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Allotropy in ultra high strength materials
A. S. L. Subrahmanyam Pattamatta1 & David J. Srolovitz 1,2,3✉

Allotropic phase transformations may be driven by the application of stresses in many

materials; this has been especially well-documented for pressure driven transformations.

Recent advances in strengthening materials allow for the application of very large shear

stresses as well – opening up vast new regions of stress space. This means that the stress

space is six-dimensional (rather than one for pressure) and that phase transformations

depend upon crystal/grain orientation. We propose a novel approach for predicting the role

of the entire stress tensor on phase transformations in grains of all orientations in any

material. This multiscale approach is density functional theory based and guided by nonlinear

elasticity. We focus on stress tensor dependent allotropic phase transformations in iron at

high pressure and ultra-fine grained nickel and titanium. The results are quantitatively con-

sistent with a range of experimental observations in these disparate systems. This approach

enables the balanced design of high strength-high ductility materials.
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Stronger and tougher materials are key to many advances in
modern technology. While multiple routes are available to
strengthen materials1, simultaneously achieving both high

strength and toughness remains elusive. Strength refers to the
ability of the material to resist plastic deformation (irreversible
shape change) and toughness is the ability to absorb energy and
plastically deform without fracturing. While the classical theore-
tical limit on material strength (yield stress) is roughly a tenth of
the shear modulus2, commonly achievable strengths are only a
small fraction of this. In addition to plastic deformation and
fracture, stress can also be relieved by phase transformations
(PT). PTs can therefore be exploited to toughen a material (e.g.,
transformation toughening3 and transformation-induced
plasticity4).

Pressure-induced PTs have been studied extensively over the
past half-century (e.g., in diamond anvil cells) to investigate
common and exotic phases (e.g., in geological and extra-
terrestrial materials). The focus on hydrostatic pressure (p), is
associated, partly with geological conditions, and the experi-
mental difficulties of generating shear stress as large as achievable
hydrostatic stresses5,6. For metals, this is because yield strengths
are comparatively small, i.e., dislocations (plastic deformation
carrying defects) move easily. Unlike in conventional materials,
nanoscale materials (e.g., nanograined/nanotwinned materials7,8)
are often dislocation-starved9,10 leading to strengths approaching
theoretical limits11,12; these are ultra-high-strength materials. The
ability of ultra-high-strength materials to support large non-
hydrostatic (shear) stresses, provides a means of accessing stress-
induced PTs, unachievable in conventional (low strength) mate-
rials. Thus stress-induced PTs provide novel routes to over-
coming the classical strength-toughness trade-off13 in a wide class
of materials.

The effect of shear stresses on PTs is not limited to metals.
Indeed, shear-induced PTs (transformation toughening) in zir-
conia are now well known (e.g., see refs. 14–17); the PT from
tetragonal to monoclinic phases in MgO-partially stabilized zir-
conia (Mg-PSZ) and CeO2-stabilized tetragonal zirconia poly-
crystals (Ce-TZP) can be triggered by non-hydrostatic stresses
and the transformation pressure is sensitive to shear. This effect
has also received theoretical attention; e.g., several phenomen-
ological models were proposed18,19 to describe the tetragonal to
monoclinic PTs in zirconia under combined hydrostatic tension
and shear.

While diamond anvil cell PT experiments focus largely on
hydrostatic stress effects (shear stresses are limited by pressure
media, gaskets, or sample strength), PT pressure measurements
exhibit large scatter, frequently associated with shear stresses5,6.
Rotational diamond anvil cell experiments20 confirm that shear
alters transformation pressures21. For example, while iron
undergoes a p-induced ferromagnetic body-centered cubic (bcc)
to nonmagnetic hexagonal close-packed (hcp) PT, experimental
studies22–24 yield widely differing transformation pressures
(ranging from 8.6 to 15.3 GPa25–28); the non-hydrostaticity ori-
ginates from finite strength of pressure media. Similar observa-
tions were reported for other materials (e.g., Zr and BN29–31).

Compelling evidence for shear-induced PTs also comes from
recent experiments on nanocrystalline nickel32. Face-centered
cubic (fcc) Ni is exceptionally stable; no PTs were observed in
bulk specimens for p ≤ 200 GPa33 (hcp Ni was seen in very thin
hetero-epitaxial Ni films34,35). Luo et al.32 observed that 5–10% of
the grains in polycrystalline Ni (grain size below 17 nm) were
entirely hcp while surrounding grains were fcc. The ultra-high-
strength of such nanograined Ni admits extremely large non-
hydrostatic stresses and the sensitivity of the PT to grain orien-
tation demonstrates that the PT is sensitive to both shear stress
and crystal orientation. Another example of stress-induced PTs is

observed in titanium (hcp→ fcc) in high energy mechanical
attrition in ball mill36, cryogenic plane strain compression37,
rolling polycrystal specimens38, and molecular dynamics simu-
lations of nano-pillars under tension39. The PT mechanism is still
debated although some mechanisms were proposed based on
DFT studies40.

In this article, we propose a general framework to understand
and predict the effect of the entire (tensor) stress state on PTs;
large non-hydrostatic stresses are accessible only in ultra-high-
strength materials. Our approach is based on (nonlinear) elasti-
city and density functional theory (DFT). The results shed light
on novel pathways to PTs. We seek the lower bound on the
stresses required for thermodynamic stabilization of a new phase
and apply it to PTs in polycrystals.

Consider the diffusionless PTs from a parent phase α to a
daughter phase β driven by Gibbs free energy reduction. The
Gibbs free energy (hyper-) surface may have multiple minima
corresponding to different stable/metastable crystal structures. As
the stress (or temperature) varies, the Gibbs free energy surface
morphs; new minima may appear, and existing minima may
deepen/recede leading to a switch in the global minimum41.
While changes in minima depths may lead to first-order PTs, the
disappearance of a minimum may yield higher-order PTs.

We focus on isothermal, stress-induced PT thermodynamics in
bulk phases (i.e., neglect interface energies and barriers between
metastable states). In p-driven transformations, the PT occurs at a
critical, scalar stress (pressure). However, PTs in general depend
on all six stress components (the stress tensor is symmetric) such
that the critical stress is a hyper-surface. We consider all possible
transformations from each energy minimum in the parent phase
to energy minima in daughter phases consistent with a particular
transformation mechanism.

The mechanical response of a crystal subjected to a particular
(non-hydrostatic) loading is anisotropic and depends on its
orientation. A crystal in the phase α under an applied stress may
transform to another phase β (that respects a transformation
mechanism) if the Gibbs’s free energy of β is lower than that of α.
In such a case the PT is said to be thermodynamically feasible. In
the current work, we limit our discussion to zero temperature.
Thus the Gibbs free energy reduces to the enthalpy H. Never-
theless our formulation is quite general and can be extended to
include finite temperature contributions to the free energy. This is
typically done through the quasi-harmonic approximation in
DFT-based calculations. Thus stress-induced PTs in single crys-
tals can be formulated as a problem of minimization of H. We
consider the parent phase α in the stress-free state as the reference
configuration. We also assume that the applied stress produces a
homogeneous deformation inside the crystal and the motion of
the elastic body is described by the total deformation gradient
which can be multiplicatively decomposed as,

F ¼ FeFt ð1Þ
where the Fe is the elastic component and Ft is the non-elastic
stress-free transformation component of the total deformation
gradient. Ft is a mapping the takes the reference state to the
daughter phase in its stress-free configuration for a certain
orientation relation. In the absence of a PT, the deformation is
completely elastic i.e., Ft= I, where I is the identity tensor.

The elastic strain in the crystal is given by the Green-Lagrange
strain tensor Ee ¼ 1

2 ðFT
e Fe � IÞ (The superscript T indicates

transpose). The enthalpy of the crystal per unit volume in the
reference configuration is given by42,43,

hðP; FtÞ ¼ ψðEeÞ � P : F � Ið Þ ð2Þ
The first term ψ(Ee) on the right-hand side is the total internal
energy density which comprises the chemical and elastic
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contributions. It is dependent only on the elastic component of
the strain and the transformation deformation gradient Ft (if any)
does not contribute to it. The second term represents the external
work per unit reference volume expended in moving the
boundaries of the system and bringing it into the current state of
existence against external loads maintained at the current level. It
is thus dependent on the total deformation gradient F consisting
of the elastic (Fe) and transformation (Ft) components. P is the
first Piola-Kirchoff (PK) stress tensor in the reference config-
uration (See Supplementary Notes for remarks on the enthalpy
equation).

The thermodynamic restrictions yield the constitutive stress
response P ¼ Fe

∂ψ
∂Ee

F�T
t . Note that PFT

t ¼ Fe
∂ψ
∂Ee

is in-fact the first
PK stress defined in the intermediate stress-free transformed
configuration. So in principle for a prescribed P, the constitutive
relation (as a black-box either DFT, molecular statics, or elastic
tensors) and the transformation deformation gradient Ft; one can
numerically determine h. Instead of prescribing P we can also
prescribe the Cauchy or true stress σ (symmetric) in the deformed
configuration as done in the current work. The Cauchy stress is
related to the first PK stress in the reference configuration
through σ ¼ J�1PFT ¼ J�1PFT

t F
T
e where J ¼ det F. Thus com-

putation of enthalpy for a given σ and Ft (if any) can be carried
out in a self-consistent manner: the strain with respect to the
stress-free state, Ee is iteratively corrected until the stress in the
current configuration converges to σ, yielding the elastic defor-
mation Fe and P (through σ and F) (See Supplementary Meth-
ods). In DFT calculations we directly obtain ψ(Ee) and in the case
of (nonlinear) elasticity, knowledge of Fe enables us to compute
the elastic strain energy contribution to ψ(Ee) with the chemical
contribution in the stress-free state coming from DFT. The
external work term in Eq. (2) can be computed from P and F.

A PT from α to β is energetically feasible if it minimizes the
enthalpy. As an example, we explicitly examine stress-induced
PTs in Fe (bcc→ hcp), Ni (fcc→ hcp), and Ti (hcp→ fcc). While
the effect of pressure on PTs in Fe has been widely reported; the
effect of shear on transformation pressures25 is unquantified.
Although stress-induced PTs have been reported in Ti, Ni is a
more extreme example since stress/p-induced PTs have not been
reported; nonetheless recent experimental observations of hcp
grains in ultra-high-strength, nanocrystalline Ni32 make this an
interesting case. Under hydrostatic compression, the enthalpy of
hcp Ni is always higher than fcc Ni, while hcp Fe has lower
enthalpy than bcc Fe for p > 9.58 GPa44 (See Supplementary
Figs. 1, 2 and 3). Although we focus on these three examples, our
approach is general and is applicable to all materials that undergo
displacive PTs. We consider the enthalpy density h of α and β

phases in the full six-dimensional stress-space; and provide a
simple procedure to identify thermodynamic PTs for all stresses
and all crystal orientations of the parent phase α. Given the high
dimensionality of the problem, we apply a nonlinear elasticity
approach to guide quantitative DFT calculations.

We consider PTs between the α and β for a specific crystal-
lographic orientation relationship (OR); as discussed below,
relatively few ORs are experimentally observed between a pair of
phases in diffusionless PTs. The common experimental obser-
vations of specific ORs implies that (i) such transformations are
thermodynamically allowed and (ii) kinetically preferred (suffi-
ciently low barriers).

The orientation of a crystal may be described as an ordered set
of three rotations (e.g., Euler angles), an axis-angle pair, or an
orientation matrix g∈ SO(3). The orientation of β relative to α is
represented by Δgαβ. The α− β OR may also be specified in terms
of a set of parallel planes (hkl)α ∥ (hkl)β and directions [uvw]
α ∥ [uvw]β in the two crystal phases. Depending on the α and β
crystal symmetries, multiple variants of β are possible for a given
OR with α; hence it is a set of relative orientations {Δgαβ} whose
elements are related by α and β symmetries.

The first task is to be able to evaluate h of an oriented crystal as
a function of stress. We express stress in principal stress-space
(i.e., Haigh-Westergaard space), where any stress is expressed as a
principle stress triplet σ= (σ1, σ2, σ3) (see Fig. 1a) or as σ= (r,
θ, p) (see Fig. 1d). The same basis vectors of the stress-space are
taken to express the orientations of the crystals. The enthalpy
density hα(σ) of α grain with orientation gi may be evaluated
using any method: elasticity, molecular mechanics, DFT, .... in
conjunction with Eq. (2). Note that the state of stress σ in grain is
dependent on the stress triplet σ in the stress-space and the grain
orientation g. Thus σ= σ(σ, g) is obtained through a change of
basis. The pressure (p ¼ �ð1=3ÞTrðσÞ) axis corresponds to the
direction σ1= σ2= σ3 in stress-space; perpendicular to this axis
are deviatoric (shear stress) planes. Any stress state can be
decomposed into two parts: a distance along the p-axis and a
vector lying in the corresponding deviatoric plane (see Fig. 1a).
The deviatoric stress magnitude is the length of this vector (von
Mises stress is

ffiffiffiffiffiffiffiffi
3=2

p
its length).

Since plasticity in most metals is controlled by dislocation
motion and such a motion is driven by shear, we may represent
the onset of plastic deformation as a closed contour on the
deviatoric stress plane (i.e., the intersection of the yield surface
with the deviatoric plane); the contour shape depends on p. For
elastic-ideally plastic material, the crystal will be purely elastic
inside this contour, and stresses outside it are unrealizable. The α
and β yield strength contours, σαy and σβy , are shown schematically

Fig. 1 A schematic of the feasible phase transformation domains in stress-space. a Three dimensional principal stress-space represented by the σ1, σ2,
and σ3 principal stress axes (σ1= σ2= σ3 is the p-axis, deviatoric planes are perpendicular to this axis). Panels b, c show envelopes outside of which α and β
flow (yield) on a particular deviatoric plane. The axes σ 01; σ

0
2 and σ 03 are projections of stress-space axes σ1, σ2, and σ3 onto the deviatoric plane. As the

material is strengthened, the yield envelopes, σαy and σβy , expand towards the theoretical strength limits σαy;th and σβy;th. d Stress-space regions for which
α→ β PTs are feasible (shaded light green). The PT onset boundary is shown in dark green.
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in Fig. 1b, c. The contours have three-fold rotation symmetry and
three mirrors; the irreducible deviatoric stress domain is high-
lighted in yellow (See refs. 45,46 for a general discussion of stress-
space and its structure). As the strength of the material increases,
the yield surfaces expand outwards toward their theoretical limits
σαy;th and σβy;th. Note, that while metals commonly deform by
dislocation motion, this is less common in ceramics. In ceramics,
and some metals, twinning is also important and failure by
fracture may precede the onset of these deformation mechanisms.
Here, we only consider the effect of stress on PTs.

The next task is to identify “feasible” transformation domains
in stress-space; i.e., the set of stresses for which an α grain can
transform to a β variant. A transformation is “feasible” if at a
point in stress-space there is at least one α grain for which a
transformation to a suitably oriented β grain (respecting the
transformation mechanism; OR) lowers h. Figure 1d shows fea-
sible PT domains (light green) on the pi deviatoric plane and the
α and β yield envelopes. Since stress states outside the yield
envelope are inaccessible, PTs outside these envelopes are unac-
hievable. Hence, α→ β PTs can only occur for stress states (light
green) that lie within both yield envelopes. The PT onset is given
by the inner boundary of the feasible transformation domain
(highlighted in dark green). Of particular interest are points on
this boundary closest to the p-axis; these stress states are the
minimum deviatoric PT stresses at pi.

We consider PTs within a polycrystal in which each grain is
described in terms of its crystallographic orientation; in this
sense, a polycrystal is a distribution of grain orientations. Firstly,
in principle, we can evaluate hα for all possible grain orientations
g∈ SO(3) and stresses σ in the stress-space. For each α grain with
an orientation g, we can find relative orientations and transfor-
mations of all possible daughter variants obtained through a PT
mechanism (i.e., OR). Thus, in principle, we can also evaluate the
enthalpies hβ of all daughter variants obtained from each
parent grain.

In the stress-free state, all grains of a phase have the same
enthalpy density h= ψ(Ee= 0). This is shown by Dirac-delta
functions in Fig. 2a. When a stress is applied, say to all grains in α
phase, since h is a function of grain orientation (all crystals are
anisotropic); this implies that the distribution of h for a poly-
crystal broadens and also shifts to the left as shown by the blue
curve in Fig. 2b.

For understanding, we also schematically show the enthalpies
of all daughter grains β obtained through an OR from each of the
parent grains. This distribution in shown by the red curve in
Fig. 2b. But in contrast to the parent blue curve, a pronounced
feature of the daughter curve is that it shifted to the left. This is
due to the additional contribution to the external potential term
due to the transformation strain apart from elastic straining (see
the second term in Eq. (2)). Monotonically increasing the applied
stress further broadens the distributions and shifts them to the
left (cf. Fig. 2b–d). It may also lead to overlap between the dis-
tributions (see Fig. 2c). PTs are more likely when more overlap
occurs (Fig. 2d).

In Fig. 2b, the enthalpy of each β grain is larger than that of any
α grain (no α→ β PT). Increasing stress increases the overlap
between the h distributions (Fig. 2c, d), implying that some β
variants corresponding to an α may have lower enthalpies at this
stress. For a specific OR between α and β phases, a parent grain gαi
(represented by the vertical blue bar in Fig. 2d) may only transform
to the subset of grains β that are consistent with the OR (the dark
red vertical bars in Fig. 2d). At any stress σ the fraction of α grains
that may transform to β is obtained by evaluating the possibility of
PT for each parent grain. For fcc→ hcp PTs, the most commonly
observed ORs are basal and prismatic and for bcc→ hcp PTs the

most widely observed OR is associated with the Burgers mechan-
ism (as summarized in Table 1). The corresponding deformation
gradients47Ft describing the PT are given in Supplementary
Methods. The approach to PTs described here is applicable to any
material and any OR (including twinning with no phase change).

Results
We now apply this method to understand the effects of applied
stress on PTs in iron, nickel, and titanium. In each case, we pose the
following questions: For which stress states σ does the PT occur?
What is the smallest deviatoric stress that can initiate this PT? What
is the effect of deviatoric stresses on PT as a function of p? What
fraction of the grains transform at a point σ in the stress-space?

Figure 3 presents the smallest shear (von Mises) stress needed
to induce a PT in each metal as a function of pressure. The von
Mises stress required to induce a PT in Fe decreases almost lin-
early with increasing pressure and goes to zero p= 9.58 GPa (the
isentalphic pressure of bcc and hcp phases, see Supplementary

Fig. 2 A schematic of stress dependence of the enthalpy density
distribution. a At zero stress, all grain orientations have the same enthalpy
density equal to the chemical binding energy density of the stress-free state
ψ(Ee= 0). b–d Enthalpy density distributions for increasing stress.
d Transformation from a parent grain (blue bar) with orientation gαi to
variants in daughter phase orientations restricted by an OR (red bars).

Table 1 Basal and prismatic orientation relations for fcc–hcp
and the Burgers orientation relation for bcc–hcp PTs.

Type Orientation relation

Basal 111f gfcc k 0001f ghcp 110
� �

fcc k 1120
� �

hcp

Prismatic 110
� �

fcc k 1010
� �

hcp 001h ifcc k 0001h ihcp
Burgers 110f gbcc k 0001f ghcp 111

� �
bcc k 2110

� �
hcp
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Fig. 1). From our data the relationship between the pressure and
minimum σvm in Fe is given by pPT= 9.56− 1.05σvm GPa. Thus
the transformation pressure decreases with increasing shear; i.e.,
the trend observed in experiments25,26. Figure 3 demonstrates
that the nonlinear elasticity estimates (red) of the onset of the PT
in Fe is in close agreement with the more accurate DFT calcu-
lations. The nonlinear elasticity predictions slightly overestimate
the true PT stresses; the deviation decreases with decreasing shear
stress. This is consistent with the finite order of the nonlinear
elasticity calculations.

The smallest shear stress required to induce a fcc→ hcp PT in
Ni (Fig. 3) shows that (i) no PT is observed in the absence of
deviatoric stress at any pressure (examined), and (ii) the shear
stress required to induce PT is very insensitive to pressure. These
observations are associated with the fact that both the parent fcc
and daughter hcp phases in Ni are close-packed and have a very
small difference in volume per atom, unlike the bcc→ hcp PT in
Fe. In Ni, the transformation is shear-dominated (basal mechan-
ism). Here we consider only basal mechanism fcc – hcp PTs. The
fcc→ hcp PT generally occurs at much lower shear stress in Ni,
than the corresponding bcc→ hcp PT in Fe (except at very high
compression). This implies that nonlinear elastic prediction of the
transformation stresses represents a better approximation (of the
DFT results) in Ni than in Fe. Nonetheless, the nonlinear elastic
predictions again overestimate the true (DFT) results.

The transformation stress trends for hcp→ fcc in Ti are similar
to those for fcc→ hcp PT Ni, Fig. 3. This is because, like Ni, the
two phases of Ti have nearly the same volume per atom. How-
ever, the shear stress required for the hcp→ fcc PT in Ti is more
than 30% larger than for the fcc→ hcp PT in Ni. Normalized by
the appropriate shear modulus, this difference is even larger. This
can be understood by considering the large enthalpy difference at
zero pressure between fcc and hcp phases in Ti ( ≈ 0.058 eV/
atom) as compared to the zero pressure enthalpy difference
between hcp and fcc phases in Ni ( ≈ 0.024 eV/atom).

Figure 4 shows the percentage of parent grains that will
transform to the daughter phase on the deviatoric plane at several
pressures for Fe (bcc→ hcp), Ni (fcc→ hcp), and Ti (hcp→ fcc)

based upon the nonlinear elasticity calculations. These data are
based upon a Sachs model prediction (i.e., assumes all grains are
at the same stress) and hence represent a lower bound on the
transformation stresses. As seen in Fig. 3, the Ti and Ni results are
nearly pressure-independent, while the fraction transformed is
strongly pressure-dependent in Fe where the bcc and hcp phases
have very different densities. No data are shown for Fe for
p < 3.5 GPa since there is no bcc→ hcp transformation. The
dashed and solid white lines represent the stress for the onset of
transformations based upon the DFT and nonlinear elastic pre-
dictions. These lines are close together, indicating again that the
nonlinear elastic solution is in excellent agreement with the DFT
predictions. These plots for all materials (including Fe) exhibit the
three-fold symmetry of stress-space.

The recent experimental observations of Luo et al.32 in poly-
crystalline Ni with a gradient in grain size down to a few nan-
ometers (formed by cryogenic surface mechanical grinding),
showed that grains larger than 17 nm were fcc but some grains
smaller than 17 nm were entirely hcp. The grain refinement
during high-intensity cryogenic grinding likely occurs through
extensive plastic deformation, leaving the near-surface region with
biaxial stresses of order of the yield stress. The hardness of 17 nm
grain size regions was ~6 GPa; assuming the yield stress is ~1/3 the
hardness, this suggests a yield strength of ~2 GPa. Our theoretical
prediction for the onset of fcc→ hcp transformations is ~1.6 GPa.
Given the rough nature of the experiment-based yield strength
estimate, this is in excellent agreement. Luo et al. further showed
that regions with smaller grains had higher hardness/yield
strength and observed that the fraction of grains that were hcp
were larger—again consistent with Fig. 4d–f. Our calculations
slightly overestimate the fraction of grains transformed, compared
with the experiments. This may be attributed to the crude estimate
of yield stress from the hardness measurements and our over-
estimation of the fraction of grains transformed based upon the
Sachs assumption (uniform stress) and nonlinear elasticity.

Discussion
While PTs in many materials are known to occur at large pres-
sures, experimental observations of PTs driven by large shear
stresses are rare. This is largely because the magnitude of physically
realizable shear stresses is limited by the strength of the material.
Advances in materials science have made ultra-high strengths
increasingly achievable. This points to the increasing importance of
shear-driven PTs. Such PTs are currently being exploited to
toughen modern alloys3,4. Shear-driven PTs are also widely
observed at relatively low stress, e.g., in shape memory alloys and
multiferroic oxides48, giving rise to large strains prior to failure.

A particularly interesting case is Fe, which shows a pressure-
induced bcc→ hcp PT over a wide range of pressures
(8.6 ≤ p ≤ 15.3 GPa)25,26. Thermodynamically, this PT should
occur at a single pressure; our DFT calculations suggest this
occurs at p= 9.58 GPa (also see ref. 44). Several researchers have
suggested25–28 that this large pressure range may be associated
with the presence of shear in the experiments. Our theoretical/
computational results demonstrate that the critical pressure can
be reduced by the application of shear stresses from the shear free
value of p= 9.58 GPa. The smallest transformation pressure
observed in experiments was 8.6 GPa26. Based on our calcula-
tions, the shear stress required to decrease the transformation
from 9.58 to 8.6 GPa is ~1 GPa. Given that the theoretical
strength of Fe is ~7.5 GPa49, a yield stress of 1 GPa is readily
achievable in some grains in nanocrystalline samples. For a single
crystal, however, the shear stress must be applied in a favorable
direction relative to the crystal orientation; applying the shear in
the “wrong” sense could raise the transformation pressure.

Fig. 3 The minimum von Mises stress for the onset of phase
transformation. The points on the PT onset boundaries closest to the p-
axis for various pressures are computed for PTs in Fe, Ni and Ti using
nonlinear elasticity and DFT.
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The recent experiments on cryogenic surface mechanical
grinding of Ni (grain sizes as small as 2 nm) showed the existence
of grains that were entirely hcp while neighboring grains
remained fcc32. This is surprising since bulk experiments show no
p-induced fcc→ hcp PT up to 200 GPa33 (theoretical calculations
suggest none below 51 TPa50). However, small grains are ultra-
high strong because of classic grain size strengthening and dis-
location starvation. In a microstructure, where the mean grain
size is less than 10 nm, only 5–10% of the grains were observed to
be hcp with an increasing fraction with decreasing grain size. The
hcp grains did not transform back to fcc upon annealing (1 h at
773 K) suggesting that the hcp crystal structure is thermo-
dynamically preferred (as argued here) or, at least, deeply
metastable.

Since the volume per atom in the hcp phase of is only 0.3%
larger than fcc Ni under stress-free conditions, it is not surprising
that no fcc→ hcp PTs occur at high hydrostatic pressure in the
absence of shear. The present results, however, suggest that Ni
can transform from fcc→ hcp under the application of shear
stresses ~1.4 GPa at p= 0. Such a transformation can only occur

for a limited range of stress states and for a fraction of the grains
in the polycrystal (depending on grain orientation). This is con-
sistent with the experimental observation that no more than 10%
of the grains were hcp.

In summary, we proposed an approach for exploring the effect
of the entire stress tensor on phase stability that is applicable to all
materials systems. It is multiscale, in the sense, that it is DFT-
based, but is guided by nonlinear elasticity calculations (para-
meterized by DFT). As the strength of materials continues to rise
through innovations in microstructure and alloy development,
the role of shear stresses in inducing PTs becomes increasingly
significant; in some cases, more important than pressure. Our
predictions are validated by comparison with experiments for
different allotropic PTs in (1) Fe (for which there is copious data
on p-induced PTs) and (2) Ni (where pressure has little effect on
PTs) and (3) Ti (where some experimental evidence exists). In
most practical situations, our approach can be applied through
the application of nonlinear elasticity and DFT calculations are
only required to determine higher-order elastic constants (extant
experimental data are of variable quality). This means our

Fig. 4 Percentage of transformed grains under stress. The polycrystal is un-textured and the phase transformation is computed from nonlinear elasticity
using Sachs model. Panels a–c for bcc→ hcp PT in Fe, d–f for fcc→ hcp PT in Ni, and g–i for hcp→ fcc PT in Ti.
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approach is sufficiently efficient for application in material design
and exploration, including the balancing of microstructure/
alloying-based strengthening with PT-based approach for balan-
cing high strength and high toughness.

Methods
We present a multiscale methodology for predicting the stress conditions for which
PTs can occur in polycrystalline materials. In particular, we describe the construction
of the α→ β PT boundary in stress-space (Fig. 1d). Since PTs may occur at large
stress, accurate and reliable calculation of the PT conditions is only possible through
first principles (DFT) calculations. Linear elasticity computations can provide useful
guidance but are unreliable at large stresses/deformations since the elastic constants
usually are fitted to small strains to reproduce the stress-strain response around the
equilibrium configuration. Similarly, atomistic calculations are unreliable since
interatomic potentials are routinely fitted to (near) equilibrium data. Compared with
these methods, DFT calculations are computationally expensive. Identifying stress
states for feasible PTs involves calculating h for all possible α grain orientations and
all possible β orientations (related through an OR) at each point σ in the stress-space.
Clearly, this is not computationally tractable using DFT.

Rather, our approach is to first determine the PT onset boundary using non-
linear elasticity calculations and use the result to guide the DFT calculations. We
proceed as follows:

● Determine the ground state energies, second and third-order elastic
constants of α and β using DFT (see Supplementary Figs. 4 to 9 and
Supplementary Methods).

● For each point σ in stress-space, determine if at least one grain transforms
as follows:

1. For each parent grain orientation gα determine hαelðσÞ (subscript “el"
indicates value obtained from nonlinear elasticity) and the corresponding
hβelðσ; FtÞ of all possible β grain variants gβ within the OR.

2. If the enthalpy density of a β grain variant is less than the parent α grain, the
α → β PT is feasible.

3. Label the stress point as feasible.

● The inner envelope of the feasibility region (union of all feasible stress
points) is the elastic PT onset boundary.

● Determine the PT onset boundary with DFT (see below) for (nonlinear)
elastically determined grain orientations—highest enthalpy density grain
gαel and its lowest enthalpy density variant gβel at each point on the elastic PT
onset boundary.

Each point on the PT onset boundary in stress-space corresponds to specific
grain orientations, gαel and gβel. While the nonlinear elastic determination of the α
and β energies is not accurate at large stresses, the nonlinear elastic predictions of
which grain orientations have the maximum or minimum energies are reliable. To
verify this, we compare the energies of several randomly oriented bcc Fe grains via
both third-order elasticity and DFT for several stress states. As shown in Supple-
mentary Fig. 10 and described in Supplementary Methods, nonlinear elasticity
provides an excellent ordering of the energies of differently oriented grains.

The reliability of the nonlinear elasticity orientation predictions allows us to
focus on the DFT determination of the PT boundary as a function of stress-state as
follows: (1) Assume grain orientations gαDFT ¼ gαel and gβDFT ¼ gβel. (2) Describe a
point on the deviatoric plane at pressure p by (r, θ) where r= τ is the deviatioric
radius; calculate hαðσðσðr; θ; pÞ; gαDFTÞÞ and hβðσðσðr; θ; pÞ; gβDFTÞ; FtÞ of the oriented
α and β grains. (3) If along some radius r(θ), hβ(r)= hα(r) this is the PT onset (at
θ). The locus of all such points corresponds to the PT onset boundary on each
deviatoric plane. For some θ, no PT occurs, while in others, either the α or β phases
may reach the DFT theoretical yield (crystal loses stability) prior to PT (in such a
case, no PT will occur). Similarly for each phase, the locus of points corresponding
to the loss of stability determines the (DFT) theoretical strength of the material for
those grain orientations, gαDFT and gβDFT (See Supplementary Methods for a detailed
discussion on the identification of phase transformation (PT) onset boundaries).

All DFT calculations were performed using the plane-wave basis DFT code,
VASP51 with projector augmented wave (PAW) potentials52,53 in the PBE gen-
eralized gradient approximation (GGA)54. We employ a plane-wave energy cutoff
of 700 eV, electronic self-consistency convergence tolerance of 10−8 eV, and a
force convergence tolerance of 10−4 eV/Å for structural relaxation for Ni, Ti, and
Fe in phase transformation calculations. For the calculations involving Ti and Fe
we incorporate 3s, 3p, 3d, and 4s as valence states, and for calculations involving
Ni we incorporate 3p, 3d, and 4s as valence states. Stress control is achieved
through iterative rescaling of the supercell size and shape until convergence to the
applied stress is achieved.

Data availability
The authors declare that the main data supporting the findings of this study such as the
lattice parameters, elastic constants, orientation relations, and transformation strains, are
available within the paper and the supplementary information. Any additional data that

support the findings of this study are available from the corresponding author upon
request.
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