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Designing 1D correlated-electron states by
non-Euclidean topography of 2D monolayers
Sunny Gupta 1, Henry Yu2 & Boris I. Yakobson 1,3,4✉

Two-dimensional (2D) bilayers, twisted to particular angles to display electronic flat bands,

are being extensively explored for physics of strongly correlated 2D systems. However, the

similar rich physics of one-dimensional (1D) strongly correlated systems remains elusive as it

is largely inaccessible by twists. Here, a distinctive way to create 1D flat bands is proposed, by

either stamping or growing a 2D monolayer on a non-Euclidean topography-patterned sur-

face. Using boron nitride (hBN) as an example, our analysis employing elastic plate theory,

density-functional and coarse-grained tight-binding method reveals that hBN’s bi-periodic

sinusoidal deformation creates pseudo- electric and magnetic fields with unexpected spatial

dependence. A combination of these fields leads to anisotropic confinement and 1D flat

bands. Moreover, changing the periodic undulations can tune the bandwidth, to drive the

system to different strongly correlated regimes such as density waves, Luttinger liquid, and

Mott insulator. The 1D nature of these states differs from those obtained in twisted materials

and can be exploited to study the exciting physics of 1D quantum systems.
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Recently, twisted bilayer graphene (TBG) at magic angles1,2

and other van der Waals (vdW) heterostructures at small
twist3,4 have garnered great attention as material platforms

for realizing 2D correlated physics with an unprecedented level of
control. Several interesting electronic phases have been observed in
these systems, such as correlated insulator2,4, superconductivity1,5,
non-trivial electronic topology6, and magnetism7,8. Physically,
these emergent phases can be attributed to the existence of the
Bloch flat bands9,10, where the kinetic energy scale is quenched, and
the role of electronic interactions is enhanced. The flat bands ori-
ginate from the perturbation of the electronic structure by the long-
wavelength superlattice (moiré) period, which suppresses the group
velocity in TBG at magic angles11,12 and creates electronic con-
finement in other vdW heterostructures13–15. The moiré periods
arise from either lattice mismatch or rotational misalignment
between the layers with fine-tuning of the twist, posing challenges16

in fabrication, variability between devices, and scalability. More-
over, examining the rich unexplored physics of 1D strongly cor-
related systems, likewise, is largely inaccessible by twists.

Below we describe creating flat bands through an alternative
route, not requiring a twist angle. The strategy involves either
growing17 or stamping18 a 2D material on a topographically
patterned substrate with non-zero Gaussian curvature, that is
non-Euclidean surface, Fig. 1a. To conform to such surfaces, a
planar 2D crystal must deform, so the undulated topography
imparts strain. Strain is known to perturb the crystal Hamilto-
nian through a deformation potential19, to a magnitude pro-
portional to the strain, which in turn is determined by the
topography of the surface. A periodic strain modulation will
create a confining potential, which–if strong enough–can localize
electrons and result in modulated super-lattice band whose
bandwidth depends on the surface’s specific geometry. Hence,
patterned surfaces with specific topography can, in general,

create and fine-tune flat bands in any 2D semiconductor mate-
rial. To the best of our knowledge, creating either 2D or 1D flat
bands in monolayer semiconductors by undulation has not been
discussed before.

We illustrate this idea by theoretically investigating the elec-
tronic properties of monolayer hexagonal boron nitride (hBN)
deformed by a bi-periodic sinusoidally modulated topography.
Interestingly, strained hBN attains both pseudo-electric field EP
(by virtue of deformation potential) and also (having a honey-
comb lattice, like graphene, with two inequivalent basis atoms)
pseudo magnetic field BP20. We find that for bi-sinusoidal
deformation, EP and BP have very different spatial dependence. A
combination of these leads to anisotropic confinement and cre-
ates one-dimensional (1D) flat bands, whose bandwidth can be
varied by the surface topography. The 1D nature of these states
can be exploited to probe the exciting physics of one-dimensional
quantum systems, which have been predicted to exhibit inter-
esting effects21 such as Luttinger liquid behavior, charge and spin
density waves, Peierls instability, and deviation from Fermi-liquid
theory. The origin and nature of these 1D states are different from
the 2D flat bands observed in TBG and twisted vdW hetero-
structures, opening an exciting realm of exploring many-body
effects in 1D quantum systems in a clean and controllable
manner.

Results
A 2D material conformed to a curved non-Euclidean surface
undergoes a locally in-plain strain, which can be evaluated at a
continuum level (for relatively smooth topography) by solving
the second Föppl–von Kármán (FvK) equation22, Δ2χ=−
Y(fxxfyy− fxy2). Here χ, Y, and f, are the Airy stress function,
Young’s modulus, and the surface shape function, respectively.
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Fig. 1 Design scheme to create flat bands using mechanical deformation induced pseudo-electric and magnetic fields. a A 2D material stamped on a
topography with bi-periodic sinusoidal height-modulation, causing in-plain strain. b Relaxed h-BN geometry and strain field ε≡ uii at undulation aspect ratio
A= 0.079. The left panels in c, d map the pseudo-magnetic (BP) and pseudo-electric potential (φp) fields, respectively; the right panels show the values of
the respective fields along x= const, marked by a white dashed line on the left.
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We consider bi-periodic sinusoidally modulated off-plane shape
f(x,y) = hsinαx·sinαy, with α= 2π/L, akin to egg-cart, L and h are
the undulation period, and amplitude, respectively. The dis-
placement (ux, uy) and imparted strain (uij) fields were solved
analytically from the FvK equation for the sinusoidal surface (for
details see Methods section and Supplementary Note 1). The
maximum tension or compression for this geometry depends on
the aspect ratio A= h/L, as ε= |uii,max|= π2A2(1− ν)/2, where
ν= 0.31 is the Poisson’s ratio for hBN and uii= (uxx+ uyy)/2. A
relaxed atomic structure of a sinusoidal hBN can be further
constructed from the solved displacements ux and uy, as in
Fig. 1b, for A= 0.079, where color shows uii (for details see
Supplementary Note 3). As expected, the hilltops and valley-
bottoms are stretched while the saddle areas are compressed, to
an amplitude ε~2.12%. We note here that, generally, the material
strain depends on both the surface shape f(x,y) and boundary
conditions (in case of growth, also on the chemical potential μhBN,
controlled by the growth conditions). Here we allow full relaxa-
tion to minimize elastic energy while accommodating the sub-
strate topography, that is no forces at (remote) layer’s perimeter
and no friction to the substrate. This corresponds to “stamping”
the 2D material onto the frictionless matrix, when the layer
contracts laterally, with non-negligible displacements ux, uy (see
Supplementary Note 1).

Analogous to graphene23–26, the strain in hBN generates
pseudo- electric and magnetic fields20,23, significantly perturbing
the crystal Hamiltonian. The low energy effective Hamiltonian in
strained hBN in the vicinity of the K points is given by

HðτÞ ¼ _vFσ
ðτÞ � ðk � τApÞ � eφp ð1Þ

where vF= 3|t|a/2, |t| is the nearest-neighbor (NN) hopping
amplitude, and a is the interatomic distance. σ(τ)=(τσx,σy,σz) are
defined in terms of the three Pauli matrices, and τ=+1 (−1) for
K (K’). k= (kx,ky,Δ), where ħvFΔ is the difference in sublattice
potential between B and N atoms, and kx,y is the electron crystal
momentum measured relative to K or K’. Ap is the pseudo-vector
potential caused by shear, Ap= (β0/√2a)[(uxx− uyy)/2,− uxy],
where β0= (a/t)∂t/∂a=−3.3. φp is the pseudo-electric potential
(PEP) arising due to the hydrostatic component of strain, φp=
−guii, where g ≈ 3.66 V27. Accordingly, these potentials generate
pseudo-electric field (PEF) Ep=−∇φp and pseudo-magnetic field
(PMF) Bp= Bpz, where Bp= (ħ/e)(∂xAp,y− ∂yAp,x) and z the unit
z-vector. One can already recognize that these additional pseudo
fields in the Hamiltonian, arising due to strain, act as a perturbing
confinement potential.

The strain fields obtained for sinusoidal surfaces allow us to
derive the analytical expressions for pseudo electric and magnetic
fields (for details see Supplementary Note 2).

φp ¼ gðð1� νÞ=16Þh2α2ðcos 2αx þ cos 2αyÞ ð2aÞ

Bp ¼ �ðβ0_=p2aeÞðð1þ νÞ=8Þh2α3 sin 2αy ð2bÞ
Figure 1c, d shows the PMF and PEP for A= 0.079, and
L= 6.35 nm. The spatial dependence for both fields is different
and surprisingly, PMF depends only on y (Fig. 1c). It is known28

that periodic magnetic fields can lead to confinement and create
localized electronic states. Similarly, we expect that for sinu-
soidally modulated hBN, a combination of both PEP and PMF
will create flat bands. Sections of these fields along y-direction, at
x= const are plotted in the right panels of Fig. 1c, d. The periodic
PMF has an amplitude of Bp,max~420T, which corresponds to
confinement energy of ~2μBBp,max= 49 meV, while the periodic
PEP corresponds to confinement energy of ~76 meV. We will
show that different spatial dependence of PMF and PEP leads to

anisotropic confinement and results in the interesting electronic
nature of the flat bands.

We next calculate the electronic bands of our topographically-
strained hBN, using density-functional based tight-binding
(DFTB) theory with a local orbital basis29. DFTB has been suc-
cessfully applied to study various forms of hBN15,30, for which
DFT calculations are intractable (see Supplementary Note 4 for
details).

Monolayer hBN honeycomb lattice is akin to graphene, yet the
different basis atoms break the sub-lattice A-B symmetry, and an
energy gap opens, making hBN an insulator. The undeformed
monolayer hBN shows a band gap of ~3.55 eV. Figure 2a shows
the band structure under bi-sinusoidal strain, with A= 0.079,
ε= 2.12%, and L= 6.35 nm. The Brillouin zone is defined based
on the shape function. One can see additional bands appearing in
the gap, looking like defect states which might arise due to
electronic confinement. We find that the bandwidth (W) of the
lowest unoccupied states (shown in red) is W= 39meV, which is
very small, and it is a flat band; in comparison, the effective W of
pristine BN bands corresponding to nearest neighbor hopping
t~2.16 eV20 isW~4t= 8.6 eV, which is much larger than theW of
the modulated flat bands. These flat bands are well separated by
>100 meV from the other states at higher energies. Interestingly,
the bands are dispersive along Г-X and almost non-dispersive
along R-X, which corresponds to kx and ky directions, respec-
tively. This makes these flat bands one-dimensional and very
different from those seen in TBG and other twisted vdW het-
erostructures. The band decomposed charge density |Ψnk|2 in
Fig. 2b corresponds to one of the eigenstates at Г point. The
electronic states are delocalized along the x- but are completely
localized along the y-direction, confirming these flat bands’ 1D
nature (see Supplementary Fig. 6 for the charge density corre-
sponding to the whole flat band, which is similar to Fig. 2b).

The flat bands are composed of 8 electronic states and are
localized mainly on the four extremes of the sinusoidal modula-
tion in Fig. 2b. Figure 2c shows the enlarged view of the flat bands
plotted along X-Г-Y. We find that the flat bands dispersion and
charge modulation can be described by a simple “coarse-grained”
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Fig. 2 Electronic structure of modulated hBN. a Calculated electronic band
structure of sinusoidally deformed hBN, A= 0.079. The marked red defect-
like flat bands are due to electronic confinement caused by deformation.
n= 1, 2 correspond to the first and second eigenstate of the confinement,
respectively. The n= 1 and 2 bands are dispersive and connected along the
Г-X direction, while they are flat along the R-X direction. The splitting along
the R-X direction of both n= 1, 2 states is due to interactions along the x-
direction. Yellow-shaded areas mark the bands of pristine hBN with gap in
between. b The band decomposed charge density corresponding to one of
the flat bands at Г point |Ψnk | 2 shows the one-dimensional electronic
nature of the bands. c An enlarged view of the flat bands, red in (a), plotted
along X-Г-Y. The solid red line is the fit with a 8-band tight-binding model.
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8-band tight-binding (TB) Hamiltonian,

H ¼ Σxtxc
y
x;ycxþ2;y þ Σytyc

y
x;ycx;yþ1 ð3Þ

where tx and ty are hopping amplitudes along x-, and y-direction,
respectively (for details see Supplementary Note 5). The 8 bands
arise from the states localized on the 2 maxima and 2 minima,
and each of them being doubly occupied. The maxima and
minima act as artificial “quantum dots”. Fitting this TB model to
DFTB results gives |tx|= 8.9 meV (~W/4) and |ty|= 0.9 meV. The
ratio of hopping along x-, and y-direction is |ty|/|tx|= 0.1, again a
manifestation of one-dimensionality of the electronic states. This
is quite surprising at first, because the strain pattern appears to be
isotropic along the x and y-direction (Fig. 1b).

To gain microscopic insights into the reasons behind these flat
bands’ 1D nature, we calculated the electrostatic potential along x
(Fig. 3a) or y (Fig. 3b) while averaged along the other two per-
pendicular directions. The sharp features are due to the approx-
imations used to evaluate the diverging potential near atomic sites
(for details see Supplementary Note 4). The potential rapid
oscillations are due to periodic atomic sites, but a long-range
modulation can also be seen. Gaussian averaging extracts the
long-range modulation (Vconf., red lines in Fig. 3a, b), which is
very different along x- and y-directions: eVconf. along y-direction
has a depth of ~500 meV, larger than mere ~9 meV along x. This
anisotropic confinement is expected because of the different
spatial dependence of PEP and PMF, Fig. 1c, d. The smaller Vconf.

along x-direction is mainly due to contributions from PEP only,
while the larger Vconf. along the y-direction is contributed by both
PEP and PMF. This signifies that the long-range potential mod-
ulations are due to pseudo-electric and magnetic fields, providing
the anisotropic confinement needed to maintain one-dimensional
flat bands. Additionally, the larger confinement energy along y-
direction results in lower hopping amplitude ty in our coarse-
grained model.

We find that the width of these flat bands can be tuned by
changing either the aspect ratio of the topography, to alter the
strain, or the period L of the undulation. Figure 4 shows the
variation ofW as a function of L, and ε.W goes below 10 meV for
L > 8 nm. Moreover, W is found to depend exponentially on both
L, and ε, a good fit W∝ exp(−0.56*L–0.34*ε) is obtained (blue
surface in Fig. 4); this is expected since W effectively corresponds
to the hopping amplitude between the coarse-grained sites,
defined by hybridization/overlap of wave function between them.
Since the strength of hybridization decreases exponentially with
distance L, W is found to show the same dependence. Addi-
tionally, the exponential dependence of W on ε can also be

understood from the well-known dependence of hopping energy
(t) with strain20, t(a)= t0exp(−|β0 | (a/a0−1)), is the hopping
amplitude at the effective bond length a, and (a/a0−1) is its
strain. We point out that flat bands appear even at strain as low as
~1.5%, and these bands are well separated by >70 meV from the
other unoccupied bands above, which makes them accessible to
experiments. Moreover, the quasi-1D nature of these flat bands
remains robust against local strain imperfections (for details see
Supplementary Note 2d) as well as small misorientation between
hBN and the substrate (for details see Supplementary Note 2c).

Discussion
Interesting strongly correlated physics in one-dimension31 is expected
when the ratio of on-site Coulomb interaction U (responsible for
electronic correlation) and the hopping amplitude t is large, U/
4t=U/W > 1. Since U depends inversely on length L, U∝1/L13, and
t∝exp(-|β0 | L)20, the condition U/W > 1 should be easily achievable
for reasonable L. We estimate U for our systems as U= e2/2πκL13,
where L is the length of periodic modulation, and κ= 4.7332 is the
effective dielectric constant of hBN. The red surface in Fig. 4 shows
values ofU.U/W can be enhanced by either increasing the aspect ratio
(strain) and/or increasing the periodic length (Fig. 4). The region in (L,
ε) with U <W is shown by the gray shaded area in Fig. 4. To achieve
strongly correlated phases, where U >W, topography with L and ε
values lying outside of the gray area in Fig. 4 must be chosen.
Depending on the ratio of U/W and band filling, one can expect31

different phases such as Mott insulator (MI), Luttinger liquid, bond
ordered wave (BOW), and band insulator (BI). E.g., at small band
filling, gradually changing U/W from 0 to 2 can change the electronic
phases in order BI→BOW→MI. Accordingly, one should expect
that changing the periodic topography will provide a unique control to
drive the system to different strongly correlated regimes exhibiting
interesting physics. To realize the strongly correlated physics, the flat
bands (Fig. 2a) must be partially filled, perhaps by electrostatic doping,
as routinely done for 2D materials, including twisted bilayer TMDs4,
and graphene2. Long-range ordered quantum phases in 1D tend to get
destroyed due to thermal fluctuations at finite temperature21, hence,
isolated 1D systems are not ideal to realize 1D physics. Importantly,
our predicted system with parallel 1D states (resulting from the quasi
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Fig. 4 Tuning bandwidth by changing topography of undulations. The flat
band width W versus topography period L and strain ε. The blue surface
shows the fitted expression W ∝ exp(−0.56*L–0.34*ε), while the empty
and filled circles are computed values. The red surface shows the estimate
of the on-site Coulomb energy U, which depends on period L. In the (L, ε)
parameter-plane, the outside of a shaded gray is the U >W region where
physics of strongly correlated 1D phases can be realized.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30818-2

4 NATURE COMMUNICATIONS |         (2022) 13:3103 | https://doi.org/10.1038/s41467-022-30818-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


1D flat bands in a 2Dmaterial, Fig. 2b) will suppress such fluctuations,
due to the finite coupling between them21, and will strengthen the
physical effects in 1D, which will help to achieve interesting physics in
1D at finite temperatures.

To realize our predictions in experiments, hBN may be over-
laid or stamped (or possibly grown directly) on patterned sub-
strate, for instance SiO2, having a band gap of ~8.9 eV33, larger
than hBN---so that there are no unwanted hybridization between
hBNs electronic states and the substrate. Fabricating bi-periodic
sinusoidal modulation on silicon is challenging but has already
been attempted34. Delamination from the substrate, if the desired
strain level is high may be a concern; by comparing the surface
pressure due to substrate with the maximal adhesion forces of
hBN to SiO2 with γad~13 meV/Å2 (see Supplementary Note 6),
we estimate that a strain up to ε~2.75% at A~0.09 (see Supple-
mentary Note 3b), should be sustainable in experiments.

In summary, we have shown that deforming a 2D semi-
conducting monolayer with a particular topography having non-
zero Gaussian curvature, can be used as a unique and straight-
forward way to create flat bands and drive the system into dif-
ferent strongly correlated electronic regimes. Topographical
modulation can be created by electron-beam lithography and
does not require accurate fine-tuning of the twist angle and
overcomes several challenges of twisted systems. For hBN as an
example, we show that bi-periodic sinusoidal modulation gen-
erates pseudo-electric and magnetic fields, creating anisotropic
electronic confinement and one-dimensional flat bands. Our
proposed way to create 1D flat bands should be applicable to a
variety of 2D systems like hBN with massive Dirac fermions.
These flat bands are different from those observed with twisted
bilayer graphene and other vdW heterostructures. These bands’
one-dimensional nature will pave the route to study the exciting
physics of strongly correlated 1D systems, thereby going beyond
what’s achievable with twisted materials. In addition to creating
flat bands, substrate engineering can be used to realize intriguing
electronic behaviors such as recently demonstrated electron
optics and the valley Hall effect in undulated graphene35.

Methods
The continuum displacement and strain fields from FvK equations. For a 2D
material over a gently varying topography defined as f(x,y), its structural relaxation,
on a continuum level, is governed by the Föppl-von Kármán (FvK) equation22:

ð∂x2 þ ∂y
2Þ2χ þ Yðf xxf yy � f xy

2Þ ¼ 0 ð4Þ
where subscripts denote partial derivatives. Here χ(x, y) is the Airy stress function
and Y the 2D Young’s modulus. In this work we consider a sinusoidal topography
f(x,y)= hsinαx.sinβy, where h defines the height, and α= 2π/Lx, β= 2π/Ly defines
the lateral periodicity Lx and Ly. Plugging f(x,y) into Eq. (4) we will find

ð∂x2 þ ∂y
2Þ2χ ¼ ðYh2α2β2=2Þðcos 2αx þ cos 2βyÞ ð5Þ

And, integrating twice, we obtain the Airy function as

χ ¼ ðYh2=32Þ½ðβ=αÞ2 cos 2αx þ ðα=βÞ2 cos 2βy� ð6Þ
Integration constants are set to zero to ensure the lowest elastic energy. With the
Airy function, the components of the strain tensor can be obtained as uij= (1/Y)
(εikεjl - νδikδjl)∂k∂lχ:

uxx ¼ ðχyy � νχxxÞ=Y ¼ �ðh2=8Þðα2 cos 2βy � νβ2 cos 2αxÞ ð7Þ

uyy ¼ ðχxx � νχyyÞ=Y ¼ �ðh2=8Þðβ2 cos 2αx � να2 cos 2βyÞ ð8Þ

uxy ¼ 0 ð9Þ

The continuum pseudo-electromagnetic fields from sinusoidal modulation.
With the strain fields solved from above, we can easily obtain the pseudo-fields as

φp = − g(uii/2) = g((1−ν)/16)h2(β2cos2αx+ α2cos2βy)
Ap = (β0κ/a) ((uxx-uyy)/2, − uxy)
Bp = (ħ/e)(∂xAp,y − ∂yAp,x) = −(β0ħ/√2ae)((1+ν)/8)h2α2β sin2αy
The pseudo-fields derived in Eq. 2 can be obtained by setting α= β.

Building the atomic structure. The relaxed 2D materials crystal geometry on
curved surfaces was constructed using the displacement fields of the respective
strain fields. This requires (1) determining the amount of material in the periodic
box and (2) find the correct displacement for each atom. From the definition of the
strain uij= (1/2)(∂iuj+ ∂jui+ ∂if∂jf) we can integrate the components uxx= ∂
xux+ (fx)2/2 and uyy= ∂yuy+ (fy)2/2 and find the displacement fields ux, uy

ux ¼ �ðh2α2=8Þx þ ðh2=16αÞðνβ2α2þ2 cos 2βyÞ sin 2αx ð10aÞ

uy ¼ �ðh2β2=8Þy þ ðh2=16βÞðνα2β2 þ β2 cos 2αxÞ sin 2βy ð10bÞ
which connects the deformed coordinates (x, y) to the reference coordinates (X, Y)=
(x− ux, y− uy). The first linear term in Eq. 10 determines the overall amount of lateral
contraction, and the second term is an oscillating term causing periodic stretching/com-
pression patterns. Hence we can write (Lx-Lx0)/Lx=−(h2α2/8) and (Ly-Ly0)/Ly=−(h2β2/
8), with Lx and Ly the periodicity of the sinusoid and Lx0, Ly0 the periodicity of the original,
reference flake. Plugging in the above definitions α= 2π/Lx, β= 2π/Ly we have (taking
i= x or y) Li2 − Li0Li+ (h2π2/2)= 0

Li ¼ ½Li0 þ ðLi022π2h2Þ
1=2�=2 ð11Þ

The atomic structure can therefore be constructed as the following:

(1) Create a hBN sample with dimensions Lx0, Ly0
(2) Choose desired height h for sinusoid
(3) Solve for the optimal Lx, Ly, or equivalently α= 2π/Lx, β= 2π/Ly for the

sinusoid
(4) Displace each atom from (X, Y, 0) → (X+ ux, Y+ uy, f(X+ ux, Y+ uy))

with ux, uy according to Eq. 10.

DFTB calculation. The electronic structure of the pristine and sinusoidally
modulated boron nitride was calculated using the density functional based tight-
binding approach implemented in DFTB+ using atomic orbital basis. The self
consistent charge calculation was performed using a varying k-grid of
6 × 6 × 1− 12 × 12 × 1 depending on the size of the unit cell. The maximum
angular momentum chosen for B and N atoms was p (l= 1). The pairwise B-B, N-
N, and B-N Slater koster files (parameterization data) were obtained from the
DFTB+29 repository, matsci. The electrostatic potential was estimated by taking
the Mulliken-point charges and superposing the corresponding 1/r potentials as
implemented in the DFTB+ code. In the code, the 1/r potential is modified to
remove the r= 0 divergence, and instead plots 1/√r2+ ε2, where ε= 10−4.

Coarse-grained 8 band tight-binding model. A 8 band tight-binding model was
developed to fit the flat bands shown by red color in Fig. 2a. The 8 bands arise from
the states localized on the 2 crests and 2 troughs, and each of them being doubly
occupied. The crests and troughs act as an artificial “quantum dot”. The TB model
can be described by the following Hamiltonian, H= ΣxtxcϮx,ycx+2,y+ ΣytycϮx,ycx,y+1,
where tx and ty are hopping amplitudes along x-, and y-direction, respectively. The
matrix elements of the 8 × 8 Hamiltonian for the TB model are:

H(1,1)= H(2,2)=H(3,3)=H(4,4)=H(5,5)=H(6,6)=H(7,7)=H(8,8)= 0
H(1,3)=−tx*M*e(ikxa)− tx*conj(M)*e;(−ikxa) H(3,1)= conj(H(1,3))
H(2,4)=−tx*M*e(ikxa)+ tx*conj(M)*e;(−ikxa) H(4,2)= conj(H(2,4))
H(5,7)=−tx*M*e(ikxa)− tx*conj(M)*e;(−ikxa) H(7,5)= conj(H(5,7))
H(6,8)=−tx*M*e(ikxa)+ tx*conj(M)*e;(−ikxa) H(8,6)= conj(H(6,8))
H(1,5)=−ty*e(ikyb)− ty*e;(−ikyb) H(5,1)= conj(H(1,5))
H(2,6)=−ty*e(ikyb)− ty*e;(−ikyb) H(6,2)= conj(H(2,6))
H(3,7)=−ty*e(ikyb)− ty*e;(−ikyb) H(7,3)= conj(H(3,7))
H(4,8)=−ty*e(ikyb)− ty*e;(−ikyb) H(8,4)= conj(H(4,8))
M= e;(−iπ/4)a= Lx/2;b= Ly/2

DFT calculation of adhesion energy of SiO2 on hBN and strain energy of hBN.
A 2 × 2 unit cell of hBN and 7 layers of SiO2 along [001] was taken to create the
hBN|SiO2 slab geometry. The SiO2 slab’s surface was passivated with hydrogens.
The geometry was fully relaxed using first-principles density functional theory
(DFT) implemented in VASP36. Ion-electron interactions were represented by all-
electron projector augmented wave potentials. The generalized gradient approx-
imation (GGA) parameterized by Perdew-Burke-Ernzerhof (PBE)37 was used to
account for the electronic exchange and correlation. A plane wave basis with a
kinetic energy cut-off of 500 eV was used for wave functions expansion and a
Monkhorst-Pack grid of 12 × 12 × 1 k-points was used to sample the Brillouin Zone
(BZ). A vacuum of 20 Å was used along the direction perpendicular to the slab to
reduce the interaction between the periodic images. The structure was relaxed until
the Hellmann-Feynman forces on the atoms were <0.01 eV/Å. The DFT-D2
method of Grimme was used to include van der Waals interaction.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information files. An archive with relaxed BN
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structures at different aspect ratios is deposited on the Zenodo database under accession
code relaxed_structures https://doi.org/10.5281/zenodo.6523272.
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