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Comparison of methods and resources for cell-cell
communication inference from single-cell RNA-Seq
data
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Alberto Valdeolivas 5,6, Aurélien Dugourd1,6 & Julio Saez-Rodriguez 1✉

The growing availability of single-cell data, especially transcriptomics, has sparked an

increased interest in the inference of cell-cell communication. Many computational tools

were developed for this purpose. Each of them consists of a resource of intercellular inter-

actions prior knowledge and a method to predict potential cell-cell communication events.

Yet the impact of the choice of resource and method on the resulting predictions is largely

unknown. To shed light on this, we systematically compare 16 cell-cell communication

inference resources and 7 methods, plus the consensus between the methods’ predictions.

Among the resources, we find few unique interactions, a varying degree of overlap, and an

uneven coverage of specific pathways and tissue-enriched proteins. We then examine all

possible combinations of methods and resources and show that both strongly influence the

predicted intercellular interactions. Finally, we assess the agreement of cell-cell commu-

nication methods with spatial colocalisation, cytokine activities, and receptor protein abun-

dance and find that predictions are generally coherent with those data modalities. To

facilitate the use of the methods and resources described in this work, we provide LIANA, a

LIgand-receptor ANalysis frAmework as an open-source interface to all the resources and

methods.
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S ingle-cell RNA sequencing (scRNA-Seq) data has become a
driving force in the analysis of the cellular heterogeneity of
tissues. Furthermore, Spatial Transcriptomics has recently

emerged as a technology to measure gene expression while pre-
serving the spatial distribution of cells in a sample, thus providing
an unprecedented opportunity to decipher tissue architecture1.
These advancements have in turn led to an increased interest in
the development of tools for cell-cell communication (CCC)
inference. CCC events are essential for homeostasis, development,
and disease, and their estimation is becoming a routine approach
in scRNA-seq data analysis2. CCC commonly refers to interac-
tions between secreted ligands and plasma membrane receptors.
This picture can be broadened to include secreted enzymes,
extracellular matrix proteins, transporters, and interactions that
require the physical contact between cells, such as cell-cell
adhesion proteins and gap junctions3. For simplicity, we refer to
all of these events involving protein-protein interactions as CCC.

A number of computational tools and resources have emerged
that can be further classified as those that predict CCC interac-
tions alone4–17, and those that additionally estimate intracellular
activities related to CCC18–24. Here, we focus on the former
(Table 1). These CCC tools typically use gene expression infor-
mation obtained by scRNA-Seq. In general, single cells are clus-
tered by their gene expression profile and cell type identities are
assigned to the clusters based on known gene markers. Then,
CCC tools can predict intercellular crosstalk between any pair of
clusters, one cluster being the source and the other the target of a
CCC event. CCC events are thus typically represented as a one-
to-one interaction between a transmitter and receiver protein,
accordingly expressed by the source and target cell clusters. The
information about which transmitter binds to which receiver is
extracted from diverse sources of prior knowledge. Roughly, CCC
tools then estimate the likelihood of crosstalk based on the

expression level of the transmitter and the receiver in the source
and target clusters, respectively. Every tool has two major com-
ponents: a resource of prior knowledge on CCC (interactions),
and a method to estimate CCC from the known interactions and
the dataset at hand. Most tools have been published as the
combination of one resource and one method, but in principle
any resource could be combined with any method.

Despite the aforementioned common premises to explore CCC
events, each tool uses a different method, such as permutation of
cluster labels, regularisations, and scaling, to prioritise interac-
tions according to the input datasets (Table 1). In turn, these
different approaches result in diverse scoring systems that are
challenging to compare and evaluate. The difficulties are further
exacerbated by the lack of an appropriate gold standard to
benchmark the performance of CCC methods2,25. Nevertheless,
different strategies have been used to indirectly evaluate the
methods’ performance, including a presumed correlation between
CCC predictions and spatial adjacency14,22, recovering the effect
of receptor gene knockouts22, robustness to subsampling14,
agreement with proteomics12, simulated scRNA-Seq data9, and
the agreement among methods10,12,14,22.

The available prior knowledge resources, largely composed of
ligand-receptor, extracellular matrix, and adhesion interactions,
are typically distinct but often show partial overlap3,26. Some of
these resources also provide additional details for the interactions
such as information about subcellular localisation3,14, classifica-
tion into signalling pathways and categories14,27 (Supplementary
Table 1). Notably, some resources3,8,14,27,28 (Supplementary
Table 1), and consequently their corresponding methods, focus
on protein complexes as the functional units of CCC, which are
crucial for the coordination of signalling as different subunit
combinations may induce distinct responses8. Despite the fact
that CCC inference is constrained by the prior knowledge used,

Table 1 Tools included in the framework.

Tool/Method Resource Methods’ scoring systems

CellChat#14 CellChatDB (1) Probability—based on the expression of differentially expressed transmitter and receiver genes and their
mediators, calculated with the law of mass action
(2) P-values†—significance identified via permutation of cell cluster labels and recalculating the probabilities
for each cell pair and each transmitter-receiver interaction

CellPhoneDBv2#8 CellPhoneDB (1) Truncated Mean—average expression of transmitter and receivers, the minimum expression (by default)
of heteromeric complex of subunits
(2) P-values†—significance identified via permutation of cell cluster labels to determine a null distribution of
means for each receiver-transmitter interaction

Connectome10 Ramilowski (1) weight_norm—derived via the product (by default) of the normalised expression of transmitter and
receiver genes
(2) weight_scale†—derived from a function (mean, by default) of the z-scores of the transmitter and the
receiver, scaled according to cell cluster specificity

Crosstalk scores - (1) Crosstalk score†—Cytotalk-inspired22 crosstalk scores were derived from the expression of transmitters
and receivers, weighted by the likelihood of autocrine signalling between the source and target cell types.

logFC Mean - (1) logFC Mean†—iTALK-inspired6 logFC means, derived using the mean of the logged one-versus-all fold
change of receiver and transmitter gene expression

NATMI11 ConnectomeDB (1) Mean-expression edge weight—transmitter and receiver gene expression product
(2) Specificity-based edge weight†—the mean expression of the transmitter and receiver are divided by the
sum of the means of the same transmitters/receivers across all cell clusters

SingleCellSignalR#12 LRdb (1) LRscore—a regularised score calculated using the squared expression of the transmitter and receiver
(sqTRE) divided by sum of the mean of the count matrix and sqTRE.

Consensus - (1) Robust Rank Aggregate65—preferentially highly-ranked interactions are obtained from a distribution
generated from the interaction rankings of other methods

Each method considers expression at the cell cluster level, and all of the scoring systems presented here use the expression of transmitters and receiver genes in the source and target cells, respectively.
In addition to the seven methods, we included their consensus.
In bold are the names of cell-cell communication inference methods and their scoring functions.
Dagger (†): Explicitly incorporates communicating cell-pair specificity in interaction predictions
Hashtag (#): CellPhoneDB, CellChat, and SingleCellSignalR provide explicit thresholds to control for false positive interaction predictions. In the case of the former two, these are permutation-based p-
values, whereas SingleCellSignalR’s LRscore has a suggested threshold of 0.5.
Methods that additionally infer intracellular processes, such as NicheNet19, Cytotalk22, and SoptSC20 are not directly comparable but instead provide complementary analyses.
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yet the impact of resource choice is largely unexplored, with the
exception of a descriptive comparison of 4 resources with one
method26. Thus, it remains unclear how the choice of resource
and method affects the results and thereby the biological inter-
pretation of the scRNA-seq data.

In this work, we systematically compared all combinations of
16 resources and 7 CCC methods, plus their consensus (Fig. 1).
First, we explored the degree of overlap among resources and
whether certain resources are biased toward specific biological
terms, such as pathways and tissue-enriched proteins. Then, we
analysed how different combinations of resources and methods
influence CCC inference by decoupling the methods from their
corresponding resources and applying all method-resource
combinations on six different datasets. Finally we evaluated the
agreement of the different CCC methods with additional

modalities, including spatial adjacency, cytokine activities, and
protein abundance. All results were generated using LIANA—a
LIgand-receptor ANalysis frAmework (Fig. 1; available at https://
github.com/saezlab/liana).

Results
Resource uniqueness and overlap. To investigate the lineages of
CCC resources, we manually gathered information about the
origins of every resource. Many of these resources share the same
original data sources, including general biological databases such
as KEGG29,30, Reactome31, and STRING32 (Fig. 2). Moreover,
interactions from the Guide to Pharmacology33, CellPhoneDB8,
HMPR34, and in particular Ramilowski (FANTOM5)35, which
are manually curated, were commonly incorporated into subse-
quently published resources (Fig. 2; Supplementary Table 2). All

CellPhoneDB
CellTalkDB
Ramilowski

CellChatDB
C llPh DB
ConnectomeDB C

Resources

OmniPath
 + 10 others

Clustered scRNA Data

Cell-Cell Communication

LIANA

Methods

NATMIA
CellPhoneDB

logFCATMIAATAA FCl
Connectome

Crosstalk Scores   

NNCellChat

Consensus

Crosstalk Scores
SingleCellSignalR

Fig. 1 LIANA—a LIgand-receptor ANalysis frAmework. LIANA takes any annotated single-cell RNA (scRNA) dataset as input and establishes a common
interface to all the resources and methods in any combination. LIANA also provides a consensus ranking for the method’s predictions.

Fig. 2 Dependencies and overlap between CCC resources. The lineages of CCC interaction database knowledge. General biological knowledge databases
(blue), CCC-dedicated resources (magenta), manual literature curation effort (yellow), additional resources included in iTALK (cyan), and OmniPath
(green). Arrows show the data transfers between resources. The yus symbol (Ѫ) indicates the manual-curation of resources, defined by explicitly
mentioning that these resources are ‘manually’ or ‘expert’ curated. The asterisk ( ) indicates that the resource was included in the analyses
presented here.
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the resources included in this analysis are integrated into
OmniPath’s CCC resource3, along with additional CCC interac-
tions from other sources (e.g. SIGNOR36, Adhesome37,
SignaLink38). A part of the OmniPath CCC resource, also referred
to as ‘OmniPath’ and used in this work, was filtered by curation
and protein localisation quality (“Processing of CCC resources”
Methods).

As a consequence of their common origins, we noted limited
uniqueness across the resources, with mean percentages of 6.4%
unique receivers, 5.7% unique transmitters, and 10.4% unique
interactions (Fig. 3A; Supplementary Table 1). One notable
exception was Cellinker’s resource16, as 39.3% of its interactions
were not present in any other resource. Despite the fact that few
components were unique to any given resource, the pairwise
overlap between the resources varied and was often limited
(Fig. 3B; Supplementary. Fig. S1). Yet, high similarity was

observed between CellTalkDB26, ConnectomeDB11, iTALK6,
LRdb12, and Ramilowski (Fig. 3B). Each of these resources,
together with OmniPath and Cellinker, contained an average of at
least 60% of the interactions present in other resources, largely
explained by each containing a large proportion (>80%) of the
interactions present in Ramilowski (Supplementary Fig. S2).
Baccin28, CellPhoneDB, CellChatDB, and EMBRACE showed
limited similarity with other resources, as each included on
average ~40–50% of the interactions present in any other
resource. These latter resources, except EMBRACE, include
protein complexes, which were dissociated and treated as distinct
protein subunits in our resource analyses. The relatively smaller
resources CellCall23, ICELLNET13, Guide to Pharmacology,
HMPR and Kirouac201039 were the most dissimilar from the
remainder. Finally, the similarity among the resources was
generally higher when considering transmitters and receivers

Fig. 3 Cell-cell communication resources—uniqueness and overlap. A Shared and unique Interactions, Receivers and Transmitters for each resource.
B Similarity between the different resources based on the interactions (Jaccard Index). Source data are provided as a Source Data file.
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(Supplementary Figs. S1, 2), rather than the interaction
themselves, suggesting that different resources account for
different interactions between the same proteins.

Resource prior knowledge bias. Since CCC inference relies
heavily on prior knowledge to estimate intercellular commu-
nication events, the choice of resource and any potential bias in it
is expected to impact the results. We therefore explored whether
the coverage of each CCC resource, when compared to the col-
lection of all resources, is biased toward specific functional cate-
gories, tissue-enriched proteins, disease-associated genes, or
subcellular locations.

To examine whether specific pathways and biological functions
are unevenly represented in CCC resources, we matched the
interactions, receivers and transmitters from each resource to
well-known pathways and functional categories from
SignaLink38, NetPath40, and CancerSEA41 (“Descriptive analysis
of resources” Methods) and compared the resulting distributions
across 16 CCC-dedicated resources (Supplementary Table 2).

The Receptor tyrosine kinase (RTK), JAK/STAT, TGF, WNT,
and Notch pathways covered the largest proportions of interac-
tions matched to SignaLink (Fig. 4A), with analogous results
observed for receivers and transmitters (Supplementary Fig. S3).
The interactions from Ramilowski, ConnectomeDB, CellTalkDB,
LRdb, and iTALK showed a highly similar patterns, explained by
the high overlap of these resources, with all of them showing
significant underrepresentation of the T cell receptor pathway
(Fig. 4B). A more pronounced underrepresentation of the same
pathway was observed in Guide to Pharmacology, ICELLNET,
CellPhoneDB, CellCall, CellChatDB, HMPR, Baccin2019,
EMBRACE, and Kirouac2010. On the contrary, the T-cell

receptor pathway was significantly overrepresented in OmniPath
and Cellinker. When we used NetPath instead of SignaLink to
define the T-cell receptor pathway, we also observed under-
representation in HMPR, CellCall, EMBRACE, and Kirouac2010
and overrepresentation in OmniPath (Supplementary Fig. S4A).
Moreover, the Signalink WNT pathway was underrepresented in
Guide to Pharmacology, ICELLNET CellPhoneDB, HMPR, and
Kirouac2010, and on the contrary overrepresented in CellCall.
We saw similar results when using NetPath’s WNT pathway
(Supplementary Fig. S4A). We also observed uneven representa-
tions across the resources, in particular for the Hedgehog, Notch,
and Innate Immune pathways (Fig. 4A; Supplementary Fig. S4A).

We then matched interactions to cancer-related gene sets from
CancerSEA41, which were also unevenly represented. For example,
interactions from the CellPhoneDB resource were overrepresented
in gene sets associated with inflammation, proliferation, and
quiescence (Fig. 4C; Supplementary Fig. S5). Gene sets associated
with epithelial-mesenchymal transition were underrepresented in
CellPhoneDB, Guide to Pharmacology, CellCall, ICELLNET, and
Kirouac2010. This observation was further supported by the
underrepresentation of direct-contact signalling in the latter two
resources (See Supplementary Note 1; Supplementary Fig. S6).

We also examined the coverage of tissue-enriched proteins and
disease markers from the Human Protein Atlas42 and
DisGeNet43, respectively. Organ-enriched proteins were largely
uniformly distributed across the CCC resources, with some
exceptions, such as organ-associated proteins from the Breast,
Bone Marrow, Lymph Nodes, and the Hypothalamus (Fig. 4D;
Supplementary Figs. S7, S8). Similarly, tissue-enriched proteins
were generally distributed evenly across most CCC resources,
with some exceptions including the underrepresentation of
interactions associated with cardiomyocyte proteins in

Fig. 4 Representation of functional categories in CCC resources. CCC resources distributions in terms of number of interactions (A) and relative
abundance (B) matched to the SignaLink database. Relative abundance of interactions categorised by (C) CancerSEA’s cancer-related gene sets, and (D)
organ-enriched proteins from the Human Protein Atlas (HPA). Fisher’s exact test was used to estimate the differentially-represented categories.
Differentially represented (absolute(log2(Odds ratio)) >1) categories were marked according to FDR-corrected p-values=< 0.05 (diamond, ♢), 0.01
(triangle, △), and 0.001 (8-pointed asterisk; ❋). Source data are provided as a Source Data file.
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ICELLNET and Kirouac2010, as well as the overrepresentation of
proteins associated with Glial cells in Guide2Pharma (Supple-
mentary Figs. S9, S10).

Finally, no differentially represented disease markers were
noted in any of the CCC resources (Supplementary Fig. S11).

In summary, our results indicated biases towards certain
pathways, functional categories, and tissue-enriched proteins
across the different CCC resources, implying that resource choice
can influence the functional interpretation of CCC predictions.

Using LIANA to systematically compare CCC predictions. To
estimate the relative agreement between CCC methods and the
importance of the resources, we built LIANA—a framework to
decouple tools from their inbuilt resources. LIANA enabled us to
combine the 16 CCC resources detailed in the descriptive
resource analysis above (Supplementary Table 2), with 7 CCC
methods used to prioritise ligand-receptor interactions from
scRNA-Seq data (Table 1). We then predicted the interactions
from all possible method-resource combinations for 6 single-cell
RNA datasets from three different subtypes of breast cancer44,
cord blood mononucleated cells45, Pancreatic Islets46, and col-
orectal cancer47 (Methods “Data availability”).

We first looked at the overlap between the 1000 highest ranked
interactions predicted for every method-resource combination.

Whenever available, we used the recommended scoring functions
(Supplementary Table 3), each tailored for predicting relevant
interactions. We found consistently low overlap in the top
predicted interactions when using either different methods or
different resources (Fig. 5). The median pairwise Jaccard index
when using different methods ranged from 0.045 to 0.112 across
datasets (median= 0.080) (Fig. 5A). The overlap when using
different resources was slightly higher, as the median pairwise
Jaccard index ranged from 0.085 to 0.132 (median= 0.119)
(Fig. 5B). We found similar results when considering the top 1%
predicted interactions instead of the top 1000 (Supplementary
Fig. S12; Supplementary Note 2). These analyses revealed
substantial discrepancies in the highest-ranked predicted inter-
actions by the different methods under study.

These discrepancies reflect the diverse nature of the scoring
systems used to prioritise interactions of interest, and in particular,
the different approaches used to assign communication cell cluster
pair specificity to the interactions (marked with a dagger (†) in
Table 1; used by all methods except SingleCellSignalR). The low
overlap between the results of the different methods was also
reflected by dissimilarities in the relative importances assigned to
different cell types (See Supplementary Note 2).

On the other hand, the low overlap between the highest
ranking interactions using different resources was largely

Fig. 5 Overlap of predictions using any combination of CCC methods and resources. Overlap (Jaccard index) in the 1000 highest ranked (A) when using
the same Resource with different Methods (Blue; n= 7) and (B) when using the same Method with different Resources (Red; n= 16). Boxplots represent
the median pairwise jaccard index with hinges showing the first and third quartiles and whiskers extending 1.5 above and below the interquartile range. The
dashed lines represent the median when using different resources (red) and methods (blue); the lines overlap for the CMBCs dataset. Source data are
provided as a Source Data file.
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expected due to the limited overlap between the CCC resources as
described in “Resource Uniqueness and Overlap”.

Taken together, our results suggest that both the choice of
method and the resource can have a considerable impact on the
predicted interactions.

Robustness to noise in resources and data. We then analysed
the sensitivity of the methods to the addition of noise in the data
and resource (“Robustness analyses” Methods). We found that
most were fairly robust to subsampling of the total number of
cells (Supplementary Fig. S13A), while erroneous annotation of
cell types had a stronger effect, highlighting the importance of
preprocessing and proper cluster annotation (Supplementary
Fig. S13B). The methods were also adequately robust to the
selective replacement of original canonical resources interactions
with spurious putatively false interactions (“Robustness analyses”
Methods), in which highest ranked interactions for each method
were preserved (Supplementary Fig. S13C). The non-selective
replacement of interactions, meant to simulate the change of
resource (Supplementary Fig. S13D), had a strong effect on all
methods, reflecting the low overlap when using different
resources observed in the overlap analysis above.

Overall, our analysis showed that all methods, especially
CellChat, CellPhoneDB, and SingleCellSignalR, were fairly robust
to noise in both the data and the resource.

Association between CCC predictions and cytokine expression
signatures. Next, given the lack of a ground truth, we used other
data modalities to indirectly evaluate the methods using Omni-
Path, the resource with the largest coverage.

First, we noted that all methods appropriately detect
specifically-expressed receptor proteins across seven CITE-seq
datasets (See Supplementary Note 3). Since protein levels of
receptors do not necessarily imply activity, we evaluated the
methods’ agreement with predicted cytokine activities using 43
cytokine expression signatures48 on two datasets coming from
two subtypes of breast cancer44 (Methods “Agreement with
cytokine signatures”). To show the association between CCC
predictions and cytokine activities, we calculated the odds ratios
between preferentially ranked interactions and positively enriched
cytokines across a range of ranks. We found generally positive
trends between cytokine activities and the most prioritised CCC
interactions across all methods. The observed trends largely
converged toward the random baseline as the number of
considered interactions increased (Fig. 6A). Connectome, the
Crosstalk scores, and NATMI showed a consistent trend across
both datasets, while SingleCellSignalR, logFC Mean, CellChat,
CellPhoneDB, and the consensus of the methods (Table 1)
showed negative or lack of signal for the higher ranks of the
HER2+ dataset (Fig. 6A; Supplementary Fig. S14). Notably, a
high agreement with cytokine activities was observed for CellChat
and CellPhoneDB in the HER2+ dataset, when considering all of
their predictions subsequent to false-positive filtering (vertical
line in Fig. 6A), highlighting the value of the false-positive control
steps of these methods.

These results suggest that the interactions identified as relevant
by all methods were largely concordant with cytokine activities,
confirming the agreement of predicted CCC interactions with
downstream signalling events.

Enrichment of predicted interactions between spatially adja-
cent cell types. Next, we leveraged spatial information as a way to
support the methods’ predictive potential, under the assumption
that, while many other factors are involved, colocalized cell
populations are expected to have a higher chance to interact with

each other than other non-adjacent cell types14,22,49,50. That is,
the highest ranked interactions predicted between various cell
populations are expected to be positively associated in interac-
tions between pairs of adjacent cell types (Methods “Agreement
with spatially adjacent cell types”).

We used the spatial mapping information from eight 10×
Visium slides (see Methods), corresponding to a murine brain
cortex51 and triple negative breast cancer44 datasets, to identify
the colocalized cell types in the tissues. We observed a positive
trend of increased colocalisation of cell types in Visium and
prioritisation of CCC interactions in the scRNA datasets (Fig. 6B).
This trend was particularly consistent for the well-structured,
murine brain cortex dataset, where all methods, except the
Crosstalk scores, showed an association between cell type spatial
adjacency and CCC predictions, with Connectome, LogFC Mean,
and the consensus displaying the most positive associations. In
the case of the triple negative breast cancer dataset, only the
predictions by the consensus and LogFC Mean showed a
consistent, positive association with spatial adjacency (Fig. 6B).

We conducted a similar analysis with seqFISH52 and
merFISH53 datasets (“Agreement with spatially adjacent cell
types” Methods). In this case, we made use of the single-cell
resolutions of these datasets to identify both the spatially adjacent
cell types and to obtain the interaction predictions. For the
seqFISH dataset, we found a clear association between the
predicted CCC interactions and the spatial adjacency of their
corresponding cell-types for NATMI, and moderate associations
for logFC Mean and Connectome, while the other methods
showed inconsistent trends or lack of signal (Supplementary
Fig. S15). There was no trend in the merFISH dataset, likely due
to the lower gene space of that dataset (Supplementary Fig. S15).

In summary, our results showed a positive association of
interactions predicted by most methods and spatially-adjacent
cell types in the well-structured brain cortex, while the
associations were less consistent in the breast cancer subtypes.
This positive association suggests that, despite the dissociation of
single-cells and their grouping into cell types, CCC predictions
partly reflect the expression patterns encoded by tissue spatial
context.

Discussion
The growing interest in CCC inference has led to the recent
emergence of a number of methods and prior knowledge
resources. To shed light on the impact of the choice of method
and resource on the inference of CCC events, we built a frame-
work to systematically combine and compare 16 resources and 7
methods, plus their consensus. We used this framework to
explore in detail the content of the different resources, to compare
the predictions on six different datasets when using all combi-
nations of methods and resources, and to assess the agreement of
the methods with other data modalities. Our results suggest that
both the method and resource can considerably impact CCC
inference predictions, and that most methods generally capture
the biological signals from other data modalities.

Resource overlap and bias. Despite their largely common origins,
different resources covered varying proportions of the collective
prior knowledge. A large share of the observed overlap among
resources was a result of the frequent inclusion of certain
resources8,31,33,34, particularly Ramilowski et al. 35.

When inspecting the relative compositions of the resources, we
noted biases towards certain organ- or tissue-enriched proteins
and functional terms. Some resources are predominantly
manually-curated8,11,16,26,27,54, while others6,12,28,55 are compo-
sites which also import non-curated interactions. Thus, this
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suggests a quality-coverage trade-off, as is commonly the case for
biological prior knowledge. Of note, the literature-support
reported by different authors for the same resources do not
always agree23,26, suggesting different interpretations of what
defines a curated interaction.

These findings highlight an inherent limitation of knowledge-
based inference, as any prior knowledge resource has its own
biases and only represents a limited proportion of biology. Taken
together, the variable overlap between the resources, their uneven

functional distributions, and the reported curation disagreements
are a call for further large-scale curation efforts.

Impact of methods and resources. Our systematic analysis using
different combinations of resources and methods revealed that
both had a considerable effect on the predictions. In the case of
the resources, the disagreements were largely expected as a con-
sequence of their varying overlap. However, this was not neces-
sarily the case for the methods, given their conceptually common

Fig. 6 Agreement of CCC predictions with other modalities. Odds ratios of (A) active cytokines and (B) colocalized cell types among the highest ranked
interaction predictions, across a ranked range between 100 and 10,000. Odds ratios representing the association of preferentially ranked CCC predictions
and (A) cytokine activities and (B) spatial adjacencies were calculated using Fisher’s exact test. Asterisk (*): Consensus represents the aggregated ranks of
all interactions predicted by all the methods. Dashed horizontal line is the baseline represented by an odds ratio of 1. The dashed vertical lines represent the
truncated ranges of CellChat, CellPhoneDB, and LogFC Mean, arising from their relatively stricter preprocessing steps. Source data are provided as a
Source Data file.
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aim, similar assumptions, and previously reported agreement
among some of them10–12,14.

A major reason for the low overlap between the methods was
their distinct approaches to identify the most relevant interac-
tions. Hence, the common practice of using the number of
interactions reported between two cell types as a proxy for their
communication intensity is likely biased by the choice of CCC
inference method. Reassuringly, our robustness analyses high-
lighted that the methods are fairly robust to cluster subsampling,
as well as the introduction of noise to both the dataset and the
resource. Collectively, these results indicate that while the
methods are fairly robust to technical noise, the choice of
method and resource is likely to have a major impact on the
results. Therefore, downstream analyses and biological inter-
pretation of the predicted ligand-receptor interactions should be
considered with caution.

Agreement with other data modalities. Motivated by the
observed discrepancies, we supported the methods’ performance
using complementary data modalities. We found concordance of
the CCC predictions with receptor protein specificity and with
cytokine activities estimated from downstream gene-expression
signatures48. Of note, the cytokine activities and receptor pro-
teins, presented in this work as an evaluation, could also be used
to improve the confidence in predictions56. Similarly, other
analyses such as pathway14 or transcription factor activities15,57,
as well as other types of cell-communication dedicated methods,
including NicheNet19, CytoTalk22, and SoptSC20, could be uti-
lised to provide further confidence in the predicted ligand-
receptor interactions.

Furthermore, similarly to previous efforts, we used spatial
information to support the methods’ predictions14,22. We saw
that most methods prioritise interactions between colocalized cell
types, and this was clearer in the well-structured brain cortex than
in breast cancer tissue. These results suggest that the performance
of the methods depends on the type of tissue, and that, if
available, spatial information should be used to inform58,59 or
constrain60 the predictions.

Our agreement analyses are based on assumptions that are only
approximations of reality. The limitations include the restricted
coverage of the cytokine activity signatures and receptor proteins,
and the technical shortcomings of current spatial transcriptomics
technologies. Furthermore, such benchmarks cannot distinguish
simple co-expression from actual CCC events, and do not capture
complex relationships between CCC events. Since a gold standard
is currently not available and the biological ground truth is largely
unknown2,25, our analyses cannot give a definitive answer of what
method is best. However, we believe that these results are useful
to indirectly support the methods’ predictive potential.

Overall, our results suggest that despite their relatively low
agreement, the CCC methods are generally able to capture
relevant biological signals, and that leveraging information from
additional modalities and analyses could help to refine the
predictions.

CCC inference assumptions and limitations. The shared pur-
pose of the methods considered in this work is to predict the most
relevant interactions, commonly between a secreted ligand and its
receptor, each expressed by a particular cell type. All methods
work under the assumption that the expression of a pair of genes
at the cell type level is informative of CCC events. Some of the
methods such as CellChat14, CellPhoneDB8, and others16,27,28, go
a step further by considering heteromeric complexes. Ensuring
that all subunits of a protein complex are expressed to consider a
cell-cell interaction valid has been shown to reduce false positive

predictions, and can thus impact significantly downstream
interpretation and validation8,14. CellChat additionally accounts
for interaction mediator proteins14. Another common assump-
tion among the CCC methods is that cell-type-specific interac-
tions are more informative than those shared by multiple cell
types8,10,11,14. Yet by focusing on the cluster-specific interactions,
the predictions may not capture biologically relevant processes
that are common between multiple cell types12.

Gene expression provided by scRNA-Seq is typically limited to
the cells within the dataset, and hence does not capture long-
distance endocrine signalling events. In addition, CCC inference
from scRNA-Seq data assumes that gene expression of a
transmitter and a receiver is a good proxy for their joint activity,
without considering any of the processes preceding transmitter-
receiver interactions, including protein translation and proces-
sing, secretion, and diffusion2. Furthermore, gene expression is a
proxy of protein levels alone, yet recent efforts attempt to capture
signalling events mediated by other molecules such as neuro-
transmitters15,16. Finally, current methods are limited to single
species although some information about interspecies commu-
nication can be inferred61,62.

Conclusions
Considerable efforts have been made to develop CCC inference
tools and resources, and we expect that further advancements will
be key for the systems-level analysis of single-cell data. The
popularity of CCC inference is anticipated to increase as spatial
transcriptomics1 and single-cell proteomics63 continue their rapid
development. We regard the results presented here as steps
towards an understanding of the strengths and weaknesses of
CCC methods, and LIANA as a framework for their further
analysis, benchmark, use and development.

Methods
Processing of CCC resources. The connections between resources shown in the
dependency plot were manually gathered from the publications and the web pages
of each CCC resource.

OmniPath is a comprehensive knowledge database with more than 100
intracellular and intercellular resources3. The OmniPath intercellular component is
a composite resource which contains interactions from all of the CCC dedicated
resources compared here, along with some additional resources3. All the CCC
resources used in the analyses presented in this work were queried from
OmniPath3, with the exception of CellCall which was processed to OmniPath
format separately. The contents of the resources are identical to their original
formats, apart from minor processing differences (Supplementary Table 2), such as
removal of duplicates, updating to the latest gene symbols, or removal of genes
lacking reviewed Uniprot IDs. All complex-containing resources were dissociated
into individual subunits for the resource-focused analyses presented in this work.

OmniPath’s version used in this work was filtered according to the following
criteria: (i) we only retained interactions with literature references, (ii) we kept
interactions only where the receiver protein was plasma membrane transmembrane
or peripheral according to the 51st consensus percentile of the localisation
annotations, and (iii) we only considered interactions between single proteins
(interactions between complexes are also available in OmniPath). Tutorials on how
to customise OmniPath as well as how to make use of the intracellular functional
information available at OmniPath are available at https://saezlab.github.io/liana/.
OmniPath’s intra- and intercellular components were both obtained and are both
available via the OmnipathR package (https://github.com/saezlab/OmnipathR).

Descriptive analysis of resources. We defined unique and shared interactions,
receivers and transmitters between the CCC resources if they could be found in
only one or at least two of the resources, respectively.

To identify uneven distributions of transmitters, receivers, and interactions
toward biological terms or protein localisations, we used Fisher’s exact test to
compare each individual resource to the collection of all the resources. The test p-
values were FDR corrected. We performed the analysis using the aforementioned
functional annotation databases in 3 distinct categories. For the overrepresentation
of interactions, we considered annotations when both the transmitter and receiver
were matched to the same category, while annotations matched to transmitters and
receivers enrichments were examined independently. We allowed the same protein
or interaction to be matched to multiple pathways or functional categories from the
same database. Interactions, receivers, and transmitters were independently
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matched to the 10 pathways from SignaLink38, and the 15 largest categories from
CancerSEA41, and NetPath40. The same procedure was also applied to organ- and
tissue-enriched proteins from the Human Protein Atlas42, accessible at https://
proteinatlas.org, and disease-associated genes from DisGeNet43. Pathology-
associated, uncertain, and unsupported proteins with a low/non-representative
level of expression were excluded from Human Protein Atlas database, while
DisGeNet gene-disease associations were filtered to include only literature-
supported associations (GDA Score >= 0.3). Each of the aforementioned general
functional annotation databases was obtained via OmniPath and their protein
complexes, if present, were also dissociated.

We also obtained protein localisations from OmniPath which collects this
information from 20 databases3. Then we kept consensus protein localisations
above the 51st percentile. We classified CCC interactions using the localisation
combinations of proteins involved in the interactions, which included secreted,
plasma membrane peripheral and transmembrane proteins.

Input specifics. For the method-resource comparisons and evaluations, we used
Seurat46,64 objects which were converted to the appropriate data format when
calling each method. Whenever available, we used the recommended conversion
method or wrapper for each method. Log-transformed counts were used when this
was not done internally by the method.

The complex-containing interactions, if present in a given resource, were
dissociated for the methods which do not take complexes into account, namely the
original implementations of NATMI, SingleCellSignalR, and Connectome.

Method specifics
CellChat. CellChat was run using its default settings with 1000 permutations and
the gene expression diffusion-based smoothing process was omitted.

CellPhoneDBv2. CellPhoneDB’s algorithm8 was re-implemented in LIANA and
used throughout this manuscript with 1000 permutations. Identical to the original
implementation, cluster labels were reshuffled and an one-sided empirical p-value
was calculated for the interactions with a mean expression higher than random.
Only interactions whose transmitter and receiver genes were expressed in at least
10% of the cells were considered, and the subunit with the minimum expression
was used for complexes.

Connectome. Connectome was run with its default settings and filtered for dif-
ferentially expressed genes (p-value <= 0.05), as identified via a Wilcoxon test.

logFC Mean. The LogFC Mean score implemented in LIANA, was inspired by
iTALK6, and it represents the average of one-versus-the-rest log2FC expression
changes for the transmitter and receiver cell types. The logFC Mean score uses
LIANA’s default filtering settings, namely both the transmitter and receiver genes
of any interaction evaluated must be expressed in at least 10% of the cells, and it
considers the subunit with the minimum expression for complex-containing
interactions.

SingleCellSignalR. SingleCellSignalR was run with the processed gene counts,
considering differentially expressed genes with a log2 fold change threshold of 1.5
or above, and we filtered LRscores >= 0.5 for the evaluations. The “int.type”
parameter was set to “autocrine”. We noted that this option returned both para-
crine and autocrine signalling interactions. The source code of SingleCellSignalR
was modified to work with external resources (available at https://github.com/
saezlab/SingleCellSignalR_v1).

NATMI. NATMI’s implementation is command-line based, thus a system com-
mand is invoked via R that calls the NATMI python module and passes the
appropriate command line arguments. NATMI was run with its default settings
using the processed gene expression matrix, converted from Seurat. The source
code of NATMI was modified to be path-agnostic and to work with integers as
cluster names (available at https://github.com/saezlab/NATMI).

Crosstalk scores. Crosstalk scores, inspired by CytoTalk22, were implemented in
LIANA. CytoTalk’s crosstalk scores are composed of two metrics: the preferential
expression measures (PEMs) and the non-self talk scores (NSTs). The first one
reflects the specific expression for quantified genes across all the cell types. The
latter is defined on the basis of information theoretic measures and quantifies the
mutual information (Shannon entropy) for a pair of genes (ligand and receptor)
within the same cell type, and is thus designed to penalise autocrine signalling.
Once NST and PEM are calculated, the crosstalk score is calculated for each ligand-
receptor pair and for each cell type pair as the product of the minmax normalised
PEM and NST values. To enable the comparison to the rest of the methods, and in
contrast to the crosstalk scores implemented in CytoTalk, we calculated the
crosstalk scores by cell type pairs and used the inverse of the non-self-talk scores
for autocrine signalling interactions. Moreover, our implementation considers
complexes, and interactions with transmitters or receivers with preferential
expression measures of 0 are also assigned 0.

Robust-rank aggregate. A consensus rank is generated across all methods using
Robust Rank Aggregation65. These aggregated ranks can in turn be interpreted as a
probabilistic distribution for interactions that are preferentially highly-ranked. The
aggregate ranks are built across the universe of all interaction predictions, after
independent filtering by each method. By default, missing interactions are imputed
as the max ranks.

Overlap analysis. To compare the overlap between the interactions predicted by
each method-resource combination, we kept the 1,000 highest ranked interactions
by default, including ties. We also considered the highest ranked 1% of interactions
for each method, including ties. We then generated a presence-absence matrix of
predicted interactions with method-resource combinations. These matrices were
subsequently used to calculate the reported Jaccard indices.

Unless explicitly mentioned, and if available, we used the scoring functions for
each method recommended for single-condition interaction predictions
(Supplementary Table 3).

Frequencies of interactions per cell type were calculated using the highest
ranked hits for each method-resource combination. These frequencies represent
the proportion of top predicted interactions (or edges) that stem from or lead to a
source or target cell type, respectively. In other words, interaction frequencies
represent the relative number of interactions per cell type within the highest ranked
1000 interactions.

The relative interaction strength by cell type was calculated using the
regularised scores from each method, i.e. all scoring functions were scaled between
0 and 1. Then the mean regularised score per cell type, categorised as source or
target, was divided by the average score of all interactions predicted.

Agreement with other modalities and robustness. All of the comparisons with
other modalities were performed using the OmniPath CCC resource. For murine
datasets, we converted the OmniPath to murine symbols using the biomaRt
package66.

For the binary categorisations used in the agreement with cytokine activity
analysis and spatial adjacencies, we performed Fisher’s exact test, sequentially in
rank intervals ranging from 100 to 10,000, to obtain the Odds ratios of the positive
and negative classes against a background universe. In the case of the spatial
adjacency analysis, the background universe contained all predicted interactions,
while for the cytokine activities, we only considered those matched to cytokines
from CytoSig48.

Agreement with cytokine signatures. CytoSig provides a collection of consensus, data-
driven, cytokine-activity signatures compiled using a compendium of transcriptomic
profiles48. We used CytoSig’s 43 high-quality signatures to infer which cytokines
induce signalling activities in each cell type. We then used this information to assess if
a cytokine-receptor interaction reported by the different CCC methods was supported
by the corresponding cytokine downstream signalling activities.

We computed the cytokine activity scores for all cell types with the multivariate
linear regression model (‘mlm’) method of decoupleR at the pseudobulk level. We
chose the mlm method as an approach that models the effect of multiple cytokines
and that performed best in a recent footprint-focused analysis benchmark67.

To build the pseudobulk profiles, we log2-transformed the summed counts
within each cell type, and kept only genes which were expressed in at least 10% of
the cells and with a summed raw count above 5.

In this evaluation, we used both the autocrine and paracrine CCC predictions,
calculated using expression counts at the cell-type level for all cell types, from the
HER2+ and triple negative breast cancer subtype datasets44. We considered any
cytokine signature with a positive score and FDR-corrected p-value= < 0.05 in the
target cell types as an active cytokine. We considered all CCC predictions with a
ligand corresponding to a CytoSig signature, including the same ligand to multiple
receptors, matched to any of the aliases of the cytokines. Odds ratios were then
calculated as the ratio between any CCC prediction with corresponding active
cytokine in a given receiver cell type, and those assigned to the negative class—i.e.
the remainder of the cytokine signatures.

Agreement with spatially adjacent cell types. We used the SPOTlight68 deconvo-
lution method with default parameters to spatially map the cell types present in our
scRNAseq datasets into their corresponding 10× Visium slides. SPOTlight provides
cell type proportions per spot that were subsequently used to identify colocalized
cell types by computing Pearson’s correlation. The Pearson coefficients were scaled
to create a distribution of correlations, and only considered the most strongly
correlated cell type densities (z-score >= 1.645) as colocalized, while the remainder
of the cell pairs were considered as non-colocalised.

The mer- and seqFISH datasets were already annotated and provide single-cell
spatial resolution, hence the same dataset was used to obtain CCC predictions and
spatial information. To identify the enriched neighbouring cells for each cell type
mer- and seqFISH datasets, we used Squidpy’s69 Neighbourhood Enrichment
analysis with its default parameters. In accordance with the approach followed with
the 10× VISIUM slides, we considered significantly colocalized cell type pairs with
a normalised neighbourhood enrichment score >= 1.645 as spatially adjacent.
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Agreement with receptor protein abundance. To identify specifically expressed
receptors across clusters, we z-transformed receptor protein abundance across cell
types. Receptors with an abundance z-score >= 1.645 were considered specifically
abundant at the protein level. These receptors were then treated as the positive
class, while all others were assigned to the negative class. AUROC and AUPRC
metrics were calculated using yardstick70. For the AUPRC calculations, we
downsampled the negative class 100 times to match the (lower) number of
receptors assigned to the positive class. The downsampling procedure binds the
expected random AUPRC to 0.5.

We allowed surface protein receptors to match multiple genes (e.g. T-cell
receptors subunits), and vice versa. Gene aliases of proteins were obtained using the
human and mouse gene databases from the org.Hs.eg.db71 and org.Mm.eg.db72

BioConductor packages. Proteins with non-standard names, or absent aliases in the
aforementioned databases, were manually annotated using UniProt73 as a reference.

Robustness analyses. To evaluate sensitivity of the methods to noise, we performed
four distinct robustness analyses. We simulated noise in the data by subsampling
the number of cells per cluster and by reshuffling the cell type labels.

Additionally, to simulate the impact of false interactions in the resource, we
randomly generated interactions from the 2000 most variable genes in the dataset
and randomly replaced proportions of the resource with these putative false
interactions. In one scenario, we selectively replaced interactions in the
resource and preserved the highest ranked interactions, while in the other scenario
we non-selectively swapped any of the interactions.

All four analyses were done in an iterative manner over a range of manipulations
(0–40%). We treated the highest ranked 250 interactions from the non-modified
resource/data as ground truth and repeated the randomisation process 5 times.

Data processing. All 10× Genomics, including all CITE-Seq and the 3k PBMC,
datasets were processed using the standard Seurat pipeline. Namely, filtered gene
expression count matrices were log-normalised, and if cell type annotations were not
provided, the cells were clustered, following scaling, identification of variable features,
and PCA dimensionality reduction, using Seurat’s64 (v4.0.3) default settings. For 10×
Genomics CITE-Seq datasets we used a clustering resolution of 0.4 and the protein
abundances were centred-log-ratio transformed. In the Murine spleen-lymph CITE-
Seq datasets74, duplicated and low quality cells, as annotated by the original authors,
were filtered, in agreement with the other CITE-seq datasets, gene counts were log-
normalised, while protein abundances were centred-log-ratio transformed.

For the colorectal cancer dataset, we kept the original subtype labels,
reformatted the names to work with each CCC method, and sparsified the counts
into a Seurat64 object. The pre-processed and labelled Pancreatic islet46 and cord
blood mononuclear cell45 datasets were log-normalised, and subsequently used for
CCC inference. In the latter dataset, any murine and doublet/multiplet cells, as
annotated by the authors, were excluded.

We used ComplexHeatmap75 to generate the heatmaps and ggplot276 for any of
the other plots presented in this work.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed and annotated Human Breast Cancer single-cell atlas44 is available via the
GEO accession number: GSE176078. The filtered breast cancer 10× Visium slides from
the same publication are available at https://zenodo.org/record/4739739. Processed
seqFISH77 [https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/] and
merFISH53 (GEO accession number: GSE113576) datasets were obtained via the spatial
single-cell analysis framework—Squidpy (v1.1.0)69 [https://squidpy.readthedocs.io/en/
latest/api.html#module-squidpy.datasets].
Pancreatic islet46 (GEO accession numbers: GSE84133, GSE81076, GSE85241,

GSE86469; ArrayExpress: E-MTAB-5061) and cord blood mononuclear cells45 (GEO
accession number: GSE100866) scRNA-Seq datasets were obtained via SeuratData
(https://github.com/satijalab/seurat-data).
Publicly available 5K PBMC, 5K PBMC NextGem, 10K PBCM, and 10K MALT CITE-

Seq datasets were obtained from 10× Genomics (accessible under the list of datasets at
https://tinyurl.com/10xCITEseq).
Processed and annotated murine spleen-lymph CITE-Seq datasets74 are available via

the GEO accession number: GSE150599.
The processed single cell RNA-Seq data47 for 23 Korean colorectal cancer patients are

available via the GEO accession number: GSE132465.
Spatial transcriptomics datasets (10× Visium slides) on sagittal adult mouse brain

anterior and posterior slices were obtained from SeuratData, available at https://github.
com/satijalab/seurat-data, under the dataset name of ‘stxBrain‘, or publically via the 10×
Genomics website under Spatial Gene Expression v1 Chemistry datasets [https://tinyurl.
com/10xVisiumDemonstration]. The single-cell data (Allen Brain Atlas51) used for the
cell type mapping (deconvolution), was obtained as a Seurat object, accessible at https://
www.dropbox.com/s/cuowvm4vrf65pvq/allen_cortex.rds?dl=1, and is alternatively
available via accession number: GSE71585.

The 10× Genomics’ 3k PBMC dataset used in the robustness analysis is available at
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.
tar.gz. Source Data for all Supplementary Figures, along with preprocessed outputs, are
available at: https://zenodo.org/record/6531218. Source data are provided with this paper.

Code availability
The LIANA framework is available at https://github.com/saezlab/liana, and the version
used to generate the results presented here is available via Zenodo78. The scripts used to
generate the results presented here can be accessed at https://github.com/saezlab/ligrec_
decouple.
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