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The drug-induced phenotypic landscape of
colorectal cancer organoids
Johannes Betge 1,2,3,4,5,10, Niklas Rindtorff 1,10, Jan Sauer1,6,10, Benedikt Rauscher1,10, Clara Dingert1,

Haristi Gaitantzi2,5, Frank Herweck2,5, Kauthar Srour-Mhanna2,3,4, Thilo Miersch1, Erica Valentini1,

Kim E. Boonekamp1, Veronika Hauber2,5, Tobias Gutting2,5,9, Larissa Frank 1, Sebastian Belle2,5, Timo Gaiser5,7,

Inga Buchholz2,5, Ralf Jesenofsky2,5, Nicolai Härtel2,5, Tianzuo Zhan1,2,5, Bernd Fischer 6,

Katja Breitkopf-Heinlein 2,5, Elke Burgermeister 2,5, Matthias P. Ebert 2,4,5✉ & Michael Boutros 1,8✉

Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo

modeling of human diseases. They have heterogeneous morphologies with unclear biological

causes and relationship to treatment response. Here, we use high-throughput, image-based

profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after

treatment with >500 small molecules. Integration of data using multi-omics modeling

identifies axes of morphological variation across organoids: Organoid size is linked to IGF1

receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5+
stemness. Treatment-induced organoid morphology reflects organoid viability, drug

mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic

reorganization of organoids and increases expression of LGR5, while inhibition of mTOR

induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for col-

orectal cancer organoid morphology, their underlying biological mechanisms, and pharma-

cological interventions with the ability to move organoids along them.
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Colorectal cancer is globally the third most common cancer
and the second leading cause of cancer related death1.
Patients with advanced disease are usually treated with

chemotherapy and antibody therapies, however, with current
treatment, tumors may continue to progress and prognosis
remains poor2. Tumor plasticity, as well as the stemness of
neoplastic cells have been proposed as major factors in treatment
resistance and tumor progression under antineoplastic
therapies3,4. However, mechanisms behind these tumor cell states
and drugs modulating or targeting them are not well understood.

Patient-derived organoids are stem cell derived 3D tumor
models that can be efficiently established from (colorectal-)
cancer and normal tissues5–7. Organoid isolation from human
primary tumors and metastases5,8 has enabled the establishment
of living biobanks6,7,9. Notably, patient-derived organoids have
been shown to represent their origin’s molecular features and
morphology6–8,10, enabling functional experiments such as drug
testing ex vivo7,9,11–16. As a consequence, organoids are an
attractive model system, as they combine the modeling capacity
of patient-derived xenografts with the scalability of adherent
in vitro cell lines.

Image-based profiling is a high-throughput microscopy-based
methodology to systematically measure phenotypes of in vitro
models. When combined with chemical or genetic perturbations,
image-based profiling is a powerful approach to gain systematic
insights into biological processes, for instance in drug discovery
and functional genomics research17–19. Image-based assays have
been used to screen large libraries of small molecules to identify
potential drug candidates, to analyze a drug’s mode-of-action, or
to classify drug-gene interactions by cell-morphology20–23. Per-
forming large image-based profiling experiments of organoids has
been, however, a biological, technical and computational
challenge24–26. As a consequence, the morphological hetero-
geneity of patient-derived cancer organoids between and within
patient donors, their diverging behaviors upon pharmacological
perturbation as well as the underlying mechanisms of cancer
organoid morphology are not yet systematically understood.

Here we report a large scale image-based phenotyping study of
patient-derived cancer organoids to understand underlying fac-
tors governing organoid morphology. Colorectal cancer orga-
noids from 11 patients were treated with more than 500
experimental and clinically used small molecules at different
concentrations. We systematically mapped the morphological
heterogeneity of patient-derived organoids and their response to
compound perturbations from more than 3,700,000 confocal
microscopy images. We found that the resulting landscape of
organoid phenotypes was mainly driven by differences in orga-
noid size, viability and cystic vs. solid organoid architecture.
Using multi-omics factor analysis for integrating organoid mor-
phology, size, gene expression, somatic mutations and drug
activity, we identified biological programs underlying these phe-
notypes and small molecules that modulate them.

Results
Image-based profiling captures the morphological diversity of
patient-derived cancer organoids. To better understand the
diversity of organoid phenotypes, drug-induced phenotypic
changes and the underlying factors driving them, we generated
patient-derived organoids from 13 colorectal cancer patients
representing different clinical stages and genotypes (Supplemen-
tary Fig. S1a–d, Supplementary Tables 1 and 2). We performed
image-based profiling at single organoid resolution with 11
organoid lines (Fig. 1a) using small molecules targeting devel-
opmental pathways, protein kinases (464 compounds at a single
7.5 µM concentration), as well as small molecules in clinical use

(63 compounds in 5 concentrations, Supplementary Fig. S2a–c).
After three days of culture and four days of pharmacological
perturbation in 384-well plates, organoids were subsequently
stained with fluorescent markers for actin (Phalloidin), DNA
(DAPI), and cell permeability (DeadGreen) to capture their
morphology with high-throughput confocal microscopy. We
projected the 3D image data onto a 2D plane, segmented orga-
noids and calculated morphological profiles for each organoid
spanning 528 phenotypic features (such as dye intensity, texture,
and shape) that were subsequently reduced into 25 principal
components representing 81% of morphological variance (Sup-
plementary Fig. S2c).

To visualize the heterogeneity of colorectal cancer organoids
and treatment induced changes across and within organoid lines,
we embedded features of approximately 5.5 million profiled
organoids using uniform manifold approximation and projection
(UMAP, Fig. 1b, Supplementary Fig. S2d–f). Within most
organoid lines there was a characteristic two-component log-
normal mixture distribution of organoid size with one compo-
nent containing small organoids and another component
containing larger organoids with varying, organoid line specific,
reproducible average size (Fig. 1c, Supplementary Fig. S2g, h).
The log-normal-like size distribution likely resulted from intrinsic
differences in cellular size and growth rate accumulating
throughout the course of the experiment in multicellular
organoids. Next, we performed graph-based clustering on this
embedding to describe the landscape, resulting in 12 clusters
(Fig. 1d). Organoid lines within the embedding were located in
characteristic clusters, with organoid size and organoid archi-
tecture as primary organizing factors (Fig. 1e). For example,
organoid line D018T had the largest median organoid size within
the dataset and a cystic organoid architecture with a single central
hollow lumen and monolayer of surrounding cells. In contrast,
D020T organoids had a solid architecture and smaller median
size. In most cases, organoid lines had two areas of main density,
with one of them in clusters 2, 3 or 4, reflecting the previously
mentioned bimodal size distribution. When comparing drug-
treated organoids to baseline organoids treated with the solvent
control (DMSO), no clear separation of groups was apparent,
suggesting that organoid morphology was distributed on a
continuum of phenotypes spanning perturbed and unperturbed
conditions of our experiment (Supplementary Fig. S2i). In
summary, image-based profiling of patient-derived colorectal
cancer organoids showed strong morphological heterogeneity
with donor dependent differences in size and organoid
architecture.

Organoid phenotype-profiles capture organoid viability. Drug-
induced changes in cell viability are a fundamental readout in
cancer drug discovery. Prompted by the observation that orga-
noid size was a major factor determining the phenotype
embedding, we hypothesized that small organoid size, which was
seen across all donors, was at least partially the result of cell death
within the organoid and, more broadly, that phenotype data
could be used to estimate organoid viability. To test this
hypothesis, we chose bortezomib, a small molecule proteasome
inhibitor with high in vitro toxicity, as well as SN-38 (active
metabolite of irinotecan). Both small molecules led to dose
dependent organoid death in all organoid lines (Fig. 2a). Analo-
gous to pseudotime in single-cell gene expression analysis27, we
fitted dose-dependent trajectories of bortezomib (Fig. 2b) and
SN-38 (Supplementary Fig. S3a). Starting from diverse baseline
morphologies, increasing doses of these compounds led to a step-
wise convergence on a final death-related phenotype, which
corresponded to the areas with enrichment of small objects
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(clusters 2, 3 and 4 shown in Fig. 1d). Similarly, paclitaxel, a
microtubule disassembly inhibitor, shifted the bimodal size dis-
tribution of organoids in a dose-dependent fashion (Supple-
mentary Fig. S3b), while organoid count remained largely
unchanged (Supplementary Fig. S3c). This effect, however, was
organoid line-specific, as we observed a dose-dependent decrease
in median organoid size in paclitaxel “responder” lines (e.g.

D022T), while the size of other organoids remained unaffected
(e.g. D046T, Fig. 2c–f). These observations suggested a link
between organoid morphology, especially organoid size, with a
loss of cell viability. To test the ability of organoid morphology to
predict cell viability, we performed a luminescence-based, ATP
dependent, cell viability assay (CTG) in parallel with imaging as a
benchmark for drugs within the clinical cancer library. We saw a
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Fig. 1 Image-based profiling captures the phenotype diversity of patient-derived cancer organoids. a Schematic overview of experiments: Organoids
were isolated from endoscopic biopsies from patients with colorectal cancer. Organoids were dissociated and evenly seeded in 384-well plates before
perturbation with an experimental (464 compounds) and a clinical compound library (63 compounds at 5 concentrations each, 842 perturbations across
both libraries). After treatment, high-throughput fluorescence microscopy was used to capture the morphology of organoids. The multi-channel (DNA,
beta-actin, cell permeability) 3D imaging data was projected, segmented, and phenotype features were extracted to quantify potential drug-induced
phenotypes. Untreated organoid morphology, organoid size and drug activity scores were integrated with mRNA expression and mutation data in a Multi-
Omics Factor Analysis (MOFA). b Uniform Manifold Approximation and Projection (UMAP) of organoid-level features for a random 5% sample out of
approximately 5.5 million organoids. The same sample is used for visualizations throughout the figure. Color corresponds to the log-scaled organoid area
(dark blue: minimum size, yellow: maximum size). c Organoid size distribution across organoid lines. d UMAP representation of DMSO treated and drug
treated organoids. Graph-based clustering of organoids by morphology with 12 resulting clusters. e UMAP embeddings of selected organoid lines (baseline
state= 0.1% DMSO control-treated organoids) representing different morphological subsets, grey background consists of randomly sampled points.
Depicted are representative example images for each organoid line (right, cyan=DNA, magenta= actin, scale bar: 200 µm).
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strong association of CTG viability with organoid size (Fig. 2g),
prompting us to test whether a more accurate prediction of
organoid viability was possible by using all available imaging data
including organoid size. To this end, we trained random forest
classifiers (live/dead classifiers, LDC) on individual organoid
phenotype profiles to distinguish between negative and positive
control treatments (DMSO, bortezomib and SN-38, Supplemen-
tary Fig. S3d, e). We observed robust classification performance
when applied to sets of the same or unseen organoid lines
(Supplementary Fig. S3f). As expected, when applying the clas-
sifier to the whole imaging dataset and visualizing predictions via

UMAP, small organoids within previously identified clusters 2, 3
and 4 had the highest probabilities for death (Fig. 2h). The LDC
predictions had the highest correlation with CTG based viability
data (Fig. 2i), however, the association with organoid size was
almost as strong in the majority of organoid lines (Fig. 2i, Sup-
plementary Fig. S3g), while other simple features, such as DNA
(DAPI), actin (phalloidin), and especially permeability (Dead-
Green) intensity in isolation were less suitable to predict viability
of organoids (Fig. 2i). We also noticed in ablation experiments
that LDCs with incomplete access to channel information (i.e.
only DAPI and phalloidin staining derived features were available
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for training and inference) showed, in some instances, classifi-
cation accuracies almost as high as classifiers with access to
complete data (Supplementary Fig. S3h). Finally, we observed
examples of diverging results between LDC predictions and CTG
read-outs. These included (1) the antifolate drug methotrexate
and (2) a doxorubicin-induced artifact due to the strong red color
of the compound. Methotrexate showed strong toxicity in almost
all organoid lines in CTG based experiments but had no visible
effect on organoid viability based on the LDC (Supplementary
Fig. S3i–l). This discordance may be explained by non-lethal
metabolic effects of methotrexate. In conclusion, basic features,
such as median organoid size, as well as classification of texture
and shape information from basic DNA and actin stainings can
predict organoid viability.

Drug-induced organoid phenotypes correspond to drug
mechanism of action. An advantage of image-based profiling
over cell viability measurements in drug discovery is the ability to
use the high dimensional drug-induced phenotype profiles to
identify active but not necessarily lethal small molecules and
estimate their mechanism of action by similarity-based clustering.
To test whether this approach could be used in patient-derived
cancer organoids, we used a supervised learning approach for
drugs within the KiStem library to identify drug effect profiles
and group them by similarity. First, we trained logistic regression
models to distinguish individual compound-treated organoids
from unperturbed controls and defined the resulting normal
vector between control- and treated organoid phenotypes as the
drug effect profile. Next we scored every logistic regression
model’s ability to separate treated and untreated organoids to
identify active treatments that induce a robust change in organoid
morphology (area under the receiver operating characteristic,
AUROC, ranging from 0.5 to 1). We considered treatments active
when their classifiers’ performance exceeded an AUROC of 0.85
(Fig. 3a, b). Based on our observations, drug activity was neces-
sary but not sufficient for a viability effect (Fig. 3c) as a fraction of
drugs led to identifiable changes in organoid morphology (they
were considered active drugs) but were not classified as lethal by
our live/dead classifier (LDC) models.

To test whether active drugs systematically induced organoid
phenotypes that were informative of mechanism of action, we
assessed similarity by two different methods, (1) the cosine
distance between concatenated drug effect profiles and (2) the
euclidean distance of averaged treatment-induced phenotypes
(Fig. 3d–h, Supplementary Figs. S4a–c, S5a–c). While both
methods were similar in terms of their ability to cluster drugs by
mechanism of action, we proceeded with cosine distance
clustering, as drug effect profiles did not only capture the
direction of phenotype change, but were also linked to AUROC as

a metric of drug activity that was scaled between 0.5 and 1. We
observed a clustering of drugs by their specific mode-of-action,
including inhibitors of MEK, aurora kinase, CDK, mTOR, AKT,
EGFR or GSK3 (Fig. 3d). Small molecules with targets within the
same signaling pathway also induced related morphologies, for
example MEK inhibitors clustered with specific RAF- and ERK
inhibitors (Fig. 3e) and AKT/ PI3K inhibitors were part of a
cluster mainly containing mTOR targeting small molecules (part
of the cluster is shown in Fig. 3f, whole cluster in Supplementary
Fig. S5a). The clustering also suggested additional mode-of-
actions or off-target effects for well-described small molecules
(Fig. 3g–h). For example, the PKC inhibitor enzastaurin was
clustered with GSK3 inhibitors, substantiating a previously
described interaction of enzastaurin with the alpha and beta
subunits of GSK328,29 (Fig. 3h). Of note, several drug-induced
phenotypes were observable across most or all tested organoid
lines, but the majority of compound classes led to significant
enrichments in drug profile vector clustering only in subsets or
individual organoid lines (Supplementary Fig. S5d).

To assess whether morphological profiles of active drug
treatments were primarily driven by differences in organoid
viability, we compared LDC predictions with the phenotypic
clustering (Fig. 3i). We observed a larger cluster of lethal
treatments (including molecules targeting ATM, JAK, PLK,
CDK). However, the majority of clusters were caused by non-
lethal phenotypes, including those induced by inhibitors of AKT,
mTOR, EGFR or GSK3. Visual inspection of several phenotypes
(Fig. 3j) revealed recurring drug target dependent morphologies.
Most notably, MEK inhibitors led to reorganization towards a
more cystic organoid architecture. Altogether, drug-induced
phenotypes were capturing drug mode-of-action and were visible
across most tested organoids lines.

Multi-omics factor analysis identifies shared factors linking
morphology, genomic data and drug activity. A limitation of
image-based profiling experiments is that both unperturbed and
drug-induced morphologies are challenging to interpret in terms
of their underlying biology. Theoretically, in the presence of
multiple in vitro models with both phenotype and genomic
measurements, links between the two data modalities can be
learned. Based on the observation that organoid morphology was
distributed in a continuous space, we hypothesized that variation
in organoid baseline morphology could be associated with dif-
ferences in gene expression, mutations, as well as drug activity for
the 11 cancer organoid lines in our sample (2 biological replicates
each, 22 observations in total). To factorize the joint distribution
of unperturbed organoid morphology, unperturbed organoid size,
gene expression, selected somatic mutations, and drug activity, we
performed multi-omics factor analysis (MOFA)30. MOFA is a

Fig. 2 Organoid phenotype-profiles capture organoid viability. a Representative example images of negative (0.1% DMSO) and positive control treated
organoids (2.5 µM bortezomib, cyan=DNA, magenta= actin, yellow= cell permeability; representative images were selected and embedded in black
background; scale bar: 50 µm). b Dose-dependent-trajectory of bortezomib drug effect. UMAP of organoid morphology at different bortezomib doses and
(right panel) dose-dependent trajectory for three representative organoid lines. During the principle curve fitting, trajectory inference excluded cluster 4, a
set of measurements representing mostly dead organoid particles comprising ca. 5% of all imaging data. c Dose-response relationship of organoid size and
paclitaxel dose. D022T and D046T are highlighted as examples for responder/non-responder lines. Source data are provided as a Source Data file.
d UMAP of organoid morphology highlighting D022T organoids treated at different concentrations of paclitaxel. e D046T organoids treated at different
concentrations of paclitaxel. f Example images of D022T organoids treated with paclitaxel. cyan=DNA, magenta= actin, representative images of
organoids were selected and embedded in black background; scale bar: 50 µm). g Association of organoid size of selected example organoid lines with
viability determined by luminescence-based, ATP-dependent viability profiling with CellTiter-Glo (CTG), which was performed in parallel with imaging on a
subset of drug treatments for benchmarking. h UMAP visualization of viability predictions for organoids within our dataset, based on supervised machine
learning of organoid viability using classifiers trained on positive (high-dose bortezomib and SN-38) and negative (DMSO) controls (live-dead classifiers,
LDC). i Association of LDC and example organoid features (size, DAPI, actin and permeability dye intensities) with benchmark CTG viability read out.
Source data are provided as a Source Data file.
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matrix factorization method that decomposes a set of different
measurements into a shared table of factors scoring each observed
sample and a set of corresponding loading tables linking each
factor to features in the set of original measurements30. When
trained with k= 3 factors, MOFA recovered factors explaining
approximately 24–41% of variance across the different data

modalities (Fig. 4a, b, Supplementary Fig. S6a–c). While gene
expression, mutations and drug activity profiles for organoid lines
contributed to all factors, factor 1 captured most variation in
median organoid size (ca. 39%). In contrast, factor 2 was pri-
marily capturing variation within untreated organoid morphol-
ogy (ca. 16%) (Fig. 4a). Organoid lines D046T and D004T stood
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out as lines with the strongest score for factor 1, while organoid
lines D018T and D013T had the strongest score in factor 2 (Fig. 4c).
Organoids with high factor scores were located in characteristic
regions of the previously defined UMAP embedding (Supplemen-
tary Fig. S6d). Visual inspection of organoids revealed that organoid
lines with a higher factor 1 score tended to be larger in size and
organoids with high factor 2 score tended to have a more cystic
organoid architecture based on manual classification. Analysis of
gene expression data alone recovered patterns analogous to factor 1
and factor 2 (Supplementary Fig. S6e, f). We could not identify
interpretable morphological differences between factor 3 low and
high organoids and focused our subsequent analysis on the first two
interpretable factors generated by MOFA. In summary, MOFA
identified factors within the dataset that explained variation
between organoid lines across different data modalities, including
organoid morphology and median size.

An LGR5+ stemness program is associated with cystic orga-
noid architecture and can be induced by inhibition of MEK. A
particularly strong recurring organoid phenotype was the pre-
sence of a cystic organoid architecture, seen in untreated D018T
or D013T organoids and organoids treated with MEK inhibitors
(Figs. 1e, 3f and 5a). MOFA showed that factor 2 represented this
cystic organoid state. In the cystic state, organoids consisted of a
monolayer of uniform cells lining a central spherical lumen with a
pronounced actin cytoskeleton (Fig. 5b). We considered this
phenotype related to organoid morphologies previously described
in genetically engineered APC−/− or Wnt ligand treated intest-
inal organoids31–33. To test if factor 2 in fact captured Wnt

signaling and intestinal stem cell identity related gene expression
programs, we performed gene set enrichment analyses (GSEA)
for cell identity signatures previously identified in intestinal
crypts and colorectal cancer34. GSEA revealed an enrichment of
Lgr5+ stem cell signature-related genes for the factor 2 loadings
(Fig. 5c) (FDR= 0.002, NES= 1.74) among other biological
processes (Supplementary Fig. S7a). In terms of genetic muta-
tions, ERBB2 mutation status had the strongest positive con-
tribution to factor 2 loadings (Supplementary Fig. 6c).

Next, we asked if factor 2 was associated with particular drug
activity or inactivity patterns. As previously described, we used
the performance of a logistic regression model as drug activity
score (AUROC) (Fig. 3a). Activity of Wnt signaling inhibitors
and EGFR inhibitors were the strongest average contributors to a
positive factor 2 score (t statistic= 3.02, FDR= 0.046 and t
statistic= 3.08, FDR= 0.046, respectively), while activity of ERK
and MEK inhibitors were associated with a low factor 2 score
(Fig. 5d), albeit not significantly. To summarize, factor 2 high
organoid lines showed an increased expression of LGR5 and were
more sensitive to Wnt signaling inhibitors, such as the CBP/beta-
catenin inhibitor PRI-724 (Fig. 5e and Supplementary Fig. S7b)
overall suggesting increased dependency on Wnt signaling in the
factor 2 high organoid state.

Prompted by the visual observation that MEK inhibitor
treatment led to a related cystic architecture in organoids (Fig. 3j),
we hypothesized that compound treatments could influence the
plasticity between the observed organoid states. Thus we tested
whether drug treatments shifted organoid phenotype profiles in
the previously defined factor space. To test for shifts in factor

Fig. 3 Drug-induced organoid phenotypes correspond to drug mechanism of action. a Histogram of average model performance for each tested drug. For
every tested drug and organoid line, logistic regression models were trained to distinguish negative control-treated organoids from drug treated organoids.
A drug was considered “active” when it induced a phenotype that could be separated from DMSO control-phenotypes with a mean classification
performance of >0.85 area under the receiver operating characteristic curve (AUROC). b Number of active drugs per organoid line. c Relationship between
drug-induced viability change (predicted by LDC, compare Fig. 2) and general compound activity. d Unsupervised clustering of drug effect profiles for
active drugs. Distance between drug effect profiles was calculated using cosine similarity. Drug effect profiles were determined by fitting logistic regression
models between treated and untreated organoids for each drug and line. PCA transformed morphology information was used as input features. Fisher’s
exact test was used to identify enrichments of drugs annotated with the same drug target within the hierarchical clustering. Tested clusters had a minimum
cluster size of 3 and were evaluated iteratively from the tree bottom to top. Colors on the side of the heatmap represent drug mechanisms of action.
e–h Zoom-ins of (d) showing clusters enriched for MEK (e), PI3K/mTOR (f), EGFR (g) and GSK-3 (h). i Viability of drug-induced phenotypes in individual
organoid lines as determined by supervised machine learning. The drugs were arranged on the x axis in the same order as in (d). j Organoids representative
of selected drug-induced phenotypes. Images from organoid lines D004T and D030T were selected for each organoid phenotype, automatically cropped
and embedded in black background. Cyan=DNA, magenta= actin; scale bar: 50 µm.
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space, we used the previously estimated factor loading matrix for
unperturbed organoid morphology, which was generated during
MOFA training, as a starting point. By projecting the average
phenotypic profiles of drug-treated organoids onto the factors
learnt by MOFA, we were able to approximate the influence
various drug treatments had on biological programs previously
identified in unperturbed organoids. We observed MEK and focal
adhesion kinase inhibitors significantly shifted tested organoid
lines towards higher factor 2 scores (Fig. 5f and Supplementary
Fig. S7c). This change in factor 2 scores was concentration
dependent for MEK inhibitors (Fig. 5g and Supplementary
Fig. S7d, e) and corresponded to a visual shift in organoid
morphology (Fig. 5h) which was most noticeable at concentra-
tions of 100 nM (p= 0.017, Fig. 5h, Supplementary Fig. S7e).

Given the observation that factor 2 was enriched for an
LGR5+ stem cell signature (Fig. 5c), we measured the expression
of LGR5 transcripts at different concentrations of MEK inhibitor
treatment for two organoid lines with representative factor scores
(D019T and D027T). We observed analogous dose-dependent
increases in transcript abundance (Fig. 5i). These findings were in
concordance with the observation that MEK inhibitor activity had
a negative contribution to factor 2 (Fig. 5d): While organoids are
shifted to a factor 2 high state via MEK inhibition, within the
factor 2 high state itself, organoids are relatively insensitive to this
class of inhibitors. In summary, we observed an organoid state
with cystic architecture, increased expression of LGR5+ stem cell
related genes and increased sensitivity to Wnt signaling inhibitors
that could be induced by MEK inhibition.

Solid Cystic

D030TD020T D018TD007T
a

c

i

MEK-inhibitor (trametinib)

CTRL 0.02µM0.004µM 0.5µM0.1µM 2.5µM

CTRL 0.02µM0.004µM 0.5µM0.1µM 2.5µM

D
01

9T
 

D
02

7T
 

h

d

b

g

ISC LGR5 signature

0.0

0.2

0.4

0.6

E
nr

ic
hm

en
ts

co
re

−1.0
0.0
1.0

1000 2000 3000
Rank in ordered dataset

Li
st

m
et

ric

NES = 1.74
p = 0.002

−5

0

5

10

−5 0 5 10
UMAP 1

U
M

AP
2

cystic
solid

Factor 2 loading
−1 -0.5 0 0.5 1 0 1 2 3

Factor 2 score

e

f

FAK

MEK

−2 0 2 4
t-statistic for projected factor 2 change

Factor 2 increaseFactor 2 decrease

PRI−724
Trametinib
Ulixertinib

0.6

0.7

0.8

0.9

1.0

D
ru

g 
ac

tiv
ity

 (A
U

R
O

C
)

Wnt
SRC

EGFR
FAK
JNK

PDGFR
CDK
PLK

GSK−3
Bcr−Abl
IGF−1R

Aurora k.VEGFR
PI3K

Akt
c−MET

RAF
mTOR

PKC
MEK
ERK

0

5

Pr
oj

ec
te

d 
fa

ct
or

2

MEK-inhibitor (µM)
0.004 0.02 0.1 0.5 2.5 0

All organoid lines 

0 

1 

2 

3 

0 0.004 0.02 0.1 0.5 2.5 

LG
R

5 
(fo

ld
-c

hn
ag

e)
 

MEK-inhibitor (µM)

D027T 

0 

1 

2 

3 

0 0.004 0.02 0.1 0.5 2.5 

LG
R

5 
(fo

ld
-c

hn
ag

e)
 

MEK-inhibitor (µM)

D019T 

*
* * ** *** * *

NS

NS

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30722-9

8 NATURE COMMUNICATIONS |         (2022) 13:3135 | https://doi.org/10.1038/s41467-022-30722-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


An IGF1R signaling program is associated with increased
organoid size, decreased EGFR inhibitor activity and can be
induced by mTOR inhibition. Next, we set out to identify the
mechanisms underlying and modulating factor 1. We had pre-
viously observed that organoid size was influenced by both
organoid line and drug treatments and was associated with factor
1 scores (Fig. 6a). An unsupervised gene set enrichment analysis
(GSEA) for reactome pathways across factor 1 loadings showed
an enrichment for IGF1R signaling and mitogen-activated protein
kinase signaling related genes. In fact, transcripts belonging to the
IGF imprinting control region, H19 (rank 1) and IGF2 (rank 13),
were among the strongest contributors to factor 1 (Supplemen-
tary Fig. S8a). This increase in proliferative signaling was con-
firmed by GSEA of a previously identified intestinal proliferation
signature34. To better understand clinical correlates to the iden-
tified gene expression patterns, we tested for molecular subtypes
stemming from an analysis of cancer-cell intrinsic gene expres-
sion profiles35. Factor 1 showed an enrichment for CRIS D, a
molecular subtype linked to IGF2 overexpressing tumors with
resistance to EGFR inhibitor therapy (Fig. 6c), and a depletion for
CRIS C, which has been linked to EGFR dependency (Supple-
mentary Fig. S8b). In fact, activity of EGFR inhibitors was the
strongest contributor to a negative factor 1 score while IGF1R and
MEK inhibitor activity contributed to a positive factor 1 score
(Fig. 6d, e and Supplementary Fig. S8c–e). When assessing the
contribution of somatic mutations, activating mutations of NRAS
had the strongest contribution to a high factor 1 score (Supple-
mentary Fig. S6c).

Next, we again used phenotype profiles of drug treated
organoids and approximated how drug treatment shifted
organoids along the factor 1 program. We observed a group of
cell cycle related kinase inhibitors targeting polo like kinases,
Aurora kinases and cyclin dependent kinases that shifted
organoids to a low factor 1 score. In contrast, mTOR inhibitor
treatment increased factor 1 scores in cancer organoids (Fig. 6f
and Supplementary Fig. S8f). Given the observation that factor 1
was associated with IGF1R signaling and mTOR inhibitor
treatment led to an increase in factor 1 scores, we hypothesized
that mTOR inhibition leads to a reactive upregulation of IGF1R
signaling in cancer organoids. In fact, inhibition of mTOR
signaling had previously been linked to transcriptional disinhibi-
tion of IRS1 in a negative feedback loop36 and reactive induction
of IGF1R signaling had previously been described as a resistance
mechanism to small molecule mTOR inhibitors in cancer37.
When testing this hypothesis in patient-derived organoids, we
observed a dose-dependent increase of IRS-1 protein abundance

in organoids treated with the ATP competitive mTOR inhibitor
WYE-132 (Fig. 6g). In accordance with our previous findings,
visual inspection of organoids treated with different mTOR
inhibitors in our screen revealed increased size compared to
negative controls (Supplementary Fig. S8g). To summarize our
findings, we observed an organoid state marked by large organoid
size, elevated IGF1R dependent mitogenic signaling and relative
inactivity of EGFR inhibitors. This state was inducible by
inhibition of a mTOR dependent negative feedback loop in
patient-derived cancer organoids (Fig. 6h).

Discussion
Organoids are in vitro cancer models with high morphological
and molecular similarity to their origin that can be established
from a wide variety of tumors and normal tissue6,7,10,14,38–40.
Given the benefits in culture efficiency and high model repre-
sentativeness in comparison to conventional cell lines, they are
used for preclinical functional analyses of cancer41,42, and are
evaluated in functional precision medicine projects amongst other
models, such as tumor explants or fragments43,44. Tumor orga-
noids are still far away from being a predictive tool for clinical
decision making, as recent clinical studies have failed to show a
clear benefit of organoid-based treatment allocation or consistant
predictive value16,45,46. However, previous studies have success-
fully used patient-derived organoids to perform small- and
medium-scale drug testing using ATP based cell viability readouts
and have described clinically relevant predictive molecular
features7,9–15,47–49. Additionally, imaging studies with organoids
have been used to characterize developmental processes such as
the self-organization of intestinal cells25,50 or the morphological
response to individual drugs24,51.

While image-based profiling of in vitro models has become an
important tool for the analysis of biological processes, particularly
in drug discovery and functional genomics17–19, performing such
high-content experiments in disease models that cannot be cul-
tured and perturbed in 2D, has been a technological challenge. In
this study, we used image-based profiling to systematically map
heterogenous phenotypes of patient-derived cancer organoids
and their response to small-molecule perturbations. We collected
data on approximately 5.5 million single organoids from 11 dif-
ferent colon cancer patients with >500 different small molecule
perturbations. The morphology of untreated patient-derived
cancer organoids varied extensively within and between orga-
noid donors. Despite the heterogeneity, organoids from different
patients and perturbations showed overlapping morphological
distributions, which shifted as a response to perturbation.

Fig. 5 An LGR5+ stemness program is associated with cystic organoid architecture and can be induced by inhibition of MEK. a UMAP visualization of
cystic and solid organoid morphology in baseline state (DMSO-treated) as defined by factor 2 scores. b Example images of cystic (right) and solid organoid
lines. Images were automatically cropped and embedded in black background. Cyan=DNA, magenta= actin; scale bar: 50 µm. c Gene set enrichment
analysis of the LGR5+ intestinal stem cell signature34 over ranked factor 2 gene expression loadings (ranking from high factor 2 loading to low factor 2
loading), NES= normalized enrichment score, statistics were calculated with GSEA using 100.000 permutations). d Distributions of drug activity loadings
for factor 2 grouped by drug targets. e Relationship of representative drugs’ activity with factor 2 score. Source data are provided as a Source Data file.
Further samples can be found in Fig. S7. f Projection of factor 2 scores for drug-induced phenotypes. Highlighted are drug targets leading to a significant
change in projected factor scores across all organoid lines (ANOVA). Source data are provided as a Source Data file. g Projected dose-dependent changes
in factor 2 scores after treatment with the MEK inhibitor binimetinib across organoid lines. The black line indicates median factor 2 values of 2 replicates
from N= 11 organoids treated with binimetinib, grey shading indicates the 95% confidence intervals based on the loess regression with default
parameters94. Source data are provided as a Source Data file. h Dose-dependent changes in organoid morphology after treatment with the MEK inhibitor
trametinib. Shown are images of organoid lines D019T and D027T (cyan=DNA, magenta= actin; sampled images were cropped and embedded in black
background; scale bar: 50 µm) (i), Dose-dependent changes in LGR5 transcript abundance after treatment with the MEK inhibitor trametinib, as assessed
by qPCR, data from 3 (D027T) and 4 (D019T) independent replicates are presented as mean+ s.e.m. *p < 0.05, **p < 0.005, NS= not significant, two-
sided Student’s t test. p values: D019T: p= 0.061 (0.004 µM), p= 0.0196, (0.02 µM), p= 0.0187 (0.1 µM), p= 0.024 (0.5 µM), P= 0.0024 (2.5 µM),
D027T: p= 0.0051 (0.004 µM), p= 0.00038, (0.02 µM), p= 0.045 (0.1 µM), p= 0.048 (0.5 µM), P= 0.090 (2.5 µM). Source data are provided as a
Source Data file.
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Organoid morphology revealed compound mode-of-action and
when integrated with additional biological measurements gave
insight into the first set of principles governing cancer organoid
architecture and plasticity. As a result, we identified two shared
axes of variation for colorectal cancer organoid morphology
(organoid size and cystic vs. solid architecture), their underlying
biological mechanisms (IGF1R signaling and Wnt signaling), and
pharmacological interventions able to move organoids along
them (mTOR inhibition and MEK inhibition).

Cancer stem cells play a central role in cancer recurrence and
metastasis52. In colorectal cancer, cells with cancer stem cell

identity are LGR5 positive53. Organoid models enriched for an
LGR5+ stem cell signature presented with a characteristic cystic
architecture and were sensitive to inhibitors of Wnt signaling.
This LGR5+ organoid state was also linked to a reduced sensi-
tivity towards MEK inhibitors, a potential consequence of the
already suppressed ERK signaling activity that has been linked to
Wnt signaling in colorectal cancer54. In fact, pharmacological
MEK inhibition led to a shift in organoids towards a LGR5+
state, an effect that we have previously described33. The use of
MEK inhibitors together with Wnt signaling activating GSK3
inhibitors is an established method to maintain embryonic stem
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cells in vitro55. A related MEK inhibitor dependent modulation of
stemness in Wnt signaling dependent colon tissue may in part
explain the limited success of using MEK inhibitors as mono-
therapy in colorectal cancer.

Insulin-like growth factors are central and conserved regulators
promoting cell size, organ size and organism growth56,57. The
IGF1 receptor (IGF1R) signaling cascade is activated in around
20% of colorectal cancer patients and leads to downstream
mitotic stimuli via mitogen activated kinase signaling and
mTOR58. In patient-derived cancer organoids, we observed that
organoid size was positively correlated with elevated IGF1R sig-
naling activity. In accordance with previous observations35, col-
orectal cancer organoids in a high IGF1R signaling state were less
responsive to EGFR inhibitors and more responsive to IGF1R and
MEK blockade, demonstrating the central role of IGF1R mediated
mitogen activated protein kinase (IGFR1-MAPK) signaling. In
fact, combined blockade of MEK and IGF1R has recently been
demonstrated to be a synergistic drug combination across col-
orectal cancer cell lines59 and reciprocal resistance between
IGF1R and EGFR signaling inhibitors has been described in
multiple cancer types60. Also, organoids could be moved into a
state of increased IGF1R-MAPK signaling by inhibition of
mTOR, a downstream mediator of IGF1R activity. In line with
this observation, a reactive induction of IGF1R signaling has been
previously described as a resistance mechanism to small molecule
mTOR inhibitors in cancer37,61. The emerging role of IGF1R
signaling in organoid culture was recently emphasized by the
observation that addition of the IGF-1 ligand, relative to EGF,
increased culture efficiency of organoids from healthy human
intestinal tissue62.

Statistical representation learning methods such as MOFA
factorize a distribution of observations spanning multiple data
modalities. In other words, MOFA learns factors that capture
correlations between diverse biological features and scores
observations along these factors. Learning factors helped identify
relationships between biological processes, such as the link
between organoid size, IGF1R signaling and sensitivity to IGF1R
inhibitors. In search for treatments that led to drug-induced
phenotype change along factors, we extended the application of
factor-learning to factor-projection. This enabled us to identify
mTOR and MEK inhibitors as modulators of factor 1 and factor
2, respectively. Given the fact that observations during factor-
learning were sampled from a distribution of unperturbed orga-
noids while factor-projection was done on observations from a
overlapping, but distinct, distribution of perturbed organoids, our
projections of perturbed organoid profiles are limited to the axes
of variation defined during factor-learning. As a consequence, we
are unable to observe causal relationships between factors and
interventions, but only generate hypotheses based on observa-
tional data. For example, CDK inhibitor treatment reduced the
score of factor 1 across all organoid models. It is, however,
unlikely the reduction in factor 1 was due to CDK being an
upstream regulator of IGF1R signaling. Instead CDK might serve
as the dependent, mediating variable (IGFR1 signaling -> CDK
signaling -> organoid size) or an independent contributor to
organoid size (IGFR1 signaling-> organoid size and CDK sig-
naling -> organoid size). Despite limitations, we believe that the
approach of interpreting drug-induced phenotypes using a multi-
omics representation of untreated in vitro models is applicable to
other large image-based profiling data of multiple heterogeneous
in vitro models. This approach could potentially be further
extended using causal representation learning methods that
increase the understanding of cellular signaling mechanisms, the
way they shape cellular morphology and how they change under
various treatments during drug discovery.

The clinical translatability of drug screenings with preclinical
models, such as organoids, always has to be cautiously inter-
preted, since these models lack in vivo pharmacodynamics and
kinetics, microenvironmental factors or microbiota modulating
drug response, (dose-limiting) healthy tissues and organs and
uncertainty of “correct” drug concentrations compared to in vivo
situations. Therefore, direct clinical application of organoid-based
treatment predictions are difficult and negative results have been
published recently45,46. Nevertheless, organoids provide a high
model representativeness and associations between morphology,
molecular features and drug response within organoid cohorts
may well be representative of specific biological features of cancer.
Additionally, while our image-based profiling study is limited by
the number of studied organoid lines and organoid-level imaging
resolution, our work is a comprehensive mapping of patient-
derived cancer organoid morphologies across 11 organoid donors
and >500 small molecule perturbations at single organoid reso-
lution. We identified two key axes of morphological variation in
cancer organoids, their underlying biological processes and
pharmacological perturbations that move organoids along these
axes. Previously, primary cells of monogenic diseases have been
intensively studied using image based profiling for drug
discovery63. Our work opens up new directions for image-based
profiling of complex in vitro disease models, as we believe this
work could be expanded to search for therapeutics in somatic
multigenic disease models, for example stepwise genetically edited
organoid models of early colorectal cancer31,32, or larger cohorts
of patient-derived cancer organoids. In addition, more complex
cellular interactions such as interactions of immune cells with
solid tumors could be explored with refined image based drug
screening protocols based on our method64–66. A better under-
standing of organoid phenotypes and the ability to use multi-
omics data to annotate organoid states and their plasticity have
the potential to further accelerate image-based drug discovery for
complex multigenic diseases such as colorectal cancer.

Methods
Patients. All patients were recruited at University Hospital Mannheim, Heidelberg
University, Mannheim, Germany. We included untreated patients with a new
diagnosis of colon or rectal cancer in this study and obtained biopsies from their
primary tumors via endoscopy. Exclusion criteria were active HIV, HBV or HCV
infections. Biopsies were transported in phosphate buffered saline (PBS) on ice for
subsequent organoid extraction. Clinical data, tumor characteristics and molecular
tumor data were pseudonymized and collected in a database. The study was
approved by the Medical Ethics Committee II of the Medical Faculty Mannheim,
Heidelberg University (Reference no. 2014-633N-MA and 2016-607N-MA). All
patients gave written informed consent before tumor biopsy was performed. In
total, we extracted organoids from 13 patients with colorectal cancer for this study.
Patient characteristics including sex, tumor location and stage can be found in
Supplementary Table 1. Participants were not compensated.

Organoid culture. Organoid cultures were extracted from tumor biopsies as
reported by Sato et al.5 with slight modifications. In short, tissue fragments were
washed in DPBS (Life technologies) and digested with Liberase TH (Roche) before
embedding into Matrigel (Corning) or BME R1 (Trevigen). Advanced DMEM/F12
(Life technologies) medium with Pen/Strep, Glutamax and HEPES (basal medium)
was supplemented with 100 ng/ml Noggin (Peprotech), 1 x B27 (Life technologies),
1,25 mM n-Acetyl Cysteine (Sigma), 10 mM Nicotinamide (Sigma), 50 ng/ml
human EGF (Peprotech), 10 nM Gastrin (Peprotech), 500 nM A83-01 (Biocat),
10 nM Prostaglandin E2 (Santa Cruz Biotechnology), 10 µM Y-27632 (Selleck
chemicals) and 100 mg/ml Primocin (Invivogen). Initially, cells were kept in 4
conditions including medium as described (ENA), or supplemented with addi-
tional 3 uM SB202190 (Biomol) (ENAS), 50% Wnt-conditioned medium and 20%
R-Spondin conditioned medium (WENRA) or both (WENRAS), as described by
Fujii et al.6. The tumor niche was determined after 7–14 days and cells were
subsequently cultured in the condition with best visible growth. Organoids were
passaged every 7–10 days and medium was refreshed every 2–3 days. 13 orga-
noid lines were analyzed within this study, data of all organoid lines including
niche and growth rate are denoted in Supplementary Table 1.
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Amplicon sequencing. DNA was isolated with the DNA blood and tissue kit
(Qiagen). Sequencing libraries were prepared with a custom panel (Tru-Seq custom
library kit, Illumina) according to the manufacturer’s protocol and sequenced on a
MiSeq (Illumina) as reported previously67. Targeted regions included the most
commonly mutated hot spots in colorectal cancer in 46 genes captured with 157
amplicons of approximately 250 bp length. Sequencing reads were first evaluated
using FastQC v.0.11.568 and the low quality reads together with the adapters were
trimmed using TrimGalore v.0.4.369. After mapping the reads to the GRC38
reference genome using Burrows-Wheeler Aligner (BWA) v.0.7.16, the resulting
aligned reads were first compressed to BAM files using samtools v.1.3.170 and then
sorted and indexed using the Picard tools v.1.138. The resulting bam files were
analyzed using the Genome Analysis Toolkit (GATK) v. 3.871. Base recalibration
was performed and variants were called using the MuTect2 pipeline. Variants with
a variant frequency below 10%, with less than 10 reads, or with a high strand bias
(FS < 60) were filtered out. Variants were annotated with Ensembl variant effect
predictor72 and manually checked and curated using integrative genomics viewer, if
necessary73. Only non-synonymous variants present in COSMIC74 were con-
sidered true somatic cancer mutations. Also, all variants annotated “benign”
according to PolyPhen database and “tolerated” in SIFT database were excluded, as
well as variants with a high frequency in the general population as determined by a
GnomAD75 frequency of >0.001.

Expression profiling. Organoid RNA was isolated with the RNeasy mini kit after
snap freezing organoids on dry ice. Samples were hybridized on Affymetrix U133
plus 2.0 arrays. Raw microarray data were normalized using the robust multi-array
average (RMA) method76 followed by quantile normalization as implemented in
the “affy”77 R/Bioconductor package. In order to exclude the presence of batch
effects in the data, principal component analysis and hierarchical clustering were
applied. Consensus molecular subtypes were determined as described previously78

using the single sample CMS classification algorithm with default parameters as
implemented in the R package “CMSclassifier”. In all cases, differential gene
expression analyses were performed using a moderated t test as implemented in the
R/Bioconductor package “limma”79. Gene set enrichment analyses were performed
using ConsensusPathDB80 for discrete gene sets or GSEA as implemented in the
“fgsea”81,82 R/Bioconductor package for ranked gene lists. Wikipathways83 or
Reactome84 were used for pathway analysis. Gene expression analysis was done in
R version 4.0.0. When possible, packages were installed via bioconductor.

Compound profiling
Cell seeding. Organoid drug profiling followed a standardized protocol with com-
prehensive documentation of all procedures. Organoids were collected and digested
in TrypLE Express (Life technologies). Fragments were collected in basal medium
with 300 U/ml DNAse (Sigma) and strained through a 40 µm filter to achieve a
homogeneous cell suspension with single cells and small clusters of cells, but
without large organoid fragments. 384 well µclear assay plates (Greiner) were
coated with 10 µL BME V2 (Trevigen) at a concentration of 6.3 mg/ml in basal
medium, centrifuged and incubated for >20 min at 37 °C to allow solidification of
the gel. Organoid cell clusters together with culture medium (ENA) and 0.8 mg/ml
BME V2 were added in a volume of 50 µl per well using a Multidrop dispenser
(Thermo Fisher Scientific). Plates were sealed with a plate-loc (Agilent) and cen-
trifuged for an additional 20 min allowing cells to settle on the pre-dispensed gel.
Cell number was normalized before seeding by measuring ATP levels in a 1:2
dilution series of digested organoids with CellTiter-Glo (Promega). The number of
cells matching 10,000 photons (Berthold Technologies) was seeded in each well.
After seeding of organoid fragments, plates were incubated for three days at 37 °C
to allow organoid formation before addition of small molecules. Two biological
replicates (defined as an independent passage) of each organoid line were profiled.
Mean passage number of the organoid lines by the time of profiling of the first
replicate was 9 (median 9) and organoids were passaged up to two more times
before the second replicate. In total, 13 organoid lines underwent profiling with the
clinical cancer library and the KiStem library with high throughput imaging. Data
from two organoid lines (D015T, D021T) later had to be excluded due to too many
out-of-focus organoids (more details below). One line, D020T, was profiled twice
within different experimental batches (D020T01 and D020T02). If not shown
otherwise, data from D020T01 was used.

Compound libraries. Two compound libraries were used for screening: A library
containing 63 clinically relevant small molecules (clinical cancer library, Supple-
mentary Table 3) and a library of 464 compounds targeting kinases and stem cell or
developmental pathways associated genes (KiStem library, Supplementary Table 4).
The clinical cancer library was manually curated by relevance for current (color-
ectal) cancer therapy, mechanism of action and potential clinical applicability.
small molecules of this library were mainly in clinical use or in phase I/II clinical
trials. Five concentrations per compound were screened (five-fold dilutions). The
concentrations were determined by analysis of literature data from previous 3D
and 2D drug screens and own experiments. All small molecules within the KiStem
library were used in a concentration of 7.5 µM. All small molecules were obtained
from Selleck chemicals. Libraries were arranged in an optimized random layout.
We stored compound libraries in DMSO at −80 °C.

Compound treatment. 30 µl medium was aspirated from all screening plates and
replaced with fresh ENA medium devoid of Y-27632, resulting in 45 µl volume per
well. Drug libraries were diluted in basal medium and subsequently 5 µl of each
small molecule was distributed to screening plates. All liquid handling steps were
performed using a Biomek FX robotic system (Beckmann Coulter). Plates were
sealed and incubated with small molecules for four days.

Luminescence viability read out. Plates undergoing viability screening were treated
with 30 µl CellTiter-Glo reagent after medium aspiration with a Biomek FX
(Beckmann Coulter). After incubation for 30 min, luminescence levels were mea-
sured with a Mithras reader (Berthold technologies).

Image-based phenotyping. Image-IT DeadGreen (Thermo Fisher) was added to the
cultures with a Multidrop dispenser (Thermo Fisher) in 100 nM final concentration
and incubated for 4 h. Afterwards, medium was removed and organoid cultures
were fixed with 3% PFA in PBS with 1% BSA. Fixed plates were stored at 4 °C for
up to 3 days before permeabilization and staining. On the day of imaging, orga-
noids were permeabilized with 0.3% Triton-X-100 and 0.05% Tween in PBS with
1% BSA and stained with 0.1 µg/ml TRITC-Phalloidin (Sigma) and 2 µg/ml DAPI
(Sigma). All liquid handling steps were performed with a BiomekFX (Beckmann
Coulter). Screening plates were imaged with an Incell Analyzer 6000 (GE
Healthcare) line-scanning confocal fluorescent microscope. We acquired 4 fields
per well with z-stacks of 16 slices at 10x magnification. The z-steps between the
16 slices had a distance of 5 µm, the depth of field of each slice was 3.9 µm.

Immunohistochemistry. Organoids were fixed for 20 min in 4% (v/v) Roti Histofix
(Carl Roth) followed by embedding into MicroTissues 3D Petri Dish micromolds
(Sigma–Aldrich) using 2% (w/v) Agarose LE (Sigma) in PBS supplemented with
0.5 mM DTT. Thereafter, organoids were subjected to dehydration steps and
embedding in paraffin. Formalin-fixed agarose/paraffin-embedded sections
(3–5 µm) were manually cut from blocks with a microtome (Leica RM 2145) and
transferred to glass slides (Superfrost, Thermo Fisher Scientific) before H&E
staining using automated staining devices.

Real time quantitative PCR. Total RNA was isolated from organoids with the
RNeasy Mini kit (Qiagen). cDNA synthesis was done with Verso cDNA kit
(Thermo Fisher Scientific), and RT-PCR was performed using the SYBR Green Mix
(Roche, Nutley, NJ, USA) on LightCycler480 system (Roche). The following pri-
mers for LGR5 were used: 5´-TTC CCA GGG AGT GGA TTC TAT-3′ (forward)
and 5′-ACC AGA CTA TGC CTT TGG AAA C-3′ (reverse). Results were nor-
malized to UBC mRNA using 5´-CTG ATC AGC AGA GGT TGA TCT TT-3´
forward and 5′-TCT GGA TGT TGT AGT CAG ACA GG-3′ reverse primers.

Western blot. Organoids seeded in 6-well plates were harvested after 3-days
incubation with WYE-132 in RIPA buffer (Thermo Scientific) supplemented with
protease inhibitors (Complete Mini, Roche) and phosphatase inhibitors (Phos-
phatase Inhibitor 1 and 2, Sigma), followed by sonication (Branson Sonifier,
Heinemann). Protein concentrations of supernatants were measured using a BCA
assay kit (Thermo Fisher Scientific). Lysates were mixed with an SDS-loading
buffer and heated to 99 °C for 5 min. Proteins were separated by SDS–PAGE in
MOPS running buffer and transferred to a nitrocellulose membrane. Membranes
were blocked with 5% (w/v) skim milk in PBS containing 0.1% (v/v) Triton X-100
(PBS-T). Antibodies against IRS1 (06-248, Sigma–Aldrich) and HSP-90 (sc-13119,
Santa Cruz) as loading control were used in 1:1000 dilution in 5% milk in PBS-T,
secondary antibodies (Mouse IgG HRP ECL, Sigma–Aldrich) were used in 1:10000.
ECL Western Blotting W1001 (Promega) was used for visualization of bands.

Image analysis
Image processing. Microscopic image z-stacks were illumination corrected using a
prospective method, compressed to HDF5 format and underwent maximum
contrast projection using the MaxContrastProjection package for further proces-
sing of the images. This algorithm projects the multi-channel 3D image stack onto
a plane by retaining the pixel information with the strongest contrast to its
neighboring pixels. We used a two-step procedure to establish segmentation: First,
organoids were segmented using a model based on fluorescence channel intensity.
The intensity segmentation was then used to perform weakly supervised learning
with a deep convolutional neural network (CNN) for object identification on the
partially correct intensity segmentation, leveraging the robustness of CNNs with
regard to mislabeled training data and eliminating the need for expensive manual
annotations. For further analysis, we used a model-free outlier detection to remove
segmented objects with a particle size of 300 pixels and lower to remove non-
organoid objects. Standard image features, including shape, moment, intensity, and
Haralick texture features85 on multiple scales, were extracted using the R/Bio-
conductor package EBImage86. Initially, we extracted a total of 1572 features for
each individual organoid image. However, texture features were meaningless for
scales larger than the actual organoid size. To simplify the analysis, we thus only
retained texture features that were well defined for all organoids and on a scale
smaller than the smallest organoids in the image dataset. This ensured that the
dataset contained no NA-values requiring imputation. A feature was considered
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“well-defined’ if the median absolute deviation across the entire dataset was strictly
greater than 0. In other words, if more than half of all organoids exhibited an
identical value for a feature, then that feature was discarded for further analysis.
This resulted in 528 well-defined features. We did not perform feature selection
based on between-replicate correlation of well-averaged features as we used single-
organoid features for further analysis and selected downstream methods used
(Random-Forest) did not require pre-selection of features or were based on
principal components across the complete dataset (logistic regression). To allow
comparison between various organoid lines and drug perturbations, the distribu-
tions of features describing organoids from different batches were adjusted by
centering. Out-of-focus objects were programmatically removed from the dataset
using a feature based random forest classifier. Data from two organoid lines
(D015T, D021T) had to be excluded from image analysis due to too many out of
focus objects, resulting in 11 analyzed organoid lines. In addition, data from three
individual plates (D027T01P906L03, D020T01P906L03, D013T01P001L02) were
excluded from further analysis due to out-of-focus artifacts. Images were processed
with R 3.6.0 and packages were downloaded from bioconductor.

Analysis of unperturbed organoid phenotypes. Principal components were calcu-
lated for the entire dataset using incremental principal component analysis. A set of
25 principal components were selected, explaining approx. 81% of the total var-
iance within the dataset. We chose 25 principal components because the next PCs
only added up minimal more information, i.e. we would have to include a large
number of more PCs to increase the covered variance by only a few percent. 25
therefore seemed a reasonable cut-off. Next we embedded the first 25 principal
components using uniform manifold approximation and projection (UMAP) with
min_distance of 0.1, 15 nearest neighbors and otherwise default monocle3
parameters27. Embedded objects were clustered using the leiden graph based
clustering algorithm with a resolution parameter of 10E-787. For the illustration of
dose-dependent changes in organoid morphology we fitted principal curves
through downsampled UMAP observations using the princurve R package88.

Live-dead classification. A random forest classifier (scikit-learn v1.0) with 10 trees
was trained on the original 1572 single organoid features to differentiate living
from dead organoids. Organoids treated with DMSO were used as negative (i.e.
living) controls while organoids treated with Bortezomib and SN-38 at the two
highest concentrations were used as positive (i.e. dead) controls. Visual inspection
of the projected images confirmed our choice of positive controls. Models were
trained and validated using only observations from the clinical cancer panel with a
60–40 train-validation split. Initial classification performance metrics were esti-
mated using the validation dataset. A separate classifier was trained for each
individual line to ensure inter-line independence, however individual classifiers
were evaluated on validation data from foreign organoid lines to assess general-
izability. Classifiers relying on less information (i.e. a combination of actin/TRITC
or DNA/DAPI staining alone, compared to all three fluorescence channels) were
tested by masking of input features. Binary classification results were averaged
within wells to obtain viability scores ranging from 0 to 1, indicating how lethal a
treatment was. This procedure was applied to the complete imaging data.

Analysis of drug activity and drug-induced phenotypes. A logistic regression model
(scikit-learn) was trained per line and treatment (and per concentration where
applicable) to differentiate treated organoids from negative controls based on the
PCA-transformed features89. For model training, organoid observations were
separated into training and validation data with a 50–50 split. A hyperparameter
grid search for L2 regularization strength was performed on the training set using
5-fold cross validation. Selected models were then trained on the validation set and
model performance, expressed in the area under the receiver operating char-
acteristic curve (AUROC), was estimated using 10-fold cross validation. Next, we
selected active compound treatments in which robust morphological changes were
observed in at least one line. Treatments were categorized as either active or
inactive based on the performance of the logistic regression classifier. We defined a
compound treatment as “active” when treated and untreated organoids in the
validation dataset could be correctly identified by their corresponding classifier
with an average area under the receiver operating characteristic curve (AUROC) of
0.85 or greater. The model coefficients, which can be understood as the direction of
the normal vector perpendicular to the separating hyperplane in organoid feature
space, was interpreted as the drug-induced effect. We chose this approach to
account for the high intra- and inter-sample heterogeneity of primary patient-
derived organoids. We accepted the strong reference to DMSO treated organoids in
order to describe compound treatments. Drugs were clustered based on the cosine
similarity. We compared this approach to a model-free Pearson correlation based
clustering. We then aggregated compound induced phenotypic profiles across all
organoid lines and applied contingency testing90. Fisher’s exact test was used to
identify enrichments of compounds with the same mode-of-action.

Analysis of dose-response relationships for organoid viability measurements. Cell
Titer Glo raw data of each plate were first normalized using the Loess-fit method91

in order to correct for edge effects. Subsequently, each plate was normalized by
division with the median viability score of the DMSO controls. For drugs tested in
multiple concentrations, drug response Hill curves (DRC) were fitted and area

under the curve values were calculated for each DRC using the “PharmacoGx” R/
Bioconductor package92. The same method was used for predictions by the Live-
dead classifier in cases where multiple concentrations were available.

Multi-omics factor analysis
Model training. A multi-omics factor analysis model was trained based on a set of
five modalities describing unperturbed organoid lines:

● organoid size estimated based on log-normal model fit of all DMSO treated
organoids [22 replicates, 1 feature]

● organoid somatic mutations as determined by amplicon sequencing [20
replicates, 12 features]

● organoid gene expression including the top 10% genes with the highest
coefficient of variance after robust multi-array average normalization [22
replicates, 3222 features]

● organoid morphology as determined by averaging DMSO treated
morphological profiles [22 replicates, 25 features]

● organoid drug activity as determined by AUROC score of logistic
regression models for drugs that were defined as active in at least one
observation [22 replicates, 252 features]

Input data was scaled and the MOFA model was trained with default MOFA2
training parameters and a number of 3 factors30. The number of factors was chosen
given the limited number of observations in our training data. The further analysis
focused on the first two factors, which correlated with prominent visible organoid
phenotypes. Gene set enrichment analysis and Reactome pathway enrichment of
factor loadings was performed using the clusterprofiler R package (v4.2)93.
Enrichment of drug targets within factor loadings was tested using ANOVA by
fitting a linear model, lm(factor loading ~ target). Drug targets that were
represented with at least three small molecule inhibitors were included in this
analysis. The analysis was run using the MOFA docker container available from
https://hub.docker.com/r/gtca/mofa2.

Model projection. To estimate the factor scores for drug-induced organoid
morphologies, the morphology profiles of organoids treated with the same drug were
averaged. The resulting average profile matrix was multipled with the pseudoinverse
of the previously learnt model loading matrix for organoid morphology data. The
resulting projected factor score matrix was used to estimate the drug-induced bio-
logical changes in cancer organoids. Associations between drug targets and projected
factor scores of drug treated organoids were identified via ANOVA by fitting a linear
model, lm(projected factor score ~ target). Drug targets that were represented with at
least three small molecule inhibitors were included in this analysis.

Statistics and reproducibility. If not otherwise stated, drug screening experiments
were performed in two biological replicates. A total of 5.5 Mio organoids were
analyzed after perturbation with 842 conditions, so that on average, more than
6000 organoids were analyzed per condition. When example images of phenotypes
are shown, we selected representative organoids from the images taken in screening
experiments and embedded them in black background for better visualization of
phenotypes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Microarray data are available in Gene Expression Omnibus (GEO) under accession no.
GSE117548 and under https://github.com/boutroslab/Supp_BetgeRindtorff_2021/tree/
master/data/. Raw Amplicon sequencing data are available through controlled access in the
European Genome Phenome Archive (EGA, https://www.ebi.ac.uk/ega/home, accession no.
EGAD00001004313) to adhere with donating patient’s data security and informed consent.
Data access requests for sequence data will be evaluated and transferred upon completion of
a data transfer agreement and authorization by the data access committee of Division
Signaling and Functional Genomics, DKFZ and Department of Medicine II, Medical Faculty
Mannheim. Processed sequencing results are available in Supplementary Table S2. Imaging
data can be made available upon request to the corresponding authors after completion of a
data transfer agreement and under the premise of adhering to EU General Data Protection
Regulation. Pre-processed, PCA-transformed feature data and all other data to reproduce
the analyses for the figures are available under https://github.com/boutroslab/Supp_
BetgeRindtorff_2021/. Source data are provided with this paper.

Code availability
Software for organoid image analysis (including projection, segmentation, feature
extraction, analysis of drug-induced phenotypes, live-dead-classification), the scripts for
analysis of luminescence data, dose response relationships, expression, amplicon-
seqencing and multi-omics factor analysis are available at: https://github.com/boutroslab/
Supp_BetgeRindtorff_2021.
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