, previous accounts of PTSD have largely focused
on the disruption of memory functions7,31. More recently, brain
connectivity analyses in individuals with PTSD during a memory
suppression task revealed a lack of adaptive modulation of top-
down control over memory processing in response to intrusive
memory cues, suggesting that this persistence may additionally be
rooted in the disruption of inhibitory control processes sup-
porting active forgetting10. However, the origin of these deficits in
top-down control over memory processing remains unknown,
and standard analyses of connectivity mask the hidden influence
of predictive processing over control processes. Here, we suggest
that altered predictive processing6 constitute a unifying frame-
work that links these two seemingly unrelated accounts of PTSD.

We showed that prediction of future memory control demand
related to intrusions drives the flexible adaptation of memory
suppression. These dynamic adjustments are orchestrated by a
top-down inhibitory signal originating from the right DLPFC,
which optimally balanced the suppression of the beliefs of future
intrusive re-experiencing and their actual online emergence. This
balancing is compromised in individuals with PTSD, but not in
resilient or nonexposed individuals. We found that the dis-
proportionate predictive inhibitory control over hippocampal
activity based on beliefs, coupled with the reduction in reactive
control based on PE+, was specifically related to cardinal features
of PTSD related to the trauma, including avoidance and trau-
matic re-experiencing. This finding echoes recent proposals
suggesting that disturbances of predictive processing about threat
are central to the expression of PTSD, including avoidance
behaviors and traumatic re-experiencing3,17. Our findings show
that in PTSD, computations conferring higher value on predic-
tions and beliefs than on outcomes also impair control processes,
suggesting that maladaptive avoidance responses generalize to
memory processes and nonthreatening situations.

Do these observations reflect a genuine, distinct deficit of
reactive control in PTSD? The presence of a crossover interaction
between control conditions and groups does not guarantee the
existence of independent mental processes32. The disruption of
reactive control may arise from exaggerated predictive control,
and not reflect a genuine deficit in the online purging of intrusive
memories. Extreme anticipation may prevent the control system
from flexibly and adaptively adjusting its response when pre-
dictive attempts have failed, suggesting instead a single processing
continuum between two modes33. This means that there may not
necessarily be a second disrupted reactive control mechanism
independent of predictive control. This hypothesis, however,
seems unlikely, as we did not observe a negative relationship
between the magnitudes of predictive and reactive control. Fur-
thermore, we observed an imbalance after treating these two
components of control as orthogonal yet downward forces ori-
ginating from the same point of application (Fig. 6). This illus-
trates how a single control system could regulate two distinct
computational quantities that are independently in the service of
the same function (i.e., suppression of unwanted memories).
However, these complementary processes take place within the
same neurobiological system, which raises the question of how
one (predictive control) may be enhanced (or at least preserved)
when the other one (reactive control) is disrupted.

The ability to countermand the PE associated with intrusive
memories may depend on the availability of executive control
resources. Executive resources may be diminished in PTSD fol-
lowing gray-matter atrophy in the right DLFPC34, or affected by
disruption of the white-matter tracts originating from the pre-
frontal cortex35. PE increases attentional demand during learning
in individuals with PTSD4. Thus, although limited executive
functioning may allow for sustained predictive control in the
background36, it may proscribe the more demanding transient
regulation of PE associated with intrusive memories. We did not
observe any difference between the aMFG and pMFG with
respect to predictive or reactive control, suggesting a general
disruption of inhibitory executive functions. This finding fits
observations in the motor domain suggesting that both forms of
control are coordinated and interact in the DLPFC37.

Alternatively, the current findings may not reflect difficulties of
the executive system, but alterations of the receptor system, which
converts excitatory projections from the prefrontal cortex into
local feedforward inhibition via GABAergic interneurons. It has
been suggested that predictive and reactive forms of inhibitory
control of the hippocampus are implemented via two distinct
neuroanatomical pathways14. According to this model, predictive
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Fig. 6 Geometric interpretation of predictive and reactive control as
perpendicular forces. Left panel: circular projection of the resultant vector
of predictive (i.e., belief) and reactive (i.e., PE+) control forces. 0°
represents the optimum balance between these two orthogonal forces. The
angle of the resultant force indicates imbalance toward either predictive
(θ>0�) or reactive (θ<0�) control. The right panel shows the distribution
of this imbalance index for each of the three groups. The empty circles
represent the group circular average ± bootstrapped 95% CI for
nonexposed (n sample size= 72), PTSD− (n sample size= 46) and
PTSD+ (n sample size= 55).
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control processes may preferentially modulate the activity of
rhinal inhibitory interneurons to gate inputs to the hippocampus,
preventing the initiation of the retrieval process. The extent and
nature of rhinal alterations in PTSD remain unclear, compared
with alterations of the hippocampus proper. Reactive control,
however, may activate CA1 inhibitory interneurons via the tha-
lamic reuniens, a hippocampal subregion particularly involved in
the regulation of pattern completion during memory retrieval14.
Interestingly, studies conducted in rodents suggest that chronic
stress affects GABAergic interneurons38. These are neuro-
transmitters that mediate memory control mechanisms in the
hippocampus39 and regulate the activity of dopamine PE
neurons40. Alteration of this inhibitory function might therefore
explain the excessive pattern completion and the lack of control
over intrusive memories in individuals with PTSD.

We do not yet know whether the mechanisms identified here
are related to the formation and persistence of traumatic memory
traces in individuals with PTSD. Proactive avoidance of memories
intrinsically implies the preservation of the related memory trace,
maintaining the negative beliefs41. Furthermore, monitoring of
the to-be-avoided representations increases paradoxical rebounds
and the persistence of trauma-related memories42. Lastly, exces-
sive interruption of hippocampal processing through predictive
control may prompt the forgetting of safe contexts43 associated
with trauma reminders and contribute to the overgeneralization
of fear. Previous TNT studies in healthy individuals have sug-
gested that motivated forgetting is preferentially linked to the
control of intrusive memories crossing the proactive gate33.
Further investigations are required to evaluate whether the per-
sistence of traumatic memory could be related to an inability to
reactively countermand the neural activity associated with PE and
involuntarily recall. On the one hand, PE increases the malle-
ability of the memory trace44 and its control might facilitate
forgetting by promoting memory destabilization during the (re)
consolidation mechanisms occurring during memory recall45,46.
On the other hand, predictive coding models of the brain propose
that memory recall arises from the disinhibition of pyramidal
cells encoding the bottom-up PE47. Such disinhibition is orche-
strated by the hippocampus and its suppression might increase
the plasticity of inhibitory engram and the silencing of neocortical
traces48.

Previous studies defined reactive control based solely on the
presence of intrusive memories, without disentangling the con-
founding influence of predictive control dynamics, possibly
leading to misinterpretations of the meaning of inhibitory control
observed during memory intrusions. The absence of between-
group differences with respect to the PC, previously associated
with the suppression of intrusive memories in trauma-exposed
individuals without PTSD10, further illustrates this point. Our
neurocomputational approach overcomes this overlap and pro-
vides a partial answer to the longstanding question about the
relationship between avoidance and memory suppression
in PTSD.

Most of the recommended therapeutic treatments that have
been shown to be effective for PTSD involve overcoming avoid-
ance of the traumatic experience. Our findings suggest that this
avoidance may result from the general disruption of hidden
predictive operations engaged to infer and anticipate intrusive
memories, biasing their control. Although our findings suggest
that such bias is specifically related to trauma-related dimension
of PTSD, and not to other transdiagnostic features related to
affect or anxiety disorder, future studies would be needed to
demonstrate the link between the development of a predictive
control disorder and the development of the traumatic memory.
Yet, this opens up possible new avenues for understanding the
formation and maintenance of the traumatic engram in terms of

predictive control disorder. New interventions designed to
modulate and update the traumatic engram after it has been re-
indexed in the hippocampus31 should aim to restore the balance
between predictive and error-driven control.

Methods
Participants. Seventy-three non-exposed and one hundred and two exposed
subjects participated in this study10. Exposed participants were recruited through a
transdisciplinary and longitudinal research “Program 13-Novembre” (http://www.
memoire13novembre.fr/), a nationwide funded program in partnership with vic-
tims’ associations. In the current study, the data of two participants (one non-
exposed and one exposed) were excluded from the final analyses, as they had an
unusually low number of remaining pairs, making it impossible for us to calculate
an item-specific belief computational model (see below). The final sample consists
of 101 exposed and 72 nonexposed participants. Non-exposed participants were
not present in Paris on 13 November 2015 and were recruited from local panel of
volunteers. All the participants were between the ages of 18 and 60 years old, right-
handed, French speaking and had a body mass index inferior to 35 kg/m². A
clinical interview with a medical doctor was conducted to ensure that participants
had no reported history of neurological, medical, visual, memory, psychiatric
disorders. Exclusion criteria also included history of alcohol or substance abuse
(other than nicotine), mental or physical condition that preclude MRI scanning
(e.g., claustrophobia or metal implants) and medical treatment that may affect the
central nervous system or cognitive functions.

Exposed participants were diagnosed using the Structured Clinical Interview for
DSM-5 (SCID)49 conducted by a trained psychologist and supervised by a
psychiatrist. All the exposed participants met DSM-5 criterion A indicating that
they experienced a traumatic event. Exposed participants were diagnosed with
PTSD in its full form if all the additional diagnostic criteria defined by the DSM-5
were met (n= 29). Participants were diagnosed with PTSD in its partial form
(n= 26) if they had re-experiencing symptoms (criterion B), with persistence of the
symptoms superior to one month (criterion F) that caused significant distress and
functional impairment (criterion G)10,50. Trauma-exposed participants with full
and partial PTSD profiles were grouped together for the purpose of statistical
analyses in one unique clinical group referred to as the PTSD group10. The study
includes 55 trauma-exposed participants with PTSD (PTSD+, 30 females and 25
males, mean age= 37.14, SD= 8.35), 46 trauma-exposed participants without
PTSD (PTSD−, 16 females and 30 males, mean age= 36.84 years, SD= 7.05 years)
and 72 nonexposed participants (38 females and 34 males, age= 33.69 years, 33.66,
SD= 11.40 years).

PTSD symptoms severity was assessed with the Post-traumatic Stress Disorder
Checklist for DSM-5 (PCL-5)51. To assess for anxiety and depression, State-Trait
Anxiety Inventory (STAI)52 and Beck Depression Inventory (BDI)53 were also
administered. All the participants completed the study between 13 June 2016 and 7
June 2017. Participants were financially compensated for their participation in the
study. The study was approved by the regional research ethics committee (“Comité
de Protection des Personnes Nord-Ouest III”, sponsor ID: C16-13, RCB ID: 2016-
A00661-50, clinicaltrial.gov registration number: NCT02810197). All the
participants gave written informed consent before participation, in agreement with
French ethical guidelines. Participants were asked not to consume
psychostimulants, drugs, or alcohol prior to or during the experimental period.

Materials. The stimuli were three series of lists of 72 word–object pairs composed
of neutral abstract French words54 and objects selected from the Bank Of Stan-
dardized Stimuli (BOSS)55. Three series of four lists of 18 pairs assigned to four
conditions (think, no-think, baseline, and unprimed for the final priming test task
after the Think/No-think phase) were created, plus 8 fillers used for practice. The
lists of pairs were presented in counterbalanced order across the three series, the
four conditions and the three groups of participants and matched on different
properties that may influence performance to the task. The lists of words were
matched on average naming latency, number of letters and lexical frequency54. The
lists of objects were matched relative to the naming latency, familiarity and visual
complexity levels, viewpoint, name and object agreement and manipulability55.
Stimuli were presented using the Psychophysics Toolbox implemented in
MATLAB (MathWorks). We used neutral material completely disconnected from
the traumatic experience that enables to investigate general memory control
mechanisms and incidentally avoid ethical issues for the trauma-exposed group.

Procedure. Before MRI acquisition, participants learned 54 French neutral word-
object pairs that were presented 5 s each. After the presentation of all pairs, the
word cue for a given pair was presented on the screen for up to 4 s and participants
were asked whether they could recall and fully visualize the paired object. If so,
three objects then appeared on the screen (one correct and two foils), and parti-
cipants had up to 4 s to select which object was associated with the word cue. After
each recognition test, the object correctly associated with the word appeared
2500 ms on the screen and participants were asked to use this feedback to increase
their knowledge of the pair. Pairs were learned through this test–feedback cycle
procedure until either the learning criterion (at least 90% of correct responses) was
reached or a maximum of six presentations was achieved. Once participants had
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reached the learning criterion, their memory was assessed for one last time using a
final criterion test on all of the pairs but without giving any feedback on the
response. No group differences were found on this final criterion test (all Ps > 0.18).
Following this learning phase, pairs were divided into 3 lists of 18 pairs assigned to
think, no-think, and baseline conditions for the Think/No-think task (TNT).
Participants were given the think/no-think phase instructions and a short TNT
practice session before MRI acquisition to familiarize them to the task.

Following this TNT practice session, participants entered the MRI scanner.
During the T1 structural acquisition, the complete list of learned pairs was
presented once again to reinforce the learning of the pairs (5 s for each pair). This
overtraining procedure was intended to ensure that the word cue would
automatically bring back the associated object. Following this reminder of the pairs,
participants performed the TNT task, which was divided into four sessions of about
8 min each. In each session, the 18 think and 18 no-think items were presented
twice. Word cues appeared for 3 s on the screen and were written either in green
for think trials or in red for no-think trials. During the TNT practice session,
participants were trained to use a direct suppression strategy. During the no-think
trials, participants were instructed to imperatively prevent the object from coming
to mind and to fixate and concentrate on the word-cue without looking away.
Participants were asked to block thoughts of the object by blanking their mind and
not by replacing the object with any other thoughts or mental images. If the object
image came to mind anyway, they were asked to push it out of mind. After the end
of each of the think or no-think trial cues, participants reported whether the
associated object had entered awareness by pressing one of two buttons
corresponding to “yes” (i.e., even if the associated object pops very briefly into their
mind) or “no”. Although participants had up to 3600 ms to make this intrusion
rating, they were instructed to make it quickly without thinking and dwelling too
much about the associated object. The rating instruction was presented up to 1 s on
the screen and followed by a jittered fixation cross (1400, 1800, 2000, 2200 or
2600 ms). The Genetic Algorithm toolbox56 was used to optimize the efficiency of
the Think versus No-Think contrast. 20% additional null events with no duration
and followed by the jittered fixation cross only were added.

Finally, during a debriefing questionnaire, participants were asked about the
strategies used during the TNT phase. Participants rated on a 5-point scale (0:
never; 4: all the time) the degree to which they used different kind of strategies to
prevent the object from coming to mind during the No-Think condition (i.e., direct
suppression, thought substitution or another strategy). This questionnaire was
administered to determine whether participants complied with the direct
suppression instructions. Debriefing confirmed that the participants remained
attentive to the word displayed on the screen and predominantly controlled the
unwanted memories by directly suppressing the associated object. Participants
engaged significantly less in other strategies than in direct suppression to control
awareness of the No-think items (Wilcoxon’s signed Rank test: z > 140, p < 0.001).
Moreover, Kruskal–Wallis tests did not evidence any difference between the groups
for any kind of strategies used (H(2) < 2.73, ps > 0.26).

MRI acquisition parameters. MRI data were acquired on a 3 T Achieva scanner
(Philips). All participants first underwent a high-resolution T1-weighted anato-
mical volume imaging using a 3D fast field echo (FFE) sequence (3D-T1-FFE
sagittal; TR = 20 ms, TE= 4.6 ms, flip angle = 10°, SENSE factor = 2, 180 slices,
1 × 1 × 1mm3 voxels, no gap, FoV = 256 × 256 × 180 mm3, matrix = 256 × 130
× 180). This acquisition was followed by the TNT functional sessions which were
acquired using an ascending T2-star EPI sequence (MS-T2-star-FFE-EPI axial;
TR = 2050 ms, TE = 30 ms, flip angle = 78°, 32 slices, slice thickness = 3 mm,
0.75 mm gap, matrix 64 × 63 × 32, FoV = 192 × 192 × 119 mm3, 235 volumes per
run). Each of the 4 TNT functional sequence lasted about 8 min.

fMRI preprocessing. Images preprocessing were first conducted with the Statis-
tical Parametric Mapping toolbox (SPM 12, University College London, London,
UK). Functional images collected during the TNT phase were (1) spatially rea-
ligned to correct for motion (using a 6-parameter rigid body transformation); (2)
corrected for slice acquisition temporal delay; and (3) coregistered with the skull-
stripped structural T1 image. The T1 image was bias-corrected and segmented
using tissue probability maps for gray matter, white matter and cerebrospinal fluid.
The forward deformation field (y_*.nii) was derived from the nonlinear normal-
ization of individual gray matter T1 images to the T1 template of the Montreal
Neurological Institute (MNI). Each point in this deformation field is a mapping
between MNI standard space to native-space coordinates in mm. Thus, this
mapping was used to project the coordinates of the MNI standard space ROIs to
the native space functional images.

Computational modeling. We used computational modeling to investigate parti-
cipants’ beliefs about upcoming intrusive memories in the no-think condition of
the TNT task. Taking the observing the observer meta-Bayesian approach19 one
step further, our aim was to observe the observer observing him- or herself.
According to this approach, agents use a perceptual model to make inferences
about the hidden states that control the world. The observation (or response)
model describes the relationship between inferred hidden states and behavioral

outcomes. In our models, inputs u and outcomes y were binary:

u tð Þ 2 0; 1f g; y tð Þ 2 0; 1f g ð1Þ
where 0 corresponds to nonintrusion and 1 to intrusion at time t. As our aim was
to model participants’ beliefs about their own intrusion ratings during the TNT,
input u at time t was outcome y at time t−1:

u tð Þ ¼ y t�1ð Þ ð2Þ
To model individual time series of internal beliefs, we used the HGF, KF, and RW
models implemented in the TAPAS toolbox (available at https://www.tnu.ethz.ch/
de/software/tapas), which applies variational Bayesian inversion to infer hidden
states maximizing the log-model evidence (LME).

Perceptual models
Two-level hierarchical Gaussian filter: We used a two-level HGF as a perceptual
model. Developed by Mathys et al. 23, the HGF assumes that agents form internal
beliefs in a hierarchical fashion. Implementing a variational approximation
approach, the HGF allowed us to estimate trial-by-trial trajectories of internal
beliefs at multiple levels. The lowest level corresponds to participants’ beliefs about
whether they were experiencing a memory intrusion or not (x1). As u tð Þ and y tð Þ are
binomial, x1 assumes a Bernoulli distribution. Accordingly, first-level beliefs x1 are
the logistic sigmoid transformations of second-level beliefs x2 which, by contrast,
are unbounded:

xðtÞ1 � Bernoulli
1

ð1þ expð�xðtÞ2 ÞÞ

 !
ð3Þ

The second level (x2) corresponds to participants’ internal beliefs about the vola-
tility of memory intrusions experienced during the TNT task: x2 is denoted as a
Gaussian random walk whose step size is controlled by the free parameter ω. The
resulting beliefs assume Gaussian distributions described by their sufficient sta-
tistics: posterior mean μ and uncertainty σ (i.e., variance):

xðtÞ2 � Nðxðt�1Þ
2 ; expðωÞÞ ð4Þ

where the ω parameter controls the variance of x2, shaping the magnitude at which
beliefs are updated. We used the superscript ^ to indicate prior internal beliefs. For
example, μðtÞ represents posterior internal beliefs at Trial t, and μ̂ðtÞ represents
internal beliefs prior to the outcome yðtÞ (intrusion or nonintrusion).

The variational approximation underlying the HGF model fitting allowed
participant-specific free parameters to be estimated, along with the trial-by-trial
trajectories of internal belief updating, which were determined by the participants’
sets of parameters. Crucially, the updating of second-level beliefs μðtþ1Þ

2 � μðtÞ2 in the
model is proportional to ascending first-level prediction errors weighted by their
uncertainty:

μðtþ1Þ
2 � μ tð Þ

2 / Ψ ðtÞδðtÞ ð5Þ
where Ψ is a weighting factor representing the inverse of second-level belief
precision πðtÞ2 (i.e., uncertainty):

Ψ ðtÞ ¼ 1

πðtÞ2
ð6Þ

This quantity is modulated by the ω parameter, and δ represents PE, namely the
difference between beliefs after and before presentation of a stimulus:

δðtÞ ¼ μðtÞ1 � μðt�1Þ
1 ð7Þ

As participants were instructed to report whether or not they experienced a
memory intrusion at time t, posterior beliefs are equal to the outcome:

μðtÞ1 ¼ yðtÞ

The belief updating equation allowed us to estimate participants’ predictions μ̂ðtÞ

about the outcome yðtÞ before it occurred. Importantly, as μðt�1Þ corresponds to
prior internal beliefs about the outcome (i.e., sigmoid transformation of μ2),

μ̂ðtÞ1 ¼ 1

1þ expð�μðt�1Þ
2 Þ ð8Þ

PE (or δðtÞ) represents the divergence between the real outcome (i.e., intrusion/
nonintrusion) and the predicted one:

PEðtÞ ¼ yðtÞ � μ̂ðtÞ1 ð9Þ
Next, according to Eq. (5), the updating of posterior beliefs about the tendency to
experience intrusions (i.e., μðtÞ2 ) is driven by the quantification of prediction failure
(i.e., PEðtÞ), weighted by uncertainty about the beliefs (i.e., 1

πðtÞ2
in Eq. (6)). Thus,

when beliefs are more uncertain, PE has a greater impact on belief updating,
improving future predictions about upcoming trials. Importantly, by shaping the
uncertainty of beliefs, ω plays a crucial role in their updating.

For model fitting, we used prior parameters defined in de Berker et al.57, who
conferred high variance on ω priors (mean: −3, variance: 16) in order to efficiently
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catch any possible between-participants variability on this parameter. It should be
noted that 10 of the 173 participants included in this study showed no modification
of the ω parameter in its prior state (i.e., −3; see Fig. 2e). This absence of departure
from the prior mean was due to the presence of a stochastic occurrence of intrusion
rating (with a mean consistently close to 0.5 throughout the task), prohibiting the
consistent updating of this parameter. It should, however, be noted that the belief
trajectories were still valid for these participants and could be used to infer model
accuracy or in subsequent connectivity analyses.

Kalman filter: To include the hypothesis that internal beliefs about experiencing
intrusions are uncertain, dynamically updated, but nonvolatile (contrary to HGF),
we included a KF22,58 in our model space. Like the HGF, the KF estimates the trial-
by-trial weighting of PE in belief updating, but in this model, beliefs are not
hierarchical, and uncertainty therefore remains constant during learning. In the KF
framework, beliefs about experiencing an intrusion μ̂ are updated as follows:

μ̂t ¼ μ̂ðt�1Þ þ Kδðt�1Þ ð10Þ
where K is the Kalman gain, representing trial-by-trial learning. The gain is
modulated by two free parameters (π and ω) that encode belief reliability and
uncertainty:

Kt ¼ Kðt�1Þ þ πω

K ðt�1Þ þ πωþ 1
ð11Þ

These two free parameters model two different aspects of belief updating: π
quantifies how far beliefs can be trusted, based on previous trial history, and ω
quantifies the process variance (i.e., how uncertain the beliefs are).

Rescorla-Wagner: To include the hypothesis about the role of trial-by-trial
weighting of PE during intrusion control, we compared the HGF2 and KF models
with a traditional reinforcement learning model: the RW21. Briefly, RW, HGF and
KF share a similar general update equation23, defined by a weighting factor and
prediction error. However, RW assumes a participant-specific fixed learning rate α:

V ðtÞ ¼ V ðt�1Þ þ αðλ� V ðt�1ÞÞ ð12Þ
where V is the prediction and ðλ� V ðt�1ÞÞ the prediction error (i.e., divergence
between real outcome λ and prediction at previous trial).

Source models. Perceptual models were built using intrusion ratings either from the
entire sequence of trials (state model), or separately for each pair of word–object
memories (item model), including eight repetitions in total. After concatenation of
item trajectories, state and item belief trajectories were linked to an observation
model either separately or in combination. Observation models linked the inferred
hidden states to the outcomes, describing the probability of observing an outcome
y given model parameters. For each model in the perceptual model space, we built
an observation model based on beta density probability distributions:

pðyjθÞ ¼ Γðαþ βÞ
ΓðαÞΓðβÞ y

ðα�1Þð1� yÞðβ�1Þ ð13Þ

where θ refers to participants’ beliefs estimated through the different perceptual
models, Γexpresses a Gamma function, α ¼ θ � ν, and β ¼ ν � α; ν is a
participant-specific free parameter (i.e., inverse decision noise regulating beta
density width, estimated during model fit). Here, the observation model described
the accuracy of internal beliefs about outcomes (i.e., intrusions). Note here that the
beta observation model performed better than other observation function such as
the softmax response model (because the log-probability of choice of the beta
observation model does not change sharply around belief equal to 0.5, preserving
model accuracy). However, although our data do not involve such extreme cases,
this model contains the slight absurdity that when beliefs approach certainty (i.e.
near 1 or 0), the corresponding probability of choice starts to sink again. For all
three models in the perceptual model space (i.e. RW, KF, and HGF), we built the
following three source models.

● The state source model hypothesized that belief θ (μ̂1s for HGF, μ̂s for KF
and Vs for RW) at trial t was influenced by previous trial history,
irrespective of the content of the specific item.

● For the item source model, we extracted beliefs for each specific no-think
item. Throughout the TNT, up to 18 different items (i.e., objec–word pairs)
were repeated (on average, 16.29 ± 2.18, no group differences, after
accounting for error or absence of criterion recall test before trial phase).
For each item i, we estimated the trajectories of participants’ predictions
based exclusively on the item’s specific history. For these item-specific
models, t in Eqs. (1)–(15) refers to the number of times the item i was
repeated, instead of the overall no-think trial count. The trajectory of item-
based beliefs is referred to as μ̂1i for HGF, μ̂i for KF, and Vi for RW. After
estimations, these separated item-based beliefs were concatenated to form a
single trajectory.

● In the combined source model, we considered a scenario in which
participants combined state and item beliefs to improve prediction
accuracy. A joint posterior distribution with mean μ̂c was created (starting
from the second repetition of each item) by summing the two types of

beliefs, weighted for their respective accuracy, and dividing the result by the
sum of the variances:

θ ¼ μ̂c ¼
μ̂1sπ̂1s þ μ̂1iπ̂1i

π̂1s þ π̂1i
ð14Þ

This combined model hypothesized that participants lent more weight to
the most accurate (i.e., least uncertain) source of beliefs when creating
combined beliefs μ̂c. For the KF and RW models, we averaged μ̂s and μ̂i ,
and Vs and Vi , respectively.

Model estimation and accuracy. The final model space therefore included nine
models: state-HGF2, item-HGF2, combined-HGF2, state-KF, item-KF, combined-
KF, state-RW, item-RW, and combined-RW. Free perceptual parameters and
corresponding belief trajectories were estimated using a quasi-Newtonian optimi-
zation algorithm23. For state, item, combined trajectories of belief, we computed
model accuracy using the sum of the negative log-likelihood of the choice
probability.

Validation of computational modeling
Model falsification. A common issue in computational modeling is how to assess
the performance of a set of different models in generating plausible data, given that
generative and predictive performances of a model can sometimes be dramatically
different24. This is an important step that allows the models that best generate
plausible data to be identified and those with poor generative performances to be
rejected. This procedure is known as model falsification24.

The goal of these simulations was to establish whether the models were able to
generate the behavioral reduction in intrusion proportion that we observed across
the four blocks of the TNT task (see Fig. 2). We designed a virtual experimental
setting with 144 suppression cues distributed across 4 TNT sessions, as in our real
experiment. We started with a belief of 0.5 for the first trial, and at each new
simulated trial, we generated a new belief based on the perceptual model
considered and randomly drawn corresponding perceptual parameters. A
suppression parameter was introduced to simulate memory suppression and to
avoid the tilting of belief trajectories toward 1. This parameter was initially fine-
tuned separately for each model using a grid search to minimize the difference
between simulated data and real intrusion profile. After applying this suppression
factor to the generated belief, and adding some noise, we computed the negative
log-model accuracy of previous responses using the beta observation model (i.e.
summing all trials response log-probabilities up to the new one), and generate a
new response (i.e. yes or no) depending on log-model accuracy improvement (i.e.
we selected the response for this new trial that best improved the overall log-model
accuracy). The inverse decision noise parameter (ν; see above) of the beta
observation model was fixed to e0 (i.e., 1), allowing the mapping to be unbiased
toward a preferred outcome.

We simulated 200 virtual participants using this procedure, and repeated the
virtual experiment 100 times using perceptual parameter randomly drawn from a
Gaussian prior distribution tailored to match our own data (to sample plausible
parameters), resulting in 20,000 simulations for each of the nine computational
models. Then, binary rating generated for each of these 200 simulations were
averaged across repeated sampling and summarized as intrusion proportion across
the four artificial TNT sessions. We tested the relationship with the real intrusion
proportions for our cohort by computing both the mean difference (MD) and the
mean correlation (MC) between real and simulated intrusion ratings across the 200
virtual participants. While the MD between simulated and fitted parameters is
informative of the absolute distance between real and simulated intrusion ratings,
MC indicates whether simulated intrusions mimick the decrease in intrusion rating
across normally observed across TNT sessions. We found that for HGF2, both state
(MD= 0.069 ± 0.02; MC= 0.543 ± 0.05) item (MD=−0.008 ± 0.01;
MC= 0.367 ± 0.03) and combined (MD= 0.054 ± 0.02; MC= 0.575 ± 0.05)
models were able to generate data both intercepting the session-wise mean
intrusion rating and mimicking the decrease in intrusion proportion across the
TNT blocks. Concerning the RW models, only the item model generated the
expected patterns of intrusions (MD=−0.004 ± 0.01; MC= 0.769 ± 0.03). While
both state and combined models simulated intrusions showed acceptable
correlations with real intrusion data (state: MC= 0.765 ± 0.03; combined:
MC= 0.274 ± 0.05), both failed in intercepting the session-wise mean of the real
intrusion data (state: MD= 0.183 ± 0.02; combined: MD= 0.140 ± 0.01). Similarly
to RW, also for KF only the item model generated the expected patterns of
intrusions (MD=−0.019 ± 0.01; MC= 0.769 ± 0.03), while both state and
combined models showed acceptable correlations (state: MC= 889.0 ± 0.01;
combined: MC= 0.292 ± 0.01, p < 0.001) but not mean differences (state:
MD= 0.292 ± 0.01, combined: MD= 0.278 ± 0.01). The main outcomes of this
model falsification analysis can be found in Fig. 2.

Recovery analyses. Given this evidence for the generative performances of our
models, we addressed another possible pitfall in the model selection workflow: the
ability of a set of models to recover their trajectories of belief and the associated
perceptual parameters. This analysis further tests the generative performance of a
model, by verifying whether the fitting procedure produces meaningful trajectories
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and/or parameters, namely the true parameters and the corresponding trajectories
used to generate the data25. We fitted the different models to the synthetic data, in
order estimate the trajectories and the free parameters.

For trajectory recovery, we computed the correlation between fitted and
simulated trajectories. We then identified the fitted model among competitors that
has the maximum correlation with the simulated trajectory (coding 1 for the best
model, and 0 otherwise), and averaged these outcomes across simulations. We
computed the inversion matrix, to ensure that the beliefs fitted by a given model was
the model that most likely has generated those beliefs (i.e. reverse inference; Fig. 2).

When comparing computational models, it is also important to verify the
reliability of the model selection criterion for identifying the true generative model
within a set of competitive models, and ensure that this selection is not biased in
favor of one particular model24,25. This procedure, known as model recovery,
consists in simulating data with one specific model and then comparing the
predictive performances (i.e. model accuracy) of a set of different models using
Bayesian inference. For each of the 200 virtual participants, we first summed the
model accuracy across the 100 random sampling. We then identified, for each
simulated model, the best fitting model associated with the maximum accuracy,
and summarized the probability into a confusion matrix to create the
corresponding inversion matrix25 (see Fig. 2).

For parameter recovery, we computed the correlation between simulated
parameter that generated the data, and the corresponding fitted parameters. This
correlation was computed for each of the 200 virtual participants, using 100
randomly sampled free parameters (see above), and then averaged across virtual
participants. We found that HGF models had the best overall ability to recover the
parameter ω, with small correlations for the state model (r(98)= 0.263 ± 0.08,
p= 0.008) and moderate correlations for the item (r(98)= 0.395 ± 0.08, p < 0.001)
model. Significant recovery of α was found in RW models for the state
(r(98)= 0.268 ± 0.13, p= 0.007), but not for item (r(98)= 0.013 ± 0.10, p= 0.898)
model. No significant correlations were found between simulated and fitted ω
(state: r(98)= 0.008 ± 0.10, p= 0.937; item: r(98)= 0.001 ± 0.09, p= 0.992) and π
(state: r(98)=−0.004 ± 0.09, p= 0.968; item: r(98)=−0.007 ± 0.09, p= 0.945) in
KF models (see Fig. 2).

Computational dynamic causal modeling
Regions of interest. DCM entails a priori selection of regions of interest (ROIs).
There is evidence for a central role of the right PFC, particularly the MFG, in
inhibiting the memory system during motivated forgetting11,27,59. The ROIs
included in the DCM models were aMFG and pMFG, rHIP and cHIP, and PC. We
initially selected the ROIs from the Brainnetome atlas (BNA60, http://atlas.
brainnetome.org/), which is a fine-grained connectivity-based atlas featuring 210
cortical and 36 subcortical cross-validated brain regions, defined in Montreal
Neurological Institute (MNI) space. The aMFG region included A46 (center
coordinates: x= 28, y= 55, z= 17) and A9/46v (x= 42, y= 44, z= 14), pMFG
included A9/46d (x= 30, y= 37, z= 36) and A8vl (x= 42, y= 27, z = 39), rHIP
and cHIP corresponded to two ROIs (x= 22, y=−12, z=−20 and x= 29,
y=−27, z=−10), and PC corresponded to dmPOS (x= 16, y=−64, z= 25).
The MNI coordinates of the five ROIs were projected onto participants’ native
space using the deformation field, without any spatial warping or smoothing of the
functional images, to ensure maximum accuracy. However, for there to be suffi-
cient demarcation between the aMFG and mMFG signals, aMFG coordinates were
initially limited to y > 35mm, and pMFG coordinates to y < 25 mm.

For the DCM analysis, we summarized the signals for each participant and each
of these ROIs from the averaged time series of 30 contiguous voxels (1012.5 mm3)
that were the most significantly related to the main task around the maximum
activation peak (using no-think > think contrast for aMFG and pMFG, and no-
think < think contrast for memory regions)27. To this end, a univariate analysis was
conducted on the timecourse of each native space ROI for each participant, by
implementing a general linear model (GLM) in SPM12. The voxelwise fMRI time
series were high-pass filtered, with a cut-off period of 128 s. Task-related regressors
were created by convolving a box-car function at the onset of cue words with the
canonical hemodynamic response function. Further regressors of no interest
included the six realignment parameters to account for motion artefacts, session
dummy regressors, and filler item regressors (i.e., no button press, or no recall
during the final criterion test or during think trials). fMRI time series
autocorrelations were corrected by entering a first-order autoregressive model of
temporal autocorrelation of noise and a white-noise model was estimated using
restricted maximum likelihood. The data were then adjusted for confounds,
filtered, and whitened using the estimated temporal autocorrelation of noise to
correct for non-sphericity. Beta parameters for think and no-think conditions were
estimated during a second pass of the general linear model with the ordinary least-
square method, and used to calculate participant-specific t maps for each ROI.

Neural and hemodynamic models for DCM. DCM61 allows changes in effective
connectivity between a set of brain regions to be inferred by creating and com-
paring different hypothesis-driven generative models of neural dynamics. It relies
on the following general bilinear state equation for these dynamics:

dx
dt

¼ Aþ∑m
j¼1ujB

jð Þ� �
x þ Cu ð15Þ

Given m known inputs, the hidden neural dynamics (dxdt) are estimated by relating
the activity of each region to the activity of other regions, via (1) intrinsic con-
nections in the absence of experimental manipulations (A matrix), (2) jth mod-
ulatory input uj operating on intrinsic connections during experimental conditions
(B matrix), and (3) extrinsic input driving activity in the network (C matrix). These
neural models are then combined with a hemodynamic model describing the
mapping of neural activity onto the BOLD response observed during fMRI (i.e., the
Balloon model62). The neural and hemodynamic model parameters are estimated
through variational Bayes under Laplace approximation, which optimizes model
evidence by minimizing free energy and ensures Gaussian posteriors63.

Two modularity input functions operated on intrinsic connections. The first
one corresponded to a boxcar function encoding no-think trials onset and
duration, and whose height was parametrically modulated by internal beliefs (μ̂c ,
see Eq. (14)). The second corresponded to a boxcar function reflecting only
intrusive trials, parametrically modulated by PE (see Eq. (9)). This allowed us to
investigate how the discrepancies between internal beliefs and intrusive outcomes
were reactively processed by the memory control system, our primary interest. PE
was therefore only positive here (PE+), meaning that negative and positive
coupling parameters could be interpreted as such. It should, however, be noted that
the extent and the sign of the posterior coupling parameters were estimated with
respect to the implicit baseline (i.e., unmodeled signal). Here, the neural dynamics
were only modeled during no-think trials. The implicit baseline included think
trials, and the coupling parameters therefore reflected the modulation of coupling
with respect to a baseline corresponding to a mixture of rest (i.e., no stimulation)
and memory retrieval. Given that our design included few resting periods, this
procedure ensured better isolation of inhibitory mechanisms during memory
control. The parametric modulators were not orthogonalized, and were extracted
from the winning computational model (i.e., combined-HGF2).

DCM model space. All the models assumed bidirectional intrinsic connections
between all five regions in the A matrix. This was confirmed by a preliminary
analysis that only modeled driving inputs64. We created 42 DCM models, which
could be divided into three families of fourteen models each and a null family
containing two models. The first family (computational top-down modulation
family; Fig. 3a, top left) hypothesized that the modulation of PE+ and beliefs
occurs during top-down coupling originating from the source regions (i.e., aMFG
and pMFG) and targeting memory regions (i.e., rHIP, cHIP and PC). This family
could be further divided into two subfamilies encoding different hypotheses on the
involvement of aMFG and pMFG in either predictive or reactive control. More
specifically, the first subfamily contained seven models encoding all the possible
pathways from MFGs to target regions (Fig. 3b), hypothesizing that aMFG and
pMFG are involved in reactive (i.e., PE+ modulation) and predictive (i.e., beliefs
modulation) control, respectively. Importantly, while beliefs were computed before
the actual outcome, including therefore in the no-think trials, PE+ only occurred
when participants experienced an intrusion. For this reason, in the first subfamily,
intrusion inputs entered the aMFG, while no-think inputs entered the pMFG. The
opposite scenario was hypothesized in the second subfamily, with the aMFG and
pMFG receiving inputs from no-think and intrusion cues, and modulating control
of belief and PE+, respectively. The second family (computational bottom-up
modulation family; Fig. 3a, right panel) hypothesized that computations modulate
the bottom-up connections from target to source regions, with analogous sub-
divisions regarding the involvement of aMFG and pMFG with respect to belief and
PE+ modulation. The third family (no-computation modulation family; Fig. 3a,
bottom left panel) contained 14 models including modularity input functions with
no further parametric modulation. Finally, a fourth family containing two null
models was added to verify the hypotheses that our modulatory parameters did
have an impact on connections, compared with models that did not include these
additional modulations (Fig. 3a, bottom right).

Bayesian model selection and averaging. BMS compares different generative
models, in order to select the most probable one. This allows competitive
hypotheses on the hidden mechanisms that generated the data65 to be tested. Here,
for both computational and DCM model comparisons, we used a random-effect
BMS (i.e., assuming that models can differ between participants) and a free energy
approximation of the LME, accounting for both the accuracy and complexity of the
models65. Interestingly, BMS can be used to compare different families of models,
where the model space is partitioned into several models sharing some common
underlying hypotheses. For DCM BMS analyses, we first computed the log-family
evidence, which summarizes the evidence for models belonging to a given family,
assuming prior and posterior additivity of model probabilities into family prob-
abilities, as well as a uniform prior within families66. We then compared this
evidence using random-effect BMS implemented in the VBA toolbox67. Besides
computing the probability of one model being more likely than the others in the
model space (i.e., exceedance probability, XP), the VBA toolbox estimates the
probability that potential differences in model frequencies are due to chance (i.e.,
Bayesian omnibus risk, BOR). XP and BOR can then be used to compute the PXP,
which quantifies the probability of one model being more frequent than others in
the model space, above and beyond chance65.

Despite the remarkably high PXP for the whole sample, BMS did not guarantee
that the same model was uniformly the best in all three groups. Traditionally,
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independent RFX-BMS has been used to establish the winning model in each
separate group. However, this approach does not test the hypothesis that the same
model optimally describes data in the different groups. To test this hypothesis, we
adopted a recent method65 implemented in the VBA toolbox67, which allows
between-group model comparisons. This technique computes the probability that
different groups are sampled from a single population in which the elected model
best explains the data.

We performed BMA across the 14 DCM models that belonged to the wining
computational top-down modulation family (see Results section). BMA yields
posterior coupling parameters specific to each participant that are weighted by
participant-specific posteriors. The optimum model within the selected family is
treated as a random effect across participants68. For each participant s belonging to
the group g (i.e., nonexposed, PTSD-, or PTSD+), the averaged parameters across
the 14 models of the family, Pðθs2g jY ;m 2 f DÞ, are computed by weighting the
participant’s posteriors for each model m in the family (i.e., Pðθsjys;mÞ by the
posterior probabilities that participant s uses model m (i.e., PðmsjYg Þ):

P θs2g jYg ;m 2 f D

� �
¼ ∑

m2f D
P θs2g j ys2g ;m
� �

P ms2g jYg

� �
ð16Þ

where Yg is the dataset of the whole group g, containing data for each participant in
the group, ys2g . Importantly, a separate analysis was performed for each group, to
ensure that the participant’s posterior probabilities PðmsjYg Þ were derived from his
or her group’s distribution. It should be noted that this was possible because the
computational top-down modulation family outperformed the other families in all
three groups, and no statistical differences were detected between groups with
respect to the preferred model architecture (see the “Results” section). Statistical
analyses were performed on BMA coupling parameters using one-tailed t tests
according to a priori hypotheses, in the three target memory regions (rHIP, cHIP,
PC), as well as the wHIP (i.e., four regions in total). Four effects were tested:

1. Control * Group interactions comparing the control effect (predictive -
reactive) in PTSD+ with both PTSD− and nonexposed in all four regions
(i.e., 8 tests in total):

2. Control effect (predictive - reactive) in all three groups and four regions (i.e.,
12 tests in total);

3. Reactive negative coupling in all three groups and four regions (i.e., 12 tests
in total);

4. Predictive negative coupling in all three groups and four regions (i.e., 12
tests in total).

To control for Type I error across multiple tests, p values were adjusted for
each of these effects, using FDR correction. For completeness, we also computed
the Pp of the groups’ coupling parameters, as well as the bootstrapped 95% CI of
the mean. In addition, we also report Bayes factors (BF) as effect size in Table 1,
using a Markov chain Monte Carlo (MCMC) method69. BF represent the
likelihood of suppression effects for each within-group comparison. Based on this
hypothesis, we defined a region of practical equivalence (ROPE) set as a Cohen’s
d effect size greater than “0.1”. The MCMC method generated 90,000 credible
parameter combinations that are representative of the posterior distribution.
Then, the BF was estimated as the ratio of the proportion of the posterior within
the ROPE relative to the proportion of the prior within the ROPE. The
conventional interpretation of the magnitude of the BF is that there is substantial
evidence for the alternative hypothesis when the BF ranges from 3 to 10, strong
evidence between 10 and 30, very strong evidence between 30 and 100, and
decisive evidence above 100.

Imbalance analysis. We projected neurocomputational markers of predictive and
reactive control of intrusive memories onto two orthogonal axes of a polar coor-
dinate system (see Fig. 4b). Angular coordinates were expressed in degrees between
−180° and +180°) with a 0° reference point at the bottom of the y-axis (i.e., 0° to
180° anticlockwise and 0° to −180° clockwise). The first axis (+45° to −135°)
represented predictive control (PC). Negative PC coupling values were projected on
the +45° direction, and positive PC coupling parameters onto the opposite −135°
direction. The second axis (+135° to −45°) represented reactive control (RC).
Negative RC coupling values were projected onto the −45° direction, and positive
RC coupling parameters onto the opposite +135° direction.

For each participant, we calculated the resultant force (RF) combining
predictive and reactive forces. The RF represents the vector sum of a set of forces.
Given two forces FPC and FRC, characterized by known angles α1 and α2 from 0° on
the y-axis of a circle and the x and y Cartesian components (FxPC, FxRC and FyPC,
FyRC), the RF’s Cartesian components can be obtained as follows:

FRx ¼ FxPC þ FxRC ;

FRy ¼ FyPC þ FyRC ; ð17Þ
In our analyses, we focused on the RF’s direction, not its magnitude. The RF
represents the summative effect of predictive and reactive vectors of force. As the
two forces were applied in different directions, yet both pointing downward, the 0°
position represented the equilibrium point. The more the RF approached the 0°
direction, the more balance the two forces were. To obtain an imbalance angle (IB)

for each participant, we computed the angle θ between the RF and the 0° position
using trigonometry:

IB ¼ θ ¼ tan�1
FRy

FRx

� �
ð18Þ

Interestingly, both predictive and reactive negative coupling parameters
reflected downward, yet orthogonal forces, originating from the same point of
application. This illustrates how a unique control system may suppress memory
processing according to two independent but complementary processes serving the
same function.

A common issue in circular statistics is the arbitrary choice of the 0° position
and the sense of rotation, which can lead to misleading conclusions when dealing
with multiple measures. The mean angle θ cannot be computed from the arithmetic
mean of all sampled angles. We used the Circular Statistics toolbox in MATLAB70

to compute the mean angle θ across participants in each group. Confidence
intervals were also computed by bootstrapping the estimation of this group mean
2000 times. Group comparisons were performed using Watson’s two-sample tests,
a nonparametric version of the two-sample t test for circular data. For all group
comparisons, alpha was set at 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the raw behavioral and imaging data are archived at the GIP Cyceron center in Caen
and are part of an ongoing longitudinal research project. Raw behavioral and brain
imaging data are available under restricted access due to legal and sponsorship regulation
for the current research project. These data can be shared with researchers upon
reasonable request, via data request to Dr. Pierre Gagnepain
(pierre.gagnepain@inserm.fr). The clinical data and the subject-specific DCM coupling
parameters data necessary for the statistical analyses of the current research article have
been deposited on the GitHub repository (https://github.com/PierreGagnepain/
predictive_control) and are also available on Zenodo (https://doi.org/10.5281/zenodo.
6362400)71.

Code availability
Computational models were implemented in the TAPAS toolbox (https://www.tnu.ethz.
ch/de/software/tapas). Preprocessing of fMRI data and first-level DCM analysis were
performed with SPM12 (https://www.fil.ion.ucl.ac.uk/spm/; version DCM12.5 revision
7479). The log-family evidence was computed using the MACS toolbox (https://github.
com/JoramSoch/MACS/releases/tag/v1.3), and Bayesian model comparisons were
performed with the VBA toolbox (https://mbb-team.github.io/VBA-toolbox/). Codes for
implementing model falsification, parameter and model recovery, as well as
computational DCM to study predictive control, is available on GitHub (https://github.
com/PierreGagnepain/predictive_control).

Received: 8 October 2021; Accepted: 20 May 2022;

References
1. Stein, M. B. & Paulus, M. P. Imbalance of approach and avoidance: the Yin

and Yang of anxiety disorders. Biol. Psychiatry 66, 1072–1074 (2009).
2. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an

integrated neurobiological and psychological perspective. Nat. Rev. Neurosci.
14, 488–501 (2013).

3. Homan, P. et al. Neural computations of threat in the aftermath of combat
trauma. Nat. Neurosci. 22, 470–476 (2019).

4. Brown, V. M. et al. Associability-modulated loss learning is increased in
posttraumatic stress disorder. eLife 7, e30150 (2018).

5. Gagne, C., Dayan, P. & Bishop, S. J. When planning to survive goes wrong:
predicting the future and replaying the past in anxiety and PTSD. Curr. Opin.
Behav. Sci. 24, 89–95 (2018).

6. Seriès, P. Post-traumatic stress disorder as a disorder of prediction. Nat.
Neurosci. 22, 334–336 (2019).

7. Lissek, S. & van Meurs, B. Learning models of PTSD: theoretical accounts and
psychobiological evidence. Int. J. Psychophysiol. 98, 594–605 (2015).

8. Dunsmoor, J. E. & Paz, R. Fear generalization and anxiety: behavioral and
neural mechanisms. Biol. Psychiatry 78, 336–343 (2015).

9. Ehlers, A., Hackmann, A. & Michael, T. Intrusive re‐experiencing in post‐
traumatic stress disorder: phenomenology, theory, and therapy. Memory 12,
403–415 (2004).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30855-x

14 NATURE COMMUNICATIONS |         (2022) 13:3300 | https://doi.org/10.1038/s41467-022-30855-x | www.nature.com/naturecommunications

https://github.com/PierreGagnepain/predictive_control
https://github.com/PierreGagnepain/predictive_control
https://doi.org/10.5281/zenodo.6362400
https://doi.org/10.5281/zenodo.6362400
https://www.tnu.ethz.ch/de/software/tapas
https://www.tnu.ethz.ch/de/software/tapas
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/JoramSoch/MACS/releases/tag/v1.3
https://github.com/JoramSoch/MACS/releases/tag/v1.3
https://mbb-team.github.io/VBA-toolbox/
https://github.com/PierreGagnepain/predictive_control
https://github.com/PierreGagnepain/predictive_control
www.nature.com/naturecommunications


10. Mary, A. et al. Resilience after trauma: the role of memory suppression.
Science 367, 6479 (2020).

11. Gagnepain, P., Henson, R. N. & Anderson, M. C. Suppressing unwanted
memories reduces their unconscious influence via targeted cortical inhibition.
Proc. Natl Acad. Sci. USA 111, E1310–E1319 (2014).

12. Brewin, C. R., Gregory, J. D., Lipton, M. & Burgess, N. Intrusive images in
psychological disorders: characteristics, neural mechanisms, and treatment
implications. Psychol. Rev. 117, 210–232 (2010).

13. Braver, T. S. The variable nature of cognitive control: a dual mechanisms
framework. Trends Cogn. Sci. 16, 106–113 (2012).

14. Anderson, M. C., Bunce, J. G. & Barbas, H. Prefrontal-hippocampal pathways
underlying inhibitory control over memory. Neurobiol. Learn. Mem. 134(Part
A), 145–161 (2016).

15. Jiang, J., Heller, K. & Egner, T. Bayesian modeling of flexible cognitive control.
Neurosci. Biobehav. Rev. 46, 30–43 (2014).

16. Jiang, J., Wagner, A. D. & Egner, T. Integrated externally and internally
generated task predictions jointly guide cognitive control in prefrontal cortex.
eLife 7, e39497 (2018).

17. Kube, T., Berg, M., Kleim, B. & Herzog, P. Rethinking post-traumatic stress
disorder—a predictive processing perspective. Neurosci. Biobehav. Rev. 113,
448–460 (2020).

18. Ehlers, A. & Clark, D. M. A cognitive model of posttraumatic stress disorder.
Behav. Res. Ther. 38, 319–345 (2000).

19. Daunizeau, J. et al. Observing the observer (I): meta-Bayesian models of
learning and decision-making. PLoS ONE 5, e15554 (2010).

20. Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F. & Banich, M. T. The
organization of right prefrontal networks reveals common mechanisms of
inhibitory regulation across cognitive, emotional, and motor processes. Cereb.
Cortex 26, 1634–1646 (2016).

21. Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: variations
in the effectiveness of reinforcement. In Classical Conditioning II: Current
Research and Theory (eds Black, A. H. & Prokasy, W. F.) 64–69 (Appleton-
Century-Crofts, New York, 1972).

22. Kalman, R. E. A new approach to linear filtering and prediction problems. J.
Basic Eng. 82, 35–45 (1960).

23. Mathys, C., Daunizeau, J., Friston, K. J. & Stephan, K. E. A Bayesian
foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5,
39 (2011).

24. Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in
computational cognitive modeling. Trends Cogn. Sci. 21, 425–433 (2017).

25. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational
modeling of behavioral data. eLife 8, e49547 (2019).

26. Jacoby, L. L., Lindsay, D. S. & Hessels, S. Item-specific control of automatic
processes: stroop process dissociations. Psychon. Bull. Rev. 10, 638–644 (2003).

27. Gagnepain, P., Hulbert, J. & Anderson, M. C. Parallel regulation of memory
and emotion supports the suppression of intrusive memories. J. Neurosci. 37,
6423–6441 (2017).

28. Grisanzio, K. A. et al. Transdiagnostic symptom clusters and associations with
brain, behavior, and daily function in mood, anxiety, and trauma disorders.
JAMA Psychiatry 75, 201–209 (2018).

29. Konecky, B., Meyer, E. C., Kimbrel, N. A. & Morissette, S. B. The structure of
DSM-5 posttraumatic stress disorder symptoms in war veterans. Anxiety
Stress Coping 29, 497–506 (2016).

30. Jammalamadaka, S. R. & Sengupta, A. Topics in Circular Statistics Vol. 5
(World Scientific, 2001).

31. Desmedt, A., Marighetto, A. & Piazza, P.-V. Abnormal fear memory as a
model for posttraumatic stress disorder. Biol. Psychiatry 78, 290–297 (2015).

32. Henson, R. What can functional neuroimaging tell the experimental
psychologist? Q. J. Exp. Psychol. Sect. A 58, 193–233 (2005).

33. Perri, R. L. Is there a proactive and a reactive mechanism of inhibition?
Towards an executive account of the attentional inhibitory control model.
Behav. Brain Res. 377, 112243 (2020).

34. Lyoo, I. K. The neurobiological role of the dorsolateral prefrontal cortex in
recovery from trauma: longitudinal brain imaging study among survivors of
the South Korean subway disaster. Arch. Gen. Psychiatry 68, 701 (2011).

35. Siehl, S., King, J. A., Burgess, N., Flor, H. & Nees, F. Structural white matter
changes in adults and children with posttraumatic stress disorder: a systematic
review and meta-analysis. NeuroImage Clin. 19, 581–598 (2018).

36. Criaud, M., Wardak, C., Ben Hamed, S., Ballanger, B. & Boulinguez, P.
Proactive inhibitory control of response as the default state of executive
control. Front. Psychol. 3, 59 (2012).

37. van Belle, J., Vink, M., Durston, S. & Zandbelt, B. B. Common and unique
neural networks for proactive and reactive response inhibition revealed by
independent component analysis of functional MRI data. NeuroImage 103,
65–74 (2014).

38. Czéh, B. et al. Chronic stress reduces the number of GABAergic interneurons
in the adult rat hippocampus, dorsal-ventral and region-specific differences.
Hippocampus 25, 393–405 (2015).

39. Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P. & Anderson, M.
C. Hippocampal GABA enables inhibitory control over unwanted thoughts.
Nat. Commun. 8, 1311 (2017).

40. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction
errors. Nature 525, 243–246 (2015).

41. Moutoussis, M., Shahar, N., Hauser, T. U. & Dolan, R. J. Computation in
psychotherapy, or how computational psychiatry can aid learning-based
psychological therapies. Comput. Psychiatry 2, 50–73 (2018).

42. Wenzlaff, R. M. & Wegner, D. M. Thought suppression. Annu. Rev. Psychol.
51, 59–91 (2000).

43. Hulbert, J. C., Henson, R. N. & Anderson, M. C. Inducing amnesia through
systemic suppression. Nat. Commun. 7, 11003 (2016).

44. Sinclair, A. H. & Barense, M. D. Prediction error and memory reactivation:
how incomplete reminders drive reconsolidation. Trends Neurosci. 42,
727–739 (2019).

45. Antony, J. W., Ferreira, C. S., Norman, K. A. & Wimber, M. Retrieval as a fast
route to memory consolidation. Trends Cogn. Sci. 21, 573–576 (2017).

46. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory
retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757
(2018).

47. Barron, H. C., Auksztulewicz, R. & Friston, K. Prediction and memory: a
predictive coding account. Prog. Neurobiol. 192, 101821 (2020).

48. Barron, H. C., Vogels, T. P., Behrens, T. E. & Ramaswami, M. Inhibitory
engrams in perception and memory. Proc. Natl. Acad. Sci. USA 201701812
https://doi.org/10.1073/pnas.1701812114 (2017).

49. American Psychiatric Association. Diagnostic and Statistical Manual of
Mental Disorders (American Psychiatric Association, 2013).

50. Zlotnick, C., Franklin, C. L. & Zimmerman, M. Does “subthreshold”
posttraumatic stress disorder have any clinical relevance? Compr. Psychiatry
43, 413–419 (2002).

51. Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K. & Domino, J. L. The
posttraumatic stress disorder checklist for DSM-5 (PCL-5): development and
initial psychometric evaluation. J. Trauma Stress 28, 489–498 (2015).

52. Spielberger, C. D., Bruchon-Schweitzer, M. & Paulhan, I. Inventaire d’anxiété
État-Trait: Forme Y. (ECPA, les Éditions du centre de psychologie appliquée,
1993).

53. Beck, A. T., Steer, R. A. & Brown, G. K. BDI-II, Beck Depression Inventory:
Manual (Psychological Corp., Harcourt Brace, 1996).

54. Syssau, A. & Font, N. Évaluations des caractéristiques émotionnelles d’un
corpus de 604 mots. Bull. Psychol. 477, 361 (2005).

55. Brodeur, M. B., Guérard, K. & Bouras, M. Bank of standardized stimuli
(BOSS) Phase II: 930 new normative photos. PLoS ONE 9, e106953 (2014).

56. Wager, T. D. & Nichols, T. E. Optimization of experimental design in fMRI: a
general framework using a genetic algorithm. NeuroImage 18, 293–309 (2003).

57. de Berker, A. O. et al. Computations of uncertainty mediate acute stress
responses in humans. Nat. Commun. 7, 10996 (2016).

58. Dayan, P., Kakade, S. & Montague, P. R. Learning and selective attention. Nat.
Neurosci. 3, 1218–1223 (2000).

59. Benoit, R. G. & Anderson, M. C. Opposing mechanisms support the voluntary
forgetting of unwanted memories. Neuron 76, 450–460 (2012).

60. Fan, L. et al. The human brainnetome atlas: a new brain atlas based on
connectional architecture. Cereb. Cortex N. Y. N. 1991 26, 3508–3526 (2016).

61. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling.
Neuroimage 19, 1273–1302 (2003).

62. Friston, K. J., Mechelli, A., Turner, R. & Price, C. J. Nonlinear responses in
fMRI: the Balloon Model, Volterra Kernels, and other hemodynamics.
NeuroImage 12, 466–477 (2000).

63. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W.
Variational free energy and the Laplace approximation. NeuroImage 34,
220–234 (2007).

64. Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1,
13–36 (2011).

65. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model
selection for group studies—revisited. NeuroImage 84, 971–985 (2014).

66. Soch, J., Haynes, J.-D. & Allefeld, C. How to avoid mismodelling in GLM-
based fMRI data analysis: cross-validated Bayesian model selection.
NeuroImage 141, 469–489 (2016).

67. Daunizeau, J., Adam, V. & Rigoux, L. VBA: a probabilistic treatment of
nonlinear models for neurobiological and behavioural data. PLoS Comput.
Biol. 10, e1003441 (2014).

68. Penny, W. D. et al. Comparing families of dynamic causal models. PLoS
Comput. Biol. 6, e1000709 (2010).

69. Wetzels, R. et al. Statistical evidence in experimental psychology: an empirical
comparison using 855 t tests. Perspect. Psychol. Sci. 6, 291–298 (2011).

70. Berens, P. CircStat: a matlab toolbox for circular statistics. J. Stat. Softw. 31,
1–21 (2009).

71. Leone, G. et al. Altered predictive control during memory suppression in
PTSD (data and code). https://doi.org/10.5281/zenodo.6362400 (2022).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30855-x ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3300 | https://doi.org/10.1038/s41467-022-30855-x | www.nature.com/naturecommunications 15

https://doi.org/10.1073/pnas.1701812114
https://doi.org/10.5281/zenodo.6362400
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Acknowledgements
We thank all the people who volunteered to take part in this study and the victim
associations that supported this project. We thank the medical doctors (especially M.
Mialon and E. Duprey) and the staff at the Cyceron biomedical imaging platform in
Caen. We also thank the researchers; psychologists M. Deschamps, P. Billard, B. Marteau,
R. Coppalle, and C. Becquet; technicians; and administrative staff at U1077 (Caen), at
“Program 13-Novembre” in Paris, at INSERM “Délégation Régionale Nord-Ouest” (Lille)
and “Pôle Recherche Clinique”(Paris). We thank Jean-François Démonet for comments
and feedbacks on this manuscript. We thank Elizabeth Portier for final English editing of
the manuscript. This study was funded by the French Commissariat-General for
Investment (CGI) via the National Research Agency (ANR) and the “Program d’inves-
tissement pour l’Avenir (PIA).” The study was realized within the framework of “Pro-
gram 13-Novembre” (EQUIPEX Matrice) headed by D.P. and F.E. This program is
sponsored by the CNRS and INSERM and supported administratively by HESAM
Université, bringing together 35 partners (see www.memoire13novembre.fr). G.L. is
funded by a Ph.D. fellowship from the Normandy Region and Normandy University.

Author contributions
J.D., D.P., F.E., and P.G. designed the study. P.G. and G.L. conceptualized and imple-
mented the computational model. P.G., J.D., D.P., F.E. obtained the financial support.
C.P., A.M., and T.V. performed the data acquisition and F.F. managed and coordinated
the research activity planning and execution. F.V. and V.d.L.S. supervised the MRI data
collection and medical interviews. V.d.L.S. supervised the medical aspects of the study,
and J.D. supervised the SCID interviews and psychiatric examinations. G.L. and P.G.
analyzed the behavioral and functional data. G.L. and P.G. wrote the original draft. P.G.
supervised the research. All the authors reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30855-x.

Correspondence and requests for materials should be addressed to Pierre Gagnepain.

Peer review information Nature Communications thanks Aline Desmedt and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30855-x

16 NATURE COMMUNICATIONS |         (2022) 13:3300 | https://doi.org/10.1038/s41467-022-30855-x | www.nature.com/naturecommunications

http://www.memoire13novembre.fr
https://doi.org/10.1038/s41467-022-30855-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Altered predictive control during memory suppression in PTSD
	Results
	Computational modeling
	Model validation
	Source of intrusion beliefs
	Computational dynamic causal modeling
	Combined influence of anterior and posterior MFG during control
	Excessive belief suppression and alteration of reactive control in PTSD
	Excessive predictive control is related to re-experiencing and avoidance dimensions of PTSD but not transdiagnostic symptoms
	Imbalance between predictive and reactive control in PTSD reflects independent processes

	Discussion
	Methods
	Participants
	Materials
	Procedure
	MRI acquisition parameters
	fMRI preprocessing
	Computational modeling
	Perceptual models
	D1
	D2
	D3

	Source models
	Model estimation and accuracy
	Validation of computational modeling
	Model falsification
	Recovery analyses
	Computational dynamic causal modeling
	Regions of interest
	Neural and hemodynamic models for DCM
	DCM model space
	Bayesian model selection and averaging
	Imbalance analysis

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




