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Large-scale multi-omics analysis suggests specific
roles for intragenic cohesin in transcriptional
regulation
Jiankang Wang 1,2, Masashige Bando1, Katsuhiko Shirahige1,2,3 & Ryuichiro Nakato 1,2✉

Cohesin, an essential protein complex for chromosome segregation, regulates transcription

through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions.

Moreover, the context-specific roles of cohesin-mediated interactions, especially on intra-

genic regions, have not been thoroughly investigated. Here we perform a comprehensive

characterization of cohesin binding sites in several human cell types. We integrate epige-

nomic, transcriptomic and chromatin interaction data to explore the context-specific func-

tions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin

binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with

transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA

polymerase II, while the others are more correlated to chromatin architecture. DICs are

observed in various cell types, including cells from patients with cohesinopathy. We also

implement machine learning to our data and identified genomic features for isolating DICs

from all cohesin sites. These results suggest a previously unidentified function of cohesin on

intragenic regions for transcriptional regulation.
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Cohesin, a ring-shaped chromosome-bound protein com-
plex, is required for holding sister chromatids together
during certain phases of the cell cycle1. Recent studies

suggest that cohesin also has a role in transcriptional regulation,
maintenance of chromosome architecture2 and DNA repair3.
Context-specific functions of cohesin have been investigated
using chromatin immunoprecipitation followed by sequencing
(ChIP-seq) and high-throughput chromosome conformation
capture (Hi-C). The early study reported that most cohesin-
binding sites overlap with CTCF to function as an insulator4.
Conversely, a group of cohesin has been reported to be CTCF
independent and co-bind with tissue-specific transcription factors
(TFs) to contribute to transcriptional regulation5,6, possibly via
mediating interactions between enhancers and promoters7. Other
studies using Hi-C have shown that cohesin and CTCF are
essential for the formation of topologically associated domains
(TADs), evolutionarily conserved chromatin domains ranging
from a few hundred kilobases to several megabases in length8,9.
These studies focused on cohesin functions with respect to
insulation, or the formation of enhancer-promoter interactions
that implicitly assume the positive regulation of gene expression.
In contrast, a recent report showed that transcription elongation
within gene bodies causes displacement of cohesin binding from
chromatin, leading to disruption of cohesin-mediated loops10.
Thus, a subset of chromatin loops (either end of which may be
located on intragenic regions) mediated by cohesin is suggested to
be negatively correlated with gene activation. While modifications
in intragenic regions affect transcriptional events11–13, the func-
tion of intragenic cohesin has hardly been discussed.

Mutations in the cohesin complex and its loader (NIPBL) are
observed in the cohesinopathy Cornelia de Lange syndrome
(CdLS), a multisystem developmental disorder14, and in multiple
types of cancers15,16. Our previous study found that the diag-
nostic phenotype of CdLS is very similar to that of CHOPS
syndrome17, which is caused by missense mutations in AFF4, a
core component of the super elongation complex. Given the
diverse functions of cohesin in gene expression and chromatin
folding, the underlying molecular mechanism responsible for the
similarity between CdLS and CHOPS is yet unknown. Note-
worthily, the CHOPS-related mutations in the super elongation
complex are also associated with transcriptional regulation by
cohesin, indicating a common pathogenetic mechanism of
cohesin in CHOPS and CdLS. It could be a feasible hypothesis
that intragenic cohesin has a distinct role that links the pheno-
typic similarity between CdLS and CHOPS.

Here, we conducted a large-scale epigenomic analysis to clarify
the context-specific functions of cohesin sites, especially in
intragenic regions. To investigate the perturbation of cohesin
binding sites by gene activation, we generated RNA sequencing
(RNA-seq) and ChIP-seq data for cohesin and several TFs in
MCF-7 cells with or without transcription stimulus. We also used
many publicly available datasets, including Hi-C, ChIP-seq,
RNA-seq and chromatin interaction analysis by paired-end tag
(ChIA-PET). First, we clarified that a subset of cohesin sites,
which we refer to as ‘decreased intragenic cohesin sites’ (DICs), is
distinct from the other groups of cohesin sites. Cohesin binding
on DICs is negatively correlated with transcriptional activation
and locus compaction of chromatin. A part of DICs exhibit a high
preference for enhancer marks and paused RNA polymerase II,
whereas others contribute to chromatin architecture. Second, we
performed ChIP-seq and RNA-seq with cohesin-depleted cells
and suggested that cohesin has an active function on DICs. Third,
we applied machine learning and captured DICs with a distinct
epigenomic landscape, which is predictable across cell types.
Finally, we conducted plenty of ChIP-seq in other cell types.
Importantly, DICs can be observed across multiple cell types,

including cells derived from CdLS and CHOPS patients, in a cell-
type-specific manner. The findings from our integrated analysis
and machine learning approaches suggest an additional role for
cohesin in the regulation of gene expression.

Results
Classification of DICs. MCF-7 cell, when treated with the
transcriptional stimulator estradiol18, is a widely used model for
investigating the transcription-dependent perturbation6. We
prepared ChIP-seq data of cohesin (Rad21), cohesin loader
(MAU2), CTCF and several TFs (ER, CBP, P300, AFF4, TAF1)
from MCF-7 cells treated with vehicle (control, or Ctrl) or
estradiol (E2, 45 min). The statistics and quality metrics of ChIP-
seq and RNA-seq data generated in this study are summarized in
Supplementary Data 1–2. All datasets, including our data and
public data, are listed in Supplementary Tables 1–2. In total, we
obtained 76,668 and 89,111 peaks as cohesin binding sites in the
E2 and control data, respectively. Next, we examined the
stimulation-dependent cohesin sites (Fig. 1a). Although the total
number of cohesin peaks decreased after E2 stimulation, the
proportion of peaks that increased (9.3%) after stimulation (log-
fold change of peak intensity Mvalue19 > 0.5) was larger than the
one that decreased (6.2%) (M value <−0.5) (Fig. 1a, bottom). We
also found that around 40% (36.3% for E2, 41.2% for control) of
cohesin peaks did not overlap with CTCF peaks (Supplementary
Fig. 1a). Such ‘cohesin-non-CTCF sites’ (hereafter, CNCs) over-
lapped with peaks of the enhancer markers P300 and CBP
(Supplementary Fig. 1b), which is consistent with an earlier
ChIP-seq study6. The cohesin loader MAU2 also preferred
enhancer sites. In fact, 88.7% of CNCs with enhancer markers
overlapped with MAU2, and MAU2 was localized at enhancer
sites with and without cohesin binding (Supplementary Fig. 1c,
d). This result implies the role of MAU2 in enhancer activity and
chromatin interaction, which can precede cohesin localization.

We classified cohesin sites based on gene annotation informa-
tion (Supplementary Fig. 1e). We defined ‘intragenic cohesin sites’
as sites located within gene bodies, with the exception of
transcription start sites (TSSs), transcription end sites (TESs) and
alternative promoters. As a result, 13.8% of cohesin sites were
identified as intragenic ones, 19.6% of which were overlapped with
enhancers annotated by Fantom520. We did not observe a
difference in the proportion of up- or down-regulated cohesin
peaks between intergenic and intragenic sites (Fig. 1a, lower panel).
To investigate the correlation of cohesin binding and transcription
activation, we conducted the ChIP-seq of RNA polymerase II (Pol2,
unphosphorylated), and RNA pol II CTD serine-2 phosphorylation
(Pol2ser2) that represents transcription elongation activity21. We
identified 499 E2-responsive genes for which Pol2ser2 signal was
increased after E2 stimulation (Methods). We then validated these
genes by RNA-seq and confirmed that their expressions were
mostly up-regulated in response to E2 stimulation (Supplementary
Fig. 1f). Based on 499 E2-responsive genes, we identified 4346
intragenic cohesin peaks, 976 (22.4%) of which were decreased after
stimulation (Fig. 1b, Supplementary Fig. 1g). The decrease of
cohesin binding at DICs was also illustrated in Supplementary
Figs 1h–j. Because our main interest is the negative correlation
between active transcription and the signal intensity of intragenic
cohesin10, we focused on the intragenic cohesin sites with
decreased peak intensity after E2 stimulation. Hereafter we refer
to these sites as DICs. Of the E2-responsive genes, 53.5% (267/499)
contained one or more DICs. We found that almost all (97.3% by
RefSeq reference) DICs were located in intronic regions (Fig. 1c).
While previous studies focused on transcription factor binding on
exons22,23, our analysis implies a function of DICs at introns whose
mechanism remains unrecognized24.
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Next, we investigated the correlation between decreased
cohesin binding and levels of chromatin interaction using Hi-C
data (GSE99451). Aggregate peak analysis (APA)25 showed that
chromatin interactions centered on DICs were weakened by E2
treatment (p < 10−11, two-side t test), whereas no difference
(p= 0.38) was observed for all cohesin sites (Fig. 1d). These
results suggested that at least some intragenic cohesin was
required for chromatin loop formation, which was disrupted due
to the induction of transcription10. In contrast to the positive
regulation of gene expression by CNCs5, DICs possibly function

negatively for gene expression. We then applied DLR (distal-to-
local interaction ratio) and ICF (inter-chromosomal fraction of
interactions) metrics10,26 to represent locus-specific changes in
intra- and inter-chromosomal interactions, respectively. The
difference (Δ) for DLR (or ICF) between two Hi-C samples
represents chromatin compaction (negative value) or de-
compaction (positive value). ΔDLR showed a positive value at
DICs (Fig. 1e). In contrast, ΔDLR had a negative peak at all
cohesin sites, whereas all enhancers showed no enrichment.
Chromatin compaction at all cohesin sites could be explained by
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more frequent cis-regulatory interactions after estrogen stimula-
tion. Conversely, DICs did not show a clear difference compared
to all cohesin sites for ΔICF (Supplementary Fig. 1k). These
results suggested that DICs were involved in intra-chromosome
decompaction, creating a more open architecture around DICs.

Classification of LC-DICs and HC-DICs. We next investigated
the binding pattern of cohesin and other TFs, including the
estrogen receptor (ER). We found that DICs could be clearly
classified into two categories: HC-DICs (high CTCF binding) and
LC-DICs (low CTCF binding), in which strong and weak (or no)
CTCF peaks co-localized, respectively (Fig. 1f). LC-DICs had a
higher probability of co-binding with many TFs as compared
with HC-DICs (Fig. 1f, g). This tendency was similar, but not
identical, to cohesin peaks in the other regions. For example,
cohesin localized with strong CTCF on promoters, where many
TFs also bound5,27 (Supplementary Fig. 2a). A majority of
intergenic cohesin sites (possibly insulator sites or TAD bound-
aries) did not show enrichment of TFs (Supplementary Fig. 2b).
Moreover, the TFs on LC-DICs (Fig. 1g, Supplementary Fig. 2c,
except MAU2 and P300), including 16 publicly available TFs
(Supplementary Table 3), were increased after E2 treatment. This
suggested that enhancer markers MAU2 and P300 were localized
to LC-DICs even before stimulation, whereas other TFs (includ-
ing another enhancer marker CBP) were recruited by
E2 stimulation. In addition, we observed increased ER, CBP and
CTCF signals on HC-DICs (Fig. 1g), implying the role of CTCF
for the estrogen-response transcription there28,29. We also divi-
ded all cohesin sites into low-CTCF (i.e., CNCs) and high-CTCF
ones for comparison with LC-DICs and HC-DICs. Using the
APA analysis, we observed the weakened interactions in both LC-
and HC-DICs, but not in CNCs or high-CTCF cohesin sites
(Supplementary Fig. 2d).

Figure 1h showed examples of two E2-responsive genes
(MREG and PAK4; see Supplementary Fig. 2e for publicly
available TFs). For instance, at the MREG locus, there were both
HC-DICs and LC-DICs, the former co-localizing with strong
CTCF signals but almost no TFs, while the latter corresponding
to frequent bindings of many TFs yet without strong CTCF
signals. Overall, at LC-DICs, the peak intensity of cohesin
decreased after E2 stimulation, whereas that of many TFs
increased. Consistently, for the E2-activated gene MREG
(Supplementary Fig. 3a), we could also clearly observe the
weakened interactions (Fig. 1i) and the chromatin decompaction
(Supplementary Fig. 3b).

More genomic characteristics were detected by motif analysis
(Supplementary Figs. 3c, d). Not surprisingly, all types of cohesin
showed the motifs of CTCF and CTCFL (BORIS). Specifically,
LC-DICs were highly enriched for motifs of the forkhead box
(FOX) protein family, which is responsible for remodeling
chromatin structure30 and controlling transcription31. Of note,

FOXA1 is a pioneer factor before ER activation in MCF-7 cells32.
Meanwhile, HC-DICs showed motifs for transcription repressors
including the tumor suppressor gene HIC1, implying a possible
role for HC-DICs in transcription repression. Taken together,
these results highlighted the unique features of LC-DICs and HC-
DICs relative to other cohesin sites.

Characterization of LC-DICs as enhancers. The binding of the
enhancer markers CBP and P300 was frequently observed at LC-
DICs (Fig. 1f–h). We confirmed that a significantly higher per-
centage of LC-DICs overlapped with CBP binding as compared
with other cohesin sites (Fig. 2a, Fisher’s exact test). In addition,
LC-DICs were also enriched for enhancer markers H3K27ac and
H3K4me1 as well as FANTOM5 enhancers20 (Fig. 2b, Supple-
mentary Fig. 4a; publicly available data). In contrast, few HC-
DICs were annotated as enhancers (16.3% overlap CBP as shown
in Fig. 2a, less enrichment of enhancer marker as shown in Fig. 2b
and Supplementary Fig. 4a). Moreover, although intergenic
cohesin also (including both CTCF-dependent and -independent)
in conjunction with many TFs, they were not enriched for
enhancer markers (Fig. 2a, Supplementary Fig. 4b). This is con-
sistent with the finding that only 18% of intergenic cohesin co-
bound with CBP, which is reasonable because only a subset of
intergenic cohesin sites serves as enhancers.

Characterization of chromatin loops on DICs. To explore DIC-
mediated loops, we investigated what kind of chromatin loci
interacted with LC-DICs and HC-DICs. Remarkably, when
analyzing the Pol2-mediated chromatin loops identified by
ChIA-PET (GSE33664), LC-DICs contained multiple Pol2 loops
that interacted with the TSS of the host gene (Fig. 2b, red arcs),
whereas HC-DICs at the MREG locus did not have Pol2 loops
(17.2% vs. 5.0% in Fig. 2c). To further investigate this tendency,
we also analyzed DIC-anchored loops detected by Hi-C data
(GSE99451). Interestingly, this result was in directly opposite
between the Hi-C and ChIA-PET Pol2 loops (Fig. 2c, Fisher’s
exact test). HC-DICs had a significantly lower occurrence
probability with respect to Pol2-mediated chromatin loops,
compared to LC-DICs (p= 0.0013) or all cohesin sites
(p < 10−4). In contrast, HC-DICs exhibited a significantly
higher occurrence with respect to Hi-C loops, as compared with
LC-DICs (p < 10−4) or all cohesin (p= 0.0003). We also com-
pared loops with CTCF ChIA-PET data (GSE39495) and found
that over 81% of HC-DICs overlapped with CTCF loops (27%
for LC-DICs). This result suggested that LC-DICs were
anchored by chromatin loops with Pol2 and other TFs, and
function as enhancers in a CTCF-independent manner. HC-
DICs were more likely to interact with CTCF to form chromatin
loops that participate in chromatin architecture independently
of the Pol2 machinery.

Fig. 1 Classification of decreased intragenic cohesin (DIC) sites. a Quantitative comparison of cohesin peak intensity between control (Ctrl) and estrogen
(E2)-treated MCF-7 cells. M value is the log2(fold change) of normalized read densities under comparison. A value is the average signal strength of each
peak. The lower panel shows the proportion of cohesin binding that decreased or increased. b Average binding profiles on different cohesin sites. Shaded
regions indicate 95% confidence intervals. Red, control. Blue, E2 treatment. c Genomic distribution of all DICs suggested most of DICs were located in
introns. Source data are provided in the Source Data file. d Aggregate peak analysis around DICs (p= 3.5 × 10−12) or all (p= 0.38) cohesin peaks at a 5-kb
resolution. Two-sided t test. e Chromatin compaction scores around DICs, all cohesin sites and all enhancers (summit ± 500 kb). ΔDLR (E2 vs. control)
was calculated at a 25-kb resolution. f Heatmap of ChIP-seq reads at DICs (peak summit ± 2.5 kb). CTCF (E2+) signal was used for sorting the order. DICs
were divided into HC-DICs (gray bar) and LC-DICs (black bar). E2−, control; E2+, estrogen treated. Source data are provided in the Source Data file.
g Average binding profiles (summit ± 1.5 kb) of Rad21 and TFs on HC-DICs (upper) and LC-DICs (lower). Reads were normalized relative to the whole
genome. The same y-axis scale was used for each protein. h Read distribution of Rad21 and TFs aroundMREG and PAK4 loci. Areas shaded in pink and light
yellow indicate LC-DICs and HC-DICs, respectively. All reads were normalized relative to the whole genome. i Hi-C contact map (5-kb resolution) around
MREG. Arrows show the disappearance of chromatin interactions after E2 stimulation. The loop anchor is shown as a black bar in 1 h.
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We then investigated the other anchor sites of the DIC-mediated
loops. The other anchor sites of DIC-mediated Hi-C loops also
overlapped with cohesin, which also showed a decreasing tendency
(Supplementary Fig. 5a). As shown in Fig. 2d, e, LC-DIC loops
(ChIA-PET and Hi-C) mainly interacted with enhancers (40.8%)
or promoters (51.2%), which was confirmed by high enrichment of
active histone markers (Supplementary Fig. 5b). We also observed
that only a subset of LC-DIC loops (19.2%) interacted with the
promoter of their host genes, suggesting that LC-DICs also
contribute to the regulation of distant non-host genes, possibly as
intragenic enhancer sites. In contrast, most of the HC-DIC loops
did not interact with promoter or enhancer sites (Fig. 2d, e).
Instead, over half of these sites interacted with intronic regions
(Fig. 2e; example loci are shown in Supplementary Fig. 5c). In

summary, these results suggested that LC-DICs participated in
transcriptional regulation, whereas HC-DICs were more likely to
connect the intronic regions of two genes.

We also examined the insulation score (IS) from Hi-C data, for
which a lower value indicates more insulated regions, e.g., TAD
boundaries. Although the IS profile showed a clear valley at all,
intergenic and intragenic cohesin sites (Fig. 2f, Supplementary
Fig. 5d), it peaked at DICs (Fig. 2f, top left). Interestingly, the IS
profile for HC-DICs showed bimodal peaks around a small valley,
whereas there was neither a peak nor valley at LC-DICs (Fig. 2f,
lower right). These results suggested that LC-DICs possibly act as
enhancers within TADs and that HC-DICs participate in the
formation of boundaries, which is consistent with our loop
analysis described above.
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Assessment of Pol2 stalling on DICs. Pol2 is released from
promoter-proximal pausing to transcribe the entire gene body,
although it may be temporarily paused by roadblocks within gene
bodies12. To test whether DICs can function as roadblocks, we
investigated the Pol2 enrichment at DICs using our Pol2
(unphosphorylated CTD) and Pol2ser2 (ser2 phosphorylated
CTD) ChIP-seq data (Supplementary Fig. 6a, b). Our Pol2ser2
and public global nuclear run-on sequencing data (GRO-seq,
GSE99508) showed that transcription elongation was activated by
E2 (Fig. 3a). Moreover, we found that Pol2 peaked at LC-DICs,
and its intensity decreased after E2 stimulation (Fig. 3a, b),
possibly due to the release of paused Pol2. This tendency towards
a decrease in Pol2 binding was statistically significant as com-
pared with the other cohesin sites (Fig. 3c, Supplementary
Figs. 6c–e). Public Pol2 ChIP-seq datasets further illustrated the
decreased Pol2 (Supplementary Fig. 6f). Given that the binding of
most TFs was increased by E2 stimulation at LC-DICs (Fig. 1g,
h), cohesin binding that decreased at LC-DICs was more likely to
be accordant with Pol2, rather than TF binding. In contrast,
Pol2ser2 was increased on all DICs due to transcription activation
(Fig. 3b, right panel). Pol2ser2 also exhibited peak-like enrich-
ment at LC-DICs, which was increased by E2 stimulation (Fig. 3a,
b). This is remarkable given that Pol2 enrichment at LC-DICs
decreased significantly after E2 stimulation (Fig. 3b, c). In addi-
tion, whereas Pol2 binding on TSSs of DIC-host genes did not
show any difference after E2 stimulation, the intensity of Pol2ser2
on TSSs increased (Supplementary Fig. 6g). These results were
consistent with our hypothesis that Pol2 temporarily stalls within
DICs, which function as roadblocks, and then is released by the
loss of cohesin.

Knockdown analysis of cohesin revealed that cohesin had a
function at DICs. Although we observed cohesin binding at DICs
that was synchronized with Pol2 binding and was negatively
correlated with gene expression, there is still a possibility that
cohesin is “passively” localized to DICs and therefore does not
have any active role in gene expression. To determine whether
cohesin functions in the pausing of Pol2 at LC-DICs, we prepared
Pol2 and Pol2ser2 ChIP-seq data in the absence (WT, wildtype)
and presence (KD, knockdown) of Rad21-specific siRNA
(siRad21) to generate Rad21 knockdown (Supplementary Fig. 7a,
b) and investigate the effect at DICs. Pol2 binding before
E2 stimulation (Ctrl, control for estrogen treatment) was sig-
nificantly decreased by siRad21 (example region: site 3 vs. 1 in
Fig. 3d; all LC-DICs: KD_Ctrl as compared with WT_Ctrl in
Fig. 3e, f) and had a similarly low level of binding in E2-treated
(E2, estrogen-stimulated) wild-type cells (example region: site 2
in Fig. 3d, all LC-DICs: WT_E2 in Fig. 3e, f). Supplementary
Fig. 7c–e also illustrated the decrease of Pol2, as evidenced by
both replicates and the knockdown of cohesin loader NIPBL.
Importantly, the Pol2 tendency at LC-DICs is distinct from the
one at TSS of E2-response genes (TSS_E2res). For example, the
cohesin KD under E2 (example region: Fig. 3d; all LC-DICs:
KD_E2 vs WT_E2 in Fig. 3e, f) showed unchanged Pol2 at LC-
DICs (p= 0.13), but significant changes at TSS_E2res (p < 10−32).
These results suggested that cohesin binding on LC-DICs is not
passive and plays a role related to the Pol2 binding level. Pol2
binding in KD_Ctrl cells was not affected by E2-stimulation
(example region: site 4 vs. 3 in Fig. 3d; all LC-DICs: KD_E2 as
compared with KD_Ctrl in Fig. 3e, f), possibly because Pol2 that
was paused in WT_Ctrl cells had already been released in
KD_Ctrl cells. Importantly, the effect of siRad21 on the
Pol2 signal at TSSs of E2-responsive genes was distinct from LC-
DICs, in which Pol2 binding did not change significantly after
E2 stimulation in WT cells (from WT_Ctrl to WT_E2 in Fig. 3d,

f) but decreased after siRad21 in stimulated cells (from WT_E2 to
KD_E2 in Fig. 3d, f). These results also supported the model that
on LC-DICs the loss of cohesin binding causes the release of
paused Pol2. On HC-DICs, we did not observe changes with
comparable significance (Supplementary Fig. 7f).

Interestingly, siRad21 did not largely affect Pol2ser2 binding.
Pol2ser2 levels on LC-DICs were not obviously different between
WT and siRad21 cells (Fig. 3d–f, Supplementary Fig. 7g, h). In
KD_Ctrl cells, there was no more stalling at LC-DICs, but there
was also no stimulating effect of E2; thus Pol2ser2 did not change
from WT_Ctrl to KD_Ctrl. In KD_E2 cells, transcription was
activated by E2 stimulation but was limited by the loss of cohesin
on TSSs, and thus Pol2ser2 binding changed slightly from
WT_E2 to KD_E2. To explore changes in the expression level of
genes that harbor LC-DICs after siRad21 treatment, we
conducted RNA-seq with siRad21 (Supplementary Fig. 7i).
Without E2 treatment, siRad21 did not significantly affect gene
expression (p= 0.23, KD_Ctrl as compared with WT_Ctrl). After
E2 treatment, siRad21 moderately affected gene expression
(p= 0.0057, KD_E2 as compared with WT_E2). Indeed, only a
small subset (~10%) of LC-DIC-host genes (Fisher’s exact test
p > 0.1 compared with other E2-response genes) were identified as
differentially expressed genes. It is possible because only a subset
of Pol2 that had paused on LC-DICs represented productive Pol2.
We also quantitatively compared Pol2 and Pol2ser2 signals under
four different conditions on various cohesin sites (Fig. 3f,
Supplementary Fig. 7j). The results confirmed the significantly
reduced binding of Pol2 in WT_E2, KD_Ctrl and KD_E2 as
compared with WT_Ctrl cells (Fig. 3f, Mann–Whitney U test,
one-sided). Such a tendency was distinct from those involving the
TSSs of E2-responsive genes, up-regulated and non-changed
intragenic cohesin, other cohesin sites, and also other enhancer
sites. Our results suggested the role of cohesin at LC-DICs which
is different from the known roles of cohesin sites.

In Fig. 1g, h, we showed the elevated binding of many TFs on
DICs. To investigate whether the increased binding of multiple
TFs is caused by a decrease in cohesin binding, we generated
ChIP-seq data for CBP, P300 and MAU2 from siRad21 cells.
Remarkably, a cohesin deficiency resulted in stronger binding of
those TFs at LC-DICs, which surpassed the level in ER-stimulated
WT cells (dashed arrow in Fig. 3g, Supplementary Fig. 8a, b). In
contrast, there was the little effect at the other intragenic
enhancer site (Fig. 3g). Considering that E2 stimulation recruits
TFs by estrogen responsive elements in WT cells, the increased
binding of TFs in non-E2-stimulated siRad21 cells suggested that
cohesin suppresses TF binding at LC-DICs in some way, and this
suppression is removed by the loss of cohesin. In combination
with the chromatin de-compaction by E2 stimulation shown in
Fig. 1e, the increased binding of TFs at LC-DICs can be
explained, at least in part, by a more accessible chromatin
structure near the LC-DICs, which is caused by the disruption of
cohesin-mediated interactions.

Machine learning analysis of DIC features. Although we
manually defined the criteria for DICs in the analysis above, we
also wondered whether DICs can be automatically isolated based
on various genomic features obtained from our multi-omics
information. To this end, we implemented machine learning
(ML) (Supplementary Fig. 9a), which provides a more objective
approach to study DICs. We generated an integrated data matrix
consisting of 175 features from genomic, transcriptomic and
epigenomic data for all cohesin sites (Supplementary Table 4;
Methods). Especially, this matrix includes features related to
genomic location (e.g., intragenic or TSS) and perturbation by
E2 stimulation such as M value and ΔDLR. Supplementary

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30792-9

6 NATURE COMMUNICATIONS |         (2022) 13:3218 | https://doi.org/10.1038/s41467-022-30792-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a
PAK4

39.120M 39.140M 39.160M 39.180M

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

60.0

39.120M 39.140M 39.160M 39.180M

chr 19

coding
noncoding

MREG
215.940M 215.960M 215.980M 216.000M 216.020M

Rad21_Ctrl

Rad21_E2

CTCF

Pol2_Ctrl

Pol2_E2

Pol2ser2_Ctrl

Pol2ser2_E2

GROseq_Ctrl

GROseq_E2
215.940M 215.960M 215.980M 216.000M 216.020M

chr 2

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

Pol2_Ctrl
Pol2_E2

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

Pol2_Ctrl
Pol2_E2

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

Pol2ser2_Ctrl
Pol2ser2_E2

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

Pol2ser2_Ctrl
Pol2ser2_E2

Pol2 LC-DIC

Pol2 HC-DIC Pol2ser2 HC-DIC

Pol2ser2 LC-DIC

80M8

HC-DIC LC-DIC

39.1606 M

LC-DIC

b

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

WT_Ctrl
WT_E2
KD_Ctrl
KD_E2

e g
coding
noncoding

PAK4

39.120M 39.140M 39.160M 39.180M

100.0
CBP_WT_Ctrl

100.0
CBP_WT_E2

100.0
CBP_KD_Ctrl

100.0
CBP_KD_E2

100.0
p300_WT_Ctrl

100.0
p300_WT_E2

100.0
p300_KD_Ctrl

100.0
p300_KD_E2

120.0
Mau2_WT_Ctrl

120.0
Mau2_WT_E2

120.0
Mau2_KD_Ctrl

120.0
Mau2_KD_E2

39.120M 39.140M 39.160M 39.180M

chr 19

39 1606 M

LC-DIC

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

39.120M 39.140M 39.160M 39.180M

LC-DIC
①

②

③

④

−1500 −1000 −500 0 500 1000 1500

0
5

10
15

Distance from the peak summit (bp)

R
ea
d 
de
ns
ity

f

215.940M 215.960M 215.980M 216.000M 216.020M

HC-DIC LC-DIC

d c
p<10-4 p<10-4 p<10-8 p<10-27 p<10-18 p<10-12

①

②

③

④

R
ad

21
-K

D

E2

-

-

+

+

-

+

-

+

-

-

+

+

-

+

-

+

Po
l2

Po
l2

se
r2

p=0.002
p=2.2×10-5

p=1.3×10-5

p=0.15
p=0.43

p=0.13

LC-DIC LC-DIC

TSS_E2res TSS_E2res

Pol2 Pol2ser2

Pol2 Pol2ser2

Pol2

Pol2ser2 WT_Ctrl
WT_E2
KD_Ctrl
KD_E2

WT_C
trl

WT_E
2

KD_C
trl

KD_E
2

WT_C
trl

WT_E
2

KD_C
trl

KD_E
2

WT_C
trl

WT_E
2

KD_C
trl

KD_E
2

WT_C
trl

WT_E
2

KD_C
trl

KD_E
2

p=0.27

p=9.3×10-7 p=9.7×10-4

p=0.43

p=0.07

p=9.9×10-5
p=2.7×10-17 p=5.0×10-33

p=9.1×10-8 p=2.0×10-9
p=0.001 p=0.005

LC
-D

IC

HC-D
IC

Up-I
C

Stab
le-

IC

TSS E2re
s

Int
erg

en
ic All

Log10 Ratio of Pol2 signal (E2 vs Ctrl)
5

4

3

2

1

0

-1

-2

-3

Po
l2

 s
ig

na
l o

n 
LC

-D
IC

(s
um

m
it±

50
0b

p)

Po
l2

se
r2

 s
ig

na
l o

n 
LC

-D
IC

(s
um

m
it±

50
0b

p)

Po
l2

 s
ig

na
l o

n 
TS

S_
E2

re
s

(s
um

m
it±

50
0b

p)

Po
l2

se
r2

 s
ig

na
l o

n 
TS

S_
E2

re
s

(s
um

m
it±

50
0b

p)

Fig. 3 Pol2 pauses on LC-DICs. a Genomic binding of Pol2 and Pol2ser2 and GRO-seq data forMREG and PAK4 loci. b Binding profiles of Pol2 and Pol2ser2
on LC-DICs or HC-DICs, under control and E2 conditions. Reads were normalized relative to the whole genome. c The log10 value of the ratio E2/Ctrl with
respect to the Pol2 signal on various cohesin sites. p values (Mann–Whitney U test, two-sided) were calculated between LC-DICs (n= 417) and other
cohesin sites including HC-DIC (n= 141, p= 5.0 × 10−5); Up-IC (up-regulated intragenic cohesin, n= 680, p= 7.6 × 10−5); stable-IC (unchanged
intragenic cohesin, n= 2800, p= 4.7 × 10−9); TSSE2res, (TSS of E2-responsive gene, n= 1422, p= 2.4 × 10−28); intergenic cohesin (n= 34,566,
p= 1.7 × 10−19) and all cohesin sites (n= 96,218, p= 1.6 × 10−13), where n is the number of cohesin sites. Box plots indicate the interquartile range IQR
(25–75%) with a line at the median. Whiskers indicate 1.5 times the IQR. Black circles represent outliers. d Visualization of Pol2 and Pol2ser2 ChIP-seq
data aroundMREG and PAK4. MCF-7 cells were treated as indicated. WT, wild type; KD, Rad21 knockdown; Ctrl, control; E2, estrogen. e Pol2 and Pol2ser2
binding profiles around LC-DICs (summit ± 1.5 kb) under four different conditions. f Quantitative comparison (Mann–Whitney U test, two-sided) of Pol2
and Pol2ser2 signals on LC-DICs (n= 417) or TSSs of E2-responsive genes (TSS_E2res, n= 1422) under four different conditions. Multiple testing
correlation with Benjamini-Hochberg method was used. Box plots indicate the interquartile range IQR (25–75%) with a line at the median. Whiskers
indicate 1.5 times the IQR. The black diamond symbols represent outliers. Source data are provided in the Source Data file. g ChIP-seq results for CBP,
P300 and MAU2 on PAK4 gene in WT and Rad21 knockdown MCF-7 cells with the absence and presence of E2 stimulation. Dashed arrows show increased
binding events in cohesin-deficient cells.
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Fig. 9b showed a Pearson correlation heatmap followed by hier-
archical clustering between all-by-all features for DICs or all
cohesin sites. The 175 features resulted in clear clusters both
among DICs and among all cohesin sites (dashed boxes of dif-
ferent colors). We annotated the clusters as promoter, enhancer,
enhancer-promoter interaction (E-P), insulator, and chromatin
architecture. As compared with all cohesin sites, DICs showed
lower co-binding tendency in the promoter cluster and higher co-
binding in the enhancer and E-P clusters. This showed the
effectiveness of our matrix in distinguishing DICs from other
cohesin sites.

Similar to the previous study of CNCs5, we applied
unsupervised k-means clustering (k= 10) to the matrix and
obtained 10 clusters for all cohesin sites (cluster 0−9, Fig. 4a,
Supplementary Fig. 12), among which only cluster 4 and cluster
7 showed intragenic cohesin binding that decreased after
E2 stimulation, indicating the DIC-like clusters (Fig. 4b). We
identified the following characteristics of cluster 4 (Fig. 4c,
upper): (1) co-binding with tissue-specific TFs (e.g., ER and
FOXA1), (2) enrichment of enhancer markers and Pol2, (3)
relatively low intensity of cohesin and CTCF peaks and (4)
chromatin de-compaction. Therefore, cluster 4 represented the
LC-DIC-like cluster. In contrast, cluster 7 (Fig. 4c, lower) showed
the following characteristics: (1) lack of TF co-binding, (2) high
intensity of CTCF peaks and (3) highly related to topological
boundaries and chromatin architecture features (e.g., TAD
borders, Hi-C loops). Therefore, cluster 7 represented the HC-
DIC-like cluster. Compared with “CNC-like” intragenic cohesin
sites5,6 (clusters 2, 3 and 8; Supplementary Fig. 12), cluster 4 (LC-

DICs) co-localized only with enhancer markers and several
master regulators (FOXA1, ER and GATA3), and therefore it is
distinct from typical cis-regulatory modules (CRMs) at which
many TFs co-localize. In contrast, cluster 7 (HC-DICs) consists of
a cluster of intragenic cohesin sites that tend to be localized to
open chromatin, are highly de-compacted and contain loops but
are strongly negatively correlated with TFs. Therefore, they may
be associated with a more universal chromatin structure that is
required for proper gene transcription.

To further explore the importance of genomic features related
to DICs, we applied modeling of supervised ML (logistic
regression, support vector machine, and random forest) to
predict LC- and HC-DICs from all cohesin sites in a binary
manner (labeled by 0 or 1). In this analysis, the input matrix
consisted of 168 features (features related to genomic location,
cohesin changes and CTCF signal were excluded). We selected
chromosomes 16 to 22 for testing, and the remaining chromo-
somes were divided into training and validation by five-fold
cross-validation (see Methods). Because DICs are a small subset
of all cohesin sites, we used SMOTE over-sampling33 to deal with
such “imbalanced” classifications. The trained model that was
based on logistic regression achieved the best performance overall
as compared with the others (Supplementary Figs. 9c, d) and also
performed adequately with the test data (Supplementary Fig. 9e).
Finally, we identified important features for the prediction of LC-
DICs and HC-DICs by calculating the relative feature importance
from the trained model (Fig. 4d, e). LC-DICs were positively
associated with (1) enhancer markers (H3K27ac, H3K4me1,
P300); (2) Pol2 peaks, the Pol2-pausing regulator (LARP7)34 and
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a transcriptional repressor (ZBTB1);35 (3) tissue-specific regula-
tors (FOXA132, HSF136, ER18). Both LC-DICs and HC-DICs
were positively associated with open chromatin (FAIRE-open,
DNase-open) and chromatin de-compaction (ΔDLR), and were
negatively associated with H3K27me3 and CpG island levels. HC-
DICs, in particular, showed positive features of Hi-C loops but
negative features of Pol2 loops and TF binding, which is
consistent with our analysis above, indicative of the TF-
independent chromatin de-compaction. Taken together, the
application of machine learning successfully isolated a special
subset of cohesin sites corresponding to DICs, which also
provided additional characteristics for DICs.

Characterization of DIC tissue specificity. As DICs were enri-
ched by many tissue-specific factors, we wondered whether our
observations about DICs were consistent with other tissues or cell
types. We generated Rad21 ChIP-seq for 293 T cells (kidney),
B-cells (lymphocytes), human skin fibroblast cells, RPE (retinal
pigmented epithelium) cells, and HeLa cells (cervical cancer).
Cohesin peaks at MCF-7 derived LC-DICs were more specific in
MCF-7 cells, whereas cohesin peaks at HC-DICs were more
ubiquitous across cell types (Fig. 5a, b). Thus, LC-DICs are likely
to play a role in tissue-specific transcription. On the other hand,
considering the intragenic CTCF also regulates transcription23,37,
we then asked whether the ubiquitous HC-DICs, which have
high-level CTCF, can affect transcription across cell types. As a
result, the peak intensities for Rad21 at HC-DICs were negatively
correlated with transcription levels of their host genes (Fig. 5c,
Supplementary Fig. 10a), suggesting that genes with stronger HC-
DIC binding had lower transcription activities. Therefore, HC-
DICs may also participate in transcription regulation, which is
consistent with our motif analysis in Supplementary Fig. 3c.

To confirm whether DICs in other cell types also exhibit
similar characteristics, we performed ChIP-seq experiments on
RPE cells with FBS (fetal bovine serum) and DRB (5,6-dichloro-
1-β-d- ribofuranosylbenzimidazole), which function as a stimu-
lator and inhibitor of transcription38, respectively. First, we tested
if the ML model trained by MCF-7 data was applicable to the RPE
data. We used 25 features that were available for both MCF-7 and
RPE cells to predict whether the binding of intragenic cohesin
was decreased or not after transcription stimulation (Fig. 5d). The
predicted DICs overlapped extensively with the experimentally
determined ones (p < 10−160, hypergeometric test), indicating
that DICs exhibited some common rules across cell types. Then
we identified DICs of stimulation-responsive genes in RPE cells
(Supplementary Fig. 10b), and the decreased Rad21 was
confirmed by replicates as shown in Supplementary Figs. 10c–e.
Similar to DICs in MCF-7 cells, RPE-derived DICs also showed
tissue-specific binding patterns (Supplementary Fig. 10f). FBS
stimulation decreased the intensity of cohesin (Rad21 and SA1) at
DICs (example region: H1 to H2, L1 to L2 in Fig. 5e; all DICs:
Supplementary Figs. 10g), whereas transcriptional inhibition by
DRB increased it. In addition, further treatment with DRB (i.e.,
FBS+DRB) reverted the decrease in cohesin binding caused by
FBS stimulation (example region: H2 to H5, L2 to L5 in Fig. 5e; all
DICs: Supplementary Fig. 10g). Moreover, RNA Pol2 stalling and
the release of paused Pol2 were also observed at LC-DICs in RPE
cells (example region: Fig. 5e; all DICs: Supplementary Fig. 10h).
In addition, LC-DICs, but not HC-DICs, co-bound with enhancer
marks and several TFs. Thus, DICs are not a phenomenon
associated only with breast cancer cells, but are found in non-
cancer derived human cell lines as well.

Analysis of DICs in CdLS and CHOPS cells. Finally, we
attempted to examine the participation of DICs in the observed

phenotypes in individuals with CdLS and CHOPS. To this end,
we generated ChIP-seq data for fibroblast cells derived from
patients and non-patients (as control)17. We overlapped the
binding sites of intragenic cohesin in different cell types (Fig. 5f).
Whereas most sites were shared among samples, 332 Rad21 sites
were absent in both CdLS and CHOPS cells, which we defined as
DICs. RNA-seq analysis showed a significant increase in the
transcription of DICs (both LC- and HC-DICs) host genes in CdLS
and CHOPS cells (Fig. 5g, Supplementary Fig. 11a; paired t test
p < 10−5 in CdLS and p= 0.0084 in CHOPS), suggesting that the
decreased cohesin binding at DICs was correlated with upregulated
gene expression in both CdLS and CHOPS. We classified DICs into
185 LC-DICs and 147 HC-DICs based on CTCF signal (from the
ENCODE project: id ENCFF757GIM), and we assessed the binding
of TFs (Fig. 5h, Supplementary Fig. 11b). Interestingly, at LC-DICs,
the peak intensity of AFF4 (causative gene of CHOPS) increased in
both CdLS and CHOPS cells, whereas lower binding of NIPBL
(causative gene of CdLS) was observed only in CdLS cells (Fig. 5h).
Enhancer marker H3K27ac was highly enriched but unchanged
among the three cell types, whereas Pol2 and Pol2ser5 (RNA pol II
CTD phospho Ser5, which represents paused Pol2) were decreased
in both CdLS and CHOPS cells, consistent with our observations in
MCF-7 and RPE cells. Taken together, this result suggests that
DICs, especially LC-DICs, are involved in abnormal transcription
associated with both CdLS and CHOPS. As both CdLS and CHOPs
are involved in abnormal Pol2 regulation39, LC-DICs might offer a
common pathogenetic mechanism. Based on the observations, we
concluded that intragenic cohesin sites can be a good candidate to
investigate and link the phenotypes of these two cohesinopathy
disorders.

Discussion
Cohesin is thought to be responsible for transcriptional regulation
and chromatin folding. Several models have been proposed to
explain its functions. Cohesin can mediate enhancer-promoter
loops with the mediator complex or function as a blocker between
enhancer and promoter in conjunction with insulator factor
CTCF40. Cohesin also participates in the formation of chromatin
topological structures via the loop extrusion model8. A recent
paper reported that transcription stimuli such as IFN-beta in
THP-1 cells can displace cohesin from chromatin10, which
attracted our interest. Here, we focused on intragenic cohesin, a
subset of cohesin that has not been discussed by previous
research. Of note, we emphasized the negative regulation of gene
expression by cohesin-mediated chromatin loops, whereas most
of the previous studies implicitly assumed the positive regulation.
DICs were negatively associated with activated transcription and
chromatin compaction. LC-DICs were highly enriched with
enhancer markers and paused Pol2, whereas HC-DICs were more
involved in the features of chromatin architectures. Importantly,
DICs could be found in multiple cell types, especially in CdLS and
CHOPS cells, which partly supported the similarities between
CdLS and CHOPS.

Chromatin interactions are required not only to facilitate
transcription but also for Pol2 pausing41. By using siRad21 cells,
we observed that the release of Pol2 was related to the loss of
cohesin at LC-DICs, which supported our model that intragenic
loops formed by cohesin paused Pol2 and that transcription
elongation from TSSs could remove such cohesin and then release
the paused Pol2 (Fig. 5i). Velasco et al.23 has suggested that
CTCF-mediated intragenic loops regulate alternative splicing.
Other studies42,43 have also found that the slowing down of Pol2
elongation is a mechanism of splicing regulation. In our study, we
can observe the stalling of Pol2 on LC-DICs, but we did not
observe significant changes in the expression of genes that host
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LC-DICs by siRad21 (Supplementary Fig. 7i). As most LC-DICs
were in intronic regions, Pol2 released from LC-DICs might be
involved in accurate RNA splicing, which inspires the future
study about DICs. Notably, a recent study suggested that intra-
genic enhancers, in addition to activating genes, also attenuate the
transcription of their host genes during productive elongation12,
which evokes the functional link between LC-DICs and Pol2
pausing. In contrast, HC-DICs showed a high preference for loop
occurrence mediated by CTCF, possibly to play a role in

topological boundaries (e.g., sub-TADs). Across different cell
types and genes, the Rad21 signal at HC-DICs was negatively
correlated with the expression of host genes, indicating the role of
HC-DICs in restraining transcription. Whereas we observed that
more than half of HC-DIC−mediated loops anchored intronic
regions of two genes, it was difficult to infer the biological
meaning of this because HC-DICs scarcely overlapped with any
other TFs. Further biological approaches such as genome editing
of HC-DICs of activated genes could be promising in the future.
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Modifications at intragenic regions affect transcription events.
For instance, intragenic methylation can prevent spurious tran-
scription initiation11; Intragenic microRNAs affect the expression
of their host genes13. Here we present a specific study focusing on
intragenic cohesin sites. We also used penalty linear regression
followed by univariate linear regression to better understand the
changes of cohesin binding in intragenic regions (see Method and
Supplementary Fig. 9f–h). Apart from the decreased ones, the
increased intragenic cohesin sites seemed to be also correlated
with many important features, as they are positively predicted by
ER and several TFs. Although we characterized intragenic cohesin
sites that showed decreased binding in this study, all types of
intragenic cohesin might have a role in transcriptional regulation.
In addition, Kowalczyk et al. point out that intragenic enhancers
can act as alternative promoters44. Our DICs did not overlap with
any known alternative promoters. Even though the detailed
molecular mechanism is not clear, our results strongly suggest a
previously undescribed function of cohesin in intragenic regions
with respect to gene expression regulation.

In summary, large-scale multi-omics enabled us to identify a
cluster of cohesin DICs in MCF-7 and other cell types. Some
tissue-specific DICs (LC-DICs) were related to enhancers and the
accumulated Pol2, whereas others (HC-DICs) contributed to
chromatin architecture and might attenuate transcription. Our
integrated analysis and machine learning approaches indicated
distinct characteristics that distinguish DICs from other cohesin
binding sites. Based on these genomic, epigenomic and tran-
scriptomic characteristics, we can infer that DICs have distinct
functions as compared with other cohesin sites.

Methods
Cell culture and treatment. RPE cells45, MCF-7 cells (JCRB Cell Bank) and
immortalized fibroblast cells (generated in our previous study17) were cultured in
DMEM containing 10% FBS and 1% penicillin/streptomycin. Before subsequent
treatments, RPE cells were cultured in serum-free medium for 48 h and then were
incubated in DMEM containing 10% FBS for 30 min. MCF-7 cells were maintained
in phenol red−free medium containing charcoal-dextran−stripped FBS (Life
Technologies) at 70−80% confluency for 2 days before treatment with 50 nM E2
(beta-estradiol, SIGMA, E2758) for the indicated times. Rad21 stealth siRNAs
UUCCACUCUACCUGAUUCAAGCUG (Thermo Fisher Scientific, also used in
previous report4) were transfected using Lipofectamine RNAiMax (Thermo Fisher
Scientific, 13778150) according to the manufacturer’s instructions at 40 h before
treatment with E2. DRB (TCI, D4292) was added at 1.5 h before treatment with E2.
The effect of cohesin (Rad21)-deficiency was verified by western blot as shown in
Supplementary Fig. 7a.

ChIP and antibodies. Cells were fixed in medium or phosphate buffered saline
with 1% formaldehyde at room temperature for 10 min. ChIP experiments were
performed as described46. ChIP-seq libraries were prepared using NEBNext ChIP-
seq Library Prep Master Mix Set for Illumina (New England BioLabs, E6240).
Rabbit polyclonal antibody for Rad21 (1:1000 dilution for western blot; 2.5 ug/
million cells for ChIP-seq) was obtained from Eurofins Genomics and has been
described in47. Antibodies for MAU2 (ab46906, 2.5 ug/million cells as dilution) and
SA1 (ab4457, 2.5 ug/million cells) were from Abcam. Antibodies for TAF1 (A303-

505A, 2.5 ug/million cells) and AFF4 (A302-538A, 2.5 ug/million cells) were from
Bethyl Laboratory. CTCF (07-729, 2.5 ug/million cells) antibody was from Merck
Millipore. Antibodies (2.5 ug/million cells) for unphosphorylated Pol2 (CMA601),
Pol2ser2 (CMA602) and H3K27ac (CMA309) were kindly provided by Dr. H
Kimura (TITech), which were used in previous studies17,48. Antibody for CBP
(606402, 2.5 ug/million cells) was from BioLegend. Antibodies for P300 (sc-585,
2.5 ug/million cells) and Med1 (sc-5334, 2.5 ug/million cells) were from Santa Cruz
Biotechnology.

ChIP-seq analysis. After quality check by FastQC and SSP49, ChIP-seq reads were
aligned to the human reference genome (hg38) using Bowtie50 version 1.2.2 with
“-n2 -m1” parameters, by which we considered only uniquely mapped reads and
allowed two mismatches in the first 28 bases per read. Peak calling was performed
using MACS251 version 2.2.6 with default settings. We used DROMPA52 version
3.7.2 to conduct statistical analysis and visualization. For visualization of ChIP-seq
binding to particular chromatin regions, reads were normalized relative to total
read number, and gene annotation was obtained from NCBI reference sequences
(RefSeq; hg38). Read profiles around the sites of interest were plotted with the
PROFILE mode of DROMPA, whereas the heatmap of target sites (2.5 kb around
the peak summit) was plotted using HEATMAP mode. Genomic distribution in
Fig. 2e was plotted by ChIPseeker53. Downstream analysis, such as peak overlap,
was performed by Bedtools54 version 2.29.2 and Samtools55 version 1.9. Sources for
all ChIP-seq data and other next-generation sequencing data (including our data
and public data) are listed in Supplementary Tables 1–2.

Hi-C analysis. All in-situ Hi-C data (control or E2-treated MCF-7 cells with two
replicates) were aligned to the hg38 human reference genome. Further analysis was
carried out mainly by Juicer25 version 1.11.04. All contact matrices were normal-
ized by the KR method in Juicer. Chromatin loops were annotated using the
HiCCUPS algorithm with default parameters25. The loop regions we used were
merged from the results of 5-kb,10-kb and 25-kb resolutions. Aggregate peak
analysis (APA) was performed using the ‘apa’ mode of Juicer (5-kb resolution), to
measure the enrichment of the Hi-C signal around a set of peaks. The visualization
of the contact matrix on the MREG locus was accomplished by Matplolib. After
correction and normalization, comparable contact matrices were plotted at a 5-kb
resolution. We merged two adjacent bins for smoothing. Other Hi-C analyses were
performed using HOMER10. We made the Tag directory with the “GATC”
restriction site sequence. Chromatin compaction scores ΔDLR and ΔICF were
calculated for each 5-kb region across the genome (-res 5000) from a 15-kb window
size (-window 15,000). Other metrics including PC1, insulation score and TAD
boundaries were obtained using HOMER with default parameters. We used the
WashU epigenome browser56 to visualize Supplementary Fig. 3b.

ChIA-PET analysis. RNA polymerase II−bound chromatin interactions in MCF-7
cells were extracted from ChIA-PET data (GSE33664). All fastq files were applied
to the published pipeline Mango57 with default parameters, based on the hg38
reference genome. ChIA-PET interactions were visualized by DROMPA with the
parameter ‘-inter’.

RNA-seq and GRO-seq analysis. Using HISAT258 version 2.2.0, we aligned
paired-end RNA-seq reads to the index established from the hg38 reference gen-
ome. The output SAM files were converted to BAM files by Samtools. Htseq59

version 0.11.3 was then used with default parameters to generate a count table,
which describes the number of reads on each gene. We used a GTF file
(GRCh38.p12) from GENCODE for gene annotation. Subsequent differential
expression analysis was achieved using DESeq260, with its internal normalization.
For GRO-seq, alignment was carried out using Bowtie with “-n2 -m1” parameters.
The output was preprocessed and visualized using DROMPA.

Fig. 5 DICs in other cell types. a Rad21 ChIP-seq of the MREG locus in various cell lines (MCF-7, 293 T, B-cells, Fibroblasts, RPE, HeLa). HC-DICs were
observed in other cells but not LC-DICs. b The percentage of MCF-7 DICs that could be found in other cell types. Source data are provided in the Source
Data file. c Relationships between peak density of HC-DICs and the expression of their host genes. Gene expression data for the different cell types were
obtained from the GTEx database. d Overlap between DICs that were predicted relative to those that were experimentally isolated; p-values were
calculated with the hypergeometric test (two-sided, p= 2.4 × 10−161). e ChIP-seq data of the example locus in RPE cells. L1-5 indicated LC-DIC sites and
H1-5 indicated HCDIC sites. f Overlap of intragenic cohesin sites in normal and CdLS- and CHOPs-derived fibroblast cells. g Expression of genes associated
with DICs (paired t test, one-sided, n= 332) in Normal, CdLS (p= 2.9 × 10−6) and CHOPs (p= 0.0084) cells. Box plots indicate the interquartile range
IQR (25–75%) with a line at the median. Whiskers indicate 1.5 times the IQR. h Binding of Rad21, NIPBL, AFF4, H3K27ac, Pol2 and Pol2ser5 on LC-DICs.
Box plots indicate the interquartile range IQR (25–75%) with a line at the median. Whiskers indicate 1.5 times the IQR. Dashed lines represent the average
binding signal of each TF on all cohesin sites. Mann–Whitney U test (n= 332, two-sided) was used to compute p values. Black circles represent outliers.
Source data are provided in the Source Data file. i Proposed model for our DICs. Briefly, intragenic loops formed by LC-DICs pause Pol2, whereas HC-DICs
form CTCF-mediated loops. Transcription stimulation could displace DICs and disrupt DIC loops, consequently releasing the Pol2 pause. The exposed
enhancer sites on LC-DICs then bind their respective TFs and interact with promoters.
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Data collection and machine learning. All datasets used in machine learning are
listed in Supplementary Table 4. Apart from our data, public omics data in wild-
type MCF-7 cells were downloaded mainly from the GEO database, ENA database,
ENCODE project, FANTOM5 project, UCSC genome browser and GWAS Catalog
database. These data were then overlapped with all 184,140 cohesin peaks. As a
result, we obtained 15 continuous features and 160 binary features, the latter of
which indicated whether a kind of data was co-localized (1) or not co-localized (0)
at a cohesin site. After normalization of continuous features, the big matrix, which
consisted of 184,140 rows (cohesin sites) and 175 features, was imported into for
different analyses. The features correlation heatmap for all cohesin sites and DICs
was made with the R package corrplot. We used scikit-learn version 0.22.1 to
perform machine learning. Overall, the parameters used in scikit-learn were
optimized by grid search with 5-fold cross-validation. For unsupervised learning
(k-means), all 175 features were used to fit models. For supervised learning (logistic
regression, support vector machine, random forest), we omitted Mvalue, cohesin
location and CTCF signal information and then used the remaining 168 features as
independent variables Xi ¼ ðXi1;Xi2; ¼ ;XijÞ, for i ¼ 1; 2; ¼ ; 184140 and
j ¼ 1; 2; ¼ ; 168. Based on whether they were DICs or not, we labeled each cohesin
site as 1 or 0 and then used it as a dependent variable Yi 2 f0; 1g. The conditional
probability of logistic regression was calculated as follows:

P Yi ¼ 1jX ¼ Xi

� � ¼ 1

1þ e� β0þ∑168
j¼1 βjXij

� � ð1Þ

where βj is the regression coefficient of each feature. We used training data to do
model fitting and used test data to validate model performance. To apply the MCF-
7−derived ML model to RPE cells, we used 25 features that were available in both
MCF-7 and RPE cells. We used logistic regression with the L1 penalty to decide
whether each intragenic cohesin site had decreased binding (1) or not (0). Then the
MCF-7−fitted model was applied to the RPE features to predict DICs.

We also applied penalized regression followed by univariate linear regression as
described61, to reveal which features contributed to negative or positive Mvalue
(log ratio of cohesin peak intensity between E2 and control) in intragenic cohesin
(26066 sites). We used 169 features (of the 175 features, 6 were excluded: 5 features
related to cohesin position and the Mvalue feature) as independent variables
Xi ¼ ðXi1;Xi2; ¼ ;XijÞ, for i ¼ 1; 2; ¼ ; 26066 and j ¼ 1; 2; ¼ ; 169, whereas the
Mvalue was the dependent variable Yi. Instead of using the ordinary least squares
approach, we used the elastic net loss function:

Lenet β̂
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2n þ λ 1� α

2 ∑
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β̂j

2 þ α ∑
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���
���

� �
ð2Þ

to the linear model Yi ¼ β0 þ∑169
j¼1 βjXij, where n ¼ 26066 and β̂ was the

estimation of β. λ was chosen by cross-validation, and α ¼ 0:5 was used to consider
both the L1 and L2 penalty. Feature selection with such regularization was useful
for filtering out non-significant or redundant features. The remaining features were
applied to univariate linear regression Y ¼ aþ bX to calculate the regression
coefficient (Supplementary Figs. 9f–h).

Extraction of DICs. Quantitative comparison of Rad21 binding events was per-
formed using MAnorm19 version 1.3.0 with default parameters. This results in the
normalized Mvalue, a quantitative measure of differential binding for all cohesin
sites. To acquire more comprehensive cohesin binding sites, we combined our peak
results with high-quality ChIP-seq data from E-TABM-8286. We excluded the
cohesin sites with peaks width >3 kb and selected decreased peaks as M value <−0.5.
Next, we used RefSeq genome annotations as the reference to obtain intragenic
regions. As described in Supplementary Fig. 1e, we excluded 10 kb flanking regions
around TSS and TES. Only large genes (gene length > 20 kb) were considered. E2-
responsive genes were defined as genes with an increased Pol2ser2 ChIP-seq signal
(ratio > 1.2) in the presence of E2 relative to control and that were validated by RNA-
seq data. Decreased peaks at the intragenic region of 499 E2-responsive genes were
defined as DICs. Next, to quantify CTCF read density on DICs, we used MULTICI
options in DROMPA software. Peaks with very low Rad21 signals were omitted.
Finally, we separated the DICs into 141 high-CTCF DICs (HC-DICs) and 417 low-
CTCF DICs (LC-DICs).

Motif analysis. Motifs were analyzed using HOMER. Briefly, peak files in standard
bed format were converted to HOMER peak files, and then the command find-
MotifsGenome.pl was used to discover the motif. The results included known
motifs as well as de novo discovered motifs. The size of the region used for motif
finding was set to 200 bp. The top 10 motifs with the lowest q values (Benjamini-
Hochberg) are shown.

Software environment. All analyses were based on Ubuntu 18.04.4 with Python
3.6.9 and R 3.6.3. Data were processed using R base package or Numpy (v 1.17.2) as
well as Pandas (v 0.25.1) in Python. Figures were drawn with DROMPA (v 3.7.2),
Matplotlib (v 3.1.1), ggplot2 and R base plotting.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data and processed files (peak files in bed format) have been
deposited in the Gene Expression Ominibus (GEO) database under the series accession
number GSE177045. The public Hi-C data for control and E2 treatment is available at
GSE99541. The public H3K4me3, H3K27ac, H3K9ac, H3K14ac, H3K27me3, H3K9me3
ChIP-seq data for control and E2 treated MCF-7 cells are available at GSE23701. Public
H3K4me1 ChIP-seq data are available at GSE40129. Public Rad21 ChIP-seq data are
available at E-TABM-828. Public GRO-seq data are available at GSE99508. The human
genome reference data used in this study is available at Ensembl (http://asia.ensembl.org/
Homo_sapiens/Info/Index). The Fantom5 enhancer data is available at https://fantom.
gsc.riken.jp/data/. Other public datasets used in this study are listed at Supplementary
Tables 1–2 with the GEO database accession numbers. Source data are provided with
this paper.
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